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Abstract

Suppose A is a sectorial operator on a Banach space X , which admits an
H∞-calculus. We study conditions on a multiplicative perturbation B of A
which ensure that B also has an H∞-calculus. We identify a class of bounded
operators T : X → X , which we call strongly triangular, such that if B =
(1+T )A is sectorial then it also has anH∞-calculus. In the caseX is a Hilbert
space an operator is strongly triangular if and only if

∑
sn(T )/n <∞ where

(sn(T ))∞n=1 are the singular values of T.

1. Introduction

Let A be a sectorial operator on a Banach space X (see § 3 for the precise definition).
We will say that a closed operator B is a (multiplicative) perturbation of A if Dom(A) =
Dom(B) and there is a constant C such that

C−1‖Ax‖ ≤ ‖Bx‖ ≤ C‖Ax‖ x ∈ Dom(A).

This implies that we can write B in the form B = SA where S : X → X is a bounded
operator with a lower bound. In order for B to be again sectorial it is necessary but not
sufficient that S be invertible. It is well-known, however, that if S is a small enough
perturbation of the identity then B is always sectorial.

Now suppose A has an H∞-calculus, as introduced by McIntosh [26] (see § 3).
Then McIntosh and Yagi [27] showed that a perturbation of A can be sectorial but
fail to have an H∞-calculus. We therefore may ask for conditions on S (or more
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appropriately T = S − I) which will ensure that B again has an H∞-calculus. Such a
result was recently proved by Arendt and Batty [2] who showed that if A is invertible
and if B is a sectorial operator which is a nuclear perturbation of A (i.e. T is nuclear)
then B has an H∞-calculus with angle ωH(B) ≤ max(ω(B), ωH(A)). (See § 3 for
precise definitions of these quantities).

The aim of this paper is to show that the class of permissible perturbations that
preserve the H∞-calculus is significantly larger than just the nuclear perturbations. We
first discuss our results in the context of Hilbert space where our results are essentially
best possible. Let us say that a compact operator T on a Hilbert space is triangular if
its singular values satisfy the inequality

∞∑
n=1

sn(T )
n

<∞. (1.1)

The triangular operators are identifiable with the predual of the Matsaev ideal
(see [12]). Then every sectorial operator B which is a triangular perturbation of A
automatically has an H∞-calculus with ωH(B) ≤ max(ω(B), ωH(A)). Conversely if
(an) is a sequence with

∞∑
n=1

an
n

= ∞

then we may construct an example of a sectorial operator A with an H∞-calculus and
a compact operator T with sn(T ) ≤ an so that none of the operators (1 + 2−nT )A has
an H∞-calculus.

Thus the triangular operators form the largest ideal which preserve the H∞-
calculus. Notice that the restriction on the singular values is very mild indeed: one
only requires a condition like sn(T ) = O((log n)−1−ε).

For general Banach spaces our results are not quite so clean. We first observe
that it is possible to replace nuclear operators in the Arendt-Batty result by absolutely
summing operators (which may not even be compact).

Then we define a triangular operator T : X → Y to be an operator such that for
a suitable constant C one has∣∣∣ n∑

j=1

j∑
k=1

〈Txj , y∗k〉
∣∣∣ ≤ C sup

|aj |=1

∥∥∥ n∑
j=1

ajxj
∥∥∥ sup
|ak|=1

∥∥∥ n∑
k=1

aky
∗
k

∥∥∥
whenever x1, . . . , xn ∈ X, y∗1, . . . , y∗n ∈ Y ∗. The least such constant C defines Θ(T ) the
triangular norm of T. This definition is equivalent to the definition above for operators
on a Hilbert space. The class of triangular operators forms an operator ideal in the
sense of Pietsch which includes the ideal of absolutely summing operators. One can
also show that if T is compact and its approximation numbers an(T ) satisfy (in place
of (1.1)):

∞∑
n=1

an(T ) log n
n

<∞ (1.2)

then T is triangular. This condition is a little more restrictive than the condition
for operators on Hilbert spaces, but still is quite mild: one requires an estimate like
an(T ) = O((log n)−2−ε).
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It then turns out that the H∞-calculus is preserved under small triangular pertur-
bations. We say that T is strongly triangular if for every ε > 0 there is an absolutely
summing S with Θ(T − S) < ε. For example (1.2) suffices to ensure that T is strongly
triangular (and one only needs S to be finite-rank); however strongly triangular opera-
tors need not be compact. We then have a full extension of the Arendt-Batty result: if
B is a strongly triangular perturbation of A and is sectorial then B has an H∞-calculus
with angle ωH(B) ≤ max(ω(B), ωH(A)). Let us remark here that to prove this result
under the hypothesis (1.2) one can avoid the use of absolutely summing perturbations
(Theorem 7.5) (using only finite-rank perturbations and somewhat more elementary
arguments). However, the use of Grothendieck’s theorem and the theory of absolutely
summing operators appears to be essential in the characterization of triangular oper-
ators by (1.1) or (1.2). Furthermore, it seems to us that it is very natural to consider
absolutely summing perturbations as the proof of Theorem 7.5 is quite direct and uses
only the definition of absolutely summing operators.

We also give in § 4 some results on the sectoriality of perturbations which imply
this result can be strengthened when X has non-trivial type to ωH(B) ≤ ωH(A)
unless B has an eigenvalue λ with | arg λ| > ωH(A). We also show that in certain
special Banach spaces like L1 or `1 then the H∞-calculus is preserved under all compact
perturbations. This result depends very much on the special behavior of these spaces.
We also show that at least for Hilbert spaces our results are sharp.

Let us make a few comments on the organization of the paper. In § 2 we collect
together some well-known results from classical Banach space theory which are used
in the paper. § 3 contains the background on sectorial operators. In § 4 we discuss
some general results on perturbations of sectorial operators, extending known results in
certain cases; however, the results of this section (Proposition 4.1 through Theorem 4.4)
are not necessary in order to read the remainder of the paper. § 5 and § 6 collect
together the Banach space ideas used in the main results. Finally § 7 contains the
main results on when perturbations have an H∞-calculus and § 8 gives an example to
show the results are sharp.

2. Preliminaries from Banach space theory

In this section we review some of the basic facts in general Banach space theory which
will be used in the remainder of the paper. We will only consider complex Banach
spaces. We refer to [1, 34, 22, 23] for general background.

Let X be a Banach space; we denote the dual of X by X∗ and use 〈, 〉 for the
natural pairing of X and X∗. If X is a Hilbert space we use (, ) for the inner-product
on X. If A is a subset of X we denote by [A] the closed linear span of A.

We recall that a sequence (en)∞n=1 in X is called a (Schauder) basis if there is
a sequence (e∗n)∞n=1 in X∗ such that e∗k(ek) = 1, e∗j (ek) = 0 for j 6= k, and x =∑∞
n=1〈x, e∗n〉en for each x ∈ X. (en)∞n=1 is called an unconditional basis if the series∑∞
n=1〈x, e∗n〉en converges unconditionally for every x ∈ X. (en)∞n=1 is called a basic

sequence (respectively, an unconditional basic sequence) if it is a basis (respectively an
unconditional basis) for its closed linear span [en]∞n=1. Two basic sequences (en)∞n=1

and (xn)∞n=1 are equivalent if there is an invertible operator T : [en]∞n=1 → [xn]∞n=1 with
Ten = xn.
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It is often important to know when an arbitrary sequence has a subsequence which
is basic and a complete answer can be given (see [17] or [1, p. 22]):

Proposition 2.1

Let (xn)∞n=1 be a sequence in a Banach space X. Suppose 0 < infn∈N ‖xn‖ ≤
supn∈N ‖xn‖ < ∞. Suppose (xn)∞n=1 fails to have a subsequence which is basic; then
the set {xn : n ∈ N} is relatively weakly compact in X \ {0}.

We also have:

Proposition 2.2

Let X be a Banach space with an unconditional basis. Then every weakly null
sequence (xn)∞n=1 with 0 < infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞ has a subsequence which
is an unconditional basic sequence.

This is very well-known and follows from the Bessaga-Pe lczyński Selection crite-
rion ([1, p. 14]). Note that Lp has an unconditional basis if 1 < p <∞ but L1 does not
embed in any space with an unconditional basis ([34, p. 62]). Indeed the proposition
is false if X = L1 [16].

We recall that a sequence (xn)∞n=1 in a Banach space X is weakly Cauchy if
limn→∞〈xn, x∗〉 exists for all x∗ ∈ X∗. The following deep result is due to Rosenthal [32]
(for the real case) and Dor [10] (for the complex case). See [1, p. 252] or [22, p. 99].

Theorem 2.3

Let (xn)∞n=1 be a sequence in a Banach space X such that 0 < infn∈N ‖xn‖ ≤
supn∈N ‖xn‖ < ∞. If (xn)∞n=1 has no weakly Cauchy subsequence then (xn)∞n=1 has a
subsequence which is basic and equivalent to the canonical basis of `1.

We will also need the concepts of Rademacher type and cotype. Let (εj)∞j=1 denote
a sequence of independent Rademachers (i.e. random variables on some probability
space such that P(εj = 1) = P(εj = −1) = 1

2). We say that a Banach space X has type
p (where 1 < p ≤ 2) if there is a constant C such that(

E
∥∥∥ n∑
j=1

εjxj
∥∥∥p)1/p

≤ C
( n∑
j=1

‖xj‖p
)1/p

x1, . . . , xn ∈ X.

X has cotype q (where 2 ≤ q <∞) if there is a constant C so that( n∑
j=1

‖xj‖q
)1/q

≤ C
(
E
∥∥∥ n∑
j=1

εjxj
∥∥∥q)1/q

x1, . . . , xn ∈ X.

X has non-trivial type if it has type p > 1 for some p.
We now consider ideals of operators. A good general reference here is [9] or the

survey article [8].
First we recall that an operator T : X → Y is said to be strictly singular if for every

infinite-dimensional subspace E of X the restriction T |E fails to be an isomorphism
(into Y ). Compact operators are strictly singular but the converse is false: however,
strictly singular operators have essentially the same Fredholm properties as compact
operators. We will need the following result ([22, p. 79]):
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Proposition 2.4

Let T : X → X be a strictly singular operator. Then 1+T is a Fredholm operator
of index zero.

If X and Y are Banach spaces and L(X,Y ) is the space of all bounded opera-
tors then we will say that a subspace I with an associated norm Φ is an operator ideal if:

(i) (I,Φ) is complete.
(ii) If R : X → Y has rank one then R ∈ I and Φ(R) = ‖R‖.
(iii) If S ∈ I and R ∈ L(Y ) = L(Y, Y ), T ∈ L(X), then RST ∈ I with Φ(RST ) ≤

‖R‖Φ(S)‖T‖.

We will say that I is maximal if {T : Φ(T ) ≤ 1} is closed for the strong operator
topology.

Our definition of an operator ideal is a simplified version of the more general
concept of an operator ideal developed by Pietsch [29] (see also [6, 8]); we have elected
not to use the more general definition only to avoid complications. Note that both
the compact and strictly singular operators form an operator ideal for the operator
norm. We now turn to some other examples of operator ideals, which are not closed
in L(X,Y ).

An operator T : X → Y is called nuclear if it can be represented in the form
Tx =

∑∞
n=1〈x, x∗n〉yn where (x∗n)∞n=1 is a sequence in X∗, (yn)∞n=1 is a sequence in

Y and
∑∞
n=1 ‖x∗n‖‖yn‖ < ∞. The nuclear norm ν(T ) is defined to the infimum of∑∞

n=1 ‖x∗n‖‖yn‖ over all such representations. The nuclear operator operators form an
operator ideal.

T is called absolutely p-summing if there is a constant C so that we have

( n∑
k=1

‖Txk‖p
)1/p

≤ C max
‖x∗‖≤1

( n∑
k=1

|〈xk, x∗〉|p
)1/p

x1, . . . , xn ∈ X.

The least constant C is called the absolutely p-summing norm and denoted πp(T ).
It is clear that the absolutely p-summing operators form a maximal operator ideal
according to our definition above. Absolutely p-summing operators are always strictly
singular. We will need mainly the case p = 1 when we use the term absolutely summing
operator.

We will need the following fact (combine e.g. Corollary 5.8 and Theorem 5.26
of [9]):

Proposition 2.5

Let T : `n∞ → X be a linear operator. Then π1(T ) = ν(T ).

The central result concerning absolutely summing operators is of course Grothendieck’s
theorem (see [22, p. 69], [9, p. 60], [31, p. 57]):

Theorem 2.6

Let X = `1 or X = L1. Then every bounded operator T : X → `2 is absolutely
summing and π1(T ) ≤ KG‖T‖ where KG is Grothendieck’s constant.
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Note that Grothendieck’s constant in the complex case is different from the real
case. A Banach space X such that every operator T : X → `2 is absolutely summing
is called a GT-space; see [31, Chapter 6], for a full discussion.

We will have particular need of a dual form of Grothendieck’s theorem ([9, p. 64],
[22, p. 70]). We state this this for finite-rank operators.

Theorem 2.7

Let X be a Banach space isometric to a subspace of L1 (e.g. let X be a Hilbert
space). Then if T : `n∞ → X is a linear operator we have π2(T ) ≤ KG‖T‖.

Theorem 2.7 holds for anyX with cotype 2 by use of Pisier’s abstract Grothendieck
theorem ([31, Chaper 4]).

Combined with the Grothendieck-Pietsch Factorization theorem ([9, pp. 44-49],
[31, p. 13]) this gives a factorization result:

Theorem 2.8

Let X be a Banach space isometric to a subspace of L1. Then if T : `n∞ → X is a
linear operator we can find a factorization

`n∞
D−→ `n2

U−→ X

so that D is a diagonal operator, T = UD and ‖U‖‖D‖ ≤ KG‖T‖.

Finally if T : X → Y is any bounded operator we define

an(T ) = inf{‖T − F‖ : rank F < n}

be the nth-approximation number of T , so that a1(T ) = ‖T‖. If X = Y is a Hilbert
space then an(T ) = sn(T ) is the nth-singular value of T .

3. Sectorial operators

Let X be a complex Banach space. A sector of angle 0 < φ < π in the complex plane
is the open set defined by

Σφ = {λ ∈ C \ {0} : | arg λ| < φ}.

A closed operator A on X is called sectorial if:
(i) A is one-to-one.
(ii) The domain Dom(A) and range Ran(A) are dense in X.
(iii) There exists 0 < φ < π so that the spectrum σ(A) is contained in Σφ and one

has the resolvent estimate:.

‖λR(λ,A)‖ ≤ C, λ ∈ C \ Σφ (3.1)
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Notice that this definition does not require A to be invertible. It follows from this
definition that A−1 is also a sectorial operator. We define the angle of sectoriality of
A by letting ω(A) be the infimum of all φ so that (3.1) holds.

We denote by H∞(Σφ) the space of all bounded analytic functions on the sector
Σφ where 0 < φ < π. We define H∞

0 (Σφ) to be the space of all f ∈ H∞(Σφ) which
obey the estimate of the form |f(z)| ≤ C|z|δ(1 + |z|)−2δ for z ∈ Σφ with δ > 0.

For any φ > ω suppose f ∈ H∞
0 (Σφ). Then we can define f(A) as a bounded

operator by a contour integral i.e.

f(A) =
1

2πi

∫
Γν
f(ζ)R(ζ, A) dζ, (3.2)

where Γν = {|t|e−i(sgn t)ν : −∞ < t < ∞} and ω < ν < φ. Notice that we get an
estimate:

‖f(tA)‖ ≤ C

∫ ∞

−∞
|f(sei(sgn s)ν)| ds

|s|
(3.3)

where C = C(ν,A). The map f → f(A) is an algebra homomorphism from H∞
0 (Σφ)

into L(X).
If f ∈ H∞(Σφ) then (3.2) does not necessarily converge as a Bochner integral.

However for every g ∈ H∞
0 (Σφ) we can define the operator (fg)(A). Thus if x ∈

Dom(A)∩Ran(A) since then x = A(1+A)−2y for some y we can define f(A)x = g(A)y
where g(z) = z(1 + z)−2f(z).

If we define
vn(z) =

n

n+ z
− 1

1 + nz

then vn(A) maps X into Dom(A) ∩ Ran(A) and it may be shown that (fvn)(A)x =
f(A)vn(A)x. If supn ‖(vnf)(A)‖ <∞ then we can define

f(A)x = lim
n→∞

(vnf)(A)x x ∈ X

as a bounded operator. This is equivalent to the fact that f(A) satisfies an estimate

‖f(A)x‖ ≤ C‖x‖ x ∈ Dom(A) ∩ Ran(A).

As an alternative way to view this procedure, one can densely define f(A) by

f(A)x =
1

2πi

∫
Γν
f(ζ)ζ1/2A1/2R(ζ, A)x dζ, x ∈ Dom(A) ∩ Ran(A) (3.4)

where A1/2R(ζ, A) is a well-defined operator since z1/2(ζ − z)1/2 belongs to H∞
0 (Σφ′)

where ω < φ′ < ν. Then f(A) extends to a bounded operator if one has a norm
estimate

‖f(A)x‖ ≤ C‖x‖ x ∈ Dom(A) ∩ Ran(A).

If f(A) is bounded for for all f ∈ H∞(Σφ) we say that A has H∞(Σφ)-calculus.
We then have an estimate

‖f(A)‖ ≤ C‖f‖H∞(Σφ) f ∈ H∞(Σφ).
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We can define the corresponding angle of H∞-calculus by letting ωH(A) be the infimum
of all φ so that A has an H∞(Σφ)-calculus. See [19, 5] for details. A good reference
for the functional calculus described above is [15].

4. Perturbations of sectorial operators

Let A be a sectorial operator; a closed operator B is called a perturbation of A if
Dom(A) = Dom(B) and for a suitable constant C we have

C−1‖Ax‖ ≤ ‖Bx‖ ≤ C‖Ax‖ x ∈ Dom(A).

This implies that B = SA where S : X → X is a bounded operator, with a lower
bound ‖Sx‖ ≥ c‖x‖. For B to be also sectorial it is necessary that S also has dense
range and therefore is invertible.

If T := S − I is compact we say that B is a compact perturbation of A. More
generally if T belongs to a specific operator ideal I we say that B is an I-perturbation
of A.

Suppose ω(A) < φ < π. In order for B to be sectorial with ω(B) < φ it is necessary
and sufficient that the operator (λ−B)R(λ,A) defines a bounded invertible operator
on X for λ /∈ Σφ and that we have a bound

‖((λ−B)R(λ,A))−1‖ ≤ C λ /∈ Σφ.

Now
(λ−B)R(λ,A) = I − TAR(λ,A) (4.1)

where T = S − I.
We therefore recover immediately the well-known perturbation result that if

‖T‖ sup
λ/∈Σφ

‖AR(λ,A)‖ < 1 (4.2)

then B is sectorial and ω(B) ≤ φ. See for example [7, 24, 3].
Let us also note the following easy consequence (which again is essentially con-

tained in the result of [7]).

Proposition 4.1

Suppose B is a compact perturbation of A and φ > ω(A). If B fails to be sectorial
with ω(B) ≤ φ then there exists an eigenvalue λ of B with λ ∈ C\{0} with | arg λ| ≥ φ.

Proof. Let
M = sup

{
‖λR(λ,A)‖ : λ 6= 0, | arg λ| ≥ φ

}
.

Suppose B has no such eigenvalue. Then 1 − TAR(λ,A) is injective by (4.1) above.
Since T is compact the operator I−TAR(λ,A) is Fredholm and hence invertible. Thus
the map λ→ (I −TAR(λ,A))−1 is well-defined for | arg λ| ≥ φ and λ 6= 0. It is clearly
also continuous and analytic on the interior of the region. It is enough to show the
existence of 0 < r1 < r2 <∞ and C so that

‖(I − TAR(λ,A))−1‖ ≤ C 0 < |λ| < r1 or r2 < |λ| <∞, | arg λ| ≥ φ.
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By the compactness of T there exists r2 so that

‖AR(λ,A)T‖ < 1
2

r2 < |λ| <∞, | arg λ| ≥ φ.

Since

(I − TAR(λ,A))−1 = I +
∞∑
n=1

T (AR(λ,A)T )n−1AR(λ,A)

we have

‖(I − TAR(λ,A))−1‖ ≤ 1 + 2(M + 1)‖T‖ r2 < |λ| <∞, | arg λ| ≥ φ.

Let T0 = S−1T . There similarly exists r1 so that

‖λR(λ,A)T0‖ <
1
2

0 < |λ| < r1, | arg λ| ≥ φ.

Now
I − TAR(λ,A) = S − λTR(λ,A) = S(1− λT0R(λ,A)).

Then

(1− λT0R(λ,A))−1 = I +
∞∑
n=1

T0(λR(λ,A)T0)n−1(λR(λ,A)).

Thus

‖(I − TAR(λ,A))−1‖ ≤ ‖S−1‖(1 + 2M‖S−1‖‖T‖) 0 < |λ| < r1, | arg λ| ≥ φ.

Combining the two estimates the proof is complete. �

We will now investigate some extensions of this result for strictly singular pertur-
bations. We will need the following proposition:

Proposition 4.2

Let A be a sectorial operator on X and let T : X → X be a strictly singular
operator. Then (i), (ii) and (iii) are equivalent.

(i) Suppose (xn)∞n=1 in X, and µ ∈ C, (λn)∞n=1 ⊂ C are such that | arg λn| ≥ φ,
limn→∞ |λn| = ∞, and

lim
n→∞

‖µTAR(λn, A)xn − xn‖ = 0.

Then limn→∞ ‖xn‖ = 0.
(ii) For any r > 0, there are constants M, s > 0 so that (1−ζTAR(λ,A)) is invertible

for (ζ, λ) such that |ζ| ≤ r, |λ| ≥ s and | arg λ| ≥ φ and

‖(1− ζTAR(λ,A))−1‖ ≤M |ζ| ≤ r, |λ| ≥ s, | arg λ| ≥ φ. (4.3)

(iii) For any r > 0, there are constants M, s > 0 so that

‖(TAR(λ,A))n‖ ≤Mr−n, |λ| ≥ s, | arg λ| ≥ φ. (4.4)

Similarly, (iv), (v) and (vi) are equivalent.
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(iv) Suppose (xn)∞n=1 in X, and µ ∈ C, (λn)∞n=1 ⊂ C are such that | arg λn| ≥ φ,
limn→∞ |λn| = 0, and

lim
n→∞

‖µλnTR(λn, A)xn − xn‖ = 0.

Then limn→∞ ‖xn‖ = 0.
(v) For any r > 0, there are constants M, s > 0 so that (1−ζλTR(λ,A)) is invertible

for (ζ, λ) such that |ζ| ≤ r, |λ| ≤ s and | arg λ| ≥ φ and

‖(1− ζλTR(λ,A))−1‖ ≤M |ζ| ≤ r, |λ| ≤ s, | arg λ| ≥ φ. (4.5)

(vi) For any r > 0, there are constants M, s > 0 so that

‖(λTR(λ,A))n‖ ≤Mr−n, |λ| ≤ s, | arg λ| ≥ φ. (4.6)

Proof. (i) =⇒ (ii) : Since T is strictly singular, 1 − ζTAR(λ,A) is invertible if
and only if it is one-one by Proposition 2.4. Thus if the conclusion of (ii) fails for
every choice of s,M it is clear that for every n ∈ N we can find λn with | arg λn| ≥ φ,
|λn| ≥ n, ζn with |ζn| ≤ r−1 and xn ∈ X with ‖xn‖ = 1 and

‖(1− ζnTAR(λn, A))xn‖ < n−1.

It follows that that (ζn) does not have zero as a cluster point; if we let µ be a cluster
point of the sequence we have the failure of (i).

(ii) =⇒ (iii) follows from the Cauchy estimates. (iii) =⇒ (i) is trivial.
The other implications are similar. �

Lemma 4.3

Let A be a sectorial operator on X with an H∞-calculus and suppose that T is a
bounded operator on X. Suppose either that

(i) X embeds into a Banach space with an unconditional basis and T is strictly
singular, or

(ii) T belongs to some maximal operator ideal I contained in the strictly singular
operators.

Then for every r > 0 and ωH(A) < φ < π there exists a constant M and 0 <
s1 < s2 < ∞ such that if |ζ| ≤ r, (1 − ζTAR(λ,A)) is invertible for |λ| ≥ s2 and
(1− ζλTR(λ,A)) is invertible for |λ| ≤ s1 and we have estimates

‖(1− ζTAR(λ,A))−1‖ ≤M |ζ| ≤ r, |λ| ≥ s2, | arg λ| ≥ φ,

‖(1− ζλTR(λ,A))−1‖ ≤M |ζ| ≤ r, |λ| ≤ s1, | arg λ| ≥ φ.

Proof. We prove the existence of s1 > 0 as the other proof is similar. By Proposition 4.2
we assume by way of contradiction that exists µ ∈ C and a sequence (λn)∞n=1 in C with
| arg λn| ≥ φ and limn→∞ |λn| = 0 so that for some normalized sequence (xn)∞n=1 in X
we have

lim
n→∞

‖µλnTR(λn, A)xn − xn‖ = 0.
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This implies that the sequence yn = λnR(λn, A)xn is bounded above and below. Next
observe that λnA(1+A)−2R(λn, A) = fn(A) where the functions fn converge uniformly
to zero on the sector Σψ, where ωH(A) < ψ < φ. Hence limn→∞ ‖A(1 + A)−2yn‖ = 0
so that the sequence (yn)∞n=1 can have no weak cluster point other than zero. This
implies, by Proposition 2.1 that, passing to a subsequence, we can assume that (yn)∞n=1

is basic.
Now passing to a subsequence we further suppose that

‖µλnTR(λn, A)xn − xn‖ < 2−n, n = 1, 2, . . . ,
‖µλn+1R(λn+1, A)xn‖ < 2−n n = 1, 2, . . . .

|λn+1| < 4−n|λn| n = 1, 2, . . . .

Let us define operators (Pn)∞n=0 by

P0 = 1− λ1R(λ1, A)

and then
Pn = λnR(λn, A)− λn+1R(λn+1, A) n = 1, 2, . . . .

Thus Pn = gn(A) where

gn(z) =
(λn+1 − λn)z

(λn − z)(λn+1 − z)
.

If ωH(A) < ψ < φ then it is clear that we have an estimate

|gn(z)| ≤ C
|λn||z|

(|λn|+ |z|)(|λn+1|+ |z|)
z ∈ Σψ.

Thus, for a suitable constant C ′

|gn(z)| ≤


C ′|λn+1|−1|z| |z| < |λn+1|, z ∈ Σψ

C ′ |λn+1| ≤ |z| ≤ |λn|, z ∈ Σψ

C ′|λn||z|−1 |z| > |λn|, z ∈ Σψ

Hence
∑∞
n=1 |gn(z)| is uniformly bounded on Σψ. Now it follows from the fact that

A has an H∞-calculus with ωH(A) < φ that there is a constant K so that for every
bounded sequence (αn)∞n=0 the series

∑∞
n=0 αnPnx converges for every x ∈ X and

∥∥∥ ∞∑
n=0

αnPnx
∥∥∥ ≤ K sup

n
|αn|‖x‖ x ∈ X. (4.7)

The other property of (Pn) that we need is that

‖µTPnxn − xn‖ < 2−n(1 + ‖T‖)

and so
∞∑
n=1

‖µTPnxn − xn‖ <∞. (4.8)
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Let us first prove (i). Let (εj)∞j=1 be a sequence of independent Rademachers.
Then for any finitely nonzero sequence (αj)∞j=1,∥∥∥ ∞∑

j=1

αjPjxj
∥∥∥ =

∥∥∥E( ∞∑
j=1

εjPj
)( ∞∑

k=1

εkαkxk
)∥∥∥

≤ E
∥∥∥( ∞∑

j=1

εjPj
)( ∞∑

k=1

εkαkxk
)∥∥∥

≤ KE
∥∥∥( ∞∑

k=1

εkαkxk
)∥∥∥.

It follows that if any infinite subsequence (xn)n∈M is an unconditional basic se-
quence then there is a bounded operator U : [xn]n∈M → X such that Uxn = Pnxn. But
then limn→∞ ‖µTUxn−xn‖ = 0 and so for some further subsequence M′ we have that
TU is an isomorphism on [xn]n∈M′ which contradicts the strict singularity of T. Thus
(xn)∞n=1 has no unconditional basic subsequence. In particular, it has no subsequence
equivalent to the canonical basis of `1. By Rosenthal’s theorem (Theorem 2.3) every
subsequence of (xn)∞n=1 has a further weakly Cauchy subsequence.

Now if x∗ ∈ X∗ consider the operator R : X → `1 given by R(x) = (〈Pnx, x∗〉)∞n=1;
this is well-defined and bounded by (4.7). As `1 has the Schur property ([1, p. 37]),
R maps weakly Cauchy sequences to norm convergent sequences, and so (Rxn)∞n=1 is
relatively norm compact in `1. In particular we must have

lim
n→∞

〈Pnxn, x∗〉 = 0.

Since this is true for all x∗ ∈ X∗, the sequence (Pnxn)∞n=1 is weakly null. Thus
TPnxn is also weakly null and this implies by (4.8) that (xn)∞n=1 is also weakly null.
If X embeds in a space with an unconditional basis this implies that (xn)∞n=1 has a
subsequence which is an unconditional basic sequence (Proposition 2.2) and thus we
have a contradiction.

Next we prove (ii). Notice that if m > n,

λmλnR(λm, A)R(λn, A) =
λmλn
λn − λm

(R(λm, A)−R(λn, A))

= λmR(λm, A) +
λm

λn − λm
(λmR(λm, A)− λnR(λn, A)) .

This implies an estimate

‖PmPn‖ ≤ C14−max(m,n) ≤ C12−(m+n) |m− n| > 1.

Thus ∑
|m−n|>1

‖PmPn‖ <∞.

Let Q0 = P0 + P1 and then Qn = P3n−1 + P3n + P3n+1. Of course by (4.7) we have
that for every x ∈ X,

∑∞
n=0Qnx = x unconditionally. We also have estimates

∞∑
n=1

‖QnP3n − P3n‖ <∞
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and ∑
m6=n

‖QnP3m‖ <∞.

Let us now construct an operator V by defining

V x = µ
∞∑
n=1

P3nTQnx.

Since

V x = µE
( ∞∑
j=1

εjP3j

)
T
( ∞∑
k=1

εkQk
)
x

where (εj) is a sequence of independent Rademachers, V is bounded. Furthermore
V ∈ I since I is maximal; thus V is also strictly singular.

We clearly have
∞∑
n=1

‖V P3n − µP3nTP3n‖ <∞

and so by (4.8),
∞∑
n=1

‖P3nx3n − V P3nx3n‖ <∞

which implies that
∞∑
n=1

‖y3n − V y3n‖ <∞.

Now since V is strictly singular, we have a contradiction by standard perturbation
arguments. This completes the proof of (ii). �

Theorem 4.4

Let A be a sectorial operator on X with an H∞-calculus and suppose that B is a
closed operator on X. Suppose either that

(i) X embeds into a Banach space with an unconditional basis and B is strictly
singular perturbation of A, or

(ii) B is an I−perturbation of A, where I is a maximal operator ideal contained in
the strictly singular operators.

Then if ωH(A) < φ < π and B fails to be sectorial with ω(B) ≤ φ there exists a
eigenvalue λ of B with | arg λ| ≥ φ.

Proof. Let B = (1 + T )A. Then

(1− TAR(λ,A)) = (1 + T )(1− λT (1 + T )−1R(λ,A)).

We can then apply Lemma 4.3 to T for large λ and to T (1 + T )−1 for small λ and
the result follows as in Proposition 4.1 noting that in each case (1 − TAR(λ,A)) is a
Fredholm operator. �

Note that (ii) holds if B is a p-absolutely summing perturbation of A for some
p <∞.
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5. Triangular operators

For any bounded operator T : X → Y we define Θ(T ) with 0 ≤ Θ(T ) ≤ ∞ to be the
least constant C such that if x1, . . . , xn ∈ X and y∗1, . . . , y

∗
n ∈ Y ∗ then

∣∣∣ n∑
j=1

j∑
k=1

〈Txj , y∗k〉
∣∣∣ ≤ C sup

|aj |=1

∥∥∥ n∑
j=1

ajxj
∥∥∥ sup
|ak|=1

∥∥∥ n∑
k=1

aky
∗
k

∥∥∥. (5.1)

In (5.1) the summation is over the lower triangle k ≤ j; however this is equivalent
to summing over the upper triangle, i.e. one can equivalently define Θ(T ) as the least
constant such that

∣∣∣ n∑
k=1

k∑
j=1

〈Txj , y∗k〉
∣∣∣ ≤ C sup

|aj |=1

∥∥∥ n∑
j=1

ajxj
∥∥∥ sup
|ak|=1

∥∥∥ n∑
k=1

aky
∗
k

∥∥∥. (5.2)

To see this simply consider the sequences (x1, . . . , xn) and (y∗1, . . . , y
∗
n) in reverse order.

Proposition 5.1

We have ‖T‖ ≤ Θ(T ) with equality if T has rank one.

Proof. The inequality ‖T‖ ≤ Θ(T ) follows by taking n = 1 in (5.1). If ‖T‖ = 1
and T has rank one then Tx = 〈x, x∗〉y for some fixed x∗ ∈ X∗ and y ∈ Y with
‖x∗‖ = ‖y‖ = 1. Thus for x1, . . . , xn ∈ X and y∗1, . . . , y

∗
n ∈ Y ∗

∣∣∣ n∑
j=1

j∑
k=1

〈Txj , y∗k〉
∣∣∣ ≤ n∑

j=1

n∑
k=1

|〈Txj , y∗k〉| =
( n∑
j=1

|〈xj , x∗〉|
)( n∑

k=1

|〈y, y∗k〉|
)

so that Θ(T ) ≤ 1. �

An operator T will be called triangular if Θ(T ) < ∞. We denote the set of
triangular operators by T (X,Y ) or T (X) when Y = X.

We now collect together some elementary properties of triangular operators. We
will denote by ∆ the lower triangular projection defined for n× n matrices, i.e.

∆


a11 a12 . . . a1n

a21 a22 . . . a2n

· · . . . ·
an−1,1 an−1,2 . . . an−1,n

an1 an2 . . . ann

 =


a11 0 . . . 0
a21 a22 . . . 0
· · . . . ·

an−1,1 an−1,2 . . . 0
an1 an2 . . . ann

 .

Proposition 5.2

(i) For any pair of Banach spacesX,Y , T (X,Y ) is a Banach space under the norm Θ.
(ii) If

W
U−→ X

T−→ Y
V−→ Z

are bounded operators with T ∈ T (X,Y ) then V TU ∈ T (W,Z) with Θ(V TU) ≤
‖V ‖Θ(T )‖U‖.
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(iii) T : X → Y is triangular if and only if T ∗ : Y ∗ → X∗ is triangular and
Θ(T ) = Θ(T ∗).

(iv) If T : X → Y is a bounded operator then

Θ(T ) = sup ‖∆(V TU)‖`n∞→`n1
= sup Θ(V TU)

where the supremum is taken over all n and all operators U : `n∞ → X, V : Y →
`n1 with ‖U‖, ‖V ‖ ≤ 1.

Remark. (i) and (ii) (with Proposition 5.1) show that T (X,Y ) is an operator ideal;
it is clearly also maximal. More generally T defines an operator ideal in the sense of
Pietsch [8]. In (iv) we could, of course, replace ∆ with the upper-triangular projection.

Proof. The proofs are quite routine. We omit (i) and (ii). For (iii), we use the Principle
of Local Reflexivity [34, p. 76]. For ε > 0, if y∗1, . . . , y

∗
n ∈ X∗ and x∗∗1 , . . . , x

∗∗
n ∈ X∗∗

we may find x1, . . . , xn ∈ X so that

〈xj , T ∗y∗k〉 = 〈T ∗y∗k, x∗∗j 〉 1 ≤ j, k ≤ n

and

sup
|aj |=1

∥∥∥ n∑
j=1

ajxj
∥∥∥ ≤ (1 + ε) sup

|aj |=1

∥∥∥ n∑
j=1

ajx
∗∗
j

∥∥∥.
We now turn to (iv). If x1, . . . , xn ∈ X then we have a natural induced ope-

rator U : `n∞ → X defined by Uξ =
∑n
j=1 ξkxk where ξ = (ξ1, . . . , ξn). Similarly if

y∗1, . . . , y
∗
n ∈ Y ∗ then we may induce an operator V : X → `n1 by V x = (〈x, x∗k〉)nk=1.

Then

‖U‖ = sup
|aj |≤1

∥∥∥ n∑
j=1

ajxj
∥∥∥, ‖V ‖ = sup

|ak|≤1

∥∥∥ n∑
k=1

aky
∗
k

∥∥∥.
Then V TU(ξ) = (

∑n
j=1 ξj〈Txj , y∗k〉)nk=1. Thus

‖V TU‖ ≤ sup
|aj |=1

sup
|bk|=1

∣∣∣ n∑
k=1

k∑
j=1

ajbk〈Txj , y∗k〉
∣∣∣ ≤ Θ(T )‖U‖‖V ‖,

by (5.2). It is also clear that by appropriate choices of V,U we obtain (iv). �

Proposition 5.3

If T : X → Y is absolutely summing then T is triangular and Θ(T ) ≤ π1(T ).

Proof. First note that if T is rank-one then Θ(T ) = ‖T‖ by Proposition 5.1 and hence
Θ(T ) ≤ ν(T ) for all T. If U : `n∞ → X and V : Y → `n1 are bounded we have

Θ(V TU) ≤ ν(V TU) = π1(V TU) ≤ ‖V ‖‖U‖π1(T ).
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Here we exploit the well-known fact that an absolutely summing operator S on `n∞ is
nuclear with ν(S) = π1(S) by Proposition 2.5. Use (iv) of Proposition 5.2. �

This proposition shows that triangular operators need not be compact. For ex-
ample the quotient map of `1 onto `2 (see [22, p. 108]) is absolutely summing (Theo-
rem 2.6). Similarly an embedding of `2 into C[0, 1] has an absolutely summing adjoint
and therefore is triangular.

We first describe triangular operators on a Hilbert space. We will need the follow-
ing well-known result concerning the boundedness of the infinite version of the lower
triangular projection ∆.

Proposition 5.4

Let T : `2 → `2 be a bounded operator such that

∞∑
n=1

sn(T )
n

<∞.

Then the operator S = ∆(T ) (the lower triangular part of T ) represented by the matrix
sjk = tjk if k ≤ j and sjk = 0 otherwise is bounded and for a suitable constant C
independent of T ,

‖∆(T )‖ ≤ C
∞∑
n=1

sn(T )
n

.

Proof. This proposition is essentially known. The operators T : `2 → `2 for which

∞∑
n=1

sn(T )
n

<∞

is the Matsaev ideal [12]. The proposition asserts the boundedness of the lower trian-
gular projection (and hence also the upper triangular projection) from this ideal into
L(`2). This is equivalent to the boundedness of the same map from the trace-class S1

into the dual of the Matsaev ideal, a result which goes back to [20] (also see [25]). See
also [12, 13].

Let us show that how the proposition follows from e.g. [25, Theorem 2]. Given T
we may choose v ∈ H with ‖v‖ = 1 so that

‖∆(T )‖ ≤ 2|(∆(T )v, v)|.

Let R be the rank-one projection Rx = (x, v)v. Let L = 2i(R − (∆(R))∗) (while we
are working on a Hilbert space, we denote the Hilbert space adjoint of S by S∗). Then
L is compact, lower-triangular and has diagonal zero. Thus L is quasi-nilpotent. The
imaginary part of L i.e. K = (L−L∗)/(2i) is 2R− (∆(R) + ∆(R)∗) = R−D where D
is the diagonal of R. Now ν(D) ≤ 1 and so ν(K) ≤ 2. Thus, applying [25, Theorem 2]
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we have an estimate sn(L) ≤ C/n where C is an absolute constant. Hence

‖∆(T )‖ ≤ 2|tr ∆(T )R|
= 2|tr T (∆(R))∗|
≤ 2|tr TR|+ |tr TL|

≤ 2‖T‖+
∞∑
n=1

sn(T )sn(L)

≤ 2s1(T ) + C
∞∑
n=1

sn(T )
n

.

�

This leads to the following result.

Theorem 5.5

Suppose H is a Hilbert space. Then there is a constant C so that if T : H → H
is a bounded operator then

C−1
∞∑
n=1

sn(T )
n

≤ Θ(T ) ≤ C
∞∑
n=1

sn(T )
n

.

In particular T is triangular if and only if

∞∑
n=1

sn(T )
n

<∞.

Proof. Suppose N ∈ N and U : `N∞ → H and V : H → `N1 are operators with
‖U‖, ‖V ‖ ≤ 1.

We now use the Theorem 2.8. The operator U : `N∞ → H can be factored in the
form

`N∞
D1−→ `N2

U1−→ H

where D1 is a diagonal operator with ‖D1‖`N∞→`N2
≤ 1 and ‖U1‖ ≤ KG, where KG is

the (complex) Grothendieck constant. Dually V : H → `N1 can be factored in the form

H
V1−→ `N2

D2−→ `N1

where D2 is diagonal with ‖D2‖`N2 →`N1
≤ 1 and ‖V1‖ ≤ KG. Now,

∆(V TU) = D2∆(V1TU1)D1

so that, using Proposition 5.4, for a suitable constant C0, we have

‖∆(V TU)‖`N∞→`N1
≤ ‖∆(V1TU1)‖`N2 →`N2

≤ C0

∞∑
n=1

sn(V1TU1)
n

≤ C0K
2
G

∞∑
n=1

sn(T )
n

.
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Thus we obtain an inequality (letting C = C0K
2
G).

Θ(T ) ≤ C
∞∑
n=1

sn(T )
n

.

For the converse direction, suppose Θ(T ) <∞. If (ej)nj=1, (fj)
n
j=1 are orthonormal

sets and
∑n
j=1 |ξj |2 =

∑n
j=1 |ηj |2 = 1 then we have

∣∣∣ n∑
k=1

k∑
j=1

ξjηk(Tej , fk)
∣∣∣ ≤ Θ(T ).

Now suppose U : `N2 → H is an isometric embedding and V : H → `N2 is such
that V ∗ : `N2 → H is an isometric embedding. Then U(ξ) =

∑N
j=1 ξjej for some

orthonormal set e1, . . . , eN and similarly V ∗η =
∑N
j=1 ηjfj for some orthonormal set

f1, . . . , fN . Then V TU has the matrix ajk = (Tek, fj). Thus

(∆(V TU)ξ, η) =
n∑
j=1

j∑
k=1

ajkξkηj .

It thus follows that ‖∆(V TU)‖ ≤ Θ(T ). However by a simply convexity argument this
implies the same result for all bounded operators U : `N2 → H and V : H → `N2 .

We now argue that for each n we may find a rank-one orthogonal projection
R : `2 → `2 such that

k∑
j=1

sj(∆(R)) ≥ c log k 1 ≤ k ≤ n

where c > 0 is an absolute constant. We work on `n2 . Suppose n is a power of two and
let R be represented by the n× n matrix

R =
1
n


1 . . . 1
1 . . . 1
· · ·
1 . . . 1

 .
Recall that the Hilbert matrix

H =


0 −1

2 −1
3 . . . − 1

n
1
2 0 −1

2 . . . − 1
n−1

· · ·· ·
1
n

1
n−1

1
n−2 . . . 0


defines an operator with norm at most π (see e.g. [14]). Then

tr ∆(R)H ≥ c1 log n

where c1 > 0 is an absolute constant. Hence
n∑
k=1

sk(∆(R)) ≥ c2 log n
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where c2 > 0. Now if m ≤ n is a power of 2 then compressing ∆(R) to the subspace
spanned by

fk =
√
m

n

kn/m∑
j=(k−1)n/m+1

ej

for 1 ≤ k ≤ m gives us an operator R′ with m×m-matrix (for some choice of b)

R′ =
1
m


b 0 0 . . . 0
1 b 0 . . . 0
· · · · · · ·
1 1 1 . . . b

 .
Thus we have

m∑
k=1

sk(∆(R)) ≥
m∑
k=1

sk(R′) ≥ c2 logm

and so we get an estimate
m∑
k=1

sk(∆(R)) ≥ c logm

for every 1 ≤ m ≤ n.
Now

‖∆(V TU)‖ ≥ tr ∆(V TU)R = tr V TU(∆(R))∗.

Maximizing over V,U we obtain

Θ(T ) ≥
n∑
k=1

sk(∆(R))sk(T )

≥
n∑
k=1

(sk(T )− sk+1(T ))
( k∑
j=1

sj(∆(R))
)

+ sn+1(T )
( n∑
j=1

sj(∆(R))
)

≥ c
n∑
k=1

(sk(T )− sk+1(T )) log k + sn+1(T )
( n∑
j=1

sj(∆(R))
)

≥ c
n∑
k=2

sk(T )(log k − log(k − 1))

≥ c′
n∑
k=2

sk(T )
k

.

This establishes the theorem. �

For operators between arbitrary Banach spaces we cannot give quite such a clean
description of triangular operators, but the following theorem suggests that the class
is still rather large.

Theorem 5.6

Suppose X,Y are arbitrary Banach spaces. Then there is a constant C so that if
T : X → Y is a bounded operator then

Θ(T ) ≤ C
∞∑
n=1

(1 + log n)
an(T )
n

.
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Proof. Suppose U : `N∞ → X and V : Y → `N1 are bounded operators with
‖U‖, ‖V ‖ ≤ 1.

We pick a sequence of finite-rank operators Fn so that rank Fn < 2n and ‖T −
Fn‖ ≤ 2a2n(T ). Let E1 = F1 and then En = Fn−Fn−1 for n ≥ 2. Thus rank En < 2n+1.

We now use Theorem 2.8 again. We will factorize the operators Sn = V EnU :
`N∞ → `N1 . For each fixed n there is a positive diagonal operator (with nonzero diagonal
entries) Dn1 : `N∞ → `N2 so that ‖Dn1‖ ≤ 1 and Sn can be factored in the form

`N∞
Dn1−→ `N2

Rn−→ `N1

where ‖Rn‖`N2 →`N1
≤ 2KG‖Sn‖`N∞→`N1

. (Here the factor 2 is introduced simply to take
care of the fact that we require each diagonal entry of Dn1 to be nonzero). Now, using
a dual form of Theorem 2.8, Rn can similarly be factorized in the form

`N2
Qn−→ `N2

Dn2−→ `N1

where Dn2 is a positive diagonal operator (with nonzero entries) with ‖Dn2‖`N2 →`N1
≤ 1

and ‖Qn‖ ≤ 2KG‖Rn‖ ≤ 4K2
G‖Sn‖.

Since Dn1 and Dn2 are representable by invertible matrices, we have

rank (Qn) = rank (Sn) ≤ rank (En) < 2n+1.

Hence by Proposition 5.4 we have an estimate

‖∆(Qn)‖`N2 →`N2
≤ Cn‖Sn‖

for a suitable constant C. Hence

‖∆(Dn2QnDn1)‖`N∞→`N1
≤ C1n‖En‖.

Thus

‖∆(V TU)‖`N∞→`N1
≤ C2

∞∑
n=1

n‖En‖.

Now
‖E1‖ ≤ ‖T‖+ 2a2(T ) ≤ 2(a1(T ) + a2(T ))

and then
‖En‖ ≤ 2(a2n−1(T ) + a2n(T )) n = 2, 3, . . . .

Thus ∞∑
n=1

n‖En‖ ≤
∞∑
n=1

(4n+ 2)a2n(T )

which yields the result. �

At the other extreme we may ask whether there is a Banach space X so that
L(X) = T (X) (or, equivalently the identity operator is triangular).

Proposition 5.7

Let X be a GT-space such that X∗ has cotype 2. Then L(X) = T (X).
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Proof. We show Θ(1X) <∞. Let U : `n∞ → X and V : X → `n1 be operators of norm
one. Since X∗ has cotype 2 we can factorize V in the form

X
V ′−→ `n2

D−→ `n1

where ‖D‖ ≤ 1 and ‖V ′‖ ≤ C1 for some constant C1 independent of n, V. But
then π1(V ) ≤ C2 independent of n, V which implies that π1(V U) ≤ C2 and hence
Θ(V U) ≤ C. �

There is an example satisfying these hypotheses; this space is known as Pisier’s
space P (and it is even of cotype 2). It was constructed by Pisier as a counterexample
to a number of conjectures in Banach space theory [30, 31].

On the other hand for most nice spaces this cannot happen.

Proposition 5.8

Let X be a Banach space so that X has an unconditional basis. Then the identity
I = IX is not triangular.

Proof. We first observe that Θ(I`n2 ) →∞ by Theorem 5.5. Next we have Θ(I`n∞) →∞
because of Proposition 5.2 (iv). Similarly Θ(I`n1 ) →∞. Now X must contain uniformly
complemented `n1 ’s, `n∞’s or `n2 ’s by an old result of Tzafriri [33]. �

Proposition 5.9

Let X be a Banach space of non-trivial type. Then every triangular operator on
X is strictly singular.

Proof. Here we use the result of Figiel and Tomczak-Jaegermann ([11], [28, p. 122]) that
every infinite-dimensional subspace of X contains uniformly complemented
(in X) `n2 ’s. �

Proposition 5.9 implies that if X has non-trivial type then T (X) is a maximal
operator ideal contained in the strictly singular operators and thus Theorem 4.4 can
be applied to triangular perturbations.

It will be useful later to introduce a smaller class than the triangular operators. We
shall say that T : X → Y is strongly triangular if for every ε > 0 there exists S : X → Y
with S absolutely summing that Θ(T − S) < ε. We only know of applications of this
idea when S can be chosen to be finite rank.

Proposition 5.10

(i) Every triangular operator on a Hilbert space is strongly triangular.

(ii) If X,Y are arbitrary Banach spaces and T : X → Y satisfies

∞∑
n=1

(1 + log n)
an(T )
n

<∞

then T is strongly triangular.
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Proof. As the two proofs are similar, we prove only (ii). For each n ∈ N pick a finite
rank operator Fn with rank Fn < n so that ‖T − Fn‖ ≤ 2an(T ). Then

ak(T − Fn) ≤
{

2an(T ) 1 ≤ k ≤ 2n
ak−n(T ) 2n+ 1 ≤ k <∞.

By Theorem 5.6,

Θ(T − Fn) ≤ C

(
2an(T )

( 2n∑
k=1

(1 + log k)
k

)
+

∞∑
k=n+1

ak(T )
1 + log(n+ k)

n+ k

)
and it is easy to see that both terms in the bracket converge to zero as n→∞. �

6. Applications to functions

Let X be a Banach space and suppose f : [a, b] → X is a continuous function, where
0 < a, b <∞. The Bochner L1−norm of f is defined by

‖f‖L1(a,b) =
∫ b

a
‖f(t)‖dt.

The Pettis norm of f is defined by

‖f‖P(a,b) = sup
‖x∗‖≤1

∫ b

a
|〈f(t), x∗〉|dt.

Let us note the following elementary proposition.

Proposition 6.1

Let T : X → Y be an absolutely summing operator and suppose f : (a, b) → X is
a bounded continuous function. Then

‖Tf‖L1(a,b) ≤ π1(T )‖f‖P(a,b).

Proof. This is well-known and almost immediate from the definition. For n ∈ N let
tk = a+ k(b− a)/n for 0 ≤ k ≤ n. Then

n∑
k=1

‖
∫ tk

tk−1

Tf(s)ds‖ ≤ π1(T )‖f‖P(a,b).

Taking limits as n→∞ gives the conclusion. �

The following elementary estimate will be useful.

Proposition 6.2

Suppose f : [a, b] → X and g : [a, b] → X∗ are continuous functions. Then∣∣∣ ∫ b

a

∫ t

a
〈f(t), g(s)〉ds dt

∣∣∣ ≤ ‖f‖L1(a,b)‖g‖P(a,b).
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and ∣∣∣ ∫ b

a

∫ t

a
〈f(s), g(t)〉ds dt

∣∣∣ ≤ ‖f‖L1(a,b)‖g‖P(a,b).

Proof. Both integrals are dominated by∫ b

a

∫ b

a
|〈f(s), g(t)〉|ds dt ≤

∫ b

a
‖f(s)‖‖g‖P(a,b)ds.

�

If, in Proposition 6.2 we only have an estimate on the Pettis norms on f, g then
we can only get a similar result if we compose f with a triangular operator.

Proposition 6.3

Suppose f : [a, b] → X and g : [a, b] → X∗ are continuous functions and T : X →
X is a triangular operator. Then

∣∣∣ ∫ b

a

∫ t

a
〈Tf(t), g(s)〉ds dt

∣∣∣ ≤ Θ(T )‖f‖P(a,b)‖g‖P(a,b)

and ∣∣∣ ∫ b

a

∫ t

a
〈Tf(s), g(t)〉ds dt

∣∣∣ ≤ Θ(T )‖f‖P(a,b)‖g‖P(a,b).

Proof. This follows from the definition by approximation. Let N be an integer and
Ij = [a+ (j − 1)(b− a)/N, a+ j(b− a)/N ]. Let

xj =
∫
Ij

f(t)dt, x∗j =
∫
Ij

g(t)dt 1 ≤ j ≤ N.

Then
N∑
j=1

j∑
k=1

〈Txj , x∗k〉 ≤ Θ(T )‖f‖P(a,b)‖g‖P(a,b).

Letting N →∞ gives the conclusion. �

Now suppose F : [a, b] → L(X) is a C1−function. We will define two seminorms
to measure the variation of F. Let

‖F‖BV = sup
‖x‖≤1

‖F ′(t)x‖L1(a,b) = sup
‖x‖≤1

∫ b

a
‖F ′(t)x‖dt

and

‖F‖bv = sup
‖x‖≤1

‖F ′(t)x‖P(a,b) = sup
‖x‖≤1
‖x∗‖≤1

∫ b

a
|〈F ′(t)x, x∗〉|dt.

Notice that ‖F‖bv ≤ ‖F‖BV and also that ‖F‖bv = ‖F ∗‖bv where F ∗ : [a, b] → X∗ is
define by F ∗(t) = (F (t))∗ (this follows easily from Goldstine’s theorem.)

We denote by ‖F‖∞ the usual sup norm i.e. ‖F‖∞ = maxa≤t≤b ‖F (t)‖.
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Proposition 6.4

Suppose F,G : [a, b] → L(X) are C1− functions and T : X → X is a bounded
operator. Then

‖FG‖BV ≤ (‖F‖∞‖G‖BV + ‖F‖BV ‖G‖∞). (6.1)

‖FG‖bv ≤ (‖F‖∞‖G‖bv + ‖F‖bv‖G‖∞) + 2‖F‖bv‖G‖BV . (6.2)

‖FTG‖bv ≤ ‖T‖‖F‖∞‖G‖bv + ‖F‖bv(‖TG‖∞ + 2Θ(T )‖G‖bv). (6.3)

Proof. (6.1) follows trivially from (FG)′(t) = F ′(t)G(t) +F (t)G′(t). For (6.2) we note
that

(FG)′(t) = F ′(t)(G(t)−G(a)) + (F (t)− F (a))G′(t) + F ′(t)G(a) + F (a)G′(t).

Now ∫ b

a
〈(F (t)− F (a))G′(t)x, x∗〉dt =

∫ b

a

∫ t

a
〈G′(t)x, (F ′(s))∗x∗〉ds dt

so that by Proposition 6.2 we have∣∣∣∣∣
∫ b

a

∫ t

a
〈G′(t)x, (F ′(s))∗x∗〉ds dt

∣∣∣∣∣ ≤ sup
‖x‖≤1

‖G′(t)x‖L1(a,b) sup
‖x∗‖≤1

‖(F ′(t))∗x∗‖P(a,b)

= ‖G‖BV ‖F‖bv.

Similarly ∫ b

a
〈F ′(t)(G(t)−G(a))x, x∗〉|dt =

∫ b

a

∫ t

a
〈F ′(t)x, (G′(s))∗x∗〉ds dt

and (6.2) now follows simply.
For (6.3) we have

(FTG)′(t) = F ′(t)T (G(t)−G(a)) + (F (t)− F (a))TG′(t) + F ′(t)TG(a) + F (a)TG′(t)

and the proof is similar to the above but using Proposition 6.3. �

The following proposition is quite elementary but will be used several times later.

Proposition 6.5

Suppose F : [a, b] → L(X) is a C1− function. Then

‖Fn‖BV ≤ n‖F‖BV ‖F‖n−1
∞ n = 1, 2, . . .

and if ‖F‖∞ < 1,
‖(1− F )−1‖BV ≤ ‖F‖BV (1− ‖F‖∞)−2.

Proof. These follow from the composition law. We have

(Fn)′ = F ′Fn−1 + FF ′Fn−2 + · · ·+ Fn−1F ′
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and
((1− F )−1)′ = (1− F )−1F ′(1− F )−1

whence the results follow. �

We need a version of Proposition 6.5 for the bv-norm. This requires more assump-
tions, however.

Theorem 6.6

Suppose F : [a, b] → L(X) is a C1−function and T : X → X is a triangular
operator with Θ(T )(‖F‖∞ + 2‖F‖bv) = r < 1. Then

‖F (1− TF )−1‖bv ≤ (1− r)−2‖F‖bv.

Proof. Let r = Θ(T )(‖F‖∞ + 2‖F‖bv) < 1. We let Fn = F (TF )n for n ≥ 0. Thus
Fn = FTFn−1. Note that ‖TF‖∞ ≤ r so that ‖TFn−1‖∞ ≤ rn. We also note that

F ′n = F ′TFn−1 + FTF ′n−1 n = 1, 2, . . .

so that
‖F ′n‖∞ ≤ rn‖F ′‖∞ + r‖F ′n−1‖∞ n = 1, 2, . . . .

Thus
r−n‖F ′n‖∞ ≤ r1−n‖F ′n−1‖∞ + ‖F ′‖∞ n = 1, 2, . . . .

This implies that
‖F ′n‖∞ ≤ (n+ 1)rn‖F ′‖∞

so that
∑∞
n=0 F

′
n converges uniformly to d/dt(F (1− TF )−1).

Using Proposition 6.4 (6.3) gives

‖Fn‖bv ≤ (‖T‖‖F‖∞ + 2Θ(T )‖F‖bv)‖Fn−1‖bv + ‖TFn−1‖∞‖F‖bv n = 1, 2, . . . .

Then since ‖T‖ ≤ Θ(T ),

‖Fn‖bvr−n ≤ ‖Fn−1‖bvr1−n + ‖F‖bv n = 1, 2, . . . .

This implies that
‖Fn‖bv ≤ (n+ 1)rn‖F‖bv

and so

‖
∞∑
n=0

Fn‖bv ≤ (1− r)−2‖F‖bv.

This implies that
‖F (1− TF )−1‖bv ≤ (1− r)−2‖F‖bv.

�

For ease of exposition we have restricted ourselves to C1-functions defined on
a closed bounded interval. However it is natural to extend our definitions to open,
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possibly unbounded, intervals. If I is an open interval and F : I → L(X) is a bounded
C1−function we define

‖F‖BV (I) = sup
[a,b]⊂I

‖F‖BV [a,b]

and
‖F‖bv(I) = sup

[a,b]⊂I
‖F‖bv[a,b]

and we say that F ∈ BV (I) (respectively F ∈ bv(I)) if ‖F‖BV (I) < ∞ (respectively
‖F‖bv(I) < ∞). Naturally our main results extend without difficulty, and we will use
them in the extended form.

7. Perturbing the H∞-calculus

The following two propositions are well-known criteria for the existence of an H∞-
calculus. They go back to [4, 5]; for a recent simple proof see [21].

Proposition 7.1

Let A be a sectorial operator on a Banach spaceX. Suppose A has anH∞-calculus
and that φ > ωH(A). Then there is a constant C so that∫ ∞

0
|〈AR(eiθ, tA)2x, x∗〉|dt ≤ C‖x‖‖x∗‖ x ∈ X, x∗ ∈ X∗, φ ≤ |θ| ≤ π. (7.1)

Proposition 7.2

Let A be a sectorial operator on a Banach space X. Suppose 0 < ω(A) < φ < π
and for some constant C we have an estimate∫ ∞

0
|〈AR(eiθ, tA)2x, x∗〉|dt ≤ C‖x‖‖x∗‖ x ∈ X, x∗ ∈ X∗, φ ≤ |θ| ≤ π. (7.2)

Then A has an H∞-calculus and ωH(A) ≤ φ.

Remark. The criterion (7.2) can be rewritten as∫ ∞

0
|〈AR(teiθ, A)2x, x∗〉|dt ≤ C‖x‖‖x∗‖ x ∈ X, x∗ ∈ X∗, φ ≤ |θ| ≤ π (7.3)

or as∫ ∞

0
|〈λAR(λ, tA)2x, x∗〉|dt ≤ C‖x‖‖x∗‖ x ∈ X, x∗ ∈ X∗, | arg λ| ≥ φ. (7.4)

Now if A is a sectorial operator let us define for ω(A) < |θ| ≤ π the C1−function
Fθ = Fθ,A by

Fθ(t) = AR(teiθ, A).

Note that
1 + Fθ(t) = teiθR(teiθ, A).

Then
F ′θ(t) = −eiθAR(teiθ, A)2

and we deduce that
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Proposition 7.3

In order that A has an H∞-calculus with ωH(A) < ψ it is is necessary and
sufficient that for some ωH(A) < φ < ψ we have a uniform bound:

sup
φ≤|θ|≤π

‖Fθ‖bv(0,∞) <∞.

We now consider perturbations.

Proposition 7.4

Suppose A is a sectorial operator with an H∞-calculus and suppose B is a pertur-
bation of A which is sectorial. Let B = (I+T )A and suppose φ > max(ωH(A), ω(B)).
If

sup
|θ|≥φ

‖Fθ(I − TFθ)−1‖bv(0,∞) <∞ φ ≤ |θ| ≤ π (7.5)

then B has an H∞-calculus and ωH(B) ≤ φ.
More generally, let T0 = T (1 + T )−1. Suppose there exist 0 < a < b < ∞ such

that:
sup
|θ|≥φ

‖Fθ(I − TFθ)−1‖bv(b,∞) <∞ φ ≤ |θ| ≤ π (7.6)

and
sup
|θ|≥φ

‖(I + Fθ)(1− T0(1 + Fθ))−1‖bv(0,a) <∞ φ ≤ |θ| ≤ π. (7.7)

Then B has an H∞-calculus and ωH(B) ≤ φ.

Proof. Let Gθ(t) = BR(teiθ, B). It suffices to show that supφ≤|θ| ‖Gθ‖bv(0,∞) <∞.

R(λ,B) = R(λ,A)(1− TAR(λ,A))−1

so that
(1 + T )−1Gθ(t) = Fθ(t)(1− TFθ(t))−1.

Then (7.5) gives the conclusion.
For (7.6) and (7.7) we observe that since φ > ω(B) it is immediate that

sup
φ≤|θ|

‖Gθ‖bv[a,b] <∞.

Thus we can treat (0, a) and (b,∞) separately. In this case we observe that

(1 +Gθ(t))(1 + T ) = (1 + Fθ(t))(1− T0(1 + Fθ(t)))−1

and the proposition follows. �

We first give an improved form of Arendt and Batty [2], who proved the same
result for nuclear perturbations when A is invertible.

Theorem 7.5

Suppose A is a sectorial operator with an H∞-calculus and suppose B is an
absolutely summing perturbation of A which is sectorial. Then B has an H∞-calculus
and ωH(B) ≤ max(ω(B), ωH(A)).
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Proof. We use Proposition 7.3. Suppose max(ω(B), ωH(A)) < φ < π. Let B = (1+T )A
where T is absolutely summing.

Since T is absolutely summing, we can apply Proposition 6.1: we thus have a
uniform bound

sup
|θ|≥φ

‖TFθ‖BV (0,∞) ≤ π1(T ) sup
|θ|≥φ

‖Fθ‖bv(0,∞) <∞.

Let Fθ(t) = AR(teiθ, A) for φ ≤ |θ| ≤ π. Then

BR(teiθ, B) = (1 + T )Fθ(1− TFθ)−1 φ ≤ |θ| ≤ π.

Now combining Proposition 4.2 and Lemma 4.3 yields the existence of 0 < a <
b <∞ and n ∈ N so that

‖(TFθ(t))n‖ ≤
1
2

b ≤ t <∞, φ ≤ |θ| ≤ π,

and
‖ (T0(1 + Fθ(t)))

n ‖ ≤ 1
2

0 < t ≤ a, φ ≤ |θ| ≤ π.

We now verify the criteria of Proposition 7.4. For (7.6) we note by Proposition 6.5
(and Proposition 6.4) that we have a uniform bound

sup
|θ|≥φ

‖(1− (TFθ)n)−1‖BV (b,∞) <∞.

Now

(1− TFθ)−1 =

(
1 +

n−1∑
k=1

(TFθ)k
)

(1− (TFθ)n)−1

and so we also get a uniform bound

sup
|θ|≥φ

‖(1− (TFθ))−1‖BV (b,∞) <∞.

Again applying Proposition 6.4 in particular (6.2) gives (7.6).
The treatment of (7.7) is similar. �

Theorem 7.6

Let A be a sectorial operator with an H∞-calculus. Suppose ωH(A) < φ < π.
Then there exists a δ = δ(A) > 0 such that if T : X → X is a triangular operator
with Θ(T ) < δ then 1 + T is invertible and B = (1 + T )A is sectorial and admits an
H∞-calculus with ωH(B) ≤ φ.

Proof. Since ‖T‖ ≤ Θ(T ), it is immediate that if δ is small enough then B is sec-
torial with ω(B) < φ. The theorem is now a direct application of Theorem 6.6 and
Proposition 7.4. �

We can now put these results together to obtain a cleaner result for strongly
triangular perturbations. Recall that every triangular operator on a Hilbert space is
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strongly triangular, and if X is an arbitrary Banach space then an operator T : X → X
for which

∞∑
n=1

an(T ) log n
n

<∞

is strongly triangular (see Proposition 5.10).

Theorem 7.7

Let A be a sectorial operator with an H∞-calculus, and let B be a strongly
triangular perturbation of A which is sectorial. Then B admits an H∞-calculus and
ωH(B) ≤ max(ωH(A), ω(B)).

Proof. Suppose max(ωH(A), ω(B)) < φ < π. Choose δ = δ(A) > 0 as given by
Theorem 7.6 and then choose an absolutely summing operator V so that Θ(T−V ) < δ.
Let B0 = (1 + T − V )A so that B0 is a sectorial operator with ωH(B0) ≤ φ. Now
B = B0 +V A = (1 +V (1 +T −V )−1)B0 so we can apply Theorem 7.5 to deduce that
B has an H∞-calculus and ωH(B) ≤ max(ωH(B0), ω(B)) ≤ max(φ, ω(B)). �

Remark. By Theorem 4.4, if X has non-trivial type, ωH(B) > ωH(A) if and only if
there is an eigenvalue λ of B with | arg λ| > ωH(A).

We now give a special result for GT-spaces. Special results for operators with an
H∞-calculus in GT-spaces were first obtained in [19]. We remind the reader that the
Banach spaces L1 and `1 are GT-spaces.

Theorem 7.8

Let X be a GT-space and suppose A is a sectorial operator on X with an H∞-
calculus.

(i) Suppose B is a compact perturbation of A which is sectorial; then B admits an
H∞-calculus with ωH(B) ≤ max(ωH(A), ω(B)).

(ii) Given ωH(A) < φ < π there exists δ > 0 so that if T : X → X is a bounded
operator with ‖T‖ < δ then B = (1 +T )A has an H∞-calculus with ωH(B) ≤ φ.

Proof. If φ > ωH(A) we observe that for a suitable constant C we have∫ ∞

0
‖AR(teiθ, A)2x‖dt ≤ C‖x‖ |θ| ≥ φ.

This follows from [19, Proposition 7.1]; note that this proposition has a redundant
assumption that X has cotype 2, as was pointed out in [18]. To derive the statement
from in [19, Proposition 7.1] take s = 1

2 and note that∫ ∞

0
‖AR(teiθ, A)2x‖dt ≤ sup

0<t<∞
‖t1/2A1/2R(teiθ, A)‖

∫ ∞

0
‖A1/2R(teiθ, A)x‖ dt

t1/2
.

Thus in this if Fθ(t) = AR(teiθ, A) then Fθ ∈ BV (0,∞) for |θ| ≥ φ and

sup
|θ|≥φ

‖Fθ‖BV (0,∞) <∞.
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Now in case (i) we observe that

lim
t→∞

sup
|θ|≥φ

‖Fθ(t)T‖ = 0

and so
lim
t→∞

sup
|θ|≥φ

‖(TFθ(t))2‖ = 0.

Similarly
lim
t→0

sup
|θ|≥φ

‖ (T0(1 + Fθ(t)))
2 ‖ = 0.

Thus the method of Theorem 7.5 applies to give the conclusion (using Proposition 6.5).
In case (ii) the proof follows directly from Proposition 6.5. �

8. Examples

We now present an example to show that in a Hilbert space our result is essentially
best possible.

First suppose X is any Banach space with a 1-unconditional basis (en)∞n=1 and let
(e∗n)∞n=1 be the biorthogonal functionals. Then any operator T : X → X is represented
by a matrix (tjk)∞j,k=1 where tjk = e∗j (Tek). We will therefore talk in terms of matrix
transformations.

Let (µj)∞j=1 be a sequence of distinct complex numbers contained in a sector Σφ

where 0 < φ < π. Let A be the sectorial operator defined by

A
( ∞∑
j=1

ξjej
)

=
∞∑
j=1

µjξjej

with domain consisting of all
∑∞
j=1 ξjej so that the right-hand side converges. Then

A is sectorial and has an H∞-calculus with ωH(A) ≤ φ.

Proposition 8.1

Under the above assumptions, let T : X → X be a bounded operator with matrix
(tjk)j,k. Suppose for some δ > 0, φ < ψ < π and constant C the perturbations
B(ζ) = (1 + ζT )A are sectorial for |ζ| ≤ δ and have an H∞(Σψ)-calculus with uniform
bounds i.e

‖f(B(ζ))‖ ≤ C‖f‖H∞(Σψ) f ∈ H∞(Σψ), |ζ| ≤ δ.

Then for each f ∈ H∞(Σψ) into L(X) the matrix V (f) = (vjk)j,k defines a bounded
operator with ‖V (f)‖ ≤ C‖f‖H∞(Σψ) where vjj = 0 for all j

vjk = tjk
µk(f(µj)− f(µk))

µj − µk
j 6= k.

Proof. It suffices to prove the estimate for V (f) where f ∈ H∞
0 (Σψ). Then for φ <

ν < ψ we can write

f(B(ζ)) =
1

2πi

∫
Γν
f(λ)R(λ,B(ζ))dλ
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and we have a uniform estimate (for a suitable choice of C1),

‖f(B(ζ))‖ ≤ C1‖f‖H∞(Σψ) |ζ| ≤ δ.

The map F (ζ) = f(B(ζ)) is analytic on |ζ| < δ and so

‖F ′(0)‖ ≤ C1δ
−1‖f‖H∞(Σψ).

Now
F ′(0) =

1
2πi

∫
Γν
f(λ)R(λ,A)TAR(λ,A)dλ

and so

〈F ′(0)ek, e∗j 〉 =
1

2πi

∫
Γν
f(λ)〈TAR(λ,A)ek, R(λ,A)∗e∗j 〉dλ

=
1

2πi

∫
Γν
µktjk

f(λ)
(λ− µj)(λ− µk)

dλ.

If j 6= k we rewrite

f(λ)
(λ− µj)(λ− µk)

=
1

µj − µk

(
f(λ)
λ− µj

− f(λ)
λ− µk

)

and integrating gives

〈F ′(0)ek, e∗j 〉 = tjk
µk(f(µj)− f(µk))

µj − µk
.

If j = k we obtain
〈F ′(0)ej , e∗j 〉 = tjjµjf

′(µj).

If we consider the matrix V (f) defined by F ′(0) with the diagonal replaced by zero
then ‖V (f)‖ ≤ 2‖F ′(0)‖ and so we are done. �

Proposition 8.2

Under the hypotheses of the preceding proposition, suppose that µj = 2j . Then
∆(T ) i.e. the operator whose matrix corresponds to the lower triangular part of T is
bounded on X.

Proof. Let us denote by δ(j, k) the Kronecker delta and let ∆(j, k) = 1 if j ≥ k and 0
otherwise.

We first note for any matrix V = (vjk)j,k with zero diagonal, we have an estimate
on each super-diagonal or sub-diagonal i.e∥∥(δ(n, j − k)vjk

)
j,k

∥∥ ≤ ‖V ‖ n = ±1,±2, . . . .

This implies that∥∥∥(µmin(j,k)

µj − µk
δ(n, j − k)vjk

)
j,k

∥∥∥ ≤ 1
2|n| − 1

‖V ‖ n = ±1,±2, . . . .
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and so ∥∥∥(µmin(j,k)

µj − µk
vjk
)
j,k

∥∥∥ ≤ 4‖V ‖.

It thus follows that if εj = ±1 we have∥∥∥(µmin(j,k)

µj − µk
(εj − εk)tjk

)
j,k

∥∥∥ ≤ 8‖T‖.

Now for any sequence εj = ±1 we can find f = f(εj) ∈ H∞(Σψ) with ‖f‖H∞(Σψ) ≤
K independent of (εj) so that

f(µj) = εj j = 1, 2, . . . .

By Proposition 8.1, ∥∥∥( µk
µj − µk

(εj − εk)tjk
)
j,k

∥∥∥ ≤ CK

and so ∥∥((1−∆(j, k))(εj − εk)tjk
)
j,k

∥∥ ≤ CK + 8‖T‖.

Therefore ∥∥((1−∆(j, k))(1− εjεk)tjk
)
j,k

∥∥ ≤ CK + 8‖T‖.

Now treating the εj as Rademachers and averaging gives∥∥((1−∆(j, k))tjk
)
j,k

∥∥ ≤ CK + 8‖T‖,

and so ∥∥(∆(j, k)tjk
)
j,k

∥∥ ≤ CK + 9‖T‖.

�

Theorem 8.3

Let H be a separable Hilbert space and let (en)∞n=1 be an orthonormal basis.
Let A be the sectorial operator defined by Aen = 2nen with domain all x ∈ H such
that

∑∞
n=1 22n|(x, en)|2 < ∞. Suppose L : H → H is any non-triangular compact

operator. Then there exist bounded operators U, V : H → H such that for for every
m ∈ N, Bm = (1 + 2−mV LU)A fails to have an H∞-calculus.

Proof. We may assume that ‖L‖ is small enough so that (1 + L′)A is always sectorial
when ‖L′‖ ≤ ‖L‖. Since L is non-triangular we have

∑∞
n=1 sn(L)/n = ∞. It follows

that we can find a sequence r0 = 0 < r1 < r2 < · · · of natural numbers and operators
Vn : Hn → Hn where Hn = [ej ]rnj=rn−1+1 so that Θ(Vn) → ∞ and V1 ⊕ V2 ⊕ · · · = V
satisfies sk(V ) = sk(L) for all k. Now using the argument of Theorem 5.5 we can find
a unitary operator Un : Hn → Hn so that ‖∆(UnVn)‖ → ∞. Indeed we can find Un so
that

‖∆(UnVn)‖ ≥ c1

rn−rn−1∑
k=1

sk(Vn)
k

≥ c2Θ(Vn)

where c1, c2 > 0. Let T = U1V1 ⊕ U2V2 ⊕ · · · . Note that ‖T‖ ≤ ‖V ‖ = ‖L‖.
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We now partition N into countably many infinite subsets Ml,m,n. Let

Hl,m,n = [∪{ej : rk−1 + 1 ≤ j ≤ rk, k ∈ Ml,m,n}].

Let Pl,m,n be the orthogonal projection of H onto Hl,m,n and let Tl,m,n = TPl,m,n =
Pl,m,nTPl,m,n be the compression of T to Hl,m,n. Then we may argue that the oper-
ator (1 + ζTl,m,n)A cannot have a uniformly bounded H∞(Σπ−2−m)−calculus for all
|ζ| ≤ 2−n. Indeed if it did, we could conclude from Proposition 8.2 that ∆(Tl,m,n)
is a bounded operator, which is false from our construction. Thus we may find
ζl,m,n with |ζl,m,n| ≤ 2−n and such that for some fm,n,l ∈ H∞

0 (Σπ−2−m) with
‖fl,m,n‖H∞(Σπ−2−m ) ≤ 1 but

‖fl,m,n((1 + ζl,m,nTl,m,n)A)‖ > 2l.

Since A has an H∞(Σπ−1/2)-calculus we certainly have an estimate ‖fl,m,n(A)‖ ≤ C
for some fixed constant C independent of l,m and n. Now this implies

‖(1− Pl,m,n)fl,m,n((1 + ζl,m,nTl,m,n)A)(1− Pl,m,n)‖ ≤ C

and hence
‖Pl,m,nfl,m,n((1 + ζl,m,nTl,m,n)A)Pl,m,n‖ ≥ 2l

if 2l > C.
Finally let T ′ = z1U1V1 ⊕ z2U2V2 ⊕ · · · where zj = 2nζl,m,n if j ∈ Ml,m,n. Suppose

Bk = (1 + 2−kT ′)A; then Bk is sectorial. Let us suppose that Bk has an H∞(Σφ)-
calculus for some 0 < φ < π. For f ∈ H∞

0 (Σφ) we have

Pl,m,nf(Bk)Pl,m,n = Pl,m,nf((1 + 2n−kζl,m,nTl,m,n)A))Pl,m,n.

In particular if 2l > C and φ < π − 2−m we have

‖Pl,m,kfl,m,n(Bk)Pl,m,k‖ > 2l.

This implies ‖fl,m,k(Bk)‖ > 2l and gives a contradiction. �
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Applications 169, Birkhäuser Verlag, Basel, 2006.

16. W.B. Johnson, B. Maurey, and G. Schechtman, Weakly null sequences in L1, J. Amer. Math. Soc.
20 (2007), 25–36 (electronic).
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