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SUMS OF IDEMPOTENTS IN BANACH ALGEBRAS 

BY 

N. J. KALTON 

ABSTRACT. We prove that the sum of two idempotents is in a 
Banach algebra is itself an idempotent if and only if it is power-
bounded. 

Let A be a Banach algebra and let p and q be idempotents in A. It is very easy 
to show that p 4- q will be an idempotent if and only if pq = qp = 0. This note 
is motivated by the observation that these conditions are also equivalent to 
the condition (p 4- q)3 = p 4- q\ this may be established by easy algebraic 
arguments. 

In fact if n ^ 3 then p 4- q is an idempotent if (p 4- q)n = p 4- q. The author 
first established a proof for the case when A is finite-dimensional, which is 
essentially reproduced below in the first proof of our main theorem. Sub
sequently M. Hochster pointed out to the author that iî (p 4- q)n = p + q then 
the algebra generated by p and q is always finite-dimensional, so that this also 
establishes the general case. 

In this note we extend these ideas by replacing the condition (p 4- q)n =--
p 4- q by the weaker hypothesis that ( (p 4- q)m:m e N) is bounded. We give 
first the proof for finite-dimensional algebras which suggested the result and 
then give a proof for arbitrary Banach algebras. We shall assume, without loss 
of generality, that all algebras are over the complex numbers and have 
identities. 

THEOREM. Let A be a Banach algebra and that p, q e A are idempotents. Then 
p 4- q is an idempotent if (and only if) 

supii(/> + 9 r n < o o . 
m 

PROOF FOR A FINITE-DIMENSIONAL. We may suppose that p and q are (nX n )•-
matrices. The hypothesis on p 4- q implies that every eigenvalue X of (p 4- q) 
satisfies |X| ^ 1. However the trace of p 4- q, r(p 4- q) = r(p) 4- r(q) and the 
rank of p 4- q satisfies r(p + q) ^ r(p) 4- r(q). Hence r(p 4- q) ^ r(p 4- q) 
so that every eigenvalue of p 4- q is either one or zero. 
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Now consider the Jordan normal form for p + q. We can write p + q = d + h 
where d is an idempotent, h is nilpotent and dh = hd. Note that if hs = 0 

tf + *r-«(i +(7)»+ (?)* + ...+ ( , ? > - ) 
for m ^ s. Hence, as this sequence is bounded, dh = hd = 0. But then 
r(h) 4 r(rf) = r(h + d) = r(p + q) ^ r(p) 4 r(q) = r (^) 4 T(?) = 
TC/7 + 4) = T(*0 = K<0- Thus h = 0 and ^ 4 # is an idempotent. 

PROOF FOR THE GENERAL CASE. We shall show that pq = 0. It will then 
follow by the same argument that qp = 0 and hence p 4 g is an idempotent. 

Let i? be the commutative Banach algebra generated by the identity and pq. 

We adjoin to B a square-root £ for pq to form B0. Precisely let B0 be the commu
tative algebra of all formal sums (bx 4 b2Q where bl9 b2 ^ B. We choose any 

and norm i?0 by 

\\bx + *2É|| = 116,11 + 0IIM-

It is readily verified that B0 is then a Banach algebra. 
Now by hypothesis there exists M so that for m = 1 ,2 , . . . 

ii/>o> + *r*ii ^ M. 
In fact p(p 4 #)w# is a polynomial in /?#. Let 

m 

Then amr is the number of integer solutions for 

S} 4 S2 4 . . . S2r = m 

where Sx ^ 0, S2r = 0 and S,- ^ 1 for i = 2, 3 , . . . , 2r - 1. This in turn is the 
coefficient of xm in the expansion of x2r~2(\ — x)~2r. 

Thus a„r = 0 if 2r > m 4 2 and otherwise 
mr 

m 4 1 \ = m 4 1 
2r 4 2/ ~ \2r - 1/" 

It follows that 

[ m / 2 ] + l 
' " " 2r 

i « 0 + S)"+I - (1 - {T + l ) . 

We conclude that 
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«(1 +£) m - ( 1 - £ ) m ) M m = 0, 1, 2 . 

Let \p be any multiplicative linear functional on B0. Suppose ^({) = X ^ C. 
Then {À( (1 -h A)m - (1 - X)m) }™=Q is bounded and hence X = 0. Hence 

îim nrn 1 / m = o 

and from this we have that if S > 0 there is a constant C8 so that for all z G C 

||exp(z£) || ^ C / | Z | . 

If r G R and t â 0 then 

00 /m / I 1 \ 

2 — -«i + er - -«i - *r 
m=o m! \2 2 / 

Me1 

i.e. 

life' sinh(/€) Il ^ Me' 

and hence if — oo < t < co, 

III sinh(^) || â M. 

We also note that for 8 > 0 

HI sinh(z|) || =i C/ I z | | | £ | | . 

Thus if <j> G ^o t n e entire function 

F(z) = # £ sinh(z£) ) 

is constant by Theorem 6.2A4 of Boas [1], since it is of exponential type zero 
and is bounded on the real axis. In fact, in our circumstances, this is also a 
simple consequence of Theorem 1.4.3 of [1], which will imply F is bounded in 
both the upper and lower half-planes. In particular, we conclude that <K£2) = 0. 
Hence by the Hahn-Banach theorem, £2 = 0, i.e. pq = 0 as required. 

CONCLUDING REMARKS. We observe that it is impossible to replace the 
hypothesis sup|| (p 4- q)n\\ < oo by the weaker hypothesis that the spectral 
radius lim|| (p + q)n\\ /n ^ 1. To see this simply take p and q as the 2 X 2-
matrices 

^ = (o o ) * = (o ?)• 
Also let us note that in the proof given above, we borrowed some ideas from 

the theory of numerical ranges (cf. [2], p. 51). 
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We would like to thank several mathematicians for enlightening discussions 
on this question over the years, including J. Duncan, who pointed out a simpli
fication of our argument using [1], R. J. Hindley, G. V. Wood, I. J. Papick and 
M. Hochster. 
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