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INCLUSION THEOREMS FOR Z-SPACES 

G. BENNETT AND N. J. KALTON 

1. N o t a t i o n a n d pre l iminary ideas . A sequence space is a vector subspace 
of the space co of all real (or complex) sequences. A sequence space E with a 
locally convex topology r is called a K- space if the inclusion map E —* co is 
continuous, when co is endowed with the product topology (co = II^Li (R)*). 
A i£-space E with a Frechet (i.e., complete, metrizable and locally convex) 
topology is called an FK-space; if the topology is a Banach topology, then E 
is called a BK-space. The following familiar BK-spaces will be impor tan t in 
the sequel: 

ni, the space of all bounded sequences; 
c, the space of all convergent sequences; 

Co, the space of all null sequences; 
lp, 1 ^ p < ° ° , the space of all absolutely ^-summable sequences. 

We shall also consider the space <j> of all finite sequences and the linear span, 
Wo, of all sequences of zeros and ones; these provide examples of spaces having 
no FK-topology. 

A sequence space is solid (respectively monotone) provided tha t xy £ E 
whenever x 6 m (respectively m0) and y £ E. For x £ co, we denote by 
Pn(x) the sequence (xi, x2, . . . xn, 0, . . .) ; if a i£-space (E, r ) has the proper ty 
t h a t Pn(x) —» x in r for each x G E, then we say tha t (£ , r ) is an AK-space. 
We also write 

WE = \x Ç £ : P„.(x) —>x weakly} 
and 

^ = jx Ç E: Pn{x) —>x in r } . 

One of the most natura l ways of defining X-space topologies is by considering 
dual pairs of sequence spaces. If E is a sequence space, Ave write 

E? = \y £ w:]C XJ30' converges, for each x (E £ r 

so tha t , if F is a vector subspace of E&, E and F form a dual pair under the 
natura l bilinear form 

oo 

(x, y) = Z xtfj. 
3=1 

We may then consider topologies of this dual pair, for example, the weak 
topology cr(£, F) and the Mackey topology r ( £ , F). (We follow the notat ion 
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of Schaefer [23].) If F "D #, then £ is a K-space in any (E, F) dual topology; 
topologies of this type have been considered in some detail by Garling [6; 7]. 

We shall also mention the a-dual of a sequence space E, defined by 

Ea = iy Ç c o : ^ \xjyj\ < oo, for each x £ E r . 

It is clear that E is always contained in Eaa = (E")a; if £ = Eaa!, then E is 
called a perfect sequence space. 

In this paper, we investigate the properties of a X-space E by considering 
various properties of the inclusion maps E —> F, where F is an arbitrary 
FK-space. In particular, we give criteria for E to be barrelled and to have a 
weakly sequentially complete dual space. We also study some inclusion 
properties for summability domains. 

2. Barrelled spaces. 

PROPOSITION 1. Let E be a Banach (respectively Frechet) space and let E0 be 
a dense linear sub space of E; then the following statements are equivalent: 

(i) EQ is barrelled; 
(ii) if F is a Banach (respectively Frechet) space and T : F —> E is a con

tinuous linear map with T(F) 2 E0, then T(F) = E. 

Proof. We shall give the proof only in the case when E is a Banach space; 
the same method then gives the corresponding result for Frechet spaces, 

(i) =» (ii). Let N = r_1({0}) and consider the induced injective map 

S : F/N -> E. 

Then S (F/N) = T(F) 2 E0, so that there is an inverse map R : E0—^ F/N. 
We now apply the closed graph theorem for barrelled spaces [21, p. 116] to 
deduce that, since R has closed graph (S is continuous), R is continuous. If 
x 6 E, there exists a sequence {xn}n=i of elements of E0 with {RXn}n=l 
is then a Cauchy sequence in F/N and so, since F/N is complete, there exists 
y e F/N with Rxn —> y. It follows that 

xn = 5i?xw —> Sy 

so that x = Sy and T(F) = 5(F/iV) = E. 
(ii) => (i). We use Mahowald's theorem [17, Theorem 2.2]; let G be a 

Banach space and suppose that T : E0 —* G has closed graph. Define a new 
norm on £ 0 by 

IIWII = IWI + l|2"*||, 
so that |||x||| ^ ||x||. Let F be any completion of (E0l \\\ • |||) and let J be the 
unique continuous extension of the identity map 

(E„, | | | . | | | ) ->(£o, |H|) 
where / : F —» E. By hypothesis, since J(F) 2 E0, we have J(F) = E. 
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We next show tha t J is injective: let x G F be such tha t Jx = 0. There 
exists a sequence {xn}n=i of elements of E0 with 

l l l*-*»ll l-»o. 
I t follows t ha t {xn}n=i is Cauchy in E and {Txn}n=i is Cauchy in G; bu t Jx = 0 
so tha t \\xn\\ —-> 0, and, since T has closed graph, | | rx w | | —> 0. T h u s 

IIWII-^o, 
giving x = 0. 

T h u s J is bijective; by the closed graph theorem, J~x is continuous and we 
have, for x G E0, 

IIWII ^ ll-MI IWI, 

||r*|| ^ (||/-i|| - D I M , 
so t ha t T is continuous. We now apply Mahowald 's theorem to deduce t h a t 
E0 is barrelled. 

As a direct consequence of a result of Seever [24, Theorem 3.3] we have 

COROLLARY. m0 is a barrelled sub space of m. 

Most barrelled spaces occurring in analysis are known to be barrelled 
because for some formally stronger property (for example, second category) , 
or because of some permance result concerning barrelled spaces. In view of 
this, the following observation should be of some interest to vector space 
pathologists: 

m0 is of the first category. 

T o see this, let mn denote the space of all sequences taking only n values; 
then mn is closed in m, has empty interior, and UST=i ̂  = w0 . 

T H E O R E M 1. Let E be a BK-(respectively FK-) space and let E0 be a dense 
subspace of E; then the following statements are equivalent: 

(i) EQ is barrelled; 
(ii) if JE0 C F, where F is a BK- (respectively FK-space), then E C F; 

(iii) if E0 Q F Ç1 E, where F is a BK-(respectively FK-) space, then F = E. 

Proof. We again restrict a t tent ion to the Banach space case. 
(i) => (ii). By the closed graph theorem for barrelled spaces [21, p . 116] the 

inclusion mapping E0 —> F is continuous. Now if x G E, there exists a sequence 
{xn}n=i of elements of E0 such t ha t xn —> x. {xn}n=i is then a Cauchy sequence 
in F and so xn —» y (say) in F. However, for every j , we have 

yj — lim x" = Xj 
rc->co 

so tha t x = y £ F. 
(ii) => (iii). This is immediate. 
(iii) => (i). We use Proposition 1; suppose t ha t G is a Banach space and T 
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is a continuous linear mapping from G into E with T(G) 13 £0 . Now 1 (G) 
may be identified with the quotient space G/T~l({0} ), and it is easy to check 
that T(G), with the quotient topology, becomes a BK-space. Then 
EQ Ç T(G) C £ so that T(G) = E and the result follows. 

COROLLARY. An FK-space contains m if and only if it contains m0. 

This last result has several interesting applications, and we begin by showing 
how it may be applied to complex function theory. 

For 1 ^ p S °° , Hv denotes the usual Hardy class (see [9]). A sequence of 
points {zw}£Li in the disk {z : |z| < 1} is said to be p-interpolating if 

(*) for each w = {wn}n=i G w, there exists/ £ Hp such that 

f(zn) = wn for n = 1, 2, . . . . 

Hayman [8] (see also [25]) has shown that, for p = oo, a sequence {zn}n=i 
is ^-interpolating if and only if (*) holds for each w G nt0. Following Snyder 
[26], we denote by Hv{{zn}) the set 

{ { / C O } ï - i : / € i ï * } . 

It is clear that Hp({zn}) can be identified with 

H»/lfeH»:f(zn) = 0 , » = 1 , 2 , . . . } , 

and that IP(Î3W}) becomes a i3i£-space when endowed with the quotient 
topology [26, Theorem 3.1 (i)]. As a direct consequence of the corollary to 
Theorem 1 we now have 

THEOREM 2. For 1 ^ p S °° , a sequence [zn}™=i is p-interpolating if and only 
if (*) holds for each w Ç m0. 

Following the proof of Theorem 1 of [1] we obtain the following result, 
which settles a conjecture of Kadec and Pelczynski [10]. (See [5] for notation.) 

THEOREM 3. Let E be a separable Frechet space with a total biorthogonal 
sequence {(#i,/i)}2=i; then the following conditions are equivalent for each x G E: 

(0 *Ht=ifi(x)xi converges unconditionally to x; 
(ii) given X G m0, there exists y G E such thatft(y) = \ift(x), i = 1, 2, . . . . 

We note that Theorem 3 has been obtained for Banach spaces by Bachelis 
and Rosenthal in [1, Theorem 1]. A different proof of Theorem 3, not involving 
the results of Seever, is given in [5, Theorem 26]. 

Further applications of the corollary to Theorem 1 are postponed until 
Section 4. 

3. Inclusion theorems for (E, r (£ , E&)). In this section we consider a 
sequence space E endowed with the associated Mackey topology r(E, E&). 
A — {o,ij}i!j=i denotes an infinite matrix with complex entries; for x G to, we 
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define y = Ax where 
oo 

y« = £ auxi (* = 1» 2 , . . . ) , 

whenever each sum converges. If F is an Fi^-space, then the summability 
domain FA, defined by 

FA = {x G w: ^4# exists and ylx 6 T7}, 

can be topologized in a natural way so that it too becomes an FK-space 
[29, Theorem 4.10(a)]. 

THEOREM 4. 77^ following conditions are equivalent for any sequence space E 
containing <t>: 

(i) (£, r (E, £?)) w barrelled; 
(ii) if i7 is aw FK-space and A is a matrix mapping E into F, then 

A : (£, r (-E, Efi)) —» F is continuous; 
(iii) if F is aw FK-space containing E, then the inclusion mapping 

(E, r(E, E&)) —-> F is continuous; 
(iv) if i7 i^ aw FK-space containing E, then E C WF ; 
(v) if T7 i^ aw FK-space containing E} then E Q SF. 

Proof. We shall prove the theorem according to the logical scheme: 

(i) => (ii) =» (iii) =* (iv) =» (i); (i) A (iii) => (v) =» (iv). 

(i) => (ii). If 4̂ maps £ into i7, the rows of A belong to E& and it is easy to 
check that A : (E, T(E, E&)) —* F has closed graph; the continuity of A then 
follows from the closed graph theorem for barrelled spaces [21, p. 116]. 

(ii) => (iii). This follows at once by taking A to be the identity matrix in (ii). 
(iii) =» (iv). If (iii) holds and F is an T^i^-space containing E, then the 

inclusion mapping 

(E,<r(E,EP))->(F,*(F,Ff)) 

must be continuous [21, p. 39]; (iv) then follows since (E, a(E, E13)) is an 
^4i£-space. 

(iv) =» (i). We first show that if (iv) holds, then every <r{EP, E) - bounded 
and closed subset of E& is a(E^, E) - sequentially compact. To see this, let K 
be <T(EP, E) - bounded and closed and let {a(i)\T=i be a sequence of elements 
of K. By selecting a subsequence, if necessary, we may assume that 

(*) lim aj % = aù exists for j = 1, 2 , . • . . 
i->oo 

Putting 
afl) = au (i,j = 1, 2, . . .), 

we have E C mAl and so, for x 6 E, (iv) gives 

Pn(x) —» x weakly in mA. 
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Now A : mA —» m is continuous [29, Theorem 4.4(c)] and therefore weakly 
continuous [21, p. 39] so that 

APn(x) —» Ax weakly in c. 
Consequently 

lim lim (APn(x))i = lim lim (APn(x))i 
w->co i-ïco z->œ n->oo 

so that X)JLi djXj exists and 

CO CO 

y^ djXj = lim ^ a j l Xj. 
3=1 i^œ j=l 

x £ E being arbitrary, it follows that a £ E& and that 

a<*>-> a * ( £ " , £ ) . 

Since i£ is cr(£^, £ ) - closed, a £ K, and i£ is c(£^, E) - sequentially compact. 
By [6, Theorem 6], K must also be <r(E^, E) - compact; consequently 
T (£ ,£*) = £ ( £ , £ * ) , the strong topology on E so that (E, r (£ , £<*)) is 
barrelled by [21, p. 66]. 

(i) A (iii) =» (v). If (i) holds, it is any easy consequence of a general result 
on Schauder bases in barrelled spaces [4, p. 505] that (£, r ( £ , E&)) is an 
^4i£-space, but then (v) follows at once from (iii). 

(v) =» (iv) This is obvious. 

Theorem 4 applies to the class of all FK-AK-sp&œs, but the results obtained 
are all trivial in this case. Our next task is to augment this class and to show 
that Theorem 4 does have some interesting applications. 

Garling [6; 7] introduced the notion of .B-invariance, where B denotes the 
unit ball of the BK-sp&ce 

fe = ] x 6 w : ^ ] \XJ — Xj+\\ < oo ( 
\ 3=1 J 

under the norm 
CO 

IMU = Z) \XJ ~ Xj+i\ + lim I*j|-
3=1 j-ïco 

For a subset E of œ we define 

B(E) = {Xx = {\jXj}%i :X € B,x G E}. 

Of course, B (E) need not be a sequence space - even when E is - so we denote 
by B* (E) the linear span of B (£) . If B (E) = £ , we say that £ is B-invariant. 
Similarly we define the concept of IVinvariance, where B0 denotes the unit 
ball of the jBX-space bv0 = bv C\ c0 under the norm || • ||&r. As a corollary to 
Theorem 4 we obtain the following result due to Garling [7, Theorem 11]. 

COROLLARY. If E is a B^-invariant sequence space containing </>, then 
(E, T(E, E&)) is a barrelled AK-space and E& is c(£^, E)-sequentially complete. 
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Proof. Let F be an FK-space containing E, and consider a fixed element x 
of £ . Since B0(E) = £ , it follows that x has a representation X -y where 
X 6 f>0 and y Ç. E. The mapping 

X - > X - y , 

from 6y0 into 7% is continuous by the closed graph theorem, so that, since bvo 
is an ^4i£-space, 

Pn(x) = Pn{\ • y) = Pn(X) • y -> X • y = x 

in F. It follows that E Q SF and then, from Theorem 4, (v) =* (i), that 
(E, T(E, EP)) is barrelled. That (£, r (£ , £^)) is an ^4i£-space follows as in 
the proof of Theorem 4, (i) A (iii) => (v). The last part is a consequence of a 
general result, viz: the dual of a barrelled space is weakly sequentially complete. 

Our next result characterizes sequence spaces E for which E& is o-(£/S, £ ) -
sequentially complete. We recall that any solid or monotone sequence space 
has this property (see, for example, [3, Proposition 3 and Lemma 3]). 

THEOREM 5. The following conditions are equivalent for any sequence space E 
containing <j>: 

(i) E& is <r(EP, E)-sequentially complete; 
(ii) if F is a separable FK-space and A is a matrix mapping E into F, then 

A : (£, r (£ , E$)) —> F is continuous; 
(iii) if F is a separable FK-space containing E, then the inclusion mapping 

(£, r (£ , £^)) —> F is continuous; 
(iv) if Fis a separable FK-space containing E} then E C W F. 

Proof, (i) => (ii). If A is a matrix mapping E into F it is easy to see that 
A : (E, r ( £ , £0)) —> F has closed graph. Since E? is <r{EPy E)-sequentially 
complete, the continuity of A follows from Theorem 2.4 of [11]. 

(ii) => (iii). This follows immediately by taking A to be the identity matrix 
in (ii). 

(iii) => (iv). See the proof of Theorem 4, (iii) =» (iv). 
(iv) =» (i). Let {a(0}£Li be a o-(£^, £)-Cauchy sequence in E® and define 

the matrix A by 

0w = o / ° (*,j = 1 ,2 , . . . ) . 

Clearly £ C c^ and, since cA is a separable £i£-space [18, Theorem 1.4.1] 
and [2, Corollary 1 to Theorem 5], (iv) gives, for each x Ç £ , 

P„(*0 - » * cr(c4f cA'). 

Now the linear functional limu is continuous on cA [29, Theorem 4.4(c)], 
where 

oo 

\\mAx = l i m ^ atjXj. 
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Consequently, 
oo oo 

limA x = 22 xi nmA e' — ]C aJxJ» 

where â  = limÎH>œ a{j denotes the jth column limit of A. (Since ^ C £ , this 
limit exists.) Hence a £ E& and 

OO CO 

lim]>3 a*^ = 2Z aixj (x ê £), 
i^oo y = i 3=1 

so that a<*>-> <**(£*, E ) . 

COROLLARY. / / E is a sequence space containing 0 and E& is a(E&,E)-
sequentially complete, then <r(E&, E) and <r(£^, B*(E)) define the same convergent 
sequences and E& is a(E0, B*(E))-sequentially complete. 

Proof. Suppose {a(i)}JLi is a sequence of elements of E® with 

a<*>->0 <J{EV,E). 

HA denotes the matrix given by 

a>u = a3
xi) (ij = 1,2, . . .), 

then E C (co)A> If x (z E, Theorem 5, (i) =» (iv), shows that the set 
{Pn(x) : n = 1, 2, . . .} is bounded in (c0)A and so for X £ -Bo, 

Ax = X) (*n ~ Xn+i)Pw(x) Ç (co)A. 
n = l 

Consequently, J30(x) CI (C0)A SO that £(x) C (c0)A giving 

a<*>->0 <r(Ef>,B*(E)). 

Thus o-(£0, £ ) and tr(£^, B*(E)) define the same convergent sequences. The 
last part follows from a general result of Webb [28, Corollary 1.5]. 

Theorems 4 and 5 naturally suggest the problem of characterizing those 
sequence spaces E for which E C SF whenever F is a separable ^X-space 
containing £ . T O tackle this problem, the following structure theorem for 
spaces with weakly sequentially complete duals will be found useful. 

PROPOSITION 2. Let E be a sequence space containing <j> and suppose that E& 
is a(EP, E)-sequentially complete. Then r{Ey E

&) is the projective limit topology 
determined by the family of all separable FK-spaces F containing E and the 
associated inclusion mappings E —> F. 

Proof. Let r be the projective limit topology mentioned above. Since E® is 
a(E^, E)-sequentially complete, Theorem 5, (i) => (hi), shows that r ^ r ( £ , E&). 

To establish the converse inclusion we consider an absolutely convex 
<r(EP, E)-compact subset K of E&. Now a(E^1E) coincides on K with the 
coarser Hausdorfï topology a(E^y cj>) which is metrizable; consequently K is 
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<r(E&, £) -separable . T h u s we may choose a countable <T(EP, E)-dense subset 
{a{i)}T=i of K. Let t ing A denote the matrix given by 

.(*) (i,j = 1 , 2 , . . . ) , 

it is clear t h a t E C mA and tha t the inclusion mapping (E, r(E} E&)) —> mA 

is continuous (K is r(E, E^-equicont inuous) . Since (E, r(E, Efi)) is separable 
(0 is a(E, E^)-dense and therefore T(E, E^)-dense in E [21, p . 34]), it follows 
t h a t E is separable in mA. Hence F, the closure of E in mA, is a separable 
FK-space. Considering the inclusion E —> F, we see t ha t the seminorm 

CO CO 

sup / ' ttjiïj = sup • J &ij%j 
aÇK j=l i j=l 

is continuous on E in the projective limit topology r. T h u s T(E, E&) fg r and 
the result is established. 

T H E O R E M 6. The following conditions are equivalent for any sequence space E 
containing <j>: 

(i) (E, T(E, EP)) is an AK-space and E& is a(E^y E)-sequentially complete; 
(ii) if F is a separable FK-space containing E then E C SF. 

Proof, (i) =» (ii). This follows a t once from the proof of Theorem 5, 
0) =» (iii). 

(ii) => (i). If (ii) holds, then E& is <r(Efi, E)-sequentially complete by the 
proof of Theorem 5, (iv) => (i). T h a t (E, T(E, E&)) is an ^4i£-space follows 
from Proposition 2 and the elementary properties of projective limits. (See 
for example, [21, Chapter V].) 

I t follows, for example, from Propositions 2 and 3 of [3] t h a t Theorem 6 
applies to any monotone sequence space E. The space m, however, has the 
addit ional proper ty t ha t every r (m, /)-bounded set is r (m, /)-relatively 
compact , i.e., (m, r(m, / )) is a semi-Montel space. Our next result characterizes 
these spaces in terms of inclusion mappings. 

T H E O R E M 7. The following conditions are equivalent for any sequence space E 
containing <j>: 

(i) (£ , T ( E , Efi)) is a semi-Montel space; 
(ii) if F is a separable FK-space containing E, then the inclusion mapping 

E —* F is compact. 

Proof, (i) => (ii). We first show tha t (i) implies t h a t E0 is <j{E&
yE)~ 

sequentially complete. To do this, we consider the topology p(E^tE) on E& 
of uniform convergence on the T(E, E&)-compact subsets of E. Le t / be a 
linear functional on E whose restrictions to r ( E , E&)-compact sets are 
a(E, EP)-continuous. If x 6 E then {Pn(x) : n = 1, 2, . . .} is <r(E, E x 
pounded and so r ( £ , £^)-relatively compact . I t follows that f(Pn(x)) —»/(#) 
so t h a t / Ç E& and then, by Grothendieck's completeness theorem (see, for 
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example, [5, Proposition 1]), t h a t E® is p(E^, E)-comple te . If aw —> 0 <J(E^ £ ) , 
then Ky the closed absolutely convex cover of {a{n) : n = 1 , 2 , . . . } is a(Ep, E)-
compact [20, §20 , 9.(6)] . Fur thermore , by Grothendieck 's precompactness 
theorem [5, Proposition 2], every absolutely convex a(E^, E)-compact set is 
p(£0, E) -compact . Consequently, p(E&,E) and a(E^,E) have the same con
vergent sequences so t h a t by [28, Corollary 1.5] E@ is <r(EP, E)-sequentially 
complete. T h e implication (i) => (ii) now follows from Theorem 5, (i) => (iii). 

(ii) => (i). Suppose (ii) holds and t h a t F is a separable Fi^-space containing 
E. If x £ JE, then {Pn(x) : w = 1, 2, . . .} is relatively compact in F and it 
follows t h a t Pn(x) —> x in F. T h u s E C 5V and Theorem 6, (ii) =» (i), shows 
t h a t E& is c(E'3, E)-sequent ia l ly complete. T h a t (E, T(E, E&)) is a semi-
Montel space now follows from Proposition 2 and the familiar properties of 
projective limits (see [21, p . 85]). 

We note here t h a t the na tura l analogue of Theorem 7 fails to hold for 
semi-reflexive spaces (i.e., spaces in which every bounded set is weakly rela
tively compac t ) . T o see this we take E to be the space bv; then E® = cs, the 
space of all convergent series, (bv, r(bv, cs)) is semi-reflexive (since 
(cs, (3(cs1bv))f = bv) ye t cs is not a (cs, bv)-sequentially complete. However, 
we do have the following result for reflexive spaces, i.e., barrelled, semi-
reflexive spaces. T h e proof is omit ted. 

T H E O R E M 8. The following conditions are equivalent for any sequence space E 
containing </>: 

(i) (E, T(E, E$)) is reflexive (respectively Montel); 
(ii) if F is an FK-space and A is a matrix mapping E into F, then 

A : (E, T(E, EP)) —> F is weakly compact (respectively compact); 
(iii) if F is an FK-space containing E, then the inclusion mapping E —> F 

is weakly compact (respectively compact). 

4. M a t r i x t r a n s f o r m a t i o n s of lv s p a c e s . In this short section, we s tudy 
some inclusion properties of the summabi l i ty domains (lv)A. Our first result 
improves theorems of Lorentz [16], Mehdi [22], Peyerimhofï [20] and Zeller [30]. 

T H E O R E M 9. Let 1 ^ p S °° and let N denote the set of positive integers. Then 
the following conditions are equivalent for any matrix A : 

(i) A maps m into lp; 

(ii) supX) 
JC.N t = l 

< oo : 

(iii) Z 
3ÏJ 

V 

< oo , for each J C N. 

Proof, (i) => (ii). If A : m —* lp then A is cont inuous [29, Theorem 4 .4(c) ] ; 
if S denotes the set of all sequences of zeros and ones then 5 is bounded in m 
so t h a t s u p ^ s \\Ax\\v < oo, giving (ii). 
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(ii) => (iii). This is immediate. 
(iii) => (i). Condition (iii) is clearly equivalent to m0 C (?)A so that, by 

the Corollary to Theorem 1, (i) follows from (iii). Alternatively, for a proof 
not involving the results of Seever, we may use Theorem 24 of [5] noting that 
(JP)A is a separable FK-space by [2, Theorem 4]. 

We note here that the equivalence of (i) and (ii) for p = 1 was first observed 
by Lorentz [16, Lemma 1] and by Zeller (see [30, p. 344] and the literature 
cited there). Later, Peyerimhoff gave another proof [20, Theorem 1] which 
was subsequently generalized by Mehdi (see [22, p. 161]) to cover the case 
1 ^ p ^ oo. 

Peyerimhoff [20, Corollary (a)] and later Pelczynski and Szlenk [19, Corol
lary 1] showed that a necessary condition for a matrix A to map m into / is 
that 

OO 

This may be interpreted as saying that if A maps m into I then so does the 
associated diagonal matrix D. Using this observation we obtain rather quickly 
the following result of Tong [27, Theorem 2.1]. 

THEOREM 10. If A is a matrix which maps the monotone sequence space E 
into the perfect space F, then so does the associated diagonal matrix D. 

Proof. Clearly 

(*) E = U wo • x and F = O ya, 
x£E y£Fa 

so that y Ax = {yidijX^f^i maps m0 into / for each x G E and each y Ç Fa. 
By the above remarks, yDx has the same property, so that D maps E into F 
by (*). 

An immediate consequence is the following extension of the result of 
Peyerimhoff and Pelczynski-Szlenk. 

COROLLARY. If p > q ^ 1, then a necessary condition for the matrix A to 
map lp into lQ is that 

Ë i^r/M<oo. 

THEOREM 11. If A is a matrix which maps m into lv and 

max{l,2/>/(£ + 2)} S q S 2, 
then 

oo / co \ 2p/2q-2p+pq 
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Moreover, we have 

co / oo \ 2ff/3(Z-2 

£ (Z M*) <°o, *//> = !; 
co / co \ 2/p 

3=1 \ i=l / 

CO CO 

Z Z K-r<oo, #2 ̂ ^ <oo. 
Proof. By Theorem 4.4(c) of [29], the mapping A : m —> lp is continuous. 

Denoting by pA
( i ) the ith row of A, we have pA

( ï ) G /, i = 1, 2, . . . , and 

sup £ iw i ,,*>r<a>. 
By a result of Kwapien [13, Theorem 1.1], the inclusion mapping of / into lQ is 
(2q/3q — 2, l)-absolutely summing (see [13] for definitions). It follows from 
Proposition 0.7 of [13] that the inclusion is also (2pq/2q — 2p + pq,p)-
absolutely summing; consequently 

oo 2pq/2q— 2p-\-pq 

Zl |PA ( 0 | | « < 0 0 , 
i=l 

i.e., 
oo / co \ 2p/2q—2p+pq 

E E W <«. 
If p — 1, the transposed matrix maps m into /, and the second inequality 

follows from the first. 
For the third inequality, we use a result of Lindenstrauss and Pelczynski 

[14, Theorem 4.3] which asserts that A : m -> lp(l ^ p ^ 2) is (2,2)-
absolutely summing. Now we clearly have 

sup Z !/(*') I <™ 
so that 

CO 

£ | | ^ | | p * < o o , 
3=1 

i.e., 
co / co \ 2/p 

E E W <oo. 
j=i \ i = i / 

The last inequality follows similarly since every continuous linear mapping 
of m into lv (2 ^ p < co ) is (p, 2)-absolutely summing [14, Proposition 8.2]. 

Putting q = 4^/2 + £ in Theorem 11 gives the following generalization of 
a result of Littlewood [15, p. 165, where the case p = 1 is given]. 
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COROLLARY. / / A is a matrix which maps m into lv and 1 :g p ^ 2, then 

oo oo 

£ Ekl , f , !+'<«. 
Our final result is obtained from Theorem 11 by considering the transposed 

matrix. 

THEOREM 12. If A is a matrix which maps lv(p > 1) into I and 

max{l,2£/(3/> - 2)} ^ g ^ 2, 

then 
oo / oo \ 2p/Zpq-2p-2q 

Moreover, we have 

oo / oo \2(p-l)/2> 

Z E k « r . *y 23g *><«>. 
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