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NORM DECREASING HOMOMORPHISMS BETWEEN 
IDEALS OF Z/(G) 

N. J. KALTON AND G. V. WOOD 

1. Introduction. Let G\ and G2 be compact groups and T : Lp(Gi) —> LP(G2) 
(1 S P ^ oo ) be an algebra homomorphism. If | | r | | ^ 1 and T is either a 
monomorphism of an epimorphism then T can in many cases be explicitly 
characterized (see [4 ; 8 ; 9 ; 11 ; 13 ; 14] ). Excluding p = 2, the outstanding cases 
are 1 < p < oo for monomorphisms and 2 < p < co for epimorphisms (cf. 
[14]). One aim of the present note is to complete this work. We also consider 
the problem of extending these results in some form to homomorphisms on 
ideals of group algebras; the only known result in this area is for abelian groups 

[3]. 
The characterization of isometries on subspaces of Lp-spaces that preserve 

the constant functions has recently been completed by Rudin [10]. However, 
in this paper we use the techniques in the earlier work of Forelli [2]. We extend 
his ideas in Section 2, mainly with applications to group algebras in mind, 
although we believe there is some independent value for these results. The main 
theorems are in Section 3. 

2. Lp-norm decreasing operators. Throughout this section X and F will 
be compact Hausdorff spaces and \x and v will be probability measures on X 
and F respectively such that whenever U Ç_ X and V C Y are open and 
non-empty then /*([ / )> 0 and v(V) > 0. We denote by LP(X) and LP(Y), 
(1 ^ p ^ °° ) the spaces of complex L^-functions on (X, n) and (F, v). As 
usual 

11/11, = {fx I/I^M} feLp(x),p < co 

ll/IU = M - e s s . s u p l/l fÇLœ(X) 
and similarly for LP(Y). We shall identify functions which are equal /x-a.e. 
or i/-a.e. 

Our first lemma is a trivial generalization of a result of Forelli [2, Proposition 
1]. We omit the proof, which is identical to Forelli's. We denote the constantly 
one function on X or F by 1. 

LEMMA 2.1. Suppose 1 ^ p < oo, / £ LP(X) and g £ LP(Y) and 

\\l+zf\\p^ ||1 +zg\\p for all z G C. 

Then\\f\\2 ^ ||g||2 (in particular, iff G L2(X) then g Ç L2(Y)). 
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As an immediate application, we have 

THEOREM 2.2. Suppose 1 ^ p < oo and 7' : LP(Z) —>LP(X) is a linear 
operator satisfying 7T = 1 and \\T\\ = 1. rfrew /frere is a sub-a-algebra 2 0/ /fre 
Borel sets of X such that Tf = f if and only if f is H-measurable. 

Proof. Let An = (l/n){T + . . . + Tn). For p > 1, An converges in the 
strong operator topology to a contractive projection onto E — [f : Tf = / } , 
by the Ergodic Theorem [1, p. 662]. Since E is the range of the contractive 
projection, the result follows from the known form of such projections [6, p. 162]. 
For p = 1, we observe that, by Lemma 2.1, j | r / 1 | 2 ^ 11/112, and hence applying 
the Ergodic Theorem to L2(X), Anf converges for/ G L2. Hence (see [1, p. 662, 
Cor. 2 & 3]) An converges to a contractive projection on Li and the result 
again follows. 

Remark. It is not difficult to deduce from Theorem 2.2 the more general 

THEOREM 2.3. Let (S, 2, X) be a probability space and T : LP(S, 2, X) —> 
LP(S, 2, X) be a linear operator with \\T\\ = 1. Then there is a sub-<J-algebra S0 

of 2 and B £ 20 such that Tf = f if and only if f is 2 ̂ -measurable and 

X{s: |/(5)| > 0,s d B} = 0. 

For our next theorem, we need the following technical lemma. 

LEMMA 2.4. Suppose {ajfc : j , k = 0, 1, 2, . . .) and {bjk ; j , k = 0, 1, 2, . . .} 
are complex numbers satisfying 

(i) ajk = âkj, bjk = 5*,; 
(ii) ajjbjj ^ Q for all j , and ajjbjj = Q implies aj3- = 6^ = 0; 

(iii) /fore exis/s r > 0 such that for \z\ < r, the doubly infinite series X)?=o 
]C?=o (ijkZjzk and YH=o ]Q£=o bjkz

jzk converge absolutely, and 
OO CO CD OO 

Z Z <*,**¥ è o è l l M'S*. 
Thenajk — 0forallj,k. 

Proof. For 0 < p < r 

/

27T CO CO OO 

Z Z « i*P m expi ( j - A)ftfe = Z a«P*' ^ 0 
0 jf=0 fc=0 j = 0 

and similarly 

£ *„P2' ^ 0. 

It follows easily by induction that a^ = bj:j = 0 for all j . Hence, as the 
integrand in (1) is everywhere non-negative, we conclude 

OO CO 

X) Z) ajkz
3zk = 0 \z\ < r. 

Thus ajk = 0 for all j , k. 
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THEOREM 2.5. Let L be a subspace of C(X) containing 1 and separating the 
points of X. Suppose T : L —> C(Y) is a linear operator satisfying T\ = 1 and 
such that for some p, r 1 ^ p < oo , 1 ^ r < c o where neither p nor r is an even 
integer, 

\\Tf\\, z \\f\\, feL 
| |7y | | r£| | / | | r fei. 

Then there is a continuous map a : Y —> X, satisfying v(a~l(B)) = n(B) when
ever B is a Borel subset of X, such that 

Tf(y) = /(«(?)) ye YjeL. 
In particular T extends to a multiplicative homomorphism of C(X) into C(Y). 

Remark. This theorem may be regarded as a generalization of a theorem of 
Forelli [2]. The most obvious application is the case p = r when T is an 
isometry on L. 

Proof. F o r / G L and z 6 C, 

f \l+zTf\pdvè \ \l+zf\pd». 

For small enough |z|, s ince/ and Tf are bounded, 

ii + */r = (i + zfY/2(i + zfy/2 

-1 g (f ) (fhrr 
and 

Hence for small |z|, 

Z £ ajkz>? ï£ 0 

where 

»*=(T)(f)(//^-I™'™**)-
Similarly, for small \z\, 

oo oo 

£ £ 6^2* ̂  0 

where 

**-(f ) ( f ) ( J>^ - X w)w>*4 
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Clearly 

°"»" " {Pj2)\rj2)lfjJ'*> ~ L WW**] * ° 
and so we may apply Lemma 2.4 to conclude that for / (E L 

f ffdn = f (TfYÇTffdv j , k = 0, 1, 2, . . . 

This implies (by expanding) 

f | l + / | 2 w = j \1 + Tf\2m for all m ^ 1, /e L. 

In particular for/i . . . fn £ L, Zi . . . zn £ C and m 6 N, 

f |1 + *i/i + . . . + Wn|2wdM = f |1 + aiT/i + . . . + znTfn\
2mdv 

J X J Y 

and so expanding and equating coefficients 

f / i V • • -/ /"/iY 1 • • J , 7 " ^ = f (Tf^iTfrf* . . . {J%rndv 
%J x *J Y 

where /3j, yj = 0, 1, 2, . . . . 
Hence if P is any polynomial in 2w-variables 

f P{h . . .fn,h . . J„)d» = f P{Tfy ...Tfn,f%--- Wn)dv. 
U x v Y 

Let A be the subalgebra of C(X) generated by L and its complex conjugates, 
i.e. the space of all polynomials P(fi . . . /w , / i . . .fn) for/i . . ./„ f L. We define 
5 : ,4 - * C ( F ) by 

5 ( P ( / i . • . /„ , / i • . ./»)) = P(Th • • • Tfn, Tfi • • • 7£ ) 

5 is well-defined since if P(fi . . . / n , / i • • -Â) = 0 , 

Jip(/i-../»,/i.../or^ 

= J P ( / l . . . / „ / i • • ./n)P(/l • • . /„ , / l • • ./„)dM 

= f\P(Tf1...Tfn,Wi...Wn)\2dv. 

Hence P(Tfi . . . Tfn, Tfi . . . Tfn) = 0 ^-almost everywhere, and by our 
assumptions on vy P{Tf\ . . . Tfn, Tfi . . . Tfn) = 0. 

Similarly to this calculation we may show 

I \Sa\2mdv = j \a\2mdfjL o 6 ^ , w 6 N . 
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Hence \\Sa\\œ = limm^œ \\Sa\\2m = limm^œ ||a||2m = ||a||œ. Thus 5 is a || • \\œ 

isometry on A. A is dense in C(X) by the Stone-Weierstrass Theorem and so S 
may be extended to an algebra homomorphism S : C{X) —> C(Y). Hence 

Sf(y) = f(ay) 
for some continuous map a : Y —» X. It is trivial to see that 

f 5/dv = f /<fo / € C{X) 

and so a is measure-preserving (The last part of this theorem would follow 
from [10, Theorem II]). 

THEOREM 2.6. Suppose l^p<co}p^2 and T : C(X) —> LP(Y) is a 
linear operator satisfying 71 — 1 and \\Tf\\p S \\f\\v (/ £ C(X)). Le£ L = 
{/ : Tf £ C(F) ; | | r / | | 2 = H/H2}, ^wd suppose L separates the points of X. Then 
there is a continuous map a : Y —>X swc/z- JfeaJ if B is a Borel subset of X, 
V(a-

1(B)) = n(B), and 

Tf(y)=f(a(y)) v-a.e.,f£C(X),yeY. 

Proof. By Lemma 2.1, | |JT||2 ^ 1. By the Riesz Convexity Theorem, for any 
r between 2 and p, \\T\\r = 1. Thus, without loss of generality, we can assume 
that neither p nor q = p/p — 1 is an even integer or GO . 

Suppose/ G L and g £ C(X). Then 

J \T(f+rei6g)\2dv = J | / + r ^ g | 2 d / x r > 0, 0 g 6 < 2ir 

and hence, letting r —•» 0, 

Reet9 frfTgdv^R^e*9 f 

Hence 

J r/rg^ = J/g^. 
In particular it follows that if g £ L then 21/ + z2g (z L, i.e. L is a linear sub-
space of C(X). Also if / G L, then 

l l / l l / - ^ l l l / l - ' s g n / l l . è | | r ( | / | « - i s g n / ) | | p 

where sgn z = eie iî z = reie r > 0, 0 ^ 6 < 2ir, and sgn 0 = 0. Therefore 

\\TfMfl\r1 è I / TfTQfr1 sgn f)dv\ 

= IJ/i/r'sgn/^l 
= 11/11/. 

Hence Hr/ | | t è | | / | | , for/<E L. 

(by Holder's inequality) 

file:////TfMfl/r1
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Now by Theorem 2.5, there is a continuous map a : F—» X such tha t a is 

measure preserving and 

my) =/(«(y)) y€ Yj£L. 

Define5: LX{X)-+LX{Y) by 

5/(y) =/(«60). 

Then 5 is an isometry on LP(X) for all £. S(Li(X)) is a closed subspace of 
P i ( F ) on which there is a conditional expectation projection P with | | P | | = 1. 
(See [6, p. 158]) For each p, the restriction of P to LP(Y) will also have norm 
one as a map between Pp-Spaces. Let T be the natural extension of T to 
L P ( X ) , and consider U = S~lPf : LP(X) -* LP(X). Then || £/||p g 1, and so 
by Theorem 2.2 the set {/ £ C(X) '. Uf = f] is a closed subalgebra 
containing 1 and complex conjugates, and separating points. Hence Uf = f 
for a l l / G C(X) . T h a t is PT = S on C(X). Since P is an orthogonal projection 
on L2{X) and | | P 7 / | | 2 ^ ll/lh è l l ^ / lh è I I ^ T l k for a l l / £ C(X) , we have 
PT = T on C(X) . T h u s 5 = T on C(X) and the result is proved. 

Example. Let {(pn : n ^ 0} and { n̂ : n ^ 0} be two orthonormal sequences 
in L2(0, 1) consisting of continuous functions, such tha t <̂ 0 = ^0 = 1, both 
{<pn} and {\pn} separate the points of [0, 1]. Suppose for some p ^ 2, 

/

•1 I 00 U r i 

£ (/,^)^J (teg |/|^x fec[o,i]. 
0 I n=0 I J 0 Then both sequences are complete and either 

<Pn(%) = tn(x), n = 1, 2, . . . or pn(x) = ^ ( 1 - x) , n = 1, 2, . . . . 

This is an immediate deduction from the preceeding theorem applied to 

the map T : C["0, 1] -> Lp[0, 1] defined by 

00 

Tf=Z (/- «.)*»• 
n--=0 

3. Appl i ca t ion to group algebras . Let d and G2 be compact groups with 
identities eY and e2, and with normalized Haar measure. We denote by Soc (Gt) 
the set of continuous functions on Gt(i = 1, 2) whose translates generate 
finite-dimensional vector spaces. Then Soc (Gt) is the socle of the convolution 
algebra Lv{Gi) for 1 rg p < 00 and of C(Gi). Let (?* denote the set of con
tinuous homomorphisms from Gi into the circle group. 

L E M M A 3.1. Let N be a minimal two-sided ideal in L2{G\) and T : N —> L2{G2) 
be a convolution algebra homomorphism with \\T\\ g 1. Then if T ^ 0, P is an 
isometry. 

Proof. In this proof, we use the fact (implicit in [7]) tha t if e is an idempotent 
in a minimal ideal of L2(G) of dimension n2, then | |e | |2 ^ \/n with equali ty if 
and only if e is minimal and self-adjoint. We see this as follows. Certainly 
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minimal self-adjoint idempotents have norm \/n [7, p. 158]. Since any self-
adjoint idempotent is the sum of minimal ones which are mutual ly orthogonal 
[7, p. 102], the result is clear for self-adjoint idempotents . Finally for a general 
idempotent e, let / be a non-zero self-adjoint idempotent in the left ideal 
generated by e (see [7, p. 101]) and g = e — f. Then / * g = 0. Since / is 
self-adjoint, this m e a n s / JL g and so | |e | |2 = | | / | | 2 + | |g| |2 ^ | | / | | 2 with equali ty 
only if e is self-adjoint. 

Now N is algebraically isomorphic to a full matr ix algebra of dimension m2, 
say. LiiGi) is the /2-sum of its minimal two-sided ideals {Ja : a Ç ^4} where 
each Ja is a full matr ix algebra of dimension ma

2- Let Pa be the orthogonal 
projection of L^G^) onto Ja\ Pa is an algebra homomorphism. If PaT ^ 0 
then, since N is simple, PaT is injective and hence ma ^ m. 

Let e be a minimal self-adjoint idempotent of N. Then ||e||2 = "s/m. Hence 
11 ^ | | 2 ^ \Zm. However Te = J^B ea where B is the set of a such t ha t PaT ^ 0 
and e« is a non-zero idempotent in Ja. Hence 

B B 

and as each ma ^ m for a £ B, B consists of one member â and ra« = m. 
Thus ||7"e||2 = y/niâ and so Te is a self-adjoint minimal idempotent in / s . 
Hence T is a *-map since N is the span of its minimal self-adjoint idempotents , 
and T(N) = Jâ since the dimensions of N and Jâ are equal. Let r denote the 
trace on TV or / 5 . Clearly T(Tf) = T ( / ) . Hence Tf(e2) = / ( * i ) for / G N. 
(c.f. [12, Lemma 1 and Corollary]). 

T h u s if/ G N, 

\\Tf\U2= f \Tf(x)\2dx 

= (Tf)**(Tf)(e2) 

= /**/fe) 

= I l/l h*. 
If Gi and G2 are compact groups and 6 : Gi —» G? is an epimorphism then 6 

induces two natural algebra homomorphisms: 

Ae : Lp(Gt) -> L^G,) (1 S P < *>) 

A./(*) = / ( t e ) 
and 

n„ : Z p ( G i ) - > Z p ( G 2 ) ( l ^ £ < c o ) 

n«f(to) = f /foOdy 
^ ker0 

where the integration is with respect to the invariant measure on ker 6. 
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T H E O R E M 3.2. Let Gi and G2 be compact groups and 1 ^ p < oo (p j* 2). 

Let T : LV(G\) —* LP(G2) be a norm-decreasing algebra homomorphisrn such that 
T\ = 1. Then there is a compact group 77 and epimorphisms 6\ : Gi —» 77, 
O2 : G2 —> H such that T = A#2 o H^. 

Proof. Let / be the linear span of the minimal two-sided ideals not included 
in the kernel of T. 

(a) Suppose J separates the points of G\\ then by Lemma 3.1 and Theorem 
2.6, we obtain a map 6 : G2 —> G\ which is continuous and surjective and such 
tha t Tf(x) = f(6x). I t is easy to show tha t 6 is an epimorphism and so T = A#; 
in this case 6 = 62 and B\ is the identi ty map. 

(b) In general, let 

K= {*: /(*) = / ( e > ) ; / 6 ; ) . 

Then X is a closed normal subgroup of Gi; let 77 = Gi/K and 0i : G\ —> Gi/K 
be the natural quotient map. Then T = S o 11^ where 5 : LP(H) —> LP(G2) is 
a norm-decreasing a lgebrahomomorphism (5 = J ' o A ^ ) . I f / ' i s the linear span 
of the minimal two-sided ideals in LP(H) not included in the kernel of S, then 
/ ' = 11^ ( / ) separates the points of 77. Now apply (a) to S. 

Theorem 3.2 can be applied when T(G\) T^ 0, and this is the case when T is 
either a monomorphism or an epimorphism. Let X be a character on G\\ then by 
Ax we denote the automorphism of LP{G\) defined by Axf(x) = \(x)f(x). 

T H E O R E M 3.3. Let G± and G2 be compact groups and 1 ^ p < oo (p ^ 2). 

Suppose T : LP{G\) —> LP(G2) is a norm-decreasing algebra homomorphism. 
(i) If T is an epimorphism, then T = TLe o A\ where X Ç Gi and d : Gi —* G2 

is an epimorphism. 
(ii) 7/ 2" is a monomorphism and 1 < p < co } then T = i x o Aj where 

X £ G2 awd 6 : G2-^ Giis an epimorphism. 
(iii) If T is a monomorphism and p = 1, tffeere is aw o£e?z subgroup H of G2 of 

index n, \ £ H and 6 : H —* Gi an epimorphism such that 

Tf(x) = n\(x)f(dx) x e H 

= 0 x $ H. 

Proof, (i) r - 1 ( C . l ) is an ideal of Lp{Gi) strictly larger than r _ 1 ( 0 ) . Hence 
there is a minimal ideal / such tha t J C\ T~l(0) = (0) and T(J) C C . l . T h u s 
J has dimension one and there exists X-1 £ G\ such tha t T\~l = 1. T h u s 
T o A\-\(l) = 1, and so by the preceding theorem T o A\-i = U$ as required 
(02 is an isomorphism since T is surjective) and hence T = He o A\. 

We omit (ii) in view of its similarity to (iii) (which is more difficult). 
(iii) By [14, Lemma 2], since 71 is a norm one idempotent in Li(G2), 

Tl = n\(x) x G 77 

= 0 x g 77 

where 77 is an open subgroup of index n and X £ 77. 
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Now if / 6 Soc Gi, then Tf G Soc G2 since Soc G* is the linear span of idem-
potents . (Since Soc Gt is dense in Ll{Gi), if / G L1(Gl), multiplication b y / is 
a compact operator on Ll(G). T h u s if/ is an idempotent it mus t act as a finite 
rank operator i.e. / G Soc (Gi).) Now we have 

±- r ' | | l + r e " / | | 1 ^ = l+o(r) 
LTV J 0 

by expanding as in Section 2. Hence 

I C2T 

- I I i n + r e i ' 2 7 | | i d 0 ^ 1 +o(r). 
TV J 0 

_1 ' ' * 

27T */ 0 

However 

if 
27T J 0 

i n + re'T/llide 

= T " I I |w + r e i 9 X(x) r / (x ) [ ( /x^ + j f j - I I |r/(*)|<*«f0 
Z7T a/ 0 ^ iy 27T «^ 0 J Gi—H 

= 1 + |r| I | r / ( x ) | d x + o(r) . 

Hence \Tf(x)\ = 0 for x G JÏ. If we define 

5/(x) = - -X(x)7 / (x) x G H 

then S'. Lp(Gi)-* LP(H) is a norm-decreasing monomorphism such t ha t 
51 = 1. Now apply Theorem 3.2. 

T H E O R E M 3.4. For 1 ^ p < co, p not an even integer, let J be a closed ideal in 
LV(G\) with 1 Ç / . Let T be an isometry of J into LV(G2) such that T\ = 1. Then 
there is a compact group H and epimorphism B\ : Gi —> H and 62 '. G2 -^ H such 
that Tf = A*2o n 0 1 / ( / G / ) . 

Proof. Let K = {x : / ( x ) = /(<?i) / G / } ; i£ is a closed normal subgroup of 
G\. Let i 7 = Gi/K and 0X : Gi —> H be the natural epimorphism. Let 5 = T o 
Afl! on A ^ - 1 ^ ) . Then A ^ - 1 ^ ) is a closed ideal of LP(H) separat ing the points 
of H. Now apply Theorem 2.5 to deduce t ha t 5 = Ae2 where 62 : G2 —> H is 
an epimorphism. Hence T = Ae2 o 11^. 

Remark. The condition 7T = 1 can be relaxed to the condition t h a t 7T is 
a norm one idempotent . However, it cannot be removed altogether. In [5], 
there are examples of norm-decreasing homomorphisms between ideals of 
LV(G) wi thout the condition 7 1 = 1 and which have quite a different form to 
those in Theorem 3.2. T h a t paper is primarily concerned with the correspond
ing problem for C(G), where different techniques are required. 
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