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SUBSPACES OF REARRANGEMENT-INVARIANT SPACES 

FRANCISCO L. HERNANDEZ AND NIGEL J. KALTON 

ABSTRACT. We prove a number of results concerning the embedding of a Banach 
lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, oo) 
which is/7-convex for some/? > 2 and has nontrivial concavity then any Banach lattice 
X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. 
Similar conclusions can be drawn under a variety of hypotheses on Y; if X is an r. i. 
space on [0,1] one can replace the hypotheses of r-convexity for some r>2byX^L2. 

We also show that if Y is an order-continuous Banach lattice which contains no com
plemented sublattice lattice-isomorphic to l^ Xis an order-continuous Banach lattice 
so that £2 is n o t complementary lattice finitely representable in X and X is isomorphic 
to a complemented subspace of Y then X is isomorphic to a complemented sublattice of 
YN for some integer N. 

1. Introduction. The study of the Banach space geometry of general rearrange
ment-invariant Banach function spaces may be considered to originate with the work of 
Bretagnolle and Dacunha-Castelle on subspaces of Orlicz function spaces [3]. A very 
important development in the theory was the publication of a systematic study of r. i. 
spaces by Johnson, Maurey, Schechtman and Tzafriri in 1979 [21]. The appearance of 
this memoir revolutionized the subject. Since then, a number of authors have considered 
problems of classifying subspaces of certain special r. i. spaces; see [5], [6], [7], [8], [9], 
[13], [14], [17], [19], [20], [39], [40] for a variety of different results of this type. 

In general, most of the literature relates to the problem of embedding a Banach lattice 
X (either atomic or nonatomic) with additional symmetry conditions into an r. i. space Y, 
and the techniques used rely heavily on symmetrization. In [27], however, the second au
thor considered the general problem of determining conditions when an order-continuous 
Banach lattice X could be complementary embedded in an order-continuous Banach 
lattice Y, minimizing the use of symmetry. The aim was to show that under certain hy
potheses on X and Y one could deduce that X (or perhaps only a non-trivial band in X) 
would be lattice-isomorphic to a complemented sublattice of Y. A number of such re
sults were obtained (we refer for details to [27]); of course, the additional assumption 
that either X or Y is r. i. could still be used to obtain stronger results of this nature. In the 
final section of this paper (Section 8, which can be read independently of the remainder) 
we obtain a significant improvement of one of the results of [27] by showing that if X, Y 
are order-continuous separable Banach lattices, such that Y contains no complemented 
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sublattice which is lattice-isomorphic to I2 and ti is not complementary lattice finitely 
representable in X, and if X is isomorphic to a complemented subspace of Y then X is 
lattice-isomorphic to a complemented sublattice of YN for some N. Of course if Y is r. i. 
then X must be a complemented sublattice of Y itself. 

The main body of the paper (Sections 3-7) is concerned with similar problems but 
without assumptions of complementation. We consider an r. i. space Y on [0,00) (or [0,1], 
but there our results are not quite so strong) and consider a generally nonatomic Banach 
lattice X which is isomorphic to a subspace of Y; we would like to show, under appropriate 
hypotheses that X is lattice-isomorphic to a sublattice of Y. Of course, there is no hope 
of such a result in general; the spaces Lp[0,1] for 1 < /? < 2 have a very rich subspace 
structure (cf. [39], [40]); in particular Lr embeds into Lp if/? < r < 2. However, there are 
some suggestive results in the literature which tend to indicate the possibility of strong 
conclusions if Y is "on the other side of 2." 

We first observe that Johnson, Maurey, Schechtman and Tzafriri [21] Theorem 1.8, 
showed that if Jf is a Banach lattice which embeds into Lp[0,1] where/? > 2 andXis r-
convex for some r > 2 (or, equivalently £2 is not lattice finitely representable inX) then 
X is lattice-isomorphic to Lp{p) for some measure /i, and so is lattice-isomorphic to a 
sublattice of Lp. Note that this result requires no symmetry conditions onX For the case 
whenXis an r. i. space on [0,1 ] there are some other positive results. In [21 ] Theorem 7.7 
shows that if Y = Lf[0,00) is a/?-convex Orlicz space, with nontrivial concavity, where 
p > 2 and if X is an r. i. space on [0,1] which embeds into Y, with X ^ Z,2[0,1], then X 
must be lattice-isomorphic to a sublattice of Y. Later Carothers [5] proved the same result 
for the Lorentz spaces LPA where 2 < q < p. These spaces are also strictly 2-convex (i.e. 
r-convex for some r > 2). However in [6], Carothers extended his work to the Lorentz 
spaces LPiq where 1 < q < 2 < p. These spaces are not even 2-convex. 

Our main results include all these previous theorems. In Theorem 7.2, we show that if 
Y is a strictly 2-convex r. i. space on [0,00) with nontrivial concavity andX is a strictly 2-
convex Banach lattice then if X embeds into Y, then X is lattice-isomorphic to a sublattice 
of Y. The assumption of strict 2-convexity on Y can be relaxed for a special class of r. i. 
spaces which we term of Orlicz-Lorentz type (this class includes all reflexive Orlicz and 
Lorentz spaces); if Y is of Orlicz-Lorentz type we need only assume that Y is 2-convex 
or that its lower Boyd index py > 2. In the case when Y is an r. i. space on [0,1] our 
results are not quite as good; for example if Y is strictly 2-convex and has nontrivial 
concavity and X is strictly 2-convex we deduce only that some nontrivial band in X is 
lattice-isomorphic to a sublattice of Y. In the case when X is an r. i. space on [0,1] we 
give (Corollary 7.4) a very general result which includes the above mentioned results of 
[5], [6] and [21] for Orlicz and Lorentz spaces. Precisely, suppose Y is an r. i. space on 
[0,1] or [0,00) with nontrivial concavity and suppose that either Y is strictly 2-convex 
or Y is of Orlicz-Lorentz type with py > 2; suppose X is an r. i. space on [0,1] which 
embeds into Y. Then either X = L2[0,1] or Xis lattice-isomorphic to a sublattice of Y 
(so that X = Yf[0,1], for some/ E Y). 

We also give a result on embedding Lp[0,1] where/? > 2 into a/?-concave r. i. space 
Y. We show in Theorem 7.7 that this implies that either the Haar basis of Lp is lattice 



796 F. L. HERNANDEZ AND N. J. KALTON 

finitely representable in Y or Y[0,1] = Lp[0,1]. The former alternative is impossible if 
Y is of Orlicz-Lorentz type or is strictly 2-convex. 

Let us now briefly discuss the method of proof of these results. For reasons discussed 
below, we consider quasi-Banach lattices and develop a theory of cone-embeddings. If X 
and Y are quasi-Banach lattices, a cone-embedding L: X —-» Y is a positive linear operator 
such that for some 8 > 0, \\Lx\\y > <5||JC||X for every* > 0. We consider cone-embeddings 
in Sections 4 and 5. The aim is to produce conditions on X and Y so that one can pass 
from the existence of a cone-embedding to the existence of a lattice-embedding. Crucial 
use is made of the theory of random measure representations of positive operators. A 
typical result is that if X is strictly 1-convex and if Y is an r. i. space on [0, oo) which is 
an interpolation space between Lx and L^ then if X cone-embeds into Y it also lattice-
embeds. The assumption on Y is satisfied if Y is a Banach r. i. space, by the Calderon-
Mityagin theorem, but also holds for certain non-Banach examples, where the lower 
Boyd index py > 1. 

The next step carried out in Section 6 is to consider the case when X is a Banach 
lattice which embeds into an r. i. space Y. The aim here is to put hypotheses on X and 
Y so that one can induce a cone-embedding L:Xxi2 —> YXj2 where XXj2, YXj2 are the 
2-concavifications of X and Y (these spaces may not be locally convex). This can be 
done if one puts a somewhat technical hypothesis on X and Y (Theorem 6.7). To put this 
hypothesis in perspective, let us note that if X is an r. i. space on [0,1] and one aimed 
simply to guarantee that L ^ 0 it would suffice to assume that the Haar basis of X was not 
equivalent to a disjoint sequence in Y. This is a typical hypothesis in [21 ] (Theorems 5.1 
and 6.1) where the aim is only to draw the weaker conclusion that X[0,1] C Y[0,1]. In 
fact some (and perhaps all) of these results can be recovered from our method. However, 
to obtain X as a sublattice we need L to be a cone-embedding. Fortunately our stronger 
technical condition is satisfied when Y is strictly 2-convex or of Orlicz-Lorentz type. 

Finally one can put these steps together and obtain, under the right hypotheses, that if 
X embeds into Y then XXj2 lattice-embeds into Yx/2 and so X lattice-embeds into Y. 

This research was carried out during a visit of the first author to the University of 
Missouri in October 1993 and a visit of the second author to the Complutense University 
in Madrid in June 1994. 

2. Definitions and notation. We first recall that a (quasi-)Banach lattice X is said 
to be order-continuous if and only if every order-bounded increasing sequence is norm 
convergent (see [34] p. 7). A quasi-Banach lattice which does not contain a copy of Co is 
automatically order-continuous but the converse is false. An atom in a Banach lattice is 
a positive element a so that 0 < x < a implies that x = aa for some 0 < a < 1. A Ba
nach lattice is nonatomic if it contains no atoms. The reader is referred to Lindenstrauss-
Tzafriri [34] or Meyer-Nieberg [36] as a general reference for Banach lattices. 

We will in general use the same notation as in [27]. Let Q be a Polish space (i.e. a 
separable complete metric space) and let \i be a a-finite Borel measure on Q. We refer 
to the pair (Q, /i) as a Polish measure space; if /i is a probability measure then we say 
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(Q, y) is a Polish probability space. If E is a Borel set then \E denotes its indicator 
function. We denote by LO(AO the space of all Borel measurable functions on Q, where 
we identify functions differing only on a set of measure zero; the natural topology of LQ 
is convergence in measure on sets of finite measure. If 0 < p < 1, an admissible/?-norm 
is then a lower-semi-continuous map / —> \\f\\ from Lo(fi) to [0, oo] such that: 

(a) \\af\\ = \a\ \\f\\ whenever a £ R , / £ U-

(b) ii/+gr<rir+iigir,for/,gEZ0. 
(c) |[/1| < ||g||, whenever |/] < \g\ a.e. (almost everywhere). 
(d) ll/H < oo for a dense set off E L0, 
(e) |1/1| - 0 if and only iff = 0 a.e. 

If p = 1, we call || || an admissible norm; an admissible quasinorm is an admissible 
/?-norm for some 0 < p < 1. 

A quasi-Kothe function space on (Q, //) is defined to be a dense order-ideal Xin Z,O(AO 

with an associated admissible quasinorm || \x such that if Xmax = {f : \\f\\x < oo} then 
either: 

(1) X = Xmax (X is maximal) or: 
(2) Xis the closure of the simple functions inXmax (A îs minimal). 

If || ||^ is a norm then X is called a Kothe function space. Notice that according to our 
description we consider || \\x to be well-defined on L0. Any order-continuous Kothe func
tion space is minimal. Also any Kothe function space which does not contain a copy of 
Co is both maximal and minimal. 

Given any Kothe function space X and 0 < p < oo we define Xp to be the quasi-
Kothe space of al l / such that \f\p G X with the associated admissible quasinorm \\f^xp = 

I \ff\x • It is readily verified that || | |^ is an admissible/7-norm when 0 < p < 1 and 
an admissible norm when/? > 1. We will primarily use the case/? = 1/2 in this paper. 
We will also use the subscript + to denote the positive cone in a variety of situations, e.g. 
X+ = {f:feXJ>0}. 

If X is an order-continuous Kothe function space then X* can be identified with the 
Kothe function space of a l l / such that: 

| | / 1 | J P = sup [\fe\dn<oo. 
\\g\\x<\ J 

X" is always maximal. 
If /x is a probability measure then we say following [21], that a Kothe function space 

Xis good if Loo C X C U and further for / G L0, |l/||i < \\f\\x < 2|1/,||00. It is 
well-known that any separable order-continuous Banach lattice can be represented as 
(i.e. is isometrically lattice-isomorphic to) a good Kothe function space on some Polish 
probability space (Q, fj) (see [21] and [34]). 

In the case whenXisnonatomic we can require that Q = [0,1] and/x = A isLebesgue 
measure. Alternatively we can take Q = A = {—1, +1 }N to be the Cantor group and take 
\i to be normalized Haar measure on A which we again denote by A. We will use this 
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second representation freely and now take the opportunity to introduce some notation 
from [27]. 

Thus for tk = ± 1 , we denote by A(ei,.. . , en) the clopen subset of A of all (4)j2i 
such that dj = cj for 1 <j <n. For each n let lAn denote the collection of A(e\,..., en). 
Let CSn denote the linear span of {\E • E E %„}. We also define the Haar functions 
hs = XA(€lv..,6„,+i) - XA(£i,...,en,-1) for E = A(eu... ,en). 

A Kothe function space (or, more generally a quasi-Kothe function space) X is said to 
hzp-convex (where 0 < p < oo) if there is a constant C such that for any/i ,...,fn EX 
we have 

l(t\f,r)''\<c(tu4''. \=1 7 »* \=1 

X is said to have an upper p-estimate if for some C and any disjoint f\ ,...,fn EX, 

v._iiAifr!,/P 

X is said to be q-concave (0 < q < oo) if for some c > 0 and any/i ,...,fn G X we have 

E^L<C(EIWI&)1 

, _ I \\X v ,_ i / 

I(EWI') ik>ctew) 
1 \ = i ' \=\ ' 

X is said to have a lower ^-estimate if for some c > 0 and any disjoint f\ ,...,fn EX, 
n ii / n \ V? 

Notice that a quasi-Kothe function space which satisfies a lower ^-estimate is automati
cally both maximal and minimal since it cannot contain a copy of CQ. A Kothe function 
space must, of course, be 1-convex. A quasi-Kothe function space must satisfy an upper 
/^-estimate for some/? > 0 but need not be/?-convex for any/? > 0; however, if X satis
fies a lower ^-estimate for some q < oo then it is/?-convex for some/? > 0. This result 
is proved in [24] (Theorems 4.1 and 2.2) and a simpler proof is presented in [30] Theo
rem 3.2. A quasi-Kothe function space which is ^-convex for some s > 0 and satisfies 
an upper r-estimate is/?-convex for every 0 < p < r (see [24]). 

A (quasi-)Banach lattice X is /?-convex, satisfies an upper /?-estimate, is ^-concave 
or satisfies a lower ^-estimate according as any concrete representation of X as a Kothe 
function space has the same property. We shall say that X is strictly p-convex if it is 
r-convex for some r > p and strictly q-concave if it is ^-concave for some s < q. 

A Banach space X is said to be of (Rademacher) type /? (1 < /? < 2) if there is a 
constant C so that for any x\,...,xn EX, 

to^il£'*\<c(E\\xl\p)1,p 

and A'is of cotype q (2 <q < oo) if for some c > 0 and any jt i , . . . ,x„ G X we have 

.1/9 Ave^JlE^lkcfElkll")1 
1 11=1 " V / = l ' 
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We recall that a (quasi-)Banach lattice has nontrivial cotype (i.e. has cotype q < oo for 
some q) if and only if it has nontrivial concavity (i.e. is ^-concave for some q < oo). If 
X is a Banach lattice which has nontrivial concavity then there is a constant C = C(X) 
so that for any x\, • • • ,x„ G Xwe have 

1 / II n \\2\1/2 | | / " ^x 1/2it / I. n i|2x 1/2 

-p, Avee,=±i J ] €*** < £ k l < C( Ave£,=±i E e*** 
C V \\k=x II / II \k=l J \\X \ Wk=x II / 

In fact we will need the same conclusion for quasi-Banach lattices; as far as we know 
this has never been explicitly stated although it is probably well-known. We therefore 
state it formally as a proposition. 

PROPOSITION 2.1. LetXbe a quasi-Banach lattice with nontrivial concavity (equiv-
alently nontrivial cotype). Then there is a constant C = C(X) so that for anyx\,..., xn G 
X we have 

1 / II n \\2\1/2 11/ n ,\l/2\\ f II n ||2x 1/2 

c(Ave^=±>|EHI) - I K ? w ) L- c(A v e f*=± iI? e*x*| | ) • 
PROOF. We have that X is ^-concave for some q < oo. As remarked above it is 

alsop-convex for some/? > 0. It is now easy to adapt the standard argument based on 
Khintchine's inequality as in [34] Theorem l.d.6, p. 49. • 

REMARK. In fact we will only apply this proposition in situations when the p-
convexity of X for some/? > 0 is automatic (i.e. Xis the concavification of some Kothe 
function space). 

Let us now turn to rearrangement-invariant spaces (cf. [21], [34]). For a n y / G 
Lo(Q,ii) we define its decreasing rearrangement/" G Lo[0,/i(Q)) by f*(t) = infjjc : 
K\f\ > x) < t}. Now let X be a quasi-Kothe function space on either [0, oo) or [0,1] 
with Lebesgue measure. We say that X is a quasi-Banach rearrangement-invariant (r. i.) 
space if \\f\\x = \\F\\x for a l l / G LQ, and if ||x[0,i]IU = 1. We use the term r. i. space for 
a Banach r. i. space. If Xis a quasi-Banach r. i. space on [0, oo) (respectively, [0,1]) and 
(Q, //) is a Polish measure space (respectively, with /x(Q) < 1,) then we define X(C1, ji) 
to be the set of/ G LO(JJL) such that/" G X with \[f\\x = \\T\\x. For example, it will be 
of some advantage to consider X(A, A) in place of X[0,1]. Let us remark that if X is a 
quasi-Banach r. i. space on [0,1] then it is always possible to write X = Y[Q, 1] where 
Y is some quasi-Banach r. i. space on [0, oo). We will only be interested in separable (or 
order-continuous) r. i. spaces, which are necessarily minimal. 

On any quasi-Banach r. i. space X on [0, oo) (resp. [0,1]) we define the dilation oper
ators Ds for 0 < s < oo by 

AK0 = M I*) 
for all t (resp. whenever 0 <t< min(l,s) andDJ(t) = 0 otherwise). The Boyd indices 
px and qx are defined by 

logs 
px= lim 

—oologHAll 
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qx — hm-—^r—-rr. 
—ologHAH 

In general 0 < px < qx < co; if Xis a Banach r. i. space (i.e. is 1 -convex) then 1 < px. 
If X is an order-continuous Banach r. i. space, then X has an unconditional basis if and 
only if 1 < px < qx < oo; in this case the Haar basis ofXis an unconditional basis (see 
[34] p. 157-161). 

Recall that if/ G L0(Q, /x) then/**(/) = \ &f*(s)ds9 for / > 0. We say that a quasi-
Banach r. i. spaced on [0,1] or [0, oo) has property (d) if there exists C so that if/ G X 
andg G LQ satisfy g** </** theng G^Twith ||g||^ < C||/||^. It is well-known that every 
Banach r. i. space satisfies property (d) (cf [34] p. 125) with C = 1. However there are 
non-locally convex examples; any quasi-Banach r. i. space X with px > 1 satisfies prop
erty (d) (see [26]). A quasi-Banach r. i. space with property (d) is an interpolation space 
for the pair (L\,LOQ)\ this is a mild generalization of the classical Calderon-Mityagin 
theorem ([4], [35]) which follows from considerations of the K-functional (see, for ex
ample Bennett-Sharpley [2], Chapters 3 and 5; this treats only the normed case, but the 
modifications are trivial). 

We also recall a definition from [29]. If X is an r. i. space on [0, oo) (resp. [0,1]) we 
define Ex to be the closed subspace of X spanned by the functions en = X[2n,2n+]) 

for 
« G Z (resp. n G Z_ = {n : n < 0}). If X is separable then (en) forms an unconditional 
basis for Ex and Ex can be regarded as a sequence space modelled on J = Z or Z_. 
We shall say that X is of Orlicz-Lorentz type if Ex is naturally isomorphic to a modular 
sequence space, i.e. there exist Orlicz functions (Fn)nej so that Ex — ^(F„)(J) (see [33] 
pp. 168fY). This is a convenient definition to specify a class of spaces X which includes 
the standard Orlicz spaces and Lorentz spaces, and a variety of "mixed" spaces. 

To illustrate these ideas consider the following method of defining an r. i. space on 
[0, oo). Let 7 be a Kothe function space on [0, oo) with the property that the dilation 
operators Dt: Y —> Y are all bounded. Then we can definepy, qy as in the rearrangement-
invariant case. Assume that 1 < py < qy < oo. Now let Y be the space defined b y / G Y 
if and only iff G 7 and define \\f\\Y = \\f*\\Y. The inequality (f + gf < ID^f* + 2D2g* 
shows that || || Y is a quasinorm and that Y is an order-ideal. In fact, we also have: 

PROPOSITION 2.2. There exists a constant C so that iff G L$ then 

\\f\\y<h:r(2")en\<C\\f\\y. 
n£Z Y 

PROOF (DUE TO S. MONTGOMERY-SMITH). Clearly/" < £«Gz/**(2w)e«. However 

r\2n) < EJ£, 2-kf*(2"-k). Hence E ^ z / ^ K < £ £ , 2~kDlk^. But now since 
py > 1 it follows that T%LX 2~k\\D2k+\ || y < oo and the result follows. • 

The proof above only uses the hypothesis that py > 1, and not that qy < oo. Propo
sition 2.2 shows that Y is a Banach r. i. space by providing an equivalent norm. It is now 
immediate that/?y < pY. We next show that EY coincides with Ey. This implies that if 
Y is an Orlicz-Musielak space or generalized Orlicz space (cf [37]) then the associated 
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r. i. space Y is of Orlicz-Lorentz type as defined above. In particular, if we take Y to be 
a weighted Z^-space (with, of course the conditions 1 < py < qy < oo) we obtain the 
usual Lorentz spaces as examples of spaces of Orlicz-Lorentz type. 

PROPOSITION 2.3. We have Ey = Ey (and the norms are equivalent). 

PROOF. In fact suppose/ = Y^nez^n^n where an > 0 is finitely nonzero. Letg = 
T^oD2-"f. The assumption qy < oo and the fact that qf < qy is sufficient to establish 
that ||g|| Y < C\\f\\ Y and ||g|| f < C\\f\\ f for a suitable constant C. Note that ||g|| Y = ||g|| ? 
since g is decreasing. The result follows immediately. • 

3. Remarks on sublattices. In this section, we collect together some elementary 
remarks on the structure of sublattices of r. i. spaces. 

LEMMA 3.1. Suppose X is a quasi-Kothe function space on (Q, /x) and that Y is a 
quasi-Banach r. i. space on [0, oo). Suppose I = [0,1] or [0, oo) and that U:X—> 7(7) is 
a lattice homomorphism. Then there is a lattice homomorphism V.X—+ Y(Q X [0, oo)) 
so that for any x G X and a > 0 we have 

^X(U\x\ > 2a) < ( / i x X)(V\x\ > a) < \{U\x\ > a), 

and such that V can be represented as VX(UJ, t) = a{uj, t)x(uj) where a is a nonnegative 
Borel function onClx [0, oo) of the form 

kez 

with m:Z x Q —> Z U — oo is a Borel map with k —> m(k, UJ) decreasing for each UJ. 
Furthermore if I = [0,1] then a is supported on a set of measure one in the product 
space. 

PROOF. It will suffice to consider the case when X contains LOQ. We suppose the 
existence of a lattice embedding Ux = bx o a where b is a nonnegative Borel function 
and G\I —•* CI is a Borel map. First pick b' with \b < b' < b so that b' = E«ez 2nXE„ 
where En are disjoint Borel sets. Let U'x = b'x o a. 

Now for each n define the measure vn(B) = \(\Jk>nEk H a~lB). Since U'xn € Y 
it is clear that each vn is a finite measure. Furthermore, if \LB = 0 then U\B = 0 a.e. 
and hence vn(B) = 0. Hence we can find nonnegative Borel functions wn on Q. so that 
vn{B) = JB wn d\i, and we may suppose that wn(uj) is decreasing for each fixed UJ. Notice 
that JQ wn d\i = i/„(Q) < A(7), so that if I = [0,1] then Ja wn dji < 1 for all n, 

For any fixed n G Z, we define An = {(CJ, 0 : f < ww(o;)} and let a' — 
Y:nez2n(XAn - XAn+ll Define V':X - , r (Q X (0,OO)) by F ' x ^ O = a'(oj,t)x(t). Fi
nally define a a Borel function on Q x (0, oo) by setting a(w, t) = 2m if a'(u9 2

M) = 2m 

where 2k < t < 2k+x and k,m E Z. We set a(o;,0 = 0 if afQjj^1) = 0. Notice that 
Ox x A){a > 0} < (/x x \){a' > 0} < 1 if / = [0,1]. Define VX(UJ, t) = a(u9 t)x(t). 
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Now suppose* > 0 , x E l Then 0 < Vx < V'x. Furthermore for fixed LJ, 

\{t: V'x{uj,t) >a}< 2\{t: Vx(u,t) > a} 

so that 

(/x x \){Vx >a)> -(/i x AX^x > a). 

Now again for fixed a, let Fn = {2nx <a< 2n+lx}. We note that 

(/x x \){Vx > a) = ]T L "«<*? 

= Y,"n(Fn) 
/iGZ 

= YlM\jEkna-lFn) 
n£Z Xk>n ' 

= \(lfx > a). 

Hence 

^\(lfx > a) < (/x x X)(Vx >a)< X(l/x > a). 

Since \ Ux < U'x < Ux the result follows. • 
We next state the immediate conclusion for lattice embeddings. 

PROPOSITION 3.2. Let X be a quasi-Kothe function space on (0,/x). Suppose Y 
is a quasi-Banach r. i. space on [0, oo), and suppose that X is lattice-isomorphic to 
a sublattice of Y(I), where I = [0,1] or [0, oo). Then there is a lattice embedding 
V:X —> Y(Q x [0,oo)) of the form Vx(oj,t) = a(uj,t)x(u) where a is a nonnegative 
Borel function onClx [0, oo) of the form: 

a(w, 0 = E 2 " ( ^ ) e t ( 0 
kez 

where m: Z x Q —-> Z U {—oo} is a Borel map such that k —• m(k, uS) is decreasing for 
each UJ. Furthermore if I = [0,1] then a is supported on a set of finite measure. 

If Y is an r. i. space on 7=[0,1] or [0, oo) and/ GF+\ {0} then we define Yf to be the 
r. i. space on/defined by v G Yf if and only ify®f G 7(7x7) where y®f{s, i) — y{s)f{i). 
The norm on Yf is given by ||}>||̂  = \\y ®/||y. Notice that since/ dominates a function 
of the form a\E where a > 0 and X(E) > 0 there exists a constant C depending o n / so 
t h a t | H | r < C | M | r / . 

PROPOSITION 3.3. Suppose Y is an order-continuous quasi-Banach r. i. space on 
[0, oo) and thatX is an order-continuous quasi-Banach r. i. space on [0,1]. Le* U:X—> 7 
Z?e a lattice homomorphism and let £/x[o,i] = / ^ 0. 77ze«: 

(%) 77*ere ex/ste Cso f/zatf J/JC G Xthen \\x\\yf < C\\x\\x. 
(2) If U is a lattice embedding then X = ly{0,1]. 

REMARK. If U is a lattice embedding of X into 7[0,1] then the above proposition 
gives X= Yf[0,1] where/ G Y[091]. 
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PROOF. We use Lemma 3.1 to construct the lattice homomorphism V:X —> 
7([0,1] x [0,oo)). Notice that if g G 7[0,oo) has the same distribution as V\[o,\] then 
Yf[0,1] = Yg[0,1] with equivalent norms. 

Let u be any nonnegative simple function on [0,1] of the form u = EjLi ajXBj where 
{B\,...,Bn} is a Borel partition of [0,1], For any N let 

aN(sJ)= £ E 2m^ek(t) 
\k\<N\m(kj)\<N 

and let b^ = a — a^. We can partition g = gN + hx where g# has the same distribution 
as ax and hx has the same distribution as Z>#. 

Now fljv = E|Jt|<^E|/|<^2/x^t/(^)^(0 where (4^)^ are Borel subsets of [0,1]. We 
can therefore use LiapunofFs theorem to find Borel sets B[,..., B'n so that A(Z?j) = \{Bj) 
for ally and A(5| f l ^ ) = A(fly)A(4fc/) whenever 1 < j < n and -N < k,l < N. Let 
u' = EjLi ajXB'- Then ##(,?,/)w'(/) has the same distribution as u <g> g#. Hence 

l l w ^ ^ l r < ilKw'Hr < ||M<8)^|r-i-||w||oo||X[o,i](8>^Jv||y. 

For case (1) we let N—•» 00 and deduce that ||w||yg < ||t/|| ||w||^. 
For case (2) we observe that, since Y is order-continuous, 

lim ||x[o,i] ® M k = °-

Since K is an embedding there exists c > 0 so that we have a lower-estimate || Vu'\\ y > 
clHU.HencellwIU^c-1^!!^. 

If ̂ lattice embeds into Y[0,1] then a has support of measure at most one and hence 
so h a s / so that we can assume that/ £ F[0,1]. • 

COROLLARY 3.4. Suppose Y is an order-continuous quasi-Banach r. i. space on 
[0,00) and that X is an order-continuous quasi-Banachx. i. space on [0,1]. Let U:X—> Y 
be a lattice homomorphism. IfU^O then there is a constant Cso that \\x\\y < C\\x\\x 
forx£X[0,l]. 

PROOF. This follows from (1) of the preceding proposition combined with the re
marks before it. • 

REMARK. This corollary is well-known (see Abramovich [1] and remarks in the 
introduction to [27]). 

For our final result of this section, we will need the following factorization theorem, 
which is essentially due to Krivine [31] ([34], Theorem l.d.ll and Corollary l.d.12, 
pp. 57—59); we will, however, prove the form of the theorem required here. 

PROPOSITION 3.5. Suppose 0 < p < 00. Suppose Y is an p-concave quasi-Kothe 
function space on (Q, /i) and suppose that either (a) P: LP(A9 A) —•> Y is a lattice homo
morphism or(b)p> 1 and P: LP(A, A) —* Y is a positive operator. Then there is a Borel 
function w G £O(AO with W > 0 a.e. so that 

¥\\Y<\MP 
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forf G Lo(n) and 

\HPf)\\p<\\P\\\\f\\p 

forfeLp(A). 

PROOF. We can suppose P ^ 0. We require the following property of P which is 
valid in cases (a) or (b): i f / , . . . Jn > 0 in Lp then P(02Uff)l/p) > G X i ( ^ ) 1 / / ? 

(see [34] p. 55). Let u be any strictly positive function in Y. Now consider the subsets 
F and F of L^ defined by F = {f : / > 0, ||w/1//7||y > ||P||} and F = {f : 30 < x G 
Ip , |W^<l , i iP /<( f t : )P} . 

It is clear that E is convex. We argue that coF does not meet E. Indeed suppose 
/ , . . . , / G F and ci , . . . ,c„ > 0 with E?=1 c,- = 1. S u p p o s e ^ < (Pxjf wherexj > 0 
and \\xj\\p < 1. Then if(JJ=l cjfj) < £;=1 Cj(Pxjf < (Pyf where;; = (E?=1 C^IP 
so that HJII^ < 1 (see [34] Proposition l.d.9). Since Fincludes the negative cone it has 
non-empty interior. Now, by the Hahn-Banach theorem, there exists <D G U^ so that 
W ~ g) > 0 iff G E andg G F. Clearly O > 0, and 0(/) > 0 if/ > 0 and / ^ 0; 
hence since P is not zero we have infgG£ 0(g) > 0. By normalizing we can suppose 
infg€£ 0(g) = 1. Let us write $(/) = Sf<t>d[J, + <D0(/) where </> G I I (A0 , and O0 is sin
gular with respect to /i. If/ G F we may find 0 < fn | / a.e. so that 0(/^) | Sf<f>dji. 
However by order continuity/, G F for large enough n and so //</> d\i>_\ for/ G F. 

Now it is clear that if y E Y+ with \\y\\Y = 1. Then for e > 0 we have that 
(||F|| + effu'P G F and so \\yu~l(t)lIP\\p > \\P\\~l. Thus ify G 7then |[y||r < \\yw\\p 
where w = \\P\\<j)lIPu-1. If/ G ip(A, A) with \\f\\p = 1 then (Pfl/1)) V * G F and so 

f(P(\f]))P4u-pdii<l9 

so that HwFd/DI^ < ||P|| which implies the theorem. • 

THEOREM 3.6. Suppose 0 < p < oo and Y is ap-concave quasi-Banach r. i. space 
on [0,1] or [0, oo). Suppose Lp is lattice-isomorphic to a sublattice ofY. Then 7[0,1] = 

£,[0,1]. 

PROOF. It suffices to consider the case when Y = Y[0, oo). By Proposition 3.3 there 
exists/ G Y so that Y/[0,1] = Lp[0,1]. Thus there is a lattice embedding V:Lp —» 
y([0,1] x [0,oo)) of the form x —> JC <g>/. We assume ||JC||P < ||JC ® / | | y < C||JC||P. 

Applying Proposition 3.5, there is a nonnegative weight function w on [0,1] x [0, oo) so 
that \\y\\Y < \\yw\\p for ye Fand \\x\\p < | |*®/| |y < \\w(x®f)\\p < C\\x\\p forx G V 

Now let v(£) = (/J w(,s, ŷ7 ds)xlp. It follows from a symmetrization argument that if 
yE Fthen 

\\y\\y<{J^ r^f\y(^tdsdt)l,P, 

and that 

£WvWdt<(?. 
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Let u be the increasing rearrangement of v so that u(i) = inf\(E)=t suP*e£ v(s)- Then 
if as usual j * is the decreasing rearrangement of [y|, the first equation yields that if y E 
7[0,oo)then 

IM|y<(jf/(^(^*)1/P-
In particular for 0 < s < 1, 

s<\\Dr\\p
Y<ff(t/sru(tfdt. 

This in turn implies that 
TOO 

jo ntru{stfdt>\. 
Now §?P(ifu(if dt<(J. Letting 5->0we obtain from the Dominated Convergence 
Theorem that lim,_0 u(t) = c > 0 and fffiff dt < (Jc'P. 

Pick 0 < T < oo so that ||/*X[T,oo)||r < 1/2. It follows fromp-concavity that 

||A(fX[T,0O))|k<S1/P/2. 

On the other hand \\DJ*\\r = HxiM ®/ | | r > *1/p- Hence ||A(TX[o,r])||y > S1/P/2. 

From this and/>-concavity we also obtain easily that 

^^f(t/sfdt)X/P\\Xl0^\\y>l-S^. 

Hence ||x[(M]||y > c\txlp whenO < / < 1 for a suitable constant c\. This in turn implies, 
by /^-concavity, that if y G Y[0,1] then ||;y||y > c\ \\y\\p and this is enough to show that 
Y[0A]=Lp[0,l]. 

4. Cone-embeddings. Let X and Y be quasi-Banach lattices. We will say that a 
positive operator L\X—> Y is a cone-embedding if L satisfies a lower bound for positive 
elements, /.e. there exists<5 > 0 so that \\LX\\Y > 8\\x\\x forx > 0. We will say thatZ is a 
strong cone-embedding if it additionally satisfies the condition that for some C > 0 and 
every JCI, . . . ,x„ > 0 we have || maxi<fc<„x̂ Wx < C|| maxi<fc<MZjCfc||r- This is trivially 
equivalent to requiring the same inequality for x\9...,xn mutually disjoint. 

Our first results demonstrate conditions under which every cone-embedding is a 
strong cone-embedding. 

LEMMA 4.1. Suppose s, 8 > 0, and 1 < p,q < oo. Then there is a constant C = 
C(s,p, #, 8) so that ifX is a p-convex Kothe function space, Y is an s-convex, q-concave 
quasi-Kothe function space (where each constant of convexity and concavity is one) and 
ifL\X—> Y is a cone-embedding satisfying 8\\x\\x < \\Lx\\y < \\x\\xfor x > 0 then if 
x\9...9xn>0 are disjoint, 

II n II 
E * / L <C||njax Lxj\\ Y. 
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PROOF. We pick m = m(p,6) so that 2m(1~1//>)(5 > 2. 

First notice that if x\,... ,x„ are disjoint, 

UP ( n m \ 1 In n 

Avee,=±1 £ n O + ^ ) = lm{X-l'P) E*> 

Thus by/7-convexity 

II n II / W n m iiA7 \ 1 n 

2M.-./,) E x J < ( A E I T ( 1 + e . . ) x . . 
"I/=1 '•* v "7=1/=1 H^7 

it follows that 

2 « ( i - i / p ) 
1 " 1 

E*/ ^ - ' ( A v e ^ , ; 
1 " m IIP \ ' //> 

fcno+^kJ) 
< r ' E(Avee 

/C[m] v y-±>' |En^|f)I/p 

7=1 i e / " y / 

^ ' ( I E ^ L +ci(2"-i)l(i:i^i2)1/2ll 
V "_/= 1 l l r "7=1 J nJ 

where C\ = C\(q,s), using Theorem l.d.6 of [34]. 

Reorganizing we have, since 2m(1 - i / ^ f i - l > l , and | |L | | < 1, 

K - l 
I w II II / n *\ 1/2II 

2>-L<c.2- El^l2 L 
'7=1 "x » 7=1 "7 

/2 

and this in turn implies, since Y is s-convex for some s > 0, 

| X > J < C?2m£2|| max Lry||y. 
7=i !</<« 

Let us give a simple application. 

THEOREM 4.2. Suppose Y is an r-convex Banach lattice where r > 2 which is q-
concavefor some q < 00. Suppose that X is a p-convex Banach lattice, where p > 2, 
which is isomorphic to a subspace ofY. Then X is r-convex. 

REMARKS. This result is well-known for 1 < r < 2 (cf. [34], p. 51). The hypoth-
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esis on X is equivalent to the statement that l\ is not lattice finitely representable in X 

(note that X must be of type 2, and apply Lemma 2.4 of [21]). In [21] there are two 
results closely related to Theorem 4.2. Theorem 2.3 of [21] is the analogous result for 
upper r-estimates in place of r-convexity, while Theorem 2.6 (or Proposition 2.e.l0 of 
[34]) implies the above theorem for the special case whenXis an r. i. space on [0,1]. In 
this latter case one can replace the hypothesis that X is strictly 2-convex by the weaker 
hypothesis thatZ ^ I2[0,1]. 

PROOF. It suffices to consider the case when the r-convexity, ^-concavity constants 
of Y are both one and the /?-convexity constant of X is one. We may also suppose that X 

and Y are Kothe function spaces. We will suppose that there is a bounded linear operator 
S:X —> Y with S\\x\\x < \\Sx\\Y < \\x\\x. It will also suffice to prove the result whenX 

is finite-dimensional, i.e. Q = {1,2, . . . , n} and thus has a 1-unconditional basis (e&)/Li 
consisting of atoms, provided we establish a uniform bound on the r-convexity constant 
Kf{X) in terms of (p, q, r, 8). 

TothisendwedefmeamapLrX^ —* Y^^hyLek = \Sek\2. It follows from Krivine's 
theorem ([34] Theorem l.f.4 p. 93) that if JC = ££=i ik?k > 0 then 

IMIr1/2 = | |(E6l^l2)1 /2fy 

<K2
G\\x\\xU2. 

Also since Y is ^-concave, there exists Co = Co(q) so that 

I M k / 2 > Q 2 ( A v e e t = ± 1 | | £ e ^ 2 S e J V 

> Q2S-2\\x\\Xll2. 

Now by Lemma 4.1 applied to KG
2L, using the fact that Xx/2 is/?/2-convex and 7^2 is 

r/2-convex and ^/2-concave we obtain the existence of C\ = C\(p,q,r,S) so that for 

||x||^I/2<Ci||maxCifc^ifc||r1/2 

which in turn implies that if x E X, with x = £ £*£*> 

\\x\\x<C2\\rmx\^\\Sek\\\Y 
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where C\ — C\. Now suppose x\,...,xm G X with Xj = ££=1 £/*e*. Then 

< C 2 m a x ( E M ' ' \Sek\\ 

II / « W \ 1 //-ll 

<c2 E E M W 
l ! V * = l / = l • 7 

El*/ 

< 

< 

< 

Y 

( m W ( n \l/r 

ci E (Eifeiw) 
V/=l" \b=i y 

EENW J 
./=l»v*=l ' I' YJ 

( m II / n , , \ 1/2 IK A ! / r 

V/= 1» VA:= 1 7 ILV 

/ W x l / r 

<W 2 (EN&) . 
V=i 

This completes the proof. • 
We now give a second criterion for a cone-embedding to be a strong cone-embedding. 

LEMMA 4.3. Suppose 0 < q,s < oo and that X is an s-convex quasi-Banach r. i. 
space on [0,1] or [0, oo) with px > 1. Suppose Y is an s-convex q-concave quasi-Kothe 
function space andL\X—> Y is a cone-embedding. Then there is a constant Cso that if 
x\,...,xn>0 are disjoint, 

EX7 — 1̂1 maX LXjlW-
7=1 !</<« 

PROOF. We suppose that ||L|| < 1 and that 8 > 0 is such that if x > 0 then 6\\x\\x < 
\\Lx\\ y < \\x\\x- We may also suppose that for some/? > 1 and some constant Q we have 
| | A | U < C 0 ^ f o r / > l . 

We select first an integer m so that 2m(p~l) > 2^x CP0S~P. Let 0 = 2~m. 
Now supposexj,..., xn > 0 are given; it will suffice to consider the case when each*/ 

is a countably simple function (/. e. takes only a countable set of values) and 11 £"= x xl\ \x = 
1. Suppose N is an integer with N > 4(2mn). Then for each 1 < / < n we can write 
Xi = TjL\ Xy as a disjoint sum where x* = D^/^x*. 

Let Cijk = ±1 be a choice of signs for 1 < / < «, 1 <j<N and 1 < k < m and 
denote by e the array (e^). We define 

n N m 

"(e) = E E 11(1+^K'-
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Let £;(e) be the number ofy such that eijk = 1 for 1 < k < m. As functions on the 
natural finite probability space of all choices of signs e, the functions £, for 1 < / < n 
are independent and identically distributed with binomial distributions corresponding to 
a sample size N and probability for an individual trial of 0. They each have mean a = NO 
and variance N0(\ — 0) <a. Notice that by choice of N we have a > An. 

We thus have 
n 

Avec max |£,- — a|2 < ^ Ave€ |£,- — a\2 < na. 

Let C(e) = mini</<n £,(e). Then 

Avec \a — C|2 < na 

and so 

Ave£ ( > a — (na)1/2 > -a. 

We next turn to estimating Ave ||w(e)||^. In fact we have that for each e, 

\±x,\ <2-m\\DNKu(e)\\x. 

Thus we have an estimate that 

l<C00Nl'^rl/pH^\\x. 

Reorganizing and averaging gives 

Avee ||II(£)||> > qfe-'ir1 Ave£ C > \c?0*->>. 

The original choice of m now gives the estimate 

Avee \\u(e)\\p
x > V$TP 

which implies 

(Ave£ | |z(M( e)) | ;)1 / P>2. 

We now proceed as in Lemma 4.1, expanding out and concluding that for some con
stant C\ depending only on F, 

(Ave£||i(M(e))|i;)1/p < \±x^\+rcl\(±£\ix9r)l,2\ 
\ / "/=iy=i »/ " vi=iy=i 7 n* 

Since || £?=1 EJLi I^UWY < 1 w e c a n conclude that 

II / n N „ \ 1 / 2 I I 

(EEN/I2 >CT^-
H\=iy=l J "Y 

Again this implies that 

|| max ZjC|||y > || maxijCyllK > Cf20~2. 
\<i<n ij 

The result now follows. • 
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PROPOSITION 4.4. Let X be an order-continuous Kothe function space on (A, A), 
which contains LOQ. Let Y be a quasi-Kothe function space on (fi, //) which is s-convex 
for some s > 0 and q-concavefor some q < oo. Suppose L:X —> Y is a strong cone-
embedding. Then, for n > 1, there exist Borel maps an:Q-^> [0, oo) and a„: Q —* A so 
that a\ > a2 > - - > 0 and crm(uj) ^ an(u) ifm ^ n, and for some C > 0 we have for 
any x EX with x > 0, 

oo 

C"1 ||x||jr < \\maxanxoan\\Y< \\Y,anxo°n\\ < C\\x\\x. 
"#i=i Y 

PROOF. We use the random measure representation of positive operators (see [25], 
[41], [42]). There exists a Borel map u —•» i/u from Q to M(A), endowed with the weak* 
topology, so that for any j c G l w e have 

Lx{u) = / xifydvu p — a.e. 

Further we can write 
oo 

"u = Y, an{^an{uj) + v'u M - a.e 
n=\ 

where an: Q —* [0, oo) and a"„: Q —-> A are Borel maps satisfying the assumptions above, 
and v' is a continuous measure. 

u 

Since L is a strong cone-embedding there exists a constant C so that ||L|| < C and 
whenever x j , . . . ,xn are disjoint and positive in X then 

n II 

£ * , < C||max Lx, || r . 

Now suppose x > 0. Then for each m, 

|W|x<C||maxI(xX£)| |r-
EeXm 

For the definition of J%m see Section 2. Now max^ j^ L(X\E) is monotone decreasing to 
max,j anx o <j„ so that, by the order-continuity of 7, 

C"1 ||x||jr < ||maxawxoaw||y < E ^ ° ^ <IM|r<C||x|U. 
n=\ "Y 

REMARK. Of course there is no special significance in modelling X on (A, A) here; 
we clearly have the same result for any Polish measure space (K, v). Note also that in the 
above argument the pointwise maximum max„ anx o an exists /i-a.e. for x e X. 

PROPOSITION 4.5. Suppose Y is an order-continuous quasi-Banach r. i. space on 
[0, oo) with property (d). Suppose that either X is an order-continuous atomic quasi-
Banach lattice or that X is an order-continuous quasi-Kothe function space on (A, A) and 
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that L:X-^> Yis a strong cone-embedding. Then X is lattice-isomorphic to a sublattice 
ofY. 

REMARK. We recall that Y has property (d) if there is a constant C so that, given 
/ G 7 andg G L0 withg** <f* theng G Y and \\g\\Y < C\\f\\Y. 

PROOF. Let C be a constant greater than the property (d) constant of Y and the 
constant in the definition of the strong cone-embedding. Let us prove this first for the 
case when X is atomic. Then we regard X as a sequence space (a quasi-Kothe space 
modelled on N). Let (en)w€N he the basis vectors and let un = Len. We define a map 
V:X-^ Lo(N x [0,oo)) by Ven = vn where vn(kj) = 0 if k ^ n and vn{n,i) = un(t). If 
0i * • • • > 0#! > 0 then it is easy to see that 

(E<**v*) ^ (E a k u k) 
v *=l ' Kk=\ ' 

and so by property (d) we have that V is bounded and || V\ < C\\L\\. However since L is 
a strong cone-embedding 

E akekj < C\\ max fl*i/ifc||r < C | E ^v* 

so that V is an isomorphism onto its range. 
The nonatomic case is similar. We can suppose that X is a quasi-Kothe function space 

on (A, A) containing LOQ and that L is of the form 

oo 

Lx = E anX ° ^ 
«=1 

where for some constant Ci we have 

II °° II 
C f ^ W U ^ \\maxanxoan\\Y< \\J2^nXoan\\ < Ci\\x\\x. 

Define V:X'-+ I0(N X [0,OO)) by the formula Vx(n,t) = fl„(/)x(ff„(/)). Then if x > 0 
we have (Vx)** < (Lx)** so that V is bounded, while 

CTf1 ||jc||jr < | |max^oa w | | y< | |F j c | | r , 
n 

so that V is also an isomorphism. • 

PROPOSITION 4.6. Suppose Y is an order-continuous quasi-Banach r. i. space on 
[0,1] with property (d). Suppose for some p > 1, YXjp has property (d). Suppose X is 
an order-continuous quasi-Kothe function space on [0,1], and that L.X—+ Yis a strong 
cone-embedding. Then there is a Borel subset E of {0,1] with X(E) > 0 so thatX(E) is 
lattice-isomorphic to a sublattice ofY. 

PROOF. We again may suppose that X is a quasi-Kothe function space containing 
LOQ. Note first that we must have Yx/p C L\ and hence Y C Lp. We may extend Y to 
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be a quasi-Banach r. i. space on [0, oo) in several different ways. Precisely we define 
W to be the space of/ G Lo[0,oo) so that/^xto,!] € Y a n d / G Li[0,oo) with the 
associated quasi-norm \\f\\w = max(||/*X[o,i]||r, ||/1|i)- We define Z to be the space of 
/ G Z,0[0,oo) so that/*X[0,i] G 7 a n d / G Zp[0,oo) with the associated quasi-norm 
11/"||z = max(||/*X[o,i]||r> 11/1 I/O- Then both fF and Z have property (d). Note that both 
W[0,1] and Z[0,1] coincide with Y and hence I may be regarded as mapping into either 
W or Z. Note also that W <ZZ with continuous inclusion. 

Appealing to the preceding Proposition, we can find a lattice embedding U:X —•> 
ff[0,oo) in such a way that for some constant C we have C - 1 ||x||^ < \\Ux\\z and 
\\Ux\\w<C\\x\\xforx>0. 

It now follows by Lemma 3.1 and Proposition 3.2 that we can find a a nonnegative 
Borel function a on [0,1 ] x [0, oo) with a(t, s)) decreasing in s for each fixed t so that the 
map Vx(t,s) = a(t,s)x(t) defines a lattice embedding of X into Zj([0,1] x [0,oo)) and 
such that for some C\ we have Cf1

 ||JC||^ < || Vx\\z and || Vx\\ w<C\ \\x\\x for x > 0. 
Notice in particular that 

f f°° a(t,s)rdsdt< oo 

for r = 1 and r = p. We therefore can find constants 0 < c < M < o o s o that there is 
a Borel subset E of [0,1] of positive measure such that if t G E then JQ° a(t,s)dt < M 
and J£° a(t9 sf ><f.lft G £ then a(f, s) < Ms"1 and so we also have J^° a(t, sf ds < 
M>sx-p. 

Recall that YXjp has property (d) and therefore ZXjp also has property (d) and is an 
interpolation space between L\ and L^ with some constant lp > 1. Pick u > 1 so that 
cw1-1/^ > 47M We then modify F to form F0:X—> Zby setting FOJC = VX\EX[O,U]-

 W e 

will show that V0 is a lattice embedding of X(E) into Z([0,1] x [0, oo)). 
Let P be the positive operator defined onLj ([0,1] x [0, oo)) andLoo([0,1] x [0, oo)) 

by 

PgiUS) = ( - f^ g(t,V)dVy(t,sfXEit)X[u,oo){s). 

It is easy to calculate that \\PgWoo < M'urp\\g\\0O. Similarly ||Pg|| x < M,ul-p. It follows 
that \\P\\z„f <M>UX-PIP. 

It follows that iff <E Z then 

K/'ci/n)1^^ <7M^-'riiz < ^irniz. 
Suppose in particular x E X(E) and x > 0. Let / = Vx. Then 

pQffXt, s) = x(t) ( i £ fl(r, vy, rfv)' %*, 5)x£(0x[»,oo)(̂ ). 

However for t e £ 

f\(t,vfdv > cf-hfux-p > )-(? > {c/lf. 
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Hence 

\\Vx-Vox\\z < 2lMul-xc-x\\Vx\\z < l-\\Vx\\z. 

It follows that Vo mapsX(E) isomorphically into Z([0,1] x [0,w]) which is lattice iso
morphic to Y. m 

COROLLARY 4.7. Suppose Y is an order-continuous quasi-Banach r. i. space on 
[0,1] with property (d). Suppose for some p > 1, YXjp has property (d). Suppose X is 
an order-continuous quasi-Banach r. i. space on [0,1], and that L.X —+ Y is a strong 
cone-embedding. Then there exists/ <E Y+ \ {0} such thatX= Yf. 

PROOF. This follows from Proposition 3.3. • 

5. Cone-embeddings of r.i. spaces. 

PROPOSITION 5.1. Suppose 0 < s < q < oo and that X is an s-convex, q-concave 
quasi-Kothe function space on (Q, ji). Suppose m>q is a natural number. Then there is 
a constant C = C(X) so that ifx\,... ,xn € X+ andb\9. ..9bn>0 then 

( II n llm\ 
n(i)Xi J 

< Cmax((AvexGn„ II max ^ i ^ H 1 ^ J ( E ^ ) | ? X ' | ) -

PROOF. This is a somewhat disguised form of the so-called Classification Formula 
(Theorem 2.1 of [21] or Theorem 2.e.5 of [34]). It can be derived from this formula; 
we indicate the direct proof. We assume that X has ^-concavity constant one. Then 
Z = Lm(Tln:X) has m-concavity constant one where Tln is given its natural probabil
ity measure. Now there is a constant Co depending only on m so that if/i ,...,fn £ Z+ 

(±f)m < cof E (n/i)+ {tjf){tf^2)\ 
V i = l J \\A\=myieA J \=\ ' \=\ ' J 

Hence for C\ = C\(s,m) 

"tA <Cmiax(||Si||,||S2||) 
"l= l 

A/m 

\\z 

where Si = ( E M | = m ( a ^ ) ) andS2 = (max^)1/m(E^)1-1/m.NowasZis5-convex 
we can estimate: 

| | S 2 | | < ( | | m a x ^ | | ) 1 / - ( | ^ | ) 1 " 1 / m 

< 
m 
IH^I^ (i-I)|^| 

It then follows that 
| ^ | <niax(m||S,y max/;||). 
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Now le t / = btii where £/(7r) = x^. Then if n > 2m, we use w-concavity: 

IIS. | | = Ave, ( E n ^ O ) ) 

<I(AveT E n^oVHI 

,(^)"-(^.)lfr. 
2 r n \\\ n II 

;&> M 
< 

The proposition now follows easily. • 

PROPOSITION 5.2. LetX, Y be order-continuous quasi-Banach r. i. spaces on [0,1]. 
Suppose thatPY > 1, Y is q-concavefor some q < oo and that there is a cone-embedding 
L:X—> Y. Then either X = L\ [0,1] orXis lattice-isomorphic to a sublattice of Y and so 
X = Yffor somef € F+. 

PROOF. For ease of notation we regard X as modelled on (A, A). 
Let us first note that the proof is trivial if we assume/?^ > 1. Indeed in this case L is 

a strong cone-embedding (Lemma 4.3) and Yxjr has property (d) as long as 1 < r < py. 
So Corollary 4.7 applies. We therefore need only to prove that if X ^ L\ thcnpx > 1. 

Assume t h e n X ^ L \ . Note first that Y C Lr if 1 <r <py. 
We can assume that, for some 5 > 0 and every x e X, 6\\x\\x < \\LX\\Y < \\x\\x for 

x > 0. Let us consider the random measure representation of L i.e. 

Lx(s) = / x d\is 

where s —* jis is a weak*-Borel map from [0,1] to fAf(A). We can as usual write 

oo 

n=\ 

where <v. [0,1] —»[0, oo) and an: [0,1] —•* A are Borel maps and am(s) ^ crn(^) if m ^ «, 
and vs is for each 5 nonatomic. 

Since Y has nontrivial concavity there is a constant Co and an integer m so that if 
yu • • • ,yn £ y+ and bu..., bn > 0, 

l/m 

(*) 
< 

/ II n II x 1 

( A v e ^ n J E ^ O ^ 
\ II;-! 117/ 

Co maxf (Avex€nw || max ^ ^ l ^ ) 1 / - , I ( £ fc.) | | £ J l 1. 

Let us introduce the functional on X defined by 

T(x) = sup{|| maxanu o a„\\Y : u* — x*}. 
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Consider a nonnegative simple function x G CSm(A). For each n > n0 we can write 
x = S E G ^ 6sX£- For each permutation ?r of J^ let *„ = HE^k ^E)XE- Let J>£ = L\E G 
y. 

We also define for each «, and each s G [0,1] T„(S) to be the least integer r so that 
{ai(s))i=i belong to distinct members of j ^ . Note that linv-Kx, T„(S) = oo for all s. 

Note that 

max(,„(E)yE(s) < max akx« oak+ Wx^i YJ ak(s) + maxi/5(£)J, 

so that 
II m a * i-K{E)yE\\ Y < T(X) + T]n\\x\\oo 

EeAn 

where limw_̂ oo 7]„ = 0. Now appealing to (*) gives that 

%IU<C0max(r(x)JW|i| |IxA||y)+Cofy„|WU 

which gives us 

(**) S\\x\\x < C0max(r(x), |W|i||IXA||y). 

First suppose a\ vanishes a.e. so that Y(x) = 0 for all x > 0. Then 

IMk^Cor'HixAlklWIi 

for all* G Xso thatLi C X. SinceX^ L\ we must have that X* = {0} and Theorem 4.4 
of [25] shows that L must vanish (we remark that in the preparatory Lemma 4.3 of [25] 
the hypothesis X" = {0} has been omitted in the statement). This is impossible so we 
must have that a\ > 0 on a set of positive measure. Hence if we set Sx = a\x o o\ then S 
is a nontrivial lattice homomorphism of Xinto 7 and Corollary 3.3 will yield thatX C Y. 
Hence X C Lr where 1 <r <py. 

We next show that in fact ||JC||X < C\T(x). If not, there is a sequence xn with ||JCW||^ = 1, 
xn > 0 and Y(xn) —• 0. But, if this happens we must have xn —> 0 in measure and 
||jc„||r bounded. Hence lim„_oo ||x„||i = 0 and (**) yields that lim„_oo \\xn\\x = 0. This 
contradiction establishes the claim. 

Fix any simple/ G X[0,1] with \\f\\x = 1. Then there exists 0 < x G X(A) with 
x* = f* so that 

l l m a x a ^ o ^ H x ^ C T 1 . 
n 

Let x = Y,jL\ ijXHj where H\,... ,HM are disjoint Borel sets. For each s let k(s) be the 
first index such that ^ ( ^ ( ^ ( s ) ) = maxi<„<00 fl„(,s)x(o-„(s)). Then let b'(s) = a^S)(s) 
and p(s) = (Tk(s)(s)- The operator F:Z —• 7 given by Vz = b'z o p is then a lattice 
homomorphism form X into 7 with ||F|| < 1. For n G Z let Fw = (6/)"1(2B,2,,+1] and 
let 6 = E«GZ 2nXF„ so that £&' < b < b'. For each n the measures 5 —» X(p~lB n FM) 
are absolutely continuous. Then for any AT, we can use LiapunofFs theorem to find sets 
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Hf C Hj with \{HJ) = a-*\(Hj)for 1 <j < M&ndi\{p-lHfnFn) = a"1 X(p~lHjDF„) 

for |«| < N. Let GN = U H < W ^ - T h e n 

\r{T,ZJA)\\Y ^ ^Dlia{XG»Vx)h - 2^Da^hG"Vxh-

Letting iV->oowe have 

||r*||7<2||A,||rPV'*IU-

Hence 
IWU<2C,||Z)a||y||D-,/lU. 

As this inequality holds for all simple/ > 0 we obtain 

| | /)a|U<2C1 | |Da | |y 

for a > 1 so Xhatpx >PY> 1 • AS observed in the introductory remarks, this is sufficient 
to prove the theorem. • 

The following proposition is trivially false in the case when p = 1 since the map 
x —> (/J x(s)ds}x[o,\] is a cone embedding of Li[0,1] into Lp[0,1] when/? < 1. 

PROPOSITION 5.3. Suppose 1 < p < oo. Suppose Y is ap-concave quasi-Banach 
r. i. space on [0,1] or [0, oo) and that there is a cone-embedding of Lp(k, A) into Y. Then 
7[0,1] = Lp[0,1]. 

PROOF. We assume that Y is s-noimed. Let (Q, fi) represent either [0,1] or [0, oo) 
with associated Lebesgue measure. We apply Lemma 4.1 and Proposition 4.4. There 
exists a constant C and Borel maps an: Q —> [0, oo) and an: Q —* A so that am (iJ) ^ an (J) 
if m ^ n and so that for 0 < x € Lp, 

II °° II 

£ a „ * o a J < C\\x\\p. "n=l Y 

Let Lx = £ <zwx o a„; then Z: Z^ —> 7 is a positive operator. We can also apply Propo
sition 3.5: there is a weight function w > 0 on Q. so that |[y||y < \\wy\\p fory £ Y and 
HLx^^CHjcl lpfor jceZp. 

At this point we define measures vn on A by vn(B) = $a-\B MpcPn d\i. It is easy to see 
that each vn is a finite Borel measure absolutely continuous with respect to A. Hence we 
can find derivatives vn = di/n/dX. Now if 0 < x G Lp(A) then 

Jn^f/<^^nfdli = JAXP(flVn)d\ 
n=\ J* V = l 

and so it follows that 
oo 
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almost everywhere. By an application of Egoroff's theorem we can find a Borel set E C A 
of positive measure and TV so that 

OQ 

E v„(0 < (21/5Q-p 

n=N+\ 

for t e E. 
Now, observe that if 0 < JC G LP(E) then 

II / CO \ p || 

|| max anxo an\\Y < \\w[ Y, <%(x°°n) ) l , p \ 
n>N+\ II \n=N+l ) Wp 

< ' (HILV-H 
< ̂ H -

Hence 
m a x ^ o . J , > ( | M | ^ _ L | W | ; ) 1 A > _ L _ | W | p . nax anxoan\\Y> I \\Lx\\y- ^:\\x\\°n

 k 

This implies that Lp is isomorphic to a sublattice of YN and hence to a sublattice of 7. 
Finally we can apply Theorem 3.6 to deduce that Y[0,1] = Lp[0,1]. • 

6. The main construction. 

LEMMA 6.1. Let X be a q-concave Kothe function space on some Polish measure 
space (Q, /z), where q < oo. Then there is a constant C depending only on X so that if 
fu...JneX, and h = (H^f?)1/2, then for anyM>\ we have: 

(AwQei=±l\\geXHMq)l/q<CM-l\\h\\ 

wherege = E?=i C(/! andH€ = {\ge\ <M~lh}U{\ge\>Mh}. 

PROOF. Note first that 

On the other hand, if Q is the ^-concavity constant of X, 

where 

^ )=(/r,>MWj£e^)l^£)1/9-\Jge(s)>Mh(s) r-f ) 

We can estimate (assuming h(s) > 0) 

/
I m 12̂  

E ^ W dt<C*xM-qh(sf 
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where C\ is a constant determined by the constant in Khintchine's inequality for 2q. 
Combining we have 

(Ave£/=±1 \\gtx(\gl\>m\\q)Xlq < Q 'C .M" 1 p | | . 

The result now follows. • 
We now introduce some notation. If [a, b] is a closed interval with 1 < a we write 

T(a, b) for the collection of measurable functions/ on [0, oo) which satisfy that almost 
everywhere, either/^) = 0 or a < \f(s)\ <bor b~l < \f(s)\ <aTl. Let [an, bn]™=0 be a 
sequence of intervals with ao = 1. If (rin)%L0 is a sequence with 0 < r\n < 1 then [an, bn] 
is {r\n)-separated if bn < T]nan+\ for all n. 

LEMMA 6.2. Let X be an r. i. space on [0, oo). Suppose 0 < 8 < 1, and that a > 0 
is such that 25a < 6. Suppose {r)ny%L\ is any sequence satisfying E^« < cr and that 
ian, &w]£Lo are (f]n)-separated then for anyfo,... JN G Xsuch that 

(1) 8<\\fi\\<\for^<j<N 
(2)fjer(aj9bj) 

we have that (f/)jL0 is 2-equivalent to a disjointly supported sequence (gj^Lo with gj G 
T(aj,bj)forO<j<N. 

PROOF. Let Ek = {s : \fk(s)\ = maxo<j<N\fj(s)\,\fk(s)\ > \fj(s)\ if/ < k}. Let 
g* =fkXEk- Then (with appropriate modifications if A: = 0 or k = N) 

\\fk-gk\\ < £ IIAX(|A|<|;5I)II + E ll/*X(|/i|<L5l)ll 
j<k j>k 

<£«AMII + EM7'll£ll 
j<k j>k 

<T,kfiii+T.Jiivi 
j<k i=j j>ki=k 

oo 

< ea(r]k_\ + 7]k) < 4(rfk + rik-i). 

Hence ||g*|| > <5 — 8a > §. We also have E |[/i — gjt|| < 8a < | . Since (gk) is a disjoint 
sequence it follows from standard perturbation theory that (fk) is 2-equivalent to (gk). m 

LEMMA 6.3. Let X be an r. i. space on [0, oo) or [0,1]. Suppose 0 < 6 < j and 
[an, bn\^=0 are (2_(w+6)o)-separated. Then for any positive disjointfo,f\,... ,,/AT G Xsuch 
that 6 < \\f}\\ < 1 0/w/yy G T(aj,bj)for0 <j < N we have that (fj)jL0 is 6-equivalent to 
a disjointly supported sequence in Ex. 

PROOF. We suppose at first that X is an r. i. space on [0, oo). For 0 < j < N we 
choose ntj G Z so that 
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Similarly we choose «, £ Z for 1 <j < N so that 

ay^ ii n <̂  o ^ 
2^4 < IIX[0,2"/]II - 22/^4* 

It is clear that m# < w^_i < • • • < /wo < «i < • • • < w#. 
Let wy = A(ay < fj < bj) and v, = A^r1 < ^ < aj

x). Then if 1 <y < N9 

IIX[o,2^+M;]ll < IIX[o,2^]ll + llxto^ill 

< 2aJx 

< 2~^%bj}x 

< IIX[o -̂»]ll 

so that 2mJ + uj < 2mJ~l. Similarly, ifl<j<N-l, 

\\x[oXJ+J<2~U+\S + bj<2bj 

so that 

llx[0^^]ll<2-tft5)&^i<|| 

and 2nJ + v, < 2nJ+i. Finally 

||X[o,2-o+u0+v0]|| < 2~38bQl +b0 < 2b0 < -8ax. 

Hence 2m° + w0 + v0 < 2Wl. 
It now follows that we can rearrange fo,... ,/N in the following manner. We can sup

pose that/i is supported and decreasing on [2m°, 2ni). .Let/J =foX[2mo,\] and^' =fo—fo-
For 1 < y < N, we let JJ = fjX(aj<fj<bj) and./;" = fjX(bf<fj<aj'y W e c a n t h e n suppose 
that for 1 <j < N,J] is supported and decreasing on [2m>, 2mJ~l) andj^" is supported and 
decreasing on [2% 2n>+1) where we adopt the convention HM+I = oo. 

Now if ek = X[2ka^1] *et 

4 = EJo(2**>* 

and 

and fori <y<tf,let 

and 

4 = "f:f0\2
M)ek. 

k=0 

*;="EV( 2 * + V 
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We set XJ = x'j + x'j for 0 <j < N. 
Then 0 < xj <fj for 0 <j < N. However if D2g(t) = g{t/2) we havej^ < D2xj +zj 

where Zj = bjemj + ajxen. for 1 <j<N and z0 < b0em. Thus ||zy||jr < 2~(/+2)<5 for 
0 <y < N. Hence if ao , . . . , a^ > 0, 

ii N ii II ^ II N 

»y=o » n 7 = o » y = o 

II * II * 

— ^ E ty*/ + o m a x l a y l 

II ^ II i II
 N

 II 
7=0 « ^»y=o » 

so that (//)£Lo *s 4-equivalent to a disjoint sequence in Ex. This completes the proof when 
Xis modelled on [0, oo). 

For the case X = X[0,1], we may regard X as being defined on [0, oo) and proceed 
as before, but with eachj^ having support of measure at most one. In this case, we have 
x% = 0 while for 1 <j<N,we have x'j < JJf < ajx < 2~6J8. Hence if ay > 0 for 
0<j<N, 

E ^ ' 
!/=0 

<2 _ 5 ^max |a / | < 
32 

N 

#=0 

Hence since ^ + ^ < | , 

II * || | |N || 1 
E ^ j <2 X>;*y + ~ 

l|/=0 " '|/=0 " z 

Af 

< 2 E ^ 
=0 

+ -
3 

N 

!/=o 

^ n 

7=o » 

and (f})jL0 is 6-equivalent to (XJ)JL0 which is a sequence in £Y[O,I]- • 
We now consider a situation which will remain fixed for Lemmas 6.4—6.6. We suppose 

now that X is a good Kothe function space on (A, A) which is ^-concave with constant 
one where q < oo. We further suppose that Y is an r. i. space on [0, oo) which is also 
^-concave with constant one. We will assume that X is isomorphic to a subspace of Y. 
Let us therefore suppose that T:X-^ Y is a bounded linear operator satisfying £||*||jr < 
\\Tx\\Y < \\x\\xwhere8 >0. 

For convenience we recall the notation introduced in Section 2. For e* = ± 1 , we 
denote by A(ei,... ,e„) the clopen subset of Aofall(4)j2i suchthatd, = ey for 1 <j < n. 
For each n let 5^ denote the collection of A(ej, . . . , e„). Let Cn be the algebra generated 
by the atoms J^. We let CSn denote the linear span of {\E : E E J^n}. We also define 
the Haar functions HE — XA(CI,...,C„,+I) ~~ XA(CI,...,e„,-i) f° r E = A(ei,... , e„). Let CS be the 
union of the spaces CS„. 

We define Qn\ CSn —» Lo[0, oo) to be the linear map such that Qn(XE) = I ̂ | 2 where 
EeAn. 
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LEMMA 6.4. Ifx G CSn then WiQn*2)1/2 \\ Y < KG\\X\\X, whereKG is the Grothendieck 
constant. 

PROOF. Ifx = E ^ j ^ ^EXE then, by Krivine's theorem [31], 

MH 1 /2 | | 
|(EI^I2I^I2) |r<^|(EI^I2N2) L = *GIMI* 

For any measurable function/ G Lo[0, oo) and a > 1 we define Tcf = fX{a-
x<\f\<ay 

We then define for x G CS+, 

¥(x) = supliminf ||Tfl((em(^))1/2)||r. 

LEMMA 6.5. There exists a constant C — C(X, Y) so that if 7] > 0 and b > 1, then 
whenever x > 0 , x G CSn with ¥(*) < r/ then there exists a clopen setD independent of 
Cn such that \(D) = I, max(||xXz)|U, ||x - XXD\\X) < Q/4)i/q\\x\\xand 

\n(T(x-2xDxj)l<CTi. 

PROOF. Let 77 = ¥(*). We first pick w G £o(A)+ so that ||JC||^ = HJCW-1^ and 
U\\x < Uw~l II, for all £ G X We write x = E z ^ <xEXE-

Suppose m>n. For a choice of signs eF = ±1 we write 

*c = E aE E 6 ^ ' 

We also let >>c = Jx£ G Y. 
Let x£,+ = max(xe, 0) and xe,_ = max(—x€, 0). We first estimate 

\\xzAqx<U\x\q™-q Y,(XF + eFhF)d\. 

\\xtA\qx-\\\A\qx<\ E eFfF\x\«w-«hFd\ 

This gives 

l l r - J l i - , 

Switching signs we get a similar estimate for ||xe,_||^ and hence 

FG-AL JF 

AveC / = ± 1max(|K+ | |^, |k_| | | ) < i||x||£ + ( £ {J^"-* *rf) 

by Khintchine's inequality. 
The second term here can be estimated by 

nrn(/FW"W-^A)I/2|W|f. 
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It follows that for large enough m we have 

For such m we have 

Avee/=±, max(||xe,+||«, \\xt-\\
9
x) < -\\x\\% 

Pr(max(||^,+ | |^||^,_||^) < | | | x | r ) > 2 

6 

We will now choose m subject to this restriction and such that 

where a = 6||JC||^/T/. Let G = {a~l < (Qmx2)xl2 < a}. Then since Fhas cotype q, for a 
suitable constant Q = Co(Y), 

(Ave ( /=± 1 |b£xG | ry)1 / < ?<Co| |xG(E E \<xE\2\ThE\2)1/2\\Y 

FcE 

= Co | |x G (^ ) 1 / 2 | | r 
<C0T,. 

On the other hand, if H is the complement of G and Bt = {b~l < \y(\ < b} then 
B(nHC {be! < T7lkllx1(e™^)I/2}U{Lv£| > \\x\\^-\Qm^)xl2}. It thus follows from 
Lemmas 6.1 and 6.4 that 

(Ave£l=±i \\TbytXH\\q
Y)xlq < C ^ I M ^ ' I K ^ * 2 ) 1 / 2 ^ < KGCxn. 

Hence 
(Ave C / = ± 1 | | W e | | ^ ) 1 ^<C 2 i / 

where C2 depends only on X, Y. 
Finally it follows there must exist a choice of e/r so thatmax(||jterf.||^, ||%c>_||̂ ) < | | |JC||^ 

and ||r/,je||f < 6C277. We conclude by writing E ^ F = ^XD — XA and then D satisfies 
our hypotheses. • 

LEMMA 6.6. Suppose inf{¥(jc) : ||JC||^ = l,x E CS+} = 0. Then there is a 
nonatomic Banach lattice Z which is lattice-finitely representable in X so that Z has 
an unconditional basis which is lattice-finitely representable in Ey. 

PROOF. Suppose N is a natural number. Let 7 = ( | ) l lq. Let C be the constant deter
mined in the previous lemma. We will select rj > 0 so that 

1 tfc (1-lfS .<mm^, 1 0 2 2 „ + 1 ( C + 1 ) j . 

We pick x E CS+ so that ||x||^ = 1 and ^(JC) < 77. Suppose x E CSn. We construct 
by induction a sequence of clopen sets (Fk)2

k=x ~
x, sequences (a*, WJLo1> anc* functions 

yk E Y for 0 < k < 2N+l - 1 so that: 
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(1) flo = 1 andFi = A. 
(2) Each Fk is independent of Cn. 
(3) Fk = F2kUF2k+l andX(F2k) = X(F2lc+l) = \X(Fk) for 1 < k < 2N- 1. 
(4) Fori <k< 2 " - l we have (\-l)\\xXFk\\x < \\*XFJXA\XXF2J\X <l\\xXFk\\x-
(5) ak < bk (1 < k < 2N+l - 1) and bk < (1 - lf82^k+7^aM for 1 < k < 2N+l - 2. 
(6) If h0 = x and then hk = X(2XF2I( - XFk) for 1 < k < 2N - 1 then \\Thk -yk\\ < 

(C+1)T/ . 

(1) yker(ak,bk). 
We start the induction as stated with ao = l,F\ = A,ho = x. We then select bo large 

enough so that ||77*o — T^07%0||r < 1 and set jo = n0Tho. 
Now suppose 1 < k < 2N - 1 and that {ajijl^ {bjfjl^ (yrflo a™* (Fj)j^1 have 

been determined. We first pick ak so that bk-\ < (1 - lf82~(k+6)ak so that (5) holds. 
Now ^(xxFk) < ^(jt) < V- Hence we are able to apply Lemma 6.5 to find a clopen set D 
independent of the algebra generated by the sets Cn and {F\,..., Fk_ \} so that X(D) = j , 
max(||xxF,nD|U, ||*Xny>IU) < 7 | |*XFJU, and 

\rak{T{xxFk - 2xXFknD))\\Y < Cr) 

where C is the constant of the previous lemma. 
We now letF2k = FkP\DandF2k+\ = Fk\D. Conditions (2) and(3) are immediately 

satisfied. Condition (4) follows from the triangle law. If we define hk by (6) we have 
11̂ 77**11 r < Crj. Therefore we can pick bk > ak so large that if G is the set where 
bk

l < \Thk\ < a? orak < \Thk\ < bkthen\\Thk-XGThk\\Y < (C+l^ .Let j* = XGThk. 
Then (6) and (7) follow. 

This completes the inductive construction. We now observe that for every 2N < k < 
2N+l - 1 we have (1 - if < \\xXFk\\ < 1N. In particular \\hk\\x >(l-lf for 0 < 
k < 2N - 1. Thus || 77**|| y < (1 - if 6. By choice of r/ this implies that \(\ - if 8 < 
\\yk\\Y < 1. Now we can appeal to Lemma 6.3 to deduce that (y*)^ 1 is 12-equivalentto 
a disjoint sequence in Ey. In particular it is 12-unconditional. Since || Thk —yk\\ \\yk\\

_1 < 
2(C+ 1)77(1 - 1)~N8-l we have 

E \\Th-yk\\ \\ykV < 2N+\C+ 1)(1 -iTNSrlr, < 1(T2. 
A:=0 

Hence (Th^l^1 is 24-equivalent to a disjoint sequence in Ey and hence (hk)lz^x is 
248~l-equivalent to a disjoint sequence in Ey. 

We can define a linear map L#: CSV —* ^ b y /^CXA^,. . .^)) — xXFk where k = 2N + 
\ Y!j=\ (1 — tj)2N~j. Then we can induce a lattice norm on CSN by \\f\\M = \\L^f\\x. Let 
U be a non-principal ultrafilter on N. We define for/ G CS, 

M\Z=\™M\N. 

Then || ||z is a lattice norm on CS with the property that if E G %x then (1 — if < 
\\XE \\Z < 1N- Thus the completion Z of this space is a nonatomic Banach lattice which 
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is finitely representable in X. Also the Haar system is clearly an unconditional basis of Z 
which is 25<5-1 -lattice finitely representable in Ey. • 

Before proving the next theorem, which is the main result of the section, we make 
some definitions. Let us denote by [0, co] the one-point compactification of [0, oo). Sup
pose (Q„, ̂ n)^L0 is a sequence of Polish spaces with associated cr-finite measures and let 
f„:Qn—+ [0, oo] be Borel functions such that for each a > 0 w e have {in(fn > a) < oo. 
We will say that {f„,fjLn)^L\ converges to (/o, fio) in law if and only if for every continuous 
function <j>: [0, oo] —+ R so that cj> vanishes on a neighborhood of 0 we have 

lim J (j>ofndpn = J <l>of0dfjLo. 

lffn converges to^b in law then it is not difficult to see that 

Mo(/b >a)< liminf \in{fn > a) < limsup\in(fn > a) < p0(f0 > a). 

Hence we can deduce thaty^ —> f£ a.e. on [0, oo) and for any r. i. space Y this implies 

that |[/o||r(Oo,Mo) < limimV^o |[/;||r(Q„,^). 

THEOREM 6.7. Suppose Y is an r. i. space on [0,1] or [0, oo) with nontrivial con
cavity. Suppose X is a good Kothe function space on (A, A) which is isomorphic to a 
subspace ofY. Then either: 

(1) There is a nonatomic Banach lattice Z which is lattice-finitely representable in X 
and such that Z has an unconditional basis, which is lattice finitely representable in Ey, 
or: 

(2) There is a cone-embeddingojXxj2 into Yij2-

PROOF. Let C be the (countable) algebra of clopen subsets of A. We define a compact 
space Q = [0, oo]^. We denote the co-ordinate maps on Q, by £# for E G C. 

Let us suppose first that Y = Y[Q, oo); we will describe the minor modifications for the 
case [0,1] afterwards. We suppose that Y is ^-concave with constant one where q < oo. 
Suppose p > 2q is fixed. Let T:X —* Y be a linear map satisfying for some 6 > 0, 
6\\x\\x < \\Tx\\Y < \\x\\x forx E X, and define Qn: CSn —• Z0[0, oo) as above. 

We make first the observation that, as Y is ^-concave, we have an estimate 11 \ [o,/] 11 y > 
tllq for t > 1 and hence ify <E 7 t h e n / W < rl \\y\\q

Y for t > 1. It follows that ify <E Y 
then 

j f min(l,MW2)A < 1 + \\y\\f < fi°r^dt < 1 + C0\\y\\f« 

for a suitable constant Co = Co(q,p). 
Let us define K„: [0, oo) —-> Q by & ° ^« = QniXE) if E G Cn and £E o Kn = 0 

otherwise. Let w be the weight function on Q defined by w = min( 1, £^). We will define 
a Borel measure vn on Q by 

vn(B)= [ mm(l,Qn(xAy)d\. 
JK„ B 

Let us first note that 

!/„(«) = Jmm(h(QnXAf)d\ < 1 + Q^q 
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so that the sequence of Borel measures (i/„) is bounded in M(€l). It follows that (i/n) 
has a weakMimit point v. Let us define /x„ = w~xvn and // = w~xv\ these measures are 
cr-finite. 

Note first that if U is an open subset of Q then i/(U) < limsupi/n(U). We use this 

first to argue that £# < oo, /i-a.e. for every E G C- In fact if a > 0 then in £ G G, we 

have !/„(& > a) < \(Qn(xE) > a) and by Lemma 6.4, a1/2 min(l, A(&(x£) > a)) < 

^GIIX^IU- Hence lim^oo v{£E >a) = 0 and so //(& = oo) = 0. 
Next we argue that if E,F G C are disjoint then ^ / r = £# + £F a.e. for /x. In 

fact, if £ > 0, let U be the set of LJ G Q such that £je(u;), £F(A>), C^UF(^) < oo and 
\&(v) + C F M - £EUKO>)I > £• Then if E,F G G, we have vn(U) = 0. Hence u(U) = 0 
and //(£/) = 0. Thus £# + £F = £JSUF

 a e - It follows that we can define a linear map 
So: CS^LoQi) by SO(XE) = U 

Now suppose/ G CSV. Let/ = E j ^ c^x^ where E\,...,EN&TQ clopen sets in A, and 
ak > 0 for 1 < k < N. Let g = E{Li a ^^* s o t h a t g=Sqf a.e. for //. Let M = E j ^ a*. 
Then/ < MXA and g < M£A, a.e. for /i. 

For any a > 0, let <̂ fl be a continuous function on [0, oo] such that <pa(t) = 0 if 
0 < t < \/(2Ma) and (fa(i) =\ift> \/(Ma). Then letgfl = (<pfl o £A)min(tf,g). Then 
rflg < g« < g, /x-a.e. 

For fixed a > 0, ga is continuous on Q. Furthermore for each n, \in(ga > 0) < 
M«(£A > (Ma)~l) < \(Qn(XA) > (Ma)~l) is uniformly bounded. If vn(k) converges 
weak* to v then for any continuous function ip on [0, oo] which vanishes in a neighbor
hood of the origin, we have 

lim [ gaw~ldisnk 
£—>oo Jil 

lim f ((fa o £A) max( 1, Qp) min(g, a) di/nk 
k-^ooJil 

JQ(<Pa o CA) max(l, £~p) min(g, a) dv 

j^gadn. 

Thus (ga, fink) converges in law to (ga, M)- Since Y is order-continuous, ga is bounded and 
the measures of the supports are uniformly bounded, this implies that 

l im| |gy2 | | r (^) = ||ga/2||r(/i). 
k—+oo * 

If E\,... ,EN G Cn then we have g > ga > rag a.e. for \in. It follows that we have 

||Tagi|r(^)<||ga||r(Mw)<||g||r(^). 
Note however that (g, //„) coincides in law with (Qtf, A) for if B is a Borel subset of 

(0, oo) then Vn(g-lB) = JriB w"1 dvn = \(^lg~lB) = \((QJ)-lB). 
Hence we obtain the estimate 

lim liminf ||Tfl(&/)1/2||r < \\gl,2\\n») < limsuplKg,/)1/2^. 
a—>oo n—->oo w—>oo 

lim fagadnnt = 
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We conclude that / G CS+ we have Wl/2f < W\\Y1/2^) < K2
G\\f\\Xl/2. Thus S0 

extends to a bounded positive operator S\XX j2 —> YXj2. If alternative (1) of the theorem 
is false then, by Lemma 6.6, S has a lower estimate and it is clear that S is a cone-
embedding, as required. 

In the case when Y = Y[0,1 ] we can regard Y as being embedded in a space modelled 
on [0, oo) and need only observe that in the above proof, the measures [in and \i have 
total mass at most one. • 

THEOREM 6.8. Suppose Y is an r. i. space on [0,1] or [0, oo) with nontrivial con
cavity, which is either strictly 2-convex or of Orlicz-Lorentz type. Suppose X is a good 
Kothe function space on (A, A) which is isomorphic to a subspace ofY. Then there is a 
cone-embedding of X\ j2 into Yx/2. 

PROOF. It is enough to show that the existence of Z in Theorem 6.7 leads to a con
tradiction. Suppose first that Y is strictly 2-convex; then Ey is also strictly 2-convex. This 
implies that the unconditional basis of Z is strictly 2-convex, and hence Z can contain no 
copy of l2\ however Z must have nontrivial cotype and this contradicts Lemma 2.4 of 

[in. 
If Y is of Orlicz-Lorentz type then Ey is lattice-isomorphic to a modular sequence 

space which has nontrivial cotype. Now the unconditional basis of Z is lattice finitely 
representable in Ey. This implies that Z also is isomorphic to a modular sequence space, 
also with nontrivial cotype. This can be established directly without difficulty, but is 
also a special case of more general results on ultraproducts of Orlicz spaces and Orlicz-
Musielak spaces, for which we refer to [12], [18] and [43]. This now contradicts Theo
rem 4.3 and Corollary 4.4 in [28] (which in turn extends an earlier result of Lindenstrauss 
and Tzafriri [32]). • 

7. The main results. Before proving our main results for embeddings of nonatomic 
Banach lattices into r. i. spaces, we first give an illustrative theorem for atomic Banach 
lattices. Compare this result with those of Johnson and Schechtman [22] and Carothers 
and Dilworth [8]. 

THEOREM 7.1. Suppose Y is an r. i. space on [0, oo) with nontrivial cotype, and sup
pose that either (a) Y is 2-convex or (b) py > 2. Suppose (un) is a strictly 2-convex 
unconditional basic sequence in Y. Then (un) is equivalent to a disjoint sequence. Equiv-
alently, ifXis a strictly 2-convex atomic Banach lattice which is isomorphic to a subspace 
of Y then X is lattice-isomorphic to a sublattice ofY. 

REMARK. We do not know if this theorem holds when Y is an r. i. space on [0,1]. • 

PROOF. Let us suppose that X is an atomic Banach lattice represented as a function 
space of N with canonical basis vectors en and that S: X —* Y is an embedding with Sen — 
un. Then by Theorem l.d.6 of [34] we can define a cone-embeddingL:Xx/2 —* Yx/2 by 
Len — |w„|2. The result is now obtained by putting together the facts previously estab
lished on cone-embeddings. SinceXj i2 is strictly 1 -convex L is a strong cone-embedding, 
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by Lemma 4.1; then since YXj2 has property (d) under either conditions (a) or (b), Propo
sition 4.5 shows that Xx/2 is lattice-isomorphic to a sublattice of Yxj2. But this implies 
the result. • 

We now prove the nonatomic version of the above theorem. 

THEOREM 7.2. Suppose Y be an r. i. space on [0, oo) with nontrivial concavity and 
either 

(a) Y is strictly 2-convex, or 

(b) Y is 2-convex and of Orlicz-Lorentz type, or 

(c) PY > 2 and Y is of Orlicz-Lorentz type. Suppose X be a strictly 2-convex non-
atomic Banach lattice. IfXis isomorphic to a subspace ofY, then X is isomorphic 
to a sublattice ofY. 

PROOF. We can of course assume that X is a good Kothe function space on (A, A). 
We first apply Theorem 6.8 to deduce the existence of a cone-embedding of XXj2 into 
Yx /2. Now the proof proceeds as in Theorem 7.1. • 

REMARKS. Let us first note that if Y is 2-convex then X must also be 2-convex at 
least; the hypothesis that X is strictly 2-convex is then equivalent to the hypothesis that t2 

is not lattice finitely representable in X(cf [21] Lemma 2.4). This result was previously 
known in the special case Y = Lp[0, oo) [21], Theorem 1.8 (the atomic case is proved in 
[16].) 

We now turn to the case when Y is an r. i. space on [0,1]; here our result is not quite 
as strong (exactly as in the atomic case: see discussion after Theorem 7.1). 

THEOREM 7.3. Let Y be an r. i. space on [0,1 ] with nontrivial concavity and suppose 
either (a) Y is strictly 2-convex or (b) py > 2 and Y is of Orlicz-Lorentz type. Suppose X 
is a nonatomic strictly 2-convex Banach lattice which is isomorphic to a subspace ofY. 
Then X contains a nontrivial bandXo which is lattice-isomorphic to a sublattice ofY. 

PROOF. We will consider X as a good Kothe function space on [0,1]. Then there 
is, by Theorem 6.8, a cone-embedding L:Xx/2 —• YXj2. Furthermore Xx/2 is ^-convex 
for some s > 1 and there exists in either case r > 2 so that Yxir has property (d). 
Proposition 4.6 then implies that for some Borel set E with \(E) > 0 the bandXjy2(^) 
is lattice-isomorphic to a sublattice of Yx/2. The result then follows. • 

We now turn our attention to the case when X is known to be an r. i. space. 

COROLLARY 7.4. Let Y be an r. i. space on I = [0,1] or [0, oo) with nontrivial 
concavity. Suppose either 

(a) Y is strictly 2-convex or 

(b) Y is of Orlicz-Lorentz type andpy > 2. 
SupposeX is an r. i. space on I = [0,1], with X ^ L2[0,1]. Assume that X is isomorphic 
to a subspace ofY. Then X is isomorphic to a sublattice ofY and there exists f G Y so 
thatX= F/[0,1]. 
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PROOF. Consider first case (a). By Proposition 2.e.l0 of [28] or Section 2 of [21] 
either^ = L2 orXis strictly 2-convex. The result then follows by the preceding Theo
rems 7.2 and 7.3. 

Case (b) is slightly different. In this case Theorem 6.8 implies that there is a cone-
embedding of Xx i2 into Yi/2- By Proposition 5.2, eitherXxj2 — L\ {i.e. X = L2) orX{/2 

is isomorphic to a sublattice of YXj2 and the result follows. • 

REMARKS. Some special cases of Corollary 7.4 are known. In [21 ] Theorem 7.7 the 
corollary is proved when 7 is a strictly 2-convex Orlicz function space. Later, Carothers 
[5] and [6] proves the same theorem for Lorentz spaces Lp^q where p > max(<7,2). 
Carothers considers first the strictly 2-convex case (2 < q < p) and later modifies the 
proof to the case 1 < q < 2 < p. Note that in these cases and in more general Lorentz 
spaces considered by Carothers one has the additional information that every fy[0,1] co
incides with y[0,1]. This is equivalent to an inequality of the form ||/*®g|| Y < K\\f\\ r||&|| Y 
forf,g £ y[0,1]. This additional information is actually used in the proof. 

For reference let us state one additional case which follows from Theorem 7.2 and 
Proposition 3.3. 

COROLLARY 7.5. Let Y be an r. i. space on [0,00) with nontrivial concavity which 
is 2-convex and of Orlicz-Lorentz type. Let X be a strictly 2-convex r. i. space on [0,1] 
which is isomorphic to a subspace ofY. Then there exists/ G Y so thatX— Yf[Q,1]. 

Let us note the following special case. 

COROLLARY 7.6. Suppose 2 < p < 00 and Y is a p-convex r. i. space on [0,1] 
or [0,00) with nontrivial concavity. Suppose Lp is isomorphic to a subspace ofY. Then 
Y[0,l]=Lp[0,l]. 

PROOF. It follows from Corollary 7.3 thatZ^O, 1] = Yf[091] C 7[0,1] but Y[0,l]c 
Lp[0,1] since Y isp-corwex. m 

REMARKS. The condition that Y is p-convex cannot be relaxed here (cf. [19]). We 
remark that analogues of Corollary 7.6 for 1 < p < 2 have been proved in several places 
in the literature. In the case/? = 1, then L\ embeds into a separable r.i. space 7[0,1] 
if and only if 7[0,1] = L\ [0,1]. This is proved under the additional hypothesis that Y 
has nontrivial cotype in [21] (cf. [34] Corollary 2.e.4); it is proved under the hypothesis 
that Y does not contain CQ in [23]. The result with no additional hypothesis follows from 
Theorem 10.7 and Theorem 7.3 of [27]. For the case 1 < p < 2 a similar result holds 
when Y is separable and/?-convex provided one eliminates the possibility that Y contains 
a disjoint sequence equivalent to the Haar basis of Lp[0,1] (see Theorems 7.3 and 10.7 
of [27].) 

In our final result we consider the case when instead Y is /?-concave for some p > 2 
and Lp embeds into X. 
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THEOREM 7.7. Suppose 2 < p < oo and that Y is ap-concave r. i. space on [0,1] or 
[0, oo). Suppose thatLp is isomorphic to a subspaceofY. Then, either: 

(a) The Haar basis ofLp is lattice finitely-representable in Ey or 
(b) Y[0A]=Lp[0M 

In particular, ifYis strictly 2-convex or of Orlicz-Lorentz type, then 7[0,1] = Lp[0,1]. 

PROOF. We will apply Theorem 6.7. First suppose that Z is a nonatomic Banach lat
tice which is lattice finitely representable in Lp, which has an unconditional basis lattice 
finitely representable in Ey. Then of course Z = Lp. It follows from the reproducibil
ity of the Haar basis (Theorem 2.C.8 of [34]) that the Haar basis is also lattice finitely 
representable in Ey, contrary to hypothesis. 

We conclude that Lpj2 can be cone-embedded into Yxj2. Now the result follows im
mediately from Proposition 5.3. • 

REMARKS. Here, the condition that Y is/?-concave cannot be relaxed ([ 19]). We give 
a simple application. Suppose 1 < r < 2 < p and Y = (Lr + Lp)[0, oo). It follows from 
the above theorem that Lp is not isomorphic to a subspace of 7 which answers a question 
raised in [17]. 

8. Complemented subspaces of r. i. spaces. The following result is quickly de
duced from the methods of [27]. 

THEOREM 8.1. Let Y be a separable order-continuous Banach lattice, which con
tains no complementedsublattice isomorphic to £2- SupposeXis a Banach lattice which 
is isomorphic to a complemented subspace of Y. Then either: 

(a) There is a constant Cso that, for every n, £2 is C-lattice-isomorphic to a comple
mented sublattice ofX, or: 

(b) There exists N so that X is lattice isomorphic to a complemented sublattice of 

PROOF. We will prove under the assumption that X is nonatomic. (An exposition of 
the atomic case, which is proved by the same techniques, will be given in [10].) In this 
case we may suppose that both X and Y are good Kothe function spaces on (A, A) and 
thatZhas the "strong density property." By combining Theorems 6.1 and 6.3 of [27] it is 
possible to find a sequence of Borel maps an: A —• A and three sequences (a£), (a%), (a%) 
of nonnegative Borel functions on A so that a%(s)2 < a^(s)a^(s) and if: 

oo 

Pf=T,<fr°°n 
n=\ 
oo 

n=\ 
oo 

Rf=T,aRJoa„ 
n=\ 

for/ G (Lo)+ then we have for a suitable constant Cx that \\Pf\\x < Ci\\f\\\9 \\Qf\\Yl/2 < 
C\ |[/1U1/2, and \\Rf\\ y*/2 < Cx ||/1Uj . Note here that Q need only map into rmax,1/2 and 
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not necessarily into YXj2. Now by Theorem 6.4 of [27] it can be seen that if the first 
alternative fails then there is a constant c > 0 so that 

/ supcfifo an dX>c fdX 
J n J 

for/ > 0. We now use an argument due to Dor [15]. Consider the map T: L\ —> L\{CQ) 
defined by Tf{s) = (a%(sy(an(sj). Then || T\\ < Q and || Tf\\ > c\\f\\. Note that since c0 

has separable dual, Ii(co)* can be identified with Z,oo(£i). By the Hahn Banach theorem 
there exist </>„ <E loo so that \\z™=l \(j>n\ f̂  < Qc~l and 

OO - /. 

£ H>naP
nfoand\= fdX 

n=\J J 

f o r / G l i (A). 
Now for each n define E„ = {s : (f)„(s) > (2C\ )~l}. Then for/ > 0, 

Hence 

tjEm&oamdX>JLffdX. 

Notice that E ^ i X£„ < 2Ci ££Li |<M < 2C\c~x almost everywhere. Let AT be the 
least integer greater than 2C\c~x. Consider the operators P\ Q' and R' defined by 

oo 
P'f= H ^nXEj° an 

n=\ 
oo 

Q'f=Z"hEf°*n 
n=\ 
oo 

R'f=H^XEjoan. 

Then these operators can each be rewritten in the form, 

R'f=j:bRjo-Kn. 

for suitable nonnegative Borel functions b%,b%,b%, for 1 < n < N, which also satisfy 
(K)2 ^ b%bn a e > a n ( i f° r suitable Borel maps 7r„: A —» A. 
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Now define U:X^ Y»m, V:X* -> (Y*f, by 

Uf(s,n)={bQ(s)fl2f{-Kn{sj) 

Vf(s,n) = (bR
n(s)y/2f(^(s)). 

It is easy to see that U is bounded for 

. i/2|i 
m a x | | [ / / ( - , n ) | | y < | ( E ^ ^ B ) 2 ) 
\<n<N II V„_i / 

= WQ'fXH 

^1/2 

<c\/2W\x. 

<\\QfXu 

Similarly V is bounded. 

The proof is completed by Proposition 2.3 of [27], for if F is a Borel subset of A then 

E L A W W ^ A > E y• AforfA 

This theorem has immediate consequences if Y is an r. i. space. 

THEOREM 8.2. Let Ybea separable r. i. space on [0,1 ] or [0, oo), which contains no 
complemented sublattice isomorphic to li- Suppose X is a strictly 2-convex or strictly 
2-concave Banach lattice which is isomorphic to a complemented subspace ofY. Then 
Xis lattice-isomorphic to a complemented sublattice ofY. 

We remark that Theorem 8.2 is closely related to Theorem 8.1 of [27], and could be 
used to simplify some of the arguments in the proof of that theorem somewhat. 
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