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Abstract

If A,B are sectorial operators on a Hilbert space with the same
domain and range, and if �Ax� ≈ �Bx� and �A−1

x� ≈ �B−1
x�, then

it is a result of Auscher, McIntosh and Nahmod that if A has an
H
∞−calculus then so does B. On an arbitrary Banach space this is

true with the additional hypothesis on B that it is almost R-sectorial
as was shown by the author, Kunstmann and Weis in a recent preprint.
We give an alternative approach to this result.
MSC (2000): 47A60.
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1 Introduction
In [1] the authors showed that if X is a Hilbert space and A, B are sectorial
operators with the same domain and range and satisfying estimates

�Ax� ≈ �Bx� x ∈ Dom (A) (1.1)

and
�A−1

x� ≈ �B−1
x� x ∈ Ran (A) (1.2)

then if one of (A, B) admits an H
∞−calculus then so does the other. Results

of this type are useful in applications and were studied in [7] for arbitrary
Banach spaces. In that paper, a similar result (Theorem 5.1) is proved under
the additional hypothesis that A is almost R-sectorial.

In this note we give a rather different approach to this result. We replace
the almost R-sectoriality assumption by the technically weaker assumption
of almost U-sectoriality, although this is probably not of great significance.
However, our approach here is perhaps a little simpler. We also point out
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that some additional assumption is necessary in arbitrary Banach spaces;
there are examples of sectorial operators A, B satisfying (1.1) and (1.2) but
such that only one has an H

∞−calculus.
It is possible to consider estimates on fractional powers and our results

can be extended in this direction (as in [7]); however to keep the exposition
simple we will not discuss this point. We also point out that our approach
is really based on an interpolation method, known as the Gustavsson-Peetre
method [5] (see also [4]); but to avoid certain technicalities we have not made
this explicit.

2 U-bounded collections of operators
Let X be a complex Banach space. A family T of operators T : X → X is
called U-bounded if there is a constant C such that if (xj)n

j=1 ⊂ X, (x∗
j
)n

j=1 ⊂
X
∗
, (Tj)n

j=1 ⊂ T,
n�

j=1

|�Tjxj, x
∗
j
�| ≤ C sup

|aj |=1
�

n�

j=1

ajxj� sup
|aj |=1

�
n�

j=1

ajx
∗
j
�.

The best such constant C is called the U-bound for T and is denoted U(T).
This concept was introduced in [8].

We recall that T is called R-bounded if there is a constant C such that if
(xj)n

j=1 ⊂ X, (Tj)n

j=1 ⊂ T,

(E�
n�

j=1

�jTxj�2)1/2 ≤ C(E�
n�

j=1

�jxj�2)1/2
.

Here (�j)n

j=1 is a sequence of independent Rademachers. The best such con-
stant C is called the R-bound for T and is denoted R(T). An R-bounded
family is automatically U-bounded [8].

We will need the following elementary property:

Proposition 2.1. Suppose F : (0,∞) → L(X) is a continuous function and
that T = {F (t) : 0 < t < ∞} is U-bounded with U-bound U(F ). Suppose
g ∈ L1(R, dt/t). Then the family of operators

G(s) =

� ∞

0

g(st)F (t)
dt

t
0 < s < ∞

is U-bounded with constant at most U(F )
�∞

0 |g(t)|dt/t.
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Proof. Suppose (xj)n

j=1 ⊂ X, (x∗
j
)n

j=1 ⊂ X
∗ with

sup
|aj |=1

�
n�

j=1

ajxj�, sup
|aj |=1

�
n�

j=1

ajx
∗
j
� ≤ 1.

Then for s1, . . . , sn ∈ R we have

n�

j=1

|�G(sj)xj, x
∗
j
�| ≤

n�

j=1

� ∞

0

|g(t)|�F (s−1
j

t)xj, x
∗
j
�|dt

t

≤ U(F )

� ∞

0

|g(t)|dt

t
.

3 Sectorial operators
Let X be a complex Banach space and let A be a closed operator on X. A is
called sectorial if A has dense domain Dom (A) and dense range Ran (A) =
Dom (A−1) and for some 0 < ϕ < π the resolvent (λ − A)−1 is bounded for
| arg λ| ≥ ϕ and satisfies the estimate

sup
| arg λ|≥ϕ

�λ(λ− A)−1� < ∞.

The infimum of such angles ϕ is denoted ω(A).
Let Σϕ be the open sector {z �= 0 : | arg z| < ϕ}. If f ∈ H

∞(Σϕ) we say
that f ∈ H

∞
0 (Σϕ) if there exists δ > 0 such that |f(z)| ≤ C max(|z|δ, |z|−δ).

For f ∈ H
∞
0 (Σϕ) where ϕ > ω(A) we can define f(A) by a contour integral,

which converges as a Bochner integral in L(X).

f(A) =
1

2πi

�

Γν

f(λ)(λ− A)−1
dλ

where Γν is the contour {|t|e−iνsgn t : −∞ < 0 < ∞} and ω(A) < ν < ϕ. We
can then estimate �f(A)� by

�f(A)� ≤ Cϕ

�

Γν

|f(λ)| |dλ|
|λ| .
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If we have a stronger estimate

�f(A)� ≤ C�f�H∞(Σϕ) f ∈ H
∞
0 (Σϕ)

then we say that A has an H
∞(Σϕ)−calculus; in this case we may extend

the functional calculus to define f(A) for every f ∈ H
∞(Σϕ). The infimum

of all such angles ϕ is denoted by ωH(A).
We will need a criterion for the existence of an H

∞-calculus. It will be
convenient to use the notation fλ(z) = f(λz) and to let u(z) = z(1 + z)−2

so that u ∈ H
∞
0 (Σϕ) for all ϕ < π. The following criterion goes back to [2]

and [3]. A simple proof is given in [10].

Proposition 3.1. Let A be a sectorial operator and suppose 0 < ϕ < π.

Then the following are equivalent:
(i) There is a constant C so that

� ∞

0

|�uµ(tA)x, x
∗�|dt

t
≤ C�x��x∗� | arg µ| = ϕ, x ∈ X, x

∗ ∈ X
∗
.

(ii) A has an H
∞−calculus with ωH(A) ≤ π − ϕ.

Remark. (i) is equivalent by the Maximum Modulus Principle to
� ∞

0

|�uµ(tA)x, x
∗�|dt

t
≤ C�x��x∗� | arg µ| ≤ ϕ, x ∈ X, x

∗ ∈ X
∗
.

If A is sectorial we can define a closed operator A
∗ on X

∗ by A
∗
x
∗ = x

∗◦A
with domain Dom (A∗) consisting of all x

∗ such that x → x
∗(Ax) extends

to a bounded linear functional on X. Then A
∗ need not be sectorial since it

need not have dense domain or range. Note that

�A∗
x
∗� = sup

�A−1
x�≤1

x∈Ran (A)

|�x, x
∗�| x

∗ ∈ Dom (A∗)

and
�(A∗)−1

x� = sup
�Ax�≤1

x∈Dom (A)

|�x, x
∗�| x

∗ ∈ Ran (A∗).

Thus if A and B are sectorial operators satisfying (1.1) and (1.2) they will
also satisfy Dom (A∗) = Dom (B∗), Ran (A∗) = Ran (B∗) and

�A∗
x
∗� ≈ �B∗

x
∗� x

∗ ∈ Dom (A∗) (3.1)
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and
�(A∗)−1

x
∗� ≈ �(B∗)−1

x
∗� x

∗ ∈ Ran (A∗) (3.2)

If A is a sectorial operator and ϕ > ω(A) we shall that f ∈ H
∞
0 (Σϕ) is

U-bounded (respectively R-bounded) for A if the family of operators {f(tA) :
0 < t < ∞} is a U-bounded (respectively R-bounded) collection.

Proposition 3.2. Suppose A has an H
∞-calculus and that ϕ > ωH(A). Then

for any f ∈ H
∞
0 (Σϕ) we have that f is R-bounded (and thus U-bounded) for

A.

Proof. Suppose ω(A) < ψ < ϕ. Then the map λ → f(λA) is analytic on Σϕ−ψ

and extends continuously to the boundary. The operators {f(2k
te

±i(ϕ−ψ)
A)}k∈Z

are R-bounded (uniformly in 0 < t < ∞) by Theorem 3.3 of [8] and the result
follows by Lemma 3.4 of the same paper.

Suppose A is a sectorial operator on X and ϕ > ω(A). We will say that
A is almost U-sectorial (respectively almost R-sectorial) if there is an angle
ϕ such that the set of operators {λAR(λ, A)2 : | arg λ| ≥ ϕ} is U-bounded
(respectively R-bounded). If we define u(z) = z(1+z)−2 this implies that the
functions uλ(z) = u(λz) are uniformly U-bounded (respectively uniformly R-
bounded) for | arg λ| ≤ π−ϕ. The infimum of such angles is denoted ω̃U(A).
By Lemma 3.4 of [8] this definition is equivalent to

ω̃U(A) = π − sup{θ : ue±iθ is U-bounded}

or, respectively

ω̃R(A) = π − sup{θ : ue±iθ is R-bounded}.

Proposition 3.3. Suppose A admits an H
∞-calculus. Then A is almost

R-sectorial (and hence almost U-sectorial) and ω̃U(A) ≤ ω̃R(A) ≤ ωH(A).

Proof. This follows from Proposition 3.2.

Lemma 3.1. Suppose A is almost U-sectorial and ϕ > ν > ω̃U(A). Then
there is a constant C = C(ϕ) so that if f ∈ H

∞
0 (Σϕ) then f is U-bounded

for A with U-bound

U(f) ≤ C

�

Γν

|f(λ)| |dλ|
|λ| .
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Proof. Fix ϕ > ψ > ν > ωU(A). We may write f(tA) in the form

f(tA) =
1

2πi

�

Γψ

f(tλ)λ−1/2
A

1/2(λ− A)−1
dλ.

Therefore the result follows from Lemma 2.1 once we show that the two
families of operators {h(e±iθ

tA) : 0 < t < ∞} are U-bounded where θ =
π − ψ and h(z) = z

1/2(1 + z)−1.
Consider

g(z) = −i log
1 + iz

1/2

1− iz1/2
− π

z

1 + z
| arg z| < π.

Then g ∈ H
∞
0 (Σπ). Furthermore

g
�(z) = z

−1/2(1 + z)−1 − π(1 + z)−2
.

Hence ge±iθ ∈ H
∞
0 (Σψ). For convenience we consider the case of +θ. Thus

if
Tt = − 1

2πi

�

Γν

g(teiθ
λ)A(λ− A)−2

dλ

the family of operators {Tt : 0 < t < ∞} is U-bounded, again by Lemma
2.1. Now integration by parts shows that

Tt =
te

iθ

2πi

�

Γν

((teiθ
λ)−1/2(1 + te

iθ
λ)−1 − π(1 + te

iθ
λ)−2)λ(λ− A)−1

dλ

=
1

2πi

�

Γν

(h(teiθ
λ)− πu(teiθ

λ))(λ− A)−1
dλ

= h(teiθ
A)− πu(teiθ

A).

Thus it follows that the family {h(teiθ
A) : 0 < t < ∞} is U-bounded.

4 The main results
If A is sectorial then the space Dom (A)∩Ran (A) is a Banach space (densely)
embedded into X under the norm �Ax�+�A−1

x�+�x�; similarly Dom (A∗)∩
Ran (A∗) is a Banach space embedded into X

∗ under the norm �A∗
x
∗� +

�(A∗)−1
x
∗�+ �x∗�.
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Theorem 4.1. Suppose A is a sectorial operator. In order that A have an
H
∞-calculus with ωH(A) = ϕ it is necessary and sufficient that:

(i) A is almost U-sectorial with ω̃U(A) = ϕ.

(ii) There exists a constant C1 so that for each x ∈ X there is a continuous
function ξ : (0,∞) → Dom (A) ∩ Ran (A) such that

�
N�

k=−N

ak2
jk

t
j
A

j
ξ(2k

t)� ≤ C1�x�, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and
�x, x

∗� =

� ∞

0

�ξ(t), x∗�dt

t
x
∗ ∈ X

∗
.

(iii) There exists a constant C2 so that for each x
∗ ∈ X

∗ there is a continuous
function ξ

∗ : (0,∞) → Dom (A∗) ∩ Ran (A∗) such that

�
N�

k=−N

ak2
jk

t
j(Aj)∗ξ∗(2k

t)� ≤ C2�x∗�, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and
�x, x

∗� =

� ∞

0

�x, ξ
∗(t)�dt

t
x ∈ X.

Proof. Let us assume (i), (ii) and (iii). Suppose |θ| < π − ϕ and �x� ≤
1, �x∗� ≤ 1. Let ξ(t), ξ∗(t) be chosen according to (ii) and (iii). We define

ξ̃(t) = tAξ(t) + t
−1

A
−1

ξ(t) + 2ξ(t), ξ̃
∗(t) = tA

∗
ξ
∗(t) + t

−1
A
∗
ξ
∗(t) + 2ξ∗(t).

Thus we have

�
N�

k=−N

ak2
jk

ξ̃(2k
t)� ≤ 3C1, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞

and

�
N�

k=−N

ak2
jk

ξ̃
∗(2k

t)� ≤ 3C2, j = −1, 0, 1, |ak| ≤ 1, N = 1, 2, . . . , 0 < t < ∞.

Note that ξ̃ : (0,∞) → X and ξ̃
∗ : (0,∞) → X

∗ are both continuous and

ξ(t) = u(tA)ξ̃(t) 0 < t < ∞
ξ
∗(t) = (u(tA))∗ξ̃∗(t) 0 < t < ∞.
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If π − | arg µ| > ν > ϕ we have
� ∞

0

| < uµ(rA)x, x
∗

> |dr

r
≤

� ∞

0

� ∞

0

� ∞

0

|�uµ(rA)ξ(s), ξ∗(t)�|dt

t

ds

s

dr

r

=

� ∞

0

� ∞

0

� ∞

0

|�uµ(rtA)ξ(st), ξ∗(t)�|dt

t

ds

s

dr

r

For fixed r, s

� ∞

0

|�uµ(rtA)ξ(st), ξ∗(t)�|dt

t
=

� ∞

0

|�uµ(rtA)u(stA)ξ̃(st), (u(tA))∗ξ̃∗(t)�|dt

t

=

� 2

1

�

j∈Z
|�urµ(2j

tA)us(2
j
tA)u(2j

tA)ξ̃(s2j
t), ξ̃∗(2j

t)�|dt

t

≤ 9C1C2U(urµusu)

≤ C

�

Γν

|u(rµλ)u(sλ)u(λ)| |dλ|
|λ| ,

where C is constant independent of x, x
∗
. Integrating over r, s gives:

� ∞

0

| < uµ(rA)x, x
∗

> |dr

r
≤ C

��

Γν

|uµ(λ)| |dλ|
|λ|

� ��

Γν

|u(λ)| |dλ|
|λ|

�2

.

This estimate shows, by Proposition 3.1, that A has an H
∞−calculus with

ωH(A) ≤ ϕ. Since ω̃U(A) ≤ ωH(A) by Proposition 3.3 we have equality.
To complete the proof we show that if A has an H

∞−calculus then (i),
(ii) and (iii) hold and that ω̃U(A) ≤ ωH(A).

To show (ii) and (iii) we observe that

12

� ∞

0

(u(tz))2dt

t
= 1.

Note that z
j
u(z)2 ∈ H

∞
0 (Σϕ) for j = −1, 0, 1. It follows easily that if x ∈ X

and x
∗ ∈ X

∗ then

ξ(t) = 12u(tA)2
x, ξ

∗(t) = 12(u(tA)2)∗x∗

give the required functions.
For (i) observe that ω̃U(A) ≤ ωH(A) but the first part of the proof shows

equality.
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Theorem 4.2. Suppose A and B are sectorial operators such that Dom (A) =
Dom (B), Ran (A) = Ran (B) and for a suitable constant C we have

C
−1�Ax� ≤ �Bx� ≤ C�Ax� x ∈ Dom (A)

and
C
−1�A−1

x� ≤ �B−1
x� ≤ C�A−1

x� x ∈ Ran (A).

Suppose A has an H
∞−calculus. Then the following are equivalent:

(i) B has an H
∞−calculus with ωH(B) = ϕ.

(ii) B is almost U-sectorial and ω̃U(B) = ϕ.

Proof. This is now immediate from Theorem 4.1 using (3.1) and (3.2).

If X is a Hilbert space then the assumption that B is almost U-sectorial is
redundant and this reduces to the result of Auscher, McIntosh and Nahmod
[1]. However, in general this assumption cannot be eliminated. It suffices
to take a sectorial operator A with an H

∞−calculus with ωH(A) > ω(A).
Such examples exist [6]; in fact examples are known on subspaces of Lp when
1 < p < 2 [9]. Now fix θ with π − ωH(A) < θ < π − ω(A). Thus e

±iθ
A are

sectorial with ω(e±iθ
A) ≤ ω(A)+π−θ. However if both have an H

∞−calculus
we would deduce that for a suitable constant C

� ∞

0

|�u(te±iθ
A)x, x

∗�|dt

t
≤ C�x��x∗� x ∈ X, x

∗ ∈ X
∗

which would imply that ωH(A) ≤ π − θ. This contradiction implies that at
least one of e

±iθ
A fails to have an H

∞−calculus. However if B = e
±iθ

A then
(1.1) and (1.2) are trivially satisfied.
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