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The Geometry of L0

N. J. Kalton, A. Koldobsky, V. Yaskin and M. Yaskina

Abstract. Suppose that we have the unit Euclidean ball in R
n and construct new bodies using three op-

erations — linear transformations, closure in the radial metric, and multiplicative summation defined

by ‖x‖K+0L =
p

‖x‖K‖x‖L. We prove that in dimension 3 this procedure gives all origin-symmetric

convex bodies, while this is no longer true in dimensions 4 and higher. We introduce the concept of

embedding of a normed space in L0 that naturally extends the corresponding properties of Lp-spaces

with p 6= 0, and show that the procedure described above gives exactly the unit balls of subspaces of L0

in every dimension. We provide Fourier analytic and geometric characterizations of spaces embedding

in L0, and prove several facts confirming the place of L0 in the scale of Lp-spaces.

1 Introduction

Suppose that we have the unit Euclidean ball in R
n and are allowed to construct new

bodies using three operations — linear tranformations, multiplicative summation,

and closure in the radial metric. The multiplicative sum K +0 L of star bodies K and
L is defined by

(1) ‖x‖K+0L =

√
‖x‖K‖x‖L,

where ‖x‖K = min{a ≥ 0 : x ∈ aK} is the Minkowski functional of a star body K.
What class of bodies do we get from the unit ball by means of these three operations?

We are going to prove that in dimension n = 3 we get all origin-symmetric convex
bodies, while in dimension 4 and higher this is no longer the case. However, the
class of bodies that we get in arbitrary dimension also has a clear interpretation. We
introduce the concept of embedding in L0 and show that the bodies that we get by

means of these three operations are exactly the unit balls of spaces that embed in L0.
The idea of this interpretation comes from a similar result for Lp-spaces with p ∈

[−1, 1], p 6= 0. Namely, if we replace the multiplicative summation by p-summation

(2) ‖x‖K+pL = (‖x‖p
K + ‖x‖p

L )1/p,

then we get the unit balls of all spaces that embed in Lp. The case p = 1 is well known
(see [G2, Corollary 4.1.12]), and the unit balls of subspaces of L1 have a clear geo-
metric meaning; these are the polar projection bodies (see [B]). On the other hand,
it was proved by Goodey and Weil [GW] that if p = −1 (this case corresponds to
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the radial summation), then we get the class of intersection bodies in R
n. As shown

in [K4], intersection bodies are the unit balls of spaces that embed in L−1. The con-

cept of embedding in Lp, p < 0 was introduced in [K3] as an analytic extension of
the same property for p > 0, see [KK2] for related results. The result of Goodey
and Weil can easily be extended to p ∈ (−1, 1), p 6= 0. Note that this construction
provides a continuous (except for p = 0) path from polar projection bodies to inter-

section bodies, which is important for understanding the duality between projections
and sections of convex bodies. One of the goals of this article is to fill the gap in this
scheme at p = 0 and to better understand the geometry of this intermediate case.

Another interesting similarity of our result with other values of p is that for p = 1

the procedure defined above gives all origin-symmetric convex bodies only in di-
mension 2. This follows from a result of Schneider [S] that every origin-symmetric
convex body is a polar projection body only in dimension 2. When p = −1, we get
all origin-symmetric convex bodies only in dimensions 4 and lower, because by re-

sults from [G1, Z, GKS], only in these dimensions is every origin-symmetric convex
body an intersection body. The transition between the dimensions 2 and 3 in the
case p = 1 and the transition between the dimensions 4 and 5 in the case p = −1
directly correspond to the transition between the affirmative and negative answers in

the Shephard and Busemann–Petty problems, respectively. It would be interesting to
find a similar geometric result corresponding to the transition between dimensions
3 and 4 in the case p = 0. We refer the reader to [K5, Ch. 6] for more details and the
history of the connection between convex geometry and the theory of Lp-spaces.

2 The Definition of Embedding in L0.

A compact set K in R
n is called an origin-symmetric star body if every straight

line passing through the origin crosses the boundary of K at exactly two points,
the boundary is continuous, and the origin is an interior point of K. We denote
by (R

n, ‖ · ‖K) the Euclidean space equipped with the Minkowski functional of the
body K. Clearly, (R

n, ‖ · ‖K) is a normed space if and only if the body K is convex.

Throughout the paper, we write (R
n, ‖ · ‖) to mean that ‖ · ‖ is the Minkowski func-

tional of some origin-symmetric star body.
A well-known result of P. Lévy, see [BL, p. 189] or [K5, Section 6.1], is that a space

(R
n, ‖ · ‖) embeds into Lp, p > 0, if and only if there exists a finite Borel measure µ

on the unit sphere so that for every x ∈ R
n,

‖x‖p
=

∫

Sn−1

|(x, ξ)|p dµ(ξ).(3)

On the other hand, the definition of embedding in Lp with p < 0 from [K3] implies
that a space (R

n, ‖ · ‖) embeds into Lp, p ∈ (−n, 0), if and only if there exists a finite
symmetric measure µ on the sphere Sn−1 so that for every test function φ,

(4)

∫

Rn

‖x‖pφ(x) dx =

∫

Sn−1

dµ(ξ)

∫

R

|t|−p−1φ̂(tξ) dt.

Both representations (3) and (4) are invariant with respect to p-summation. This
gives an idea of defining embedding in L0 by means of a representation that is invari-
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ant with respect to multiplicative summation. Note that the multiplicative summa-
tion is the limiting case of p-summation as p → 0.

Definition 2.1 We say that a space (R
n, ‖ · ‖) embeds in L0 if there exist a finite

Borel measure µ on the sphere Sn−1 and a constant C ∈ R so that for every x ∈ R
n,

(5) ln ‖x‖ =

∫

Sn−1

ln |(x, ξ)| dµ(ξ) + C.

While similar to (3) and (4), this definition has its unique features. First, the measure
µ must be a probability measure on Sn−1. In fact, put x = ky, k > 0 in (5). Then

ln k + ln ‖y‖ =

∫

Sn−1

ln k dµ(ξ) +

∫

Sn−1

ln |(y, ξ)| dµ(ξ) + C,

and, again by (5) with x = y, we get ln k =
∫

Sn−1 ln k dµ(ξ), so
∫

Sn−1 dµ(ξ) = 1.

Secondly, the constant C depends on the norm and can be computed precisely. In
order to compute this constant, integrate the equality (5) over the uniform measure
on the unit sphere. We get

C · |Sn−1| =

∫

Sn−1

ln ‖x‖ dx −
∫

Sn−1

∫

Sn−1

ln |(x, θ)| dµ(θ)dx

=

∫

Sn−1

ln ‖x‖ dx −
∫

Sn−1

∫

Sn−1

ln |(x, θ)| dx dµ(θ)

=

∫

Sn−1

ln ‖x‖ dx −
∫

Sn−1

ln |(x, θ)| dx,

since
∫

Sn−1 ln |(x, θ)| dx is rotationally invariant and, therefore, is a constant for θ ∈
Sn−1, and µ is a probability measure.

To compute the latter integral, use the well-known formula (see [K5, Section 6.4])

∫

Sn−1

|(x, θ)|p dx =
2π(n−1)/2

Γ((p + 1)/2)

Γ((n + p)/2)
.

Differentiating with respect to p and letting p = 0, we get

∫

Sn−1

ln |(x, θ)| dx = π(n−1)/2
[

Γ
′(1/2)

Γ(n/2)
−

√
π

Γ
′(n/2)

Γ2(n/2)

]
.

Note that |Sn−1| =
2πn/2

Γ(n/2)
, so

C =
1

|Sn−1|

∫

Sn−1

ln ‖x‖ dx − 1

2
√

π
Γ
′(1/2) +

1

2

Γ
′(n/2)

Γ(n/2)
.

Let us remark that Definition 2.1 is equivalent to the following. A finite-dimen-
sional normed space X = (R

n, ‖ · ‖) embeds into L0 if and only if there is a probability
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space (Ω, µ) and a linear map T : X → M(Ω, µ) (where M(Ω, µ) denotes the space
of µ-measurable functions on Ω) such that

∫

Ω

ln |Tx(ω)| dµ(ω) < ∞, x ∈ X

and

ln ‖x‖ =

∫

Ω

ln |Tx(ω)| dµ(ω), x ∈ X.

Indeed, if such an operator T exists, we can write it in the form

Tx(ω) = h(ω)(x, ξ(ω)), x ∈ X,

where h : Ω → R
+ and ξ : Ω → Sn−1 are measurable. Then for each ω ∈ Ω,

∫

Sn−1

ln |(x, ξ(ω))| dx > −∞,

so that it follows for some x ∈ Sn−1, ω → ln |(x, ξ(ω)| is µ-integrable. Hence, so
is ln h, and furthermore, ln ‖x‖ =

∫
ln h(ω) dµ(ω) +

∫
ln |(x, ξ(ω))|dµ(ω). Now we

can induce a probability measure µ ′ on Sn−1 by µ ′(B) = µ{ω : ξ(ω) ∈ B}, and we
have the same situation as Definition 2.1.

On the other hand, if X satisfies Definition 2.1, we may take Ω = Sn−1, and µ
is a probability measure. If we define Tx(ξ) = eC (x, ξ), then T : X → M(Sn−1, µ)

satisfies our conditions.
One advantage of this viewpoint is that we can make sense of the statement that

an infinite-dimensional Banach space embeds into L0.

3 A Fourier Analytic Characterization of Subspaces of L0

As usual, we denote by S(R
n) the space of infinitely differentiable rapidly decreasing

functions on R
n (test functions), and by S

′

(R
n) the space of distributions over S(R

n).

We say that a distribution is positive (negative) outside of the origin in R
n if it as-

sumes non-negative (non-positive) values on non-negative Schwartz’s test functions
with compact support outside of the origin.

The Fourier transform of a distribution f is defined by 〈 f̂ , φ〉 = 〈 f , φ̂〉 for every

test function φ.
Let φ be an integrable function on R

n that is also integrable on hyperplanes, let
ξ ∈ Sn−1, and let t ∈ R

n. Then

Rφ(ξ; t) =

∫

(x,ξ)=t

φ(x) dx

is the Radon transform of φ in the direction ξ at the point t . A simple connection
between the Fourier and Radon transforms is that for every fixed ξ ∈ R

n \ {0},

(6) φ̂(sξ) = (Rφ(ξ; t))̂ (s) ∀s ∈ R,
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where in the right-hand side we have the Fourier transform of the function t 7→
Rφ(ξ; t), see [K5, Lemma 2.11].

The fact that the Fourier transform is useful in the study of subspaces of Lp has
been known for a long time. A well-known result of P. Levy is that a finite dimen-

sional normed space (R
n, ‖ · ‖) embeds isometrically in Lp, 0 < p ≤ 2 if and only

if exp(−‖ · ‖p) is a positive definite function on R
n. It was proved in [K2] that a

space (R
n, ‖ · ‖) embeds isometrically in Lp, p > 0, p /∈ 2N if and only if the Fourier

transform of the function Γ(−p/2)‖x‖p (in the sense of distributions) is a positive

distribution outside of the origin. For −n < p < 0, a similar fact was proved in [K3]:
a space (R

n, ‖ · ‖) embeds in Lp if and only if the Fourier transform of ‖ · ‖p is a posi-
tive distribution in the whole R

n. These characterizations have proved to be useful in
the study of subspaces of Lp and intersection bodies, see [K5, Ch. 6]. In this section

we prove a similar characterization of spaces that embed in L0.

Theorem 3.1 Let K be an origin-symmetric star body in R
n. The space (R

n, ‖ · ‖K )
embeds in L0 if and only if the Fourier transform of ln ‖x‖K is a negative distribution

outside of the origin in R
n.

Proof First, assume that (R
n, ‖ · ‖K ) embeds in L0. Let φ be a non-negative even test

function with compact support outside of the origin. By the definition of embedding

in L0, formula (6) (note that
̂̂
φ = (2π)nφ for even φ) and the Fubini theorem,

〈(ln ‖x‖)̂ , φ〉 = 〈ln ‖x‖, φ̂(x)〉

=

∫

Sn−1

∫

Rn

ln |(x, ξ)|φ̂(x) dx dµ(ξ) + C

∫

Rn

φ̂(x) dx

=

∫

Sn−1

〈
ln |t|,

∫

(x,ξ)=t

φ̂(x) dx
〉

dµ(ξ)

= (2π)−1

∫

Sn−1

〈
(ln |t|)̂ (z),

( ∫

(x,ξ)=t

φ̂(x) dx
)̂

(z)
〉

dµ(ξ)

= (2π)n−1

∫

Sn−1

∫

R

(ln |t|)̂ (z)φ(zξ) dzdµ(ξ),

(7)

since
∫

Rn φ̂(x) dx = (2π)nφ(0) = 0. Now, the formula for the Fourier transform of

ln |t| from [GS, p.362] implies that

(8) (ln |t|)̂ (z) = −π|z|−1 < 0

outside of the origin, so (7) is negative (recall that φ is non-negative with support

outside of the origin). This means that (ln ‖x‖)̂ is a negative distribution.

To prove the other direction, note that by [K5, Section 2.6], a distribution that is

positive outside of the origin coincides with a finite Borel measure on every set of the
form

A × (a, b) = {x ∈ R
n : x = tθ, t ∈ (a, b), θ ∈ A},
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where A is an open subset of Sn−1 and 0 < a < b < ∞.
Denote by µ = −(ln ‖x‖)̂ . This distribution coincides with a finite Borel mea-

sure on each set A × (a, b), as above, so for any test function φ supported outside of
the origin

(9) 〈−(ln ‖x‖)̂ , φ〉 = 〈µ, φ〉 =

∫

Rn

φ(x) dµ(x).

Now for every test function φ with support outside of the origin and t > 0, we

have (φ(x/t))̂ (z) = tnφ̂(tz), so

〈µ(x), φ(x/t)〉 = −〈(ln ‖x‖)̂ (x), φ(x/t)〉

= −
∫

Rn

ln ‖z‖φ̂(tz)tn dz

= −
∫

Rn

φ̂(x̃) ln ‖1

t
x̃‖ dx̃

= −
∫

Rn

φ̂(x̃) ln ‖x̃‖ dx̃ + ln |t|
∫

Rn

φ̂(x̃) dx̃

= −
∫

Rn

φ̂(x̃) ln ‖x̃‖ dx̃

= 〈µ(x), φ(x)〉.

(10)

Let χA×(a,b) be the indicator of the set A × (a, b). Approximating χA×(a,b) by test

functions and using (10), we get for any (a, b) ⊂ (0,∞) and A ⊂ Sn−1

µ(A × (a, b)) =

∫

Rn

χA×(a,b)(x) dµ(x) =

∫

Rn

χA×(1,b/a)(x/a) dµ(x)

=

∫

Rn

χA×(1,b/a)(x) dµ(x)

= µ(A × (1, b/a)).

Applying this formula n times,

(11) µ(A × (1, an)) = nµ(A × (1, a))

for n ∈ N. Moreover, we can extend formula (11) to n ∈ R. So, for any a ∈ (0,∞)

and A ⊂ Sn−1,

µ(A × [1, a]) = µ(A × [1, eln a]) = ln a · µ(A × [1, e]).

Now for every (a, b) ⊂ (0,∞) and A ⊂ Sn−1, we have

µ(A × (a, b)) = µ(A × (1, b/a))

= ln
( b

a

)
µ(A × (1, e))

= (ln(b) − ln(a))µ(A × (1, e)).
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Define a measure µ0 on Sn−1 by

µ0(A) =
µ(A × (a, b))

(ln(b) − ln(a))
= µ(A × (1, e))

for every Borel set A ⊂ Sn−1. We have

∫

Sn−1

dµ0(θ)

∫ ∞

0

|t|−1χA×(a,b)(tθ) dt = (ln(b) − ln(a))µ0(A)

= µ(A × (a, b))

=

∫

Rn

χA×(a,b)(x) dµ(x).

(12)

Therefore, for an arbitrary even test function φ supported outside of the origin,

(13) 〈µ, φ〉 =

∫

Sn−1

dµ0(θ)

∫ ∞

0

|t|−1φ(tθ) =
1

2

∫

Sn−1

dµ0(θ)

∫

R

|t|−1φ(tθ) dt,

since A, a, b are arbitrary in (12).
Using µ = −(ln ‖x‖)̂ , we get

〈(ln ‖x‖)̂ (ξ), φ〉 = −1

2

∫

Sn−1

dµ0(θ)

∫

R

|t|−1φ(tθ) dt.

Define a new measure µ̃0 = (2π)nµ0. By (8), (13) and the connection between
the Fourier and Radon transforms

〈ln ‖x‖, φ̂(x)〉 = − 1

2(2π)n

∫

Sn−1

dµ̃0(θ)

∫

R

|t|−1φ(tθ) dt

=

∫

Sn−1

〈ln |z|, Rφ̂(θ; z)〉 dµ̃0(θ)

=

∫

Sn−1

dµ̃0(θ)

∫

R

ln |z|
(∫

(x,θ)=z

φ̂(x) dx
)

dz

=

∫

Sn−1

dµ̃0(θ)

∫

Rn

ln |(x, θ).|φ̂(x) dx.

Thus, we have proved that for any even test function φ supported outside of the origin

〈(ln ‖x‖)̂ , φ〉 =

〈(∫

Sn−1

ln |(x, θ)| dµ̃0(θ)
) ̂

, φ
〉

.

Therefore the distributions ln ‖x‖ and
∫

Sn−1 ln |(x, θ)| dµ̃0(θ) can differ only by a
polynomial. Clearly, this polynomial cannot contain terms homogeneous of degree
different from zero, so it is a constant.
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Remark 3.2 Let K be an infinitely smooth body. From the proof of the previous
theorem it follows that the measure µ from Definition 2.1 is equal to the restriction

of the Fourier transform of ln ‖x‖K to the sphere. In the next section we are going to
prove that this is a function, therefore

dµ(ξ) = − 1

(2π)n

(
ln ‖x‖K

)̂ (ξ)dξ.

In particular, since µ is a probability measure, for any infinitely smooth body K

we get

− 1

(2π)n

∫

Sn−1

(
ln ‖x‖K

)̂ (ξ)dξ = 1.

4 A Geometric Characterization of Subspaces of L0.

Let K be an origin-symmetric star body in R
n. The function ρK(x) = ‖x‖−1

K is called
the radial function of K. If x ∈ Sn−1, then ρK(x) is the distance from the origin to the
boundary of K in the direction of x.

The radial metric on the set of all origin-symmetric star bodies is defined by

ρ(K, L) = max
x∈Sn−1

|ρK(x) − ρL(x)|.

Let ξ ∈ Sn−1 and (x, ξ) = t be the hyperplane orthogonal to ξ at the distance t

from the origin. Define the parallel section function of a star body K in the direction
of ξ by

AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}), t ∈ R.

Let f be an integrable continuous function on R, m-times continuously differ-

entiable in some neighborhood of zero, m ∈ N. For a number q ∈ (m − 1, m),
the fractional derivative of the order q of the function f at zero is defined as fol-
lows [K5, Section 2.5]:

f (q)(0) =
1

Γ(−q)

∫ ∞

0

t−1−q
(

f (t) − f (0) − t f ′(0) − · · · − tm−1

(m − 1)!
f (m−1)(0)

)
dt.

Note that fractional derivatives of integer orders coincide with usual derivatives
up to a sign:

f (k)(0) = (−1)k dk

dtk
f (t)|t=0.

If K has an infinitely smooth boundary, then the function AK,ξ(t) is an infinitely
differentiable function of t in some neighborhood of zero, and, as was shown in
[GKS], the fractional derivatives of AK,ξ(t) can be computed in terms of the Fourier
transform of the Minkowski functional raised to certain powers. Namely, for q ∈ C,

q 6= n − 1,

(14) A
(q)
K,ξ(0) =

cos qπ
2

π(n − q − 1)

(
‖x‖−n+q+1

K

) ̂(ξ),
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and, in particular,
(
‖x‖−n+q+1

K

) ̂ is a continuous function on R
n \ {0}. Here we

extend A(q)
K,ξ(0) from the sphere to the whole of R

n as a homogeneous function of the
variable ξ of degree −q−1. Note that 〈A(q)

K,ξ(0), φ〉 is an analytic function of q for any
fixed test function φ.

Since the right-hand side of formula (14) is not defined for q = n− 1, in our next
Theorem we use a limiting argument to extend this formula to the case q = n − 1.

Let D be an open set in R
n, f , g two distributions. We say that f = g on D if

〈 f , φ〉 = 〈g, φ〉 for any test function φ with compact support in D.

Theorem 4.1 Let K be an infinitely smooth origin-symmetric star body in R
n. Extend

A(n−1)
K,ξ (0) to a homogeneous function of degree −n of the variable ξ ∈ R

n \ {0}. Then

(ln ‖ · ‖K )̂ is a continuous function on R
n \ {0} and

(15) A(n−1)
K,ξ (0) = −cos(π(n − 1)/2)

π
(ln ‖ · ‖K )̂(ξ),

as distributions (of the variable ξ) acting on test functions with compact support outside

of the origin. In particular, for ξ ∈ R
n \ {0},

(i) if n is odd,

(ln ‖x‖K )̂(ξ) = (−1)(n+1)/2πA(n−1)
K,ξ (0),

(ii) if n is even,

(ln ‖x‖K )̂(ξ) = an

∫ ∞

0

Aξ(z) − Aξ(0) − A ′′
ξ (0) z2

2
− · · · − An−2

ξ (z) zn−2

(n−2)!

zn
dz,

where an = 2(−1)n/2+1(n − 1)!

Proof Let us start with the case where n is odd. Let φ be a test function supported
outside of the origin.

Using formula (14) for q close to n − 1, we have

〈A(q)
K,ξ(0), φ(ξ)〉 =

cos(πq/2)

π(n − q − 1)
〈(‖x‖−n+q+1)̂ (ξ), φ(ξ)〉

=
cos(πq/2)

π(n − q − 1)
〈‖x‖−n+q+1, φ̂(x)〉

=
cos(πq/2)

π(n − q − 1)

∫

Rn

‖x‖−n+q+1φ̂(x) dx

=
cos(πq/2)

π(n − q − 1)

∫

Rn

(‖x‖−n+q+1 − 1)φ̂(x) dx

+
cos(πq/2)

π(n − q − 1)

∫

Rn

φ̂(x) dx

=
cos(πq/2)

π

∫

Rn

‖x‖−n+q+1 − 1

n − q − 1
φ̂(x) dx,
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since
∫

Rn φ̂(x)dx = (2π)nφ(0) = 0. Taking the limit of both sides as q → n − 1, we
get

〈A(n−1)
K,ξ (0), φ(ξ)〉 =

〈
−cos(π(n − 1)/2)

π
(ln ‖x‖)̂ (ξ), φ(ξ)

〉
,

since

lim
q→n−1

∫

Rn

‖x‖−n+q+1 − 1

n − q − 1
φ̂(x) dx = −

∫

Rn

ln ‖x‖φ̂(x) dx = 〈−(ln ‖x‖)̂ (ξ), φ(ξ)〉.

When n is odd the formula of (i) follows immediately.
When n is even, both sides of (15) are equal to zero, and we repeat the reasoning

from [GKS, Theorem 1]. Divide both sides of (14) by cos( πq
2

),

〈 (‖x‖−n+q+1
K )̂ (ξ)

(n − q − 1)
, φ(ξ)

〉
= π

〈 A
(q)
K,ξ(0)

cos πq
2

, φ(ξ)
〉

,

and take the limit of both sides when q → n − 1.

We have already proved that

lim
q→n−1

〈 (‖x‖−n+q+1
K )̂ (ξ)

(n − q − 1)
, φ(ξ)

〉
= 〈−(ln ‖x‖)̂ (ξ), φ(ξ)〉

for any test function φ supported outside of the origin.
To compute the limit of

A
(q)
K,ξ(0)

cos qπ
2

,

we use the definition of fractional derivatives in exactly the same way as was done
in [GKS, Theorem 1]:

lim
q→n−1

Γ(−q)A
(q)
K,ξ(0) =

∫ ∞

0

Aξ(z) − Aξ(0) − A ′ ′
ξ (0) z2

2
− · · · − An−2

ξ (z) zn−2

(n−2)!

zn
dz

and

lim
q→n−1

Γ(−q) sin
(q + 1)π

2
=

π

2
(−1)n/2 1

(n − 1)!
.

Combining these two formulas we get the formula in statement (ii) of the theorem.

The following is an immediate application of Theorem 4.1.

Corollary 4.2 Let K be an infinitely smooth body in R
n. Then

(i) if n is odd, (R
n, ‖ · ‖K) embeds in L0 if and only if for every ξ ∈ Sn−1

(−1)(n−1)/2A(n−1)
K,ξ (0) ≥ 0;
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(ii) if n is even, (R
n, ‖ · ‖K ) embeds in L0 if and only if for every ξ ∈ Sn−1,

(−1)(n+2)/2

∫ ∞

0

Aξ(z) − Aξ(0) − A ′′
ξ (0) z2

2
− · · · − An−2

ξ (z) zn−2

(n−2)!

zn
dz ≥ 0.

Corollary 4.3 Every 3-dimensional normed space (R
n, ‖ · ‖K ) embeds in L0.

Proof The unit ball K of a normed space is an origin-symmetric convex body. First
assume that K is infinitely smooth. By Brunn’s theorem the central section of a con-

vex body has maximal volume among all sections perpendicular to a given direc-
tion. Therefore, for any ξ the function AK,ξ(t) attains its maximum at t = 0, hence
A ′ ′

K,ξ(0) ≤ 0. So, by Theorem 4.1, for smooth convex bodies in R
3 the distribution

−(ln ‖x‖)̂ is positive outside of the origin, and our result follows from Theorem 3.1.
For general convex bodies the result follows from the facts that any convex body can

be approximated by smooth convex bodies and that positive definiteness is preserved
under limits. In fact, let {Ki} be a sequence of infinitely smooth convex bodies that
approach K in the radial metric. Then for any non-negative test function φ supported
outside of the origin we have

−
∫

Rn

ln ‖x‖Ki
φ̂(x) dx =

〈
− ln ‖x‖Ki

, φ̂(x)
〉

=
〈
−(ln ‖x‖Ki

)̂(ξ), φ(ξ)
〉
≥ 0.

Since Ki approximate K, there is a constant C > 0, such that

| ln ‖x‖Ki
| ≤ C + |ln |x|2| ,

therefore the functions | ln ‖x‖Ki
φ̂(x)| are majorized by an integrable function

(C + | ln |x|2|)|φ̂(x)|, and by the Lebesgue dominated convergence theorem we get

− lim
i→∞

∫

Rn

ln ‖x‖Ki
φ̂(x) dx = −

∫

Rn

ln ‖x‖K φ̂(x) dx

= 〈−(ln ‖x‖K )̂ (ξ), φ(ξ)〉 ≥ 0

Our next result shows that that the previous statement is no longer true in R
n,

n ≥ 4.

Theorem 4.4 There exists an origin-symmetric convex body K in R
n, n ≥ 4, so that

the space (R
n, ‖ · ‖K) does not embed in L0.

Proof It is enough to construct a convex body for which the distribution−(ln ‖x‖)̂
is not positive. The construction will be similar to that from [GKS].

Define fN (x) = (1 − x2 − Nx4)1/3. Let aN > 0 be such that fN (aN ) = 0 and
fN (x) > 0 on the interval (0, aN). Define a body K in R

4 by

K = {(x1, x2, x3, x4) ∈ R
4 : x4 ∈ [−aN , aN] and

√
x2

1 + x2
2 + x2

3 ≤ fN (x4)}.
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The body K is strictly convex and infinitely smooth. By Theorem 4.1,

−(ln ‖x‖K )̂(ξ) = 12

∫ ∞

0

Aξ(z) − Aξ(0) − A ′ ′
ξ (0) z2

2

z4
dz.

The function AK,ξ can easily be computed:

AK,ξ(x) =
4π

3
(1 − x2 − Nx4).

We have

∫ ∞

0

Aξ(z) − Aξ(0) − A ′ ′
ξ (0) z2

2

z4
dz =

4π

3

(
−NaN +

1

aN

− 1

3a3
N

)
.

The latter is negative for N large enough, because N1/4 · aN → 1 as N → ∞.

5 Addition in L0

It is clear from the definition that the class of bodies K for which (R
n, ‖ · ‖K ) embeds

in L0 is closed with respect to multiplicative summation, i.e., if two spaces (R
n, ‖ · ‖K1

)
and (R

n, ‖ · ‖K2
) embed in L0 and K = K1+0K2, then (R

n, ‖ · ‖K) embeds in L0. In this
section we are going to prove that the unit ball of every space (R

n, ‖ · ‖K ) that embeds
in L0 can be obtained from the Euclidean ball by means of multiplicative summation,

linear transformations and closure in the radial metric, i.e., it can be approximated
in the radial metric by multiplicative sums of ellipsoids.

Consider the set of bodies K for which (R
n, ‖ · ‖K ) embeds in L0. As mentioned

above, this set is closed with respect to multiplicative summation; also, from the proof

of Corollary 4.3 it follows that this set is closed with respect to limits in the radial
metric. Let us show that it is closed with respect to linear transformations. Suppose

that (R
n, ‖ · ‖K ) embeds in L0. By Theorem 3.1

(
ln ‖x‖K

)̂ is a negative distribution
outside of the origin. Let T be an invertible linear transformation in R

n. Then for
any non-negative test function φ with support outside of the origin, we have

〈
(
ln ‖Tx‖K

)̂ , φ〉 = 〈ln ‖Tx‖K , φ̂(x)〉

=

∫

Rn

ln ‖Tx‖K φ̂(x) dx

= |det T|−1

∫

Rn

ln ‖x‖K φ̂(T−1x) dx

=

∫

Rn

ln ‖x‖K

(
φ(T∗y)

)̂ (x) dx

=
〈

ln ‖x‖K ,
(
φ(T∗y)

)̂ (x)
〉
,

=
〈(

ln ‖x‖K

)̂ (y), φ(T∗y)
〉
≤ 0.



The Geometry of L0 1041

So (ln ‖Tx‖K )̂ is a negative distribution outside of the origin. By Theorem 3.1,
(R

n, ‖ · ‖TK) embeds in L0. Moreover, if (ln ‖x‖)̂ is a function, then

(16) (ln ‖Tx‖)̂ (y) = | det T|−1(ln ‖x‖)̂ ((T∗)−1 y).

To prove the main result of this section, we need a few lemmas. For a fixed x ∈
Sn−1, let Ea,b(x) be an ellipsoid with the norm

‖θ‖Ea,b(x) =

( (x, θ)2

a2
+

1 − (x, θ)2

b2

) 1/2

, for θ ∈ Sn−1.

Lemma 5.1 For all θ ∈ Sn−1,

(ln ‖ξ‖Ea,b(x))ξ̂ (θ) = −2n−1πn/2
Γ(n/2)

an−1b
‖θ‖−n

Eb,a(x).

Proof For −n < λ < 0, the following formula holds (see [GS, p. 192]):

(|x|λ2 )̂ (ξ) = 2λ+nπn/2 Γ((λ + n)/2)

Γ(−λ/2)
|ξ|−λ−n

2 .

Dividing both sides by λ, using the formula xΓ(x) = Γ(1 + x), and sending λ → 0,

we get
(ln |x|2)̂ (ξ) = −2n−1πn/2

Γ(n/2)|ξ|−n
2

as distributions outside of the origin. Note that, by rotation, it is enough to prove the
lemma for the ellipsoids Ea,b(x) with x = (0, 0, . . . , 0, 1):

‖ξ‖Ea,b(x) =

( ξ2
n

a2
+

ξ2
1 + · · · + ξ2

n−1

b2

) 1/2

.

Since this norm can be obtained from the Euclidean norm by an obvious linear trans-
formation, one can use formula (16) to get

(ln ‖ξ‖Ea,b(x))ξ̂ (θ) = −2n−1πn/2
Γ(n/2)abn−1‖θ‖−n

E1/a,1/b(x)

= −2n−1πn/2
Γ(n/2)

an−1b
‖θ‖−n

Eb,a(x).

Lemma 5.2 Let K be a star body, then ln ‖x‖K can be approximated in the space

C(Sn−1) by the functions of the form

(17) fa,b(x) =
1

|Sn−1|an−1b

∫

Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x) dθ,

as a → 0 and b is fixed.
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Proof The proof is similar to that of [GW, Lemma 2]. First, note that the space R
n

with the Euclidean norm embeds in L0, so (R
n, ‖ · ‖E) embeds in L0 for any ellipsoid

E with center at the origin. Therefore, by Remark 3.2 and Lemma 5.1 we get

∫

Sn−1

1

|Sn−1|an−1b
‖θ‖−n

Eb,a(x) dθ = 1

for all values of a and b. From now on b will be fixed.
We have

∣∣∣ ln ‖x‖K − 1

|Sn−1|an−1b

∫

Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x) dθ

∣∣∣

≤ 1

|Sn−1|an−1b

∫

Sn−1

∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣‖θ‖−n
Eb,a(x) dθ

=
1

|Sn−1|an−1b

∫

|(x,θ)|≥δ

∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣‖θ‖−n
Eb,a(x) dθ

+
1

|Sn−1|an−1b

∫

|(x,θ)|<δ

∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣‖θ‖−n
Eb,a(x) dθ

= I1 + I2.

For the first integral I1, use the uniform continuity of ln ‖x‖K on the sphere. For
any given ǫ > 0 there exists δ ∈ (0, 1), δ close to 1, so that |(x, θ)| ≥ δ implies
| ln ‖x‖K − ln ‖θ‖K | < ǫ/2. Therefore,

I1 =
1

|Sn−1|an−1b

∫

|(x,θ)|≥δ

∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣‖θ‖−n
Ea,b(x) dθ

≤ ǫ

2

[ 1

|Sn−1|an−1b

∫

|(x,θ)|≥δ

‖θ‖−n
Ea,b(x) dθ

]
≤ ǫ

2
.

Now fix δ chosen above and estimate the integral I2 as follows:

I2 =
1

|Sn−1|an−1b

∫

|(x,θ)|<δ

∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣‖θ‖−n
Eb,a(x) dθ

≤ C(n, b, K)

an−1

∫

|(x,θ)|<δ

‖θ‖−n
Eb,a(x) dθ,

where

C(n, b, K) =
2 maxSn−1 | ln ‖x‖K |

|Sn−1|b .

For the latter integral we use an elementary formula (see [K5, Section 6.4]):

∫

|(x,θ)|<δ

f ((x, θ)) dθ = |Sn−2|
∫ δ

−δ

(1 − t2)(n−3)/2 f (t) dt, for x ∈ Sn−1.
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Now,

I2 ≤
C(n, b, K)|Sn−2|

an−1

∫ δ

−δ

(1 − t2)(n−3)/2
( t2

b2
+

1 − t2

a2

)−n/2

dt

≤ C(n, b, K)|Sn−2|
an−1

∫ δ

−δ

(1 − t2)(n−3)/2
( 1 − t2

a2

)−n/2

dt

= a ·C(n, b, K)|Sn−2|
∫ δ

−δ

(1 − t2)−3/2 dt

≤ a ·C(n, b, K)|Sn−2| 2δ

(1 − δ2)3/2
.

Now we can choose a so small that I2 ≤ ǫ/2.

Lemma 5.3 If µ is a probability measure on Sn−1 and a, b > 0, then the function

f (x) =

∫

Sn−1

ln ‖ξ‖Ea,b(x) dµ(ξ)

can be approximated in C(Sn−1) by the sums of the form

m∑

i=1

1

pi

ln ‖x‖Ei
,

where E1, . . . , Em are ellipsoids and 1/p1 + · · · + 1/pm = 1.

Proof Let σ > 0 be a small number and choose a finite covering of the sphere by
spherical σ-balls Bσ(ηi) = {η ∈ Sn−1 : |η − ηi | < σ}, ηi ∈ Sn−1, i = 1, . . . , m =

m(δ). Define

B̃σ(ξ1) = Bσ(ξ1),

B̃σ(ξi) = Bσ(ξi) \
i−1⋃
j=1

Bσ(ξ j), for i = 2, . . . , m.

Let 1/pi = µ(B̃σ(ξi)). Clearly, 1/p1 + · · · + 1/pm = 1.

Let ρ(Ea,b(ξ), x) be the radial function of the ellipsoid Ea,b(ξ), that is,

ρ(Ea,b(ξ), x) = ‖x‖−1
Ea,b(ξ).

Note that ρ(Ea,b(ξ), x) = ρ(Ea,b(x), ξ), therefore

|ρ(Ea,b(ξ), x) − ρ(Ea,b(θ), x)| ≤ Ca,b|ξ − θ|,
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with a constant Ca,b that depends on a and b. Also note that since we consider a close
to zero and b fixed, we may assume a ≤ ρ(Ea,b(ξ), x) ≤ b, x ∈ Sn−1. Then

∣∣∣
∫

Sn−1

lnρ(Ea,b(ξ), x) dµ(ξ) −
m∑

i=1

1

pi

ln ρ(Ea,b(ξi), x)
∣∣∣

=

∣∣∣
m∑

i=1

(∫

eBσ(ξi )

ln ρ(Ea,b(ξ), x) dµ(ξ) −
∫

eBσ(ξi )

ln ρ(Ea,b(ξi), x) dµ(ξ)
)∣∣∣

≤
m∑

i=1

∫

eBσ(ξi )

∣∣∣ ln
ρ(Ea,b(ξ), x)

ρ(Ea,b(ξi), x)

∣∣∣ dµ(ξ)

≤
m∑

i=1

∫

eBσ(ξi )

∣∣∣ ln
ρ(Ea,b(ξi), x) + [ρ(Ea,b(ξ), x) − ρ(Ea,b(ξi), x)]

ρ(Ea,b(ξi), x)

∣∣∣ dµ(ξ)

≤
m∑

i=1

∫

eBσ(ξi )

| ln(1 ±C ′
a,b|ξ − ξi|)| dµ(ξ)

≤ | ln(1 ±C ′
a,bσ)|,

and the result follows since σ is arbitrarily small.

Now we are ready to prove the following.

Theorem 5.4 Let K be an origin-symmetric star body in R
n. The space (R

n, ‖ · ‖K )
embeds in L0 if and only if ‖x‖K is the limit (in the radial metric) of finite products

‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
, where E1, . . . , Em are ellipsoids and 1/p1 + · · · + 1/pm = 1.

Proof The “if” part is a consequence of the fact that L0 is closed with respect to

the three operations as discussed above. The proof of the “only if” part easily fol-
lows from the lemmas we have proved. Suppose that (R

n, ‖ · ‖K) embeds in L0 with
the corresponding probability measure µ on Sn−1 and constant C . By Remark 3.2,
(R

n, ‖ · ‖Ea,b(x)) embeds in L0 with the measure − 1
(2π)n (ln ‖x‖E)̂(θ)dθ and some con-

stant CEa,b
. Note, this constant does not depend on x. We have

∫

Sn−1

ln‖ξ‖Ea,b(x) dµ(ξ)

=

∫

Sn−1

∫

Sn−1

ln |(ξ, θ)|
(
− 1

(2π)n

)
(ln ‖x‖Ea,b(x))̂(θ) dθdµ(ξ) + CEa,b

=

∫

Sn−1

[∫

Sn−1

ln |(ξ, θ)| dµ(ξ) + CK

](
− 1

(2π)n

)
(ln ‖x‖Ea,b(x))̂ (θ) dθ

+ CEa,b
−CK

=

∫

Sn−1

ln ‖θ‖K

(
− 1

(2π)n

)
(ln ‖x‖Ea,b(x))̂(θ) dθ + CEa,b

−CK
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=

∫

Sn−1

ln ‖θ‖K

(
− 1

(2π)n

)
(ln ‖x‖Ea,b(x))̂(θ) dθ + CEa,b

−CK

=
1

|Sn−1|an−1b

∫

Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x) dθ + CEa,b

−CK .

In Lemma 5.2 we proved that ln ‖x‖K can be uniformly approximated by the inte-
grals of the form

1

|Sn−1|an−1b

∫

Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x) dθ,

as a → 0. Therefore, using the previous calculations, one can see that ln ‖x‖K can
be uniformly approximated by

∫
Sn−1 ln ‖ξ‖Ea,b(x)dµ(ξ) + C ′. Hence, by Lemma 5.3,

ln ‖x‖K can be uniformly approximated by the sums

m∑

i=1

1

pi

ln ‖x‖Ei
+ C ′.

Replacing E1 by another ellipsoid E ′
1 given by ‖x‖1/p1

E ′

1
= eC ′‖x‖1/p1

E1
, we get the state-

ment of the theorem.

Corollary 5.5 Any convex body in R
3 can be obtained from the Euclidean unit ball by

means of three operations: linear transformations, multiplicative addition, and closure

in the radial metric.

Proof As was proved in Theorem 5.4, any convex body can be approximated by

the finite products of the type ‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
. Since any number 1/p can be

approximated by the sums
1

2i1
+

1

2i2
+ · · · +

1

2ik
,

the result follows.

A proof similar to that of Theorem 5.4 can be used to show that the previous the-
orem holds for p-summation with −1 < p < 1, p 6= 0, in place of the multiplicative
summation.

Theorem 5.6 Let K be an origin-symmetric star body in R
n. The space (R

n, ‖ · ‖K )
embeds in Lp, −1 < p < 1, p 6= 0 if and only if ‖x‖p

K is the limit (in the radial

topology) of finite sums ‖x‖p
E1

+ · · · + ‖x‖p
Em

, where E1, . . . , Em are ellipsoids.

6 Confirming the Place of L0 in the Scale of Lp-Spaces.

In this section we establish the relations between embedding in L0 and in Lp with
p 6= 0, which confirm the place of L0 between Lp with p > 0 and p < 0. We are
going to use the following result from [K3, Theorem 1].
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Theorem 6.1 An n-dimensional homogeneous space (R
n, ‖ · ‖K) embeds in L−p, p ∈

(0, n) if and only if ‖x‖−p
K is a positive definite distribution.

We also use a well-known result of P. Levy (see [BL, p. 189], and [BDK] for the

infinite dimensional case).

Theorem 6.2 A space (R
n, ‖ · ‖K ) embeds in Lp, p ∈ (0, 2] if and only if the function

exp(−‖x‖p
K ) is positive definite.

Now we are ready to prove the following.

Theorem 6.3 Let K be an origin-symmetric star body in R
n. If the space (R

n, ‖ · ‖K )

embeds in L0, then it also embeds in L−p, 0 < p < n.

Proof By Theorem 5.4, ‖x‖K is the limit of the finite products ‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
.

Consider ‖x‖−p
K for 0 < p < n. It is the limit of the products ‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
.

Using the formula

‖x‖−p
=

2

Γ(p/2)

∫ ∞

0

t p−1 exp(−t2‖x‖2) dt,

we get

‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
= C

∫ ∞

0

· · ·
∫ ∞

0

t
p/p1−1
1 · · · t p/pm−1

m

× exp(−t2
1‖x‖2

E1
− · · · − t2

m‖x‖2
Em

) dt1 · · · dtm,

where

C =
2m

Γ(p/2p1) · · ·Γ(p/2pm)
.

Therefore, for any non-negative test function φ we have

〈
(‖x‖−p/p1

E1
· · ·‖x‖−p/pm

Em
)̂(ξ), φ(ξ)

〉
=

〈
‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
, φ̂(x)

〉

= C

∫ ∞

0

. . .

∫ ∞

0

t
p/p1−1
1 · · · t p/pm−1

m

×
〈

exp(−t2
1‖x‖2

E1
− · · · − t2

m‖x‖2
Em

), φ̂(x)
〉

dt1 · · · dtm

= C

∫ ∞

0

. . .

∫ ∞

0

t
p/p1−1
1 · · · t p/pm−1

m

×
〈

(exp(−t2
1‖x‖2

E1
− · · · − t2

m‖x‖2
Em

))̂ (ξ), φ(ξ)
〉

dt1 · · · dtm.

We claim that the latter expression is non-negative. Indeed, (R
n, ‖x‖E) embeds in L2

for any ellipsoid, therefore the 2-sum of ellipsoids t2
1‖x‖2

E1
+ · · · + t2

m‖x‖2
Em

embeds
in L2, and hence by Theorem 6.2, the function exp(−t2

1‖x‖2
E1

− · · · − t2
m‖x‖2

Em
) is

positive definite. Now the fact that 〈(‖x‖−p
K )̂ , φ〉 ≥ 0 follows by an approximation

argument, as in Corollary 4.3.
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Theorem 6.4 Let K be an origin-symmetric star body in R
n. If the space (R

n, ‖ · ‖K )
embeds in L−p for every p ∈ (0, ǫ), then it also embeds in L0.

Proof The space (R
n, ‖ · ‖K) embeds in L−p, so by Theorem 6.1 the distribution

‖x‖−p is positive definite. Then for every non-negative test function φ supported
outside of the origin,

−
∫

Rn

ln ‖x‖φ̂(x) dx = lim
p→0

1

p

∫

Rn

(‖x‖−p − 1)φ̂(x) dx

= lim
p→0

1

p

∫

Rn

‖x‖−pφ̂(x) dx ≥ 0.

The result follows from Theorem 3.1.

Theorem 6.5 There are normed spaces that embed in L0, but do not embed in Lp for

p > 0.

Proof As proved above, every 3-dimensional normed space embeds in L0, hence l3
q

with q > 2 does. On the other hand, l3
q, q > 2 does not embed in Lp for 0 < p ≤ 2

(see [K1]).

Let us also mention that one can use the approach of [KK1] to produce examples
in the same spirit. It follows from [KK1, Proposition 3.5] that R⊕2ℓ1 does not embed

isometrically into Lp for p > 0; hence neither does R ⊕2 ℓn
1 for large enough n.

Proposition 6.6 For any n ∈ N the space R ⊕2 ℓn
1 embeds in L0.

Proof Let ( fn)∞n=1 be a sequence of functions on some probability space which are
independent and 1-stable symmetric, so that E(eit f j ) = e−|t| (i.e., the f j have the
Cauchy distribution). Then it is clear that

E ln |
n∑

j=1

a j f j | = ln

n∑

j=1

|a j |.

Indeed, this follows from the fact that

1

π

∫ ∞

−∞

ln |x|
1 + x2

dx = 0.

On the other hand, if f =
∑n

j=1 a j f j , where
∑n

j=1 |a j | = 1, then f has the Cauchy

distribution and so has the same distribution as g1/g2 where g1 and g2 are indepen-
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dent normalized Gaussians. Hence

E ln |a + b f | = E(ln |ag2 + bg1| − ln |g2|)

= ln(a2 + b2)
1
2 .

Now for any a0, a1, . . . , an ∈ R we have

E|a0 +

n∑

j=1

a j f j | = ln
(
|a0|2 +

( n∑

j=1

|a j |
) 2) 1

2

.

This shows (using the remarks at the end of §2) that R ⊕2 ℓn
1 embeds into L0 for

every n.

Theorem 6.7 Let K be an origin-symmetric star body in R
n. If the space (R

n, ‖ · ‖K )
embeds in Lp0

, 0 < p0 ≤ 2, then it also embeds in L0.

Proof Since (R
n, ‖ · ‖K ) embeds in Lp0

, 0 < p0 ≤ 2, by [K3, Theorem 2] it also
embeds in L−p for any p ∈ (0, n) and hence, by Theorem 6.4, it embeds in L0.
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Inst. H. Poincaré Probab. Statist. 28(1992), no. 3, 335–353.
[K3] , Positive definite distributions and subspaces of L

−p with applications to stable processes.
Canad. Math. Bull. 42(1999), no.3, 344–353.

[K4] , A functional analytic approach to intersection bodies. Geom. Funct. Anal. 10(2000),
no. 6, 1507–1526.

[K5] , Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs 116,
American Mathematical Society, Providence RI, 2005.



The Geometry of L0 1049

[S] R. Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z.
101(1967), 71–82.

[Z] G. Zhang, A positive solution to the Busemann-Petty problem in R4. Ann. of Math. 149(1999),
no. 2, 535–543.

Department of Mathematics

University of Missouri

Columbia, MO 65211

U.S.A.

e-mail: nigel@math.missouri.edu

koldobsk@math.missouri.edu

Department of Mathematics

University of Oklahoma

Norman, OK 73019

U.S.A.

e-mail: vyaskin@math.ou.edu

myaskina@math.ou.edu


