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THE BEHAVIOUR OF LEGENDRE AND ULTRASPHERICAL
POLYNOMIALS IN Lp-SPACES

N. J. KALTON AND L. TZAFRIRI

ABSTRACT. We consider the analogue of the Λ(p)�problem for subsets of the
Legendre polynomials or more general ultraspherical polynomials. We obtain the “best
possible” result that if 2 Ú p Ú 4 then a random subset of N Legendre polynomials
of size N4Ûp�1 spans an Hilbertian subspace. We also answer a question of König
concerning the structure of the space of polynomials of degree n in various weighted
Lp-spaces.

1. Introduction. Let (Pn) denote the Legendre polynomials on [�1Ò 1] and let ßn =
cnPn be the corresponding polynomials normalized in L2[�1Ò 1]. Then (ßn)1n=0 is an
orthonormal basis of L2[�1Ò 1]. If we consider the same polynomials in Lp[�1Ò 1] where
p Ù 2 then (ßn)1n=0 is a basis if and only if sup kßnkp Ú 1 if and only if p Ú 4 [8], [9].

In this note our main result concerns the analogue of the Λ(p)-problem for the Legendre
polynomials. In [2] Bourgain (answering a question of Rudin [12]) showed that for the
trigonometric system (einí)n2Z in Lp(T) where p Ù 2 there is a constant C so that for any
N there is a subset A of f1Ò 2Ò    ÒNg with jAj ½ N2Ûp and such that for any (òn)n2A,
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Actually Bourgain’s result is much stronger than this. He shows that if (gn)1n=1 is a
uniformly bounded orthonormal system in some L2(ñ) where ñ is a finite measure, then
there is a constant C so that if F is finite subset of N then there is a further subset A of F
with jAj ½ jFj2Ûp so that we have an estimate
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In fact this estimate holds for a random subset of F. For an alternative approach to
Bourgain’s results, see Talagrand [15].

It is natural to ask for a corresponding result for the Legendre polynomials. Since
(ßn)1n=1 is not bounded in L1[�1Ò 1] one cannot apply Bourgain’s result. However,
Bourgain [2] states without proof the corresponding result for orthonormal systems
which are bounded in some Lr for r Ù 2. Suppose that (gn) is an orthonormal system
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which is uniformly bounded in Lr(ñ) for some 2 Ú r Ú 1. Then he remarks that if
2 Ú p Ú r there is a constant C so that for any subset F of N there is a further subset A
of F with jAj ½ jFj(

1
p�

1
r )Û( 1

2�
1
r ) so that we have the estimate (1.1). Again this result holds

for random subsets. It follows from this result that if 2 Ú p Ú 4 and è Ù 0 f1Ò 2Ò    ÒNg
contains a subset A of size N4Ûp�1�è so that we have the estimate
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As shown below in Proposition 3.1, there is an easy upper estimate jAj � CN4Ûp�1 for
subsets obeying (1.2). The sharp estimate N4Ûp�1 cannot be obtained from Bourgain’s
results since (ßn)1n=1 is unbounded in L4[�1Ò 1]

In this note we show that, nevertheless, if F is a finite subset ofN then there is a subset
of A of Fwith jAj ½ jFj4Ûp�1 so that (1.2) holds, and again this holds for random subsets.

In fact we show the corresponding result for more general ultraspherical polynomials.
Suppose 0 Ú ï Ú 1. Let (ß(ï)

n )1n=0 be the orthonormal basis of L2

�
[�1Ò 1]Ò (1� x2)ï�

1
2

�
obtained from f1Ò xÒ x2Ò   g by the Gram-Schmidt process. Then (ß(ï)

n ) is a basis in
Lp

�
[�1Ò 1]Ò (1 � x2)ï�

1
2

�
if 2 Ú p Ú r = 2 + ï�1. We show in Theorem 3.6 that there

is a constant C so that if F is a finite subset of N, there is a further subset A of F with
jAj ½ jFj2ï( r

p�1) so that we have the estimate
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Here of course norms are computed with respect to the measure (1 � x2)ï�
1
2 dx. Again

this result is best possible as with the Legendre polynomials (the case ï = 1
2 ) and holds

for random subsets. Notice that if we set ï = 0 we obtain the (normalized) Tchebicheff
polynomials which after a change of variable reduce to the trigometric system on the
circle. Thus Bourgain’s Λ(p)�theorem corresponds to the limiting case ï = 0

As will be seen we obtain our main result by using Bourgain’s theorem and an
interpolation technique.

In Section 4 we answer a question of H. König by showing that the space Pn of
polynomials is uniformly isomorphic to ‡n

p in every space Lp

�
[�1Ò 1]Ò (1 � x2)ï�

1
2

�
for

ï Ù 1
2 and 1 Ú p Ú 1

2. Preliminaries. In this section, we collect together some preliminaries. A good
general reference for most of the material we need is the book of Szegö [14].

For� 1
2 Ú ï Ú 1 with ï 6= 0 we define the ultraspherical polynomials P(ï)

n as in [14]
by the generating function relation

(1 � 2xw + w2)�ï =
1X

n=0
P(ï)

n (x)wn

For ï = 0 we define P(0)
n (x) = 2

n Tn(x) where Tn are the Tchebicheff polynomials defined
by Tn(cos í) = cos ní for 0 � í � ô. Then we have that if ï 6= 0 [14, p. 81 (4.7.16)],

Z +1

�1
jP(ï)

n (x)j2(1 � x2)ï�
1
2 dx = 21�2ïôΓ(ï)�2 Γ(n + 2ï)

(n + ï)Γ(n + 1)
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It follows that we have

ß(ï)
n = 2ï�

1
2ô�

1
2 Γ(ï)

 
(n + ï)Γ(n + 1)

Γ(n + 2ï)

!1Û2

P(ï)
n 

We now recall Theorem 8.21.11 of [14, p. 197].

PROPOSITION 2.1. Suppose 0 Ú ï Ú 1. Then for 0 � í � ô we have
þþþþþP(ï)

n (cos í) � 2
Γ(n + 2ï)

Γ(ï)Γ(n + ï + 1)
cos

�
(n + ï)í � ïôÛ2

�
(2 sin í)�ï

þþþþþ
�

4ï(1 � ï)Γ(n + 2ï)
Γ(ï)(n + ï + 1)Γ(n + ï + 1)

(2 sin í)�ï�1

REMARK. Note we have used that Γ(ï)Γ(1 � ï) = ôÛ sin(ïô).
The next Proposition is a combination of results on p. 80 (4.7.14) and p. 168 (7.32.1)

of [14].

PROPOSITION 2.2. If 0 Ú ï Ú 1 then we have

max
�1�x�1

jP(ï)
n (x)j = P(ï)

n (1) =

0
@n + 2ï � 1

n

1
A

Here we write 0
@u

v

1
A =

Γ(u + 1)
Γ(u � v + 1)Γ(v + 1)



For our purposes it will be useful to simplify the Gamma function replacing it by
asymptotic estimates. For this purpose we note that

Γ(n + õ)
Γ(n)

= nõ + O(nõ�1)

PROPOSITION 2.3. Suppose 0 Ú ï Ú 1. Then there exists a positive constant
C = C(ï) such that
þþþß(ï)

n (cos í)� (2Ûô)1Û2 cos
�
(n +ï)í�ïôÛ2

�
(sin í)�ïj � C(sin í)�ï(min

�
(n sin í)�1Ò 1

�


PROOF. Using the remark preceding the Proposition, we can deduce from Proposi-
tion 2.1 that

(21)
þþþP(ï)

n (cos í)�21�ïnï�1Γ(ï)�1 cos
�
(n+ï)í�ïôÛ2

�
(sin í)�ï

þþþ � Cnï�2(sin í)�1�ï

where C = C(ï)Ò for 0 Ú ï Ú 1. This estimate also holds when ï = 1 trivially (with
C = 0).

We now prove the same estimate provided n sin í ½ 1 for all ï Ù 0 by using the
recurrence relation

(22) 2(ï � 1)(1 � x2)P(ï)
n (x) = (n + 2ï � 2)P(ï�1)

n (x) � (n + 1)xP(ï�1)
n+1 (x)
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for which we refer to [14, p. 83 (4.7.27)].

Indeed assume the estimate (2.1) is known for ï � 1. Then with x = cos í,

þþþP(ï�1)
n (x) � xP(ï�1)

n+1 (x) � 2�ïnï�2Γ(ï � 1)�1 cos
�
(n + ï � 1)í � ïôÛ2

�
(sin í)1�ï

þþþ
� Cnï�3(sin í)�ï

We also have

jP(ï�1)
n (x)j � Cnï�3(sin í)�ï � Cnï�2(sin í)1�ï

provided n sin í ½ 1. Now using the recurrence relation (2) we obtain an estimate of the
form (2.1) provided n sin í ½ 1.

Next we observe that for all ï Ù 0 we have by Proposition 2.2,

jP(ï)
n (x)j � P(ï)

n (1) � Cn2ï�1

where C depends only on ï. Hence if n sin í Ú 1 we have an estimate

(23)
þþþP(ï)

n (cos í) � 2nï�1Γ(ï)�1 cos
�
(n + ï)í � ïôÛ2

�
(sin í)�ï

þþþ � Cnï�1(sin í)�ï

Combining (2.2) and (2.3) gives us an estimate

(2.4)

þþþP(ï)
n (cos í) � 21�ïnï�1Γ(ï)�1 cos

�
(n + ï)í � ïôÛ2

�
(sin í)�ï

þþþ
� C min

�
nï�2(sin í)�1�ïÒ nï�1(sin í)�ï

�

Recalling the relationship between ß(ï)
n and P(ï)

n we obtain the result.

PROPOSITION 2.4. Suppose �1Û2 Ú ïÒñ Ú 1. Then the orthonormal system
(ß(ï)

n )1n=0 is a basis of Lr

�
[�1Ò 1]Ò (1 � x2)ñ�

1
2

�
if and only if

þþþþþ2ñ + 1
2r

�
2ï + 1

4

þþþþþ Ú min
 

1
4
Ò

2ï + 1
4

!


In particular, if ï ½ 0 and r Ù 2 then (ß(ï))1n=0 is a basis of Lr

�
[�1Ò 1]Ò (1 � x2)ï�

1
2

�
if and only if r Ú 2 + ï�1.

PROOF. This theorem is a special case of a very general result of Badkov [1, Theo-
rem 5.1]. The second part is much older: see Pollard [9], [10] and [11], Newman-Rudin [8]
and Muckenhaupt [7].

We will also need some results on Gauss-Jacobi mechanical quadrature. To this end
let (ú(ï)

nk = cos í(ï)
nk )n

k=1 be the zeros of the polynomial ß(ï)
n ordered so that 0 Ú í(ï)

nÒ1 Ú

íï)
nÒ2 Ú Ð Ð Ð Ú í(ï)

nn Ú ô. (We remark that the zeros are necessarily distinct and are all
located in (�1Ò 1); see Szegö [14, p. 44].)
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PROPOSITION 2.5. Suppose� 1
2 Ú ï Ú 1. Then there exists a constant C depending

only on ï so that þþþþþí(ï)
nk �

kô
n

þþþþþ � C
n


Furthermore, there exists c Ù 0 so that

jí(ï)
nk j ½

ck
n

if k Ú nÛ2.

PROOF. The following result is contained in Theorem 8.9.1 of Szegö [14, p. 238].
The second part follows easily from the first and the fact that limn!1 ní(ï)

n1 exists and
is the first positive zero of the Bessel function Jï+ 1

2
(t) (see Szegö [14, Theorem 8.1.2,

pp. 192–193]).
We will denote by Pn the space of polynomials of degree at most n � 1 so that

dim Pn = n.

PROPOSITION 2.6. Suppose that � 1
2 Ú ï Ú 1. Then there exist positive constants

(ã(ï)
nk )1�k�nÚ1 such that if f 2 P2n then

Z 1

�1
f (x)(1 � x2)ï�

1
2 dx =

nX
k=1

ã(ï)
nk f (ú(ï)

nk )

Furthermore there is a constant C depending only on ï such that

ã(ï)
nk � C(sin ínk)2ïn�1

PROOF. This is known as Gauss-Jacobi mechanical quadrature. See Szegö [14,
pp. 47–50]. The estimate on the size of (ã(ï)

nk ) may be found on p. 354. However this
estimate is perhaps most easily seen by combining the Tchebicheff-Markov-Stieltjes
separation theorem (Szegö, p. 50) with the estimate on the zeros (Proposition 2.5). More
precisely there exist (yk)n

k=0 such that 1 = y0 Ù ú(ï)
nÒ1 Ù y1 Ù ú(ï)

nÒ2 Ù Ð Ð Ð Ù ú(ï)
nn Ù yn = �1

so that
ã(ï)

nk =
Z yk

yk�1

(1 � x2)ï�
1
2 dx

The estimate follows from Proposition 2.5.

3. The Λ(p) problem. We first note that by Proposition 2.4, in order that (ß(ï)
n )1n=1

be a basis in Lp

�
[�1Ò 1]Ò (1�x2)ï�

1
2

�
, it is necessary and sufficient that 2 Ú p Ú 2 +ï�1.

Let us denote this critical index by r = r(ï) = 2 + ï�1.
Let A be a subset of NÒ and 2 Ú p Ú r. We will say that A is a Λ(pÒ ï)-set if there is a

constant C so that for any finite-sequence (òn : n 2 A) we have

0
@Z +1

�1

þþþX
n2A

ònß
(ï)
n (x)

þþþp(1 � x2)ï�
1
2 dx

1
A1Ûp

� C
�X

n2A
jònj

2
�1Û2
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This means that the operator T:‡2(A) ! Lp

�
[�1Ò 1]Ò (1 � x2)ï�

1
2

�
defined by Tò =P

n2A ònß
(ï)
n is bounded, and indeed since there is an automatic lower bound, an iso-

morphic embedding. We denote the least constant C or equivalently kTk by ΛpÒï(A).
Note that if ï = 0 then ß(ï)

n (cos í) = cos ní and this definition reduces to the standard
definition of a Λ(p)-set introduced by Rudin [12].

PROPOSITION 3.1. For each ï Ù 0 there is a constant C = C(ï) depending on ï so
that if A is a Λ(pÒ ï)-set then

jA \ [1ÒN]j � CΛpÒï(A)2N2ï(rÛp�1)

PROOF. Observe first that

max
�1�x�1

jß(ï)
n (x)j = ß(1) ½ cnï

for some constant c Ù 0 depending only onï by Proposition 2.2 and the remark thereafter.
It follows from Bernstein’s inequality that if 0 � í � (2n)�1 then ß(ï)

n (cos í) ½ cnïÛ2.
In particular let J = A \ [NÛ2ÒN]. Then for 0 � í � (2N)�1 we have

X
n2J

ß(ï)
n (cos í) ½ cNïjJj

where c Ù 0 depends only on ï. Since dx = (sin í)2ïdí we therefore have

cNïjJjN�(2ï+1)Ûp � CΛ(A)jJj1Û2

where 0 Ú c, C Ú 1 are again constants depending only on ï. We thus have an estimate
jJj � CΛ(A)2N(4ï+2)Ûp�2ï) = CΛ(A)2N2ï(rÛp�1). This clearly implies the result.

Our next Proposition uses the approximation of Proposition 2.3 to transfer the problem
to a weighted problem on the circle T which we here identify with [�ôÒ ô]

PROPOSITION 3.2. Suppose ï Ù 0 and 2 Ú p Ú r(ï). Then A is a Λ(pÒ ï)�set if and
only if the operator S:‡2(A) ! Lp(TÒ j sin íjï(2�p)) is bounded where Sen = einí, where
(en) is the canonical basis of ‡2(A). Furthermore there is a constant C = C(pÒ ï) so that
C�1kSk � ΛpÒï(A) � CkSk.

PROOF. Let us start by proving a similar estimate to Proposition 3.1 for the system
feiníg. Suppose S is bounded. If N 2 N then we note that for 1 � k � N we have
cos kí Ù 1Û2 if jíj Ú ôÛ3N. Hence if jíj Ú ôÛ3N we have

P
k2J cos kí Ù 1

2 jJj where
J = A \ [1ÒN]. It follows that

jJjN(ï(p�2)�1)Ûp � CkSk jJj1Û2

where C depends only on ï. This yields an estimate

jJj � CkSk2N2ï(rÛp�1)
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where C depends only on ï.
Now consider the map S0:‡2(A) ! Lp([0Ò ô]Ò j sin íj2ï) defined by S0en =

cos
�
(n + ï)í � ïôÛ2

�
(sin í)�ï. We will observe that S0 is bounded if and only if S

is bounded and indeed kS0k � 2kSk � CkS0k where C depends only on p. In fact if
(òn)n2A are finitely non-zero and real then

kS0òk
p �

Z ô

0

þþþX
n2A

òneiní
þþþp j sin íjï(2�p) dí � kSòkp

which leads easily to the first estimate kS0k � 2kSk. For the converse direction, we note
that w(í) = j sin íjï(2�p) is an Ap-weight in the sense of Muckenhaupt (see [3], [4] or [7]),
i.e., there is a constant C so that for every interval I on the circle we have

�Z
I
w(í) dí

�1Ûp �Z
I
w(í)�pÛp0 dí

�1Ûp0

� CjIj

where jIj denote the length of I. It follows that the Hilbert-transform is bounded on the
space Lp(TÒw) so that there is a constant C = C(pÒ ï) such that if (òn)n2A is finitely
non-zero and real then

0
@Z ô

�ô

þþþX
n2A

òn sin
�
(n + ï)í � ïôÛ2

�
jpj sin í

þþþï(2�p)
dí

1
A1Ûp

� C

0
@Z ô

�ô

þþþX
n2A

òn cos
�
(n + ï)í � ïôÛ2

�þþþp j sin íjï(2�p) dí

1
A1Ûp



This quickly implies an estimate of the form kSòk � CkS0òk.
Now consider the map T:‡2(A) ! Lp([0Ò ô]Ò j sin íj2ï) defined by Ten = ß(ï)

n (cos í).
Then for some constant C = C(ï) we have (using Proposition 2.3),

j†n(í)j � C(sin í)�ï min
�
(n sin í)�1Ò 1

�

where

†n(í) = ßï
n (cos í) � cos

�
(n + ï)í � ïôÛ2

�
(sin í)�ï

Now suppose A satisfies an estimate jA \ [1ÒN]j � KN2ï(rÛp�1) for some constant K.
We will let Jk = A \ [2k�1Ò 2k) and Ek = fí : 2�k Ú sin í Ú 21�kg. Then on Ek we

have an estimate j†(í)j � C2ïk if n � 2k and j†n(í)j � Cn�12(1+ï)k if n Ù 2k. Here C
depends a constant depending only on p and ï.

Let (òn)n2A be any finitely non-zero sequence and set uk = (
P

n2Jk
jònj

2)1Û2. Note thatP
n2Jk

jònj � jJkj
1Û2uk.

It follows that if 1 � l � k we have

0
@Z

Ek

þþþX
n2Jl

òn†n

þþþp(sin í)2ï dí

1
A1Ûp

� C2ïk2�(1+2ï)kÛpjJlj
1Û2ul
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while if k + 1 � l Ú 1

0
@Z

Ek

þþþX
n2Jl

òn†n

þþþp(sin í)2ï dí

1
A1Ûp

� C2ïk+(k�l)2�(1+2ï)kÛpjJlj
1Û2ul

Note that ï � (1 + 2ï)Ûp = ï(1 � rÛp). We also have jJlj � K22ïl(rÛp�1). Hence we
obtain an estimate

üEk

X
n2A

òn†n

 � CK1Û2
� kX

l=1
2ï(rÛp�1)(l�k)ul +

1X
l=k+1

2(ï(rÛp�1)�1)(l�k)ul

�


Let é = min
�
ï(rÛp� 1)Ò 1�ï(rÛp� 1)

�
. Then the right-hand side may estimated by

CK1Û2
�1X

l=1
2�éjl�kjul

�
= CK1Û2 X

j2Z
2�éj jjuk+j

where uj = 0 for j � 0. Since p Ù 2 we have

X
n2A

òn†n

 � �1X
k=1

üEk

X
n2A

òn†n

2
�1Û2



Hence by Minkowski’s inequality in ‡2 we have

X
n2A

òn†n

 � CK1Û2 X
j2Z

2�éj jj
�1X

l=1
u2

l

�1Û2


We conclude that kS0ò � Tòk � CK1Û2. Now if T is bounded then K � CkTk2 while
if S is bounded then K � CkSk2. This yields the estimates promised.

As remarked above, using Proposition 3.2 we can transfer the problem of identifying
Λ(pÒ ï)-sets to a similar problem concerning the standard characters feiníg in a weighted
Lp�space. We will now solve a corresponding problem in the case when p = 2 and then
use the solution to obtain our main result in the case p Ù 2. To this end we will first
prove a result concerning weighted norm inequalities for an operator on the sequence
space ‡2(Z) which is the discrete analogue of a Riesz potential.

Suppose 0 Ú ã Ú 1Û2. For mÒ n 2 Z we define K(mÒ n) = jm � njã�1 when m 6= n
and K(mÒ n) = 1 if m = n. Let c00(Z) be the space of finitely non-zero sequences. Then
we can define a map K: c00(Z) ! ‡2(Z) by Kò(m) =

P
n2Z K(mÒ n)ò(n).

Now suppose v 2 ‡1(Z). We define L(v) to be the norm in ‡2(Z) of the operator
ò ! vKòwhich we take to be1 if this operator is unbounded. Thus L(v) = supfkvKòk :
kòk � 1g.

The following result can be derived from similar results in potential theory (for
example, [13]). For more general results we refer to [5]. However we will give a self-
contained exposition.



1244 N. J. KALTON AND L. TZAFRIRI

THEOREM 3.3. Let 0 � M(v) � 1 be the least constant so that for every finite
interval I ² Z we have

X
mÒn2I

v2
mv2

n min(1Ò jm � nj2ã�1) � M2 X
n2I

v2
n

Then for a constant C depending only on ã we have C�1M(v) � L(v) � CM(v).

PROOF. First suppose L(v) Ú 1. Then by taking adjoints the map ò ! K(vò) is
bounded on ‡2(Z) with norm L(v). In particular we have for any interval I, kK(v2üI)k �
L(v)kvüIk. Let us write hòÒ ëi =

P
n2Z ònën where this is well-defined. Thus

D
K2(v2üI)Ò v2üI

E
� L(v)2 X

n2I
v2

n

Now observe that K2(mÒ n) =
P1

l=1 K(mÒ l)K(lÒ n) ½ c min(1Ò jm � nj2ã�1) where c Ù 0
depends only on ã. Expanding out we obtain that M(v) � CL(v) for some C = C(ã).

We now turn to the opposite direction. By homogeneity it is only necessary to bound
L(v) when M(v) = 1. We therefore assume M(v) = 1. Notice that it follows from the
definition of M(v) that for any interval I, we have jIj2ã�1 P

mÒn2I v2
mv2

n �
P

n2I v2
n and soP

n2I v2
n � jIj1�2ã .

Now let u = Kv2. This can be computed formally, with the possibility of some
entries being infinite, but the calculations below will show that the entries of u are finite;
alternatively the estimate above leads quickly to the same conclusion. Suppose m 2 Z

and define sets I0 = fmg and then Ik = fn : 2k�1 � jm � nj Ú 2kg for k ½ 1. Note that if
k ½ 1 Ik is the union of two intervals of length 2k�1. Let Jk = I0 [ Ð Ð Ð [ Ik.

For any k we have
u = K(v2üJk+1 ) +

X
l=k+2

K(v2üIl )

Let us write u1 = K(v2üJk+1 ) and u2 = u � u1.
Now if l ½ k + 2 and j 2 Ik we have

K(v2üIl )( j) � C2(ã�1)l X
n2Il

v2
n

Hence

u2( j) � C
1X

l=k+2
2(ã�1)l X

n2Il

v2
n

Squaring and summing, and estimating
P

n2Ii v2
nÒ we have

X
j2Ik

u2( j)2 � C2k X
i½l½k+2

2(ã�1)(i+l)2i(1�2ã) X
n2Il

v2
n

Summing out over i ½ l we have

X
j2Ik

u2( j)2 � C2k X
l½k+2

2�l X
n2Il

v2
n
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On the other hand

X
j2Ik

u2
1( j) =

X
j2Ik

X
i2Jk+1

X
l2Jk+1

K( jÒ i)K( jÒ l)v2
i v2

l

� C
X

i2Jk+1

X
l2Jk+1

min(1Ò ji � lj2ã�1)v2
i v2

l

� C
X

n2Jk+1

v2
n

where C depends only on ã. In particular u( j) Ú 1 for all j.
Hence X

j2Ik

u( j)2 � C
� X

n2Jk+1

v2
n + 2k

� 1X
l=k+2

2�l X
n2Il

v2
n

��


This can be written as

X
j2Ik

u( j)2 � C
1X
l=0

min(1Ò 2k�l)
X
n2Il

v2
n

Let us use this to estimate Ku2(m); we have (letting C be a constant which depends
only on ã but may vary from line to line),

Ku2(m) � C
1X

k=0
2(ã�1)k X

n2Ik

u2
n

� C
1X

k=0
2(ã�1)k

1X
l=0

min(1Ò 2k�l)
X
n2Il

v2
n

� C
1X
l=0

X
n2Il

v2
n

1X
k=0

2(ã�1)k min(1Ò 2k�l)

� C
1X
l=0

2(ã�1)l X
n2Il

v2
n

� CKv2(m)

We thus have Ku2 � CKv2.
Now put w = v + Kv2. Then Kw2 � 2(Kv2 + Ku2) � CKv2 � Cw. We will show this

implies an estimate on L(v).
Indeed if ò 2 c00(Z) is positive then

hwKòÒwKòi =
D
w2Ò (Kò)2

E


Now

(Kò)2(m) =
X
iÒj

K(mÒ i)K(mÒ j)ò(i)ò( j) � C
X
iÒj

K(iÒ j)
�
K(mÒ i) + K(mÒ j)

�
ò(i)ò( j)

This implies (Kò)2 � CK(òKò). Hence

kwKòk2 � C
D
w2ÒK(òKò)

E
= ChKw2Ò òKòi
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and hence as Kw2 � Cw

kwKòk2 � ChwÒ òKòi = ChòÒwKòi � Ckòk kwKòk

which leads to kwKòk � Ckòk or L(v) � L(w) � C where C depends only on ã.

THEOREM 3.4. Suppose 0 Ú ã Ú 1Û2. Let A be a subset of Z. Let î(A) = îã(A) be
the least constant (possibly infinite) such that for any finitely nonzero sequence (òn)n2A

we have 0
@Z ô

�ô

þþþX
n2A

òneiní
þþþ2 j sin íj�2ã dí

1
A1Û2

� î
�X

n2A
jònj

2
�1Û2



Let M = M(A) = M(üA), be defined as the least constant M so that for any finite interval
I we have, setting F = A \ I,

X
mÒn2F

min(1Ò jm � nj2ã�1) � M2jFj

Then î(A) Ú 1 if and only if M(A) Ú 1 and there is constant C depending only on ã
such that C�1M(A) � î(A) � CM(A).

PROOF. First suppose M(A) Ú 1. Note that †(í) = jíj�ã is an L2�function whose
Fourier transform satisfies the property that limjnj!1 jnj1�ã†̂(n) exists and is positive.
Now suppose (òn) 2 c00(A) and let g =

P
n2A òneiní. Suppose f 2 L2[�ôÒ ô]. Then

hjíj�ãgÒ f i = h†̂ Ł ĝÒ f̂ i

Hence for a suitable C = C(ã) we have, using Plancherel’s theorem, with K as in
Theorem 3.3,

hjíj�ãgÒ f i � ChKjĝjÒ j f̂ ji = ChjĝjÒ üAKj f̂ ji

We deduce
hjíj�ãgÒ f i � CM(A)kgk2k fk2

Thus Z ô

�ô
jg(í)j2 jíj�2ã dí � C2M2

�X
n2A

jònj
2
�


By translation we also have
Z ô

�ô
jg(í)j2(ô � jíj)�2ã dí � C2M2

�X
n2A

jònj
2
�


Since jíj�2ã + (ô� jíj)�2ã ½ j sin íj�2ã we obtain immediately î(A) � CM(A) where C
depends only on ã.

Conversely suppose î(A) Ú 1. Note first that there is positive-definite and non-
negative trigonometric polynomial h so that h +† satisfies ĥ(n) + †̂(n) ½ c min(1Ò jnjã�1)
where c Ù 0. Now clearly for (òn) 2 c00(A),

Z ô

�ô
jgj2(† + h)2 dí � Cî

�X
n2A

jònj
2
�1Û2
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Thus again by Plancherel’s theorem, if ò ½ 0,

kKòk2
2 � Cîkòk2

2

A similar inequality then applies for general ò.
It follows quickly by taking adjoints that L(üA) � Cî and hence M(A) � Cî(A).

THEOREM 3.5. Suppose F is a finite subset of Z and jFj = N. Let (ëj)j2F be a sequence
of independent 0 � 1-valued random variables (or selectors) with E(ëj) = õ = N�2ã

for j 2 F. Let A = f j 2 F : ëj = 1g be the corresponding random subset of F. Then
E
�
M(A)2

�
� C where C depends only on ã.

PROOF. It is easy to see that if this statement is proved for the set F = f1Ò 2Ò    ÒNg
then it is true for every interval F and then for every finite subset of Z. It is also easy to
see that it suffices to prove the result for N = 2n for some n.

Note next that
M2(A) � sup

1�k�N

X
n2A

min(jk � nj2ã�1Ò 1)

Hence

M2(A) � C
nX

k=0
max

1�j�2n�k
2k(2ã�1)

þþþA \
h
( j � 1)2k + 1Ò j2k

iþþþÒ
where C depends only on ã.

Fix an integer s. We estimate, for fixed k,

E
�

max
1�j�2n�k

þþþA \
h
( j � 1)2k + 1Ò j2k

iþþþ� � E
�2n�kX

j=1

� j2kX
l=( j�1)2k+1

ël

�s
�1Ûs

�

 
E
�2n�kX

j=1

� j2kX
l=( j�1)2k+1

ël

�s
�!1Ûs

� 2(n�k)Ûs
�

E
� 2kX

j=1
ëj

�s
�1Ûs



Let us therefore estimate, setting m = 2k,

E
� mX

j=1
ëj

�s
=

X
l�min(sÒm)

X
j1+ÐÐÐ+jl=s

s!
j1!    jl!

õl

�
sX

l=1

0
@m

l

1
Alsõl

�
sX

l=1
ls(mõ)l

� s max
1�l�m

�
ls(mõ)l

�


By maximizing the function xse�ax we see that if mõ ½ e�1 we can estimate this by

E
� mX

j=1
ëj

�s
� ss+1(mõ)s
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On the other hand if mõ Ú e�1

E
� mX

j=1
ëj

�s
� s(sj log mõj�1)sÛj log mõj � ss+1j log mõj�s

Suppose k Ú n. Put s = n � k. We have

E
�

max
1�j�2n�k

þþþA \
h
( j � 1)2k + 1Ò j2k

iþþþ� � C(n � k)2kõ

whenever 2kõ ½ e�1 where C = C(ã). If 2kõ Ú e�1,

E
�

max
1�j�2n�k

þþþA \
h
( j � 1)2k + 1Ò j2k

iþþþ� � C
n � k

j log(õ2k)j


Hence

E
�
M(A)2

�
�

X
2kõÚe�1

n � k
j log(õ2k)j

2(2ã�1)k +
X

2kõ½e�1

(n � k + 1)22ãkõ

We can estimate this further by

E
�
M(A)2

�
� C

� X
2kõÚe�n

2(2ã�1)k + nõ1�2ã + 22ãnõ
�

where C = C(ã).
We now recall that õ = N�2ã = 2�2ãn. We then obtain an estimate

E
�
M(A)2

�
� C(ã)

THEOREM 3.6. Suppose 0 Ú ï Ú 1 and that 2 Ú p Ú r = 2 + ï�1. Let F ² N be
a finite set with jFj = N. Let (ëj)j2F be a sequence of independent 0 � 1-valued random
variables (or selectors) with E(ëj) = õ = N(1Ûp�1Û2)Û(1Û2�1Ûr) for j 2 F. Let A = f j 2 F :
ëj = 1g be the corresponding random subset of F (so that E(jAj) = N(1Ûp�1Ûr)Û(1Û2�1Ûr)).
Then E

�
ΛpÒï(A)p

�
� C where C depends only on p and ï.

PROOF. Suppose (òn)n2A are any (complex) scalars and let f =
P

n2A òneiní. Let
ã = (1Û2 � 1Ûp)Û(1 � 2Ûr), and let 1

q = 1
2 � ã. Then by Holder’s inequality, since

1
p = (1 � 2

r ) 1
q + 2

r
1
2

�Z ô

�ô
(j f j j sin íjï(2Ûp�1))p dí

�1Ûp

�
�Z ô

�ô
j f jq dí

�(1�2Ûr)Ûq �Z ô

�ô
(j f j j sin íjrï(1Ûp�1Û2))2 dí

�1Ûr


Note that rï(1Ûp � 1Û2) = (1Ûp � 1Û2)Û(1 � 2Ûr) = ã. Hence

�Z ô

�ô
(j f j j sin íjï(2Ûp�1))p dí

�1Ûp
� ΛqÒ0(A)1�2Ûrîã(A)2Ûr

�X
n2A

jònj
2
�1Û2





ULTRASPHERICAL POLYNOMIALS IN Lp-SPACES 1249

Thus we deduce
ΛpÒï(A) � ΛqÒ0(A)1�2Ûrîã(A)2Ûr

It follows further from Holder’s inequality that

�
E
�
ΛpÒï(A)

�p
�1Ûp

� E
�
ΛqÒ0(A)q

�(1�2Ûr)Ûq
E
�
îã(A)2

�1Ûr


As E(jAj) = N2Ûq, we have by the Λ(p) theorem of Bourgain [2] that E
�
ΛqÒ0(A)q

�1Ûq
�

C = C(q). By Theorem 3.5 above we obtain:

�
E
�
ΛpÒï(A)

�p
�1Ûp

� C

where C = C(ïÒ p).

4. The structure of the space of polynomials. We recall that (ú(ï)
nk = cos í(ï)

nk )n
k=1

are the zeros of the polynomial ß(ï)
n ordered so that 0 Ú í(ï)

nÒ1 Ú í(ï)
nÒ2 Ú Ð Ð Ð Ú í(ï)

nn Ú ô.

THEOREM 4.1. Suppose 1 Ú p Ú 1, �1
2 Ú ï, ñ Ú 1 and that the ultraspherical

polynomials (ß(ï)
n )1n=0 form a basis of Lp

�
[�1Ò 1]Ò (1 � x2)ñ�

1
2

�
or, equivalently that

(41)
þþþþþ2ñ + 1

2p
�

2ï + 1
4

þþþþþ Ú min
 

1
4
Ò

2ï + 1
4

!


Let únk = ú(ï)
nk . Then there is a constant C = C(ïÒ ñÒ p) independent of n so that if f 2 Pn

then

1
C

0
@1

n

nX
k=1

(1 � ú2
nk)ñj f (únk )jp

1
A1Ûp

�

 Z 1

�1
j f (x)jp(1 � x2)ñ�

1
2 dx

!1Ûp

� C

0
@1

n

nX
k=1

(1 � ú2
nk)ñj f (únk )jp

1
A1Ûp



In particular d(PnÒ ‡
n
p) � C2.

PROOF. We will start by supposing that ñ is not of the form 1
2 (mp�1) for m 2 N and

that � 1
2 Ú ï is arbitrary (i.e., we do not assume (4.1)). In this case we can find m 2 N so

that � 1
2 Ú ñ� 1

2 mp Ú 1
2 (p� 1). Then w(í) = (sin í)2ñ�mp is an Ap-weight. This implies

(cf. [4]) that there is a constant C = C(ñÒ p) so that for any trigonometric polynomial
h(í) =

PN
k=�N ĥ(k)eikí of degree N, and any 1 � l � N we have

0
@Z ô

�ô

þþþiX
k½l

ĥ(k)eikí � i
X

k��l
ĥ(k)eikí

þþþpw(í) dí

1
A1Ûp

� C
�Z ô

�ô
jh(í)jpw(í) dí

�1Ûp


Summing over l = 1Ò 2Ò    ÒN we obtain

0
@Z ô

�ô

þþþ NX
k=�N

ikĥ(k)eikí
þþþpw(í) dí

1
A1Ûp

� CN
�Z ô

�ô
jh(í)jpw(í) dí

�1Ûp
Ò
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i.e.,

(42)
�Z ô

�ô
jh0(í)jpw(í) dí

�1Ûp
� CN

�Z ô

�ô
jh(í)jpw(í) dí

�1Ûp


Now suppose f 2 Pn and let h(í) = (sin í)mf (cos í) so that h is a trigonometric
polynomial of degree at most m + n � 1 � C(ñÒ p)n. Let Ik be the interval jí � ínkj �

ô
n

for 1 � k � n. Then

Z
Ik

jh(í)j dí �

 Z
Ik

w(í)�p0Ûp dí
!1Ûp0  Z

Ik

jh(í)jpw(í) dí
!1Ûp

� C
1

n1Ûp0
(sin ínk)m�2ñÛp

 Z
Ik

jhjpw(í) dí
!1Ûp



Here we use the properties of (únk) and (ínk) from Proposition 2.5. On the other hand,

Z
Ik

jh(í) � h(ínk)j dí �
ô

n

Z
Ik

jh0(í)j dí

� C
1

n1+1Ûp0
(sin ínk)m�2ñÛp

 Z
Ik

jh0jpw dí
!1Ûp



Putting these together we conclude that

1
n
jh(ínk)jp(sin ínk)2ñ�mp � Cp

 Z
Ik

jhjpw(í) dí +
1
np

Z
Ik

jh0jpw dí
!


On summing we obtain

1
n

nX
k=1

j f (únk)jp(1 � ú2
nk)ñ � Cp

 Z ô

�ô
jhjpw dí +

1
np

Z ô

�ô
jh0jpw dí

!

since
Pn

k=1 üIk is uniformly bounded by Proposition 2.5. Now appealing to (4.2) we have

1
n

nX
k=1

j f (únk )jp(1 � ú2
nk)ñ � Cp

Z ô

�ô
jhjpw dí

Recalling the definition of w and h this implies

(43)

0
@1

n

nX
k=1

j f (únk)jp(1 � ú2
nk)ñ

1
A1Ûp

� C
 Z +1

�1
j f (x)jp(1 � x2)ñ�

1
2 dx

!1Ûp



Note that we only have (4.3) whenñ is not of the form 1
2 (mp�1). We now prove (4.3)

for ñ in the exceptional case. We observe that if ó = 2
rñ + 1

r �
1
2 then ó Ù � 1

2 and (4.1)
holds for ï = ó. In fact there exists 0 Ú é Ú p

2 so that (ß(ó)
n ) is a basis of both

Lp

�
[�1Ò 1]Ò (1 � x2)ñ�é

�
and of Lp

�
[�1Ò 1]Ò (1 � x2)ñ+é

�
. Let

Són( f ) =
n�1X
k=0

ß(ï)
n

Z +1

�1
f (x)ßó

n(x)(1 � x2)ó�
1
2 dx
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be the partial sum operator associated with this basis. Let us consider the map Tn:
Lp

�
[�1Ò 1]Ò (1 � x2)ñšé

�
! Rn defined by

Tn( f )k = (S(ó)
n f )(únk)

Then there is a constant C independent of n so that0
@1

n

nX
k=1

jTn( f )k j
p(1 � ú2

nk)ñšé
1
A1Ûp

� C
 Z +1

�1
j f (x)jp(1 � x2)ñšé�

1
2

!1Ûp



It follows by interpolation that we obtain0
@1

n

nX
k=1

jTn( f )kj
p(1 � ú2

nk)ñ
1
A1Ûp

� C
 Z +1

�1
j f (x)jp(1 � x2)ñ�

1
2

!1Ûp

and on restricting to Pn we have (4.3) for all ñ.
We now assume ï satisfies (4.1) and complete the proof by duality. Let õ be defined

by õ
p0 + ñ

p = ï. Then (4.1) also holds if we replace pÒ ñ by p0Ò õ.

Suppose f 2 Pn. Then there exists h 2 Lp

�
[�1Ò 1]Ò (1 � x2)õ�

1
2

�
so that

Z +1

�1
jh(x)jp

0

(1 � x2)õ�
1
2 dx = 1

and Z +1

�1
h(x) f (x)(1 � x2)ï�

1
2 dx =

 Z +1

�1
j f (x)jp(1 � x2)ñ�

1
2 dx

!1Ûp



Let g = S(ï)
n f . Then Z +1

�1
jg(x)jp

0

(1 � x2)õ�
1
2 dx � Cp

where C = C(pÒ ïÒ ñ) is independent of n. Now using Gauss-Jacobi quadrature (see
Proposition 2.6) we have

1
n

nX
k=1

ã(ï)
nk f (únk)g(únk) =

Z +1

�1
f (x)h(x)(1 � x2)ï�

1
2 dx

We recall that
0 � ã(ï)

nk � C(1 � ú2
nk)ïn�1

where C is again independent of n. It follows that Z +1

1

j f (x)jp(1 � x2)ñ�
1
2 dx

!1Ûp

� C

0
@1

n

nX
k=1

j f (únk)jp(1 � ú2
nk)ñ

1
A1Ûp 0@1

n

nX
k=1

jg(únk)jp
0

(1 � ú2
nk)õ

1
A1Ûp0



Now applying (4.3) we can estimate the last term by a constant independent of n.
Thus we have Z +1

1

j f (x)jp(1 � x2)ñ�
1
2 dx

!1Ûp

� C

0
@1

n

nX
k=1

j f (únk)jp(1 � ú2
nk)ñ

1
A1Ûp



This completes the proof.
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