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Polynomial Approximation on Convex Subsets of R

Y. A. Brudnyi and N. J. Kalton

Abstract. LetK be a closed bounded convex subseRbfthen by a result of the first
author, which extends a classical theorem of Whitney there is a constait) so that
for every continuous functiori on K there is a polynomiap of degree at mosh — 1
so that

[0 =90l <wm(K)  sup AR (f;x)].

X, X+mheK

The aim of this paper is to study the constagnt(K) in terms of the dimension and
the geometry oK. For example, we show thai(K) < %[Iogz n] + % and that for
suitableK this bound is almost attained. We place special emphasis on the case when
K is symmetric and so can be identified as the unit ball of finite-dimensional Banach
space; then there are connections between the behavignd{) and the geometry
(particularly the Rademacher type) of the underlying Banach space. It is shown, for
example, that iK is an ellipsoid therwz(K) is bounded, independent of dimension,
andw3(K) ~ logn. We also give estimates far, andws for the unit ball of the spaces
€3 where 1< p < oo.

1. Introduction

Basic Definitions. Let K be a closed subset &" and letP,, denote the space of
polynomials of total degree at mast If f is a continuous function oK we set

En(f; K):= welgiil r)l(we?(x| f(X) — p(X)|

and
om(f) = om(f; K) = sup [AR(F5 %)],

X,X+h,...,x+mheK
where

m
i (m .
Al(f:x) =) (=)™ () f(x+ jh).
; ;O i

We then define thgvhitney constanib,(K) by
(1.1) wm(K) = SupfEm(f) : f € C(K) andwm(f) < 1}.
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We will mainly be interested in the case wh&hbelongs to the clas§,(R") of
bounded convex subseait R" or to the subclass§C,(R") of all centrally symmetric
convex subsets drR". In the latter caseK can be identified with the closed unit ball
Bx of ann-dimensional Banach spacéand it is natural to writev,h(X) in place of
wm(Byx). As we do not consider unbound&dexcept in the Introduction this notation
does not lead to any ambiguity.

We also define thglobal Whitney constarity

(1.2) wm(N) = sup{um(K) : K € Co(RM}.

In the spirit of the classical paper of Whitney [39] who considers the case of dimension
onel let us consider also the constant}(n) andw;:*(n) defined by (1.1) withK :=
R? ;= {x e R": x > 0} andK := R", respectively. Using the techniques of Beurling
(see [39]) it is easy to prove the following estimates:

* ok . m
(1.3) wi(n) <2, Wny (N) < ,min_ 1/ <J- ) .
In contrast, the estimates far,(n) are not independent of dimension, and in fact
lIMp_ 0o wm(N) =00 if m> 2.
The main goal of this paper is to give “good” quantitative estimatesfgin) and for
wm(K) in terms of the geometry of the skt

Remarks. (a) The inequalities (1.3) are relatively precise. For instangé?2) > 1.
Concerning the sharpness of the second inequality, evan$of., see [39]. In fact the
Beurling method yields the more general inequality(K) < 2 providedK satisfies
theunbounded cone condition. This condition means that there is an unbounded cone
with vertex at the origin so th& + C c K.

(b) The asymptotic behavior of Whitney’s constants does not change if the supremum
in (1.2) is taken oveall convex subsets &". Actually, letwny(n) := supwn(K) where
K runs over all unbounded convex subsetR8f Thenwm(n — 1) < wm(n) while
compactness arguments show tigt(n) < wm(n).

(c) If we let
(1.4) wP(n) == sup wm(X),

dim X=n
thenw ) (n) < wm(n). Inthe casen = 2 we havewy(n) < ngs)(n) for some universal
constantC independent of dimension. However we do not know of a similar inequality
whenm > 2.

(d) In his paper [40] Whitney also proved the finiteness of similar constants in a more
general situation in whiclC[0, 1] is replaced by the spadg[0, 1] of bounded (not
necessarily measurable) functions. He also posed the problem for thelsjjacg] of
measurable functions. Let us denoteuny(K ; B) (respectivelywn(K; Lo)) the corre-
sponding constants defined by (1.1) allowintp be bounded (respectively, measurable).
One can then prove the inequality

(1.5) wm(K; B) < (2™ — Dywm(K) + 2™,

1n this casewm(1) = wm([0, 1]).
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A similar inequality holds forwm(K; Lo). Since we do not use this inequality we will
omit its proof.

Prior Results: The One-Dimensional Case. In [39] Whitney proved thatvm(1) <

oo for all m and gave numerical estimates fog,(1) whenm < 5. Using a differ-

ent approach, the first-named author proved the analog of the Whitney inequality for
translation-invariant Banach lattices and gave, in particular, an effective but rather rough
estimate ofv, (1) for all m. This estimate was subsequently improved by a research team
(K. Ivanov, Binev, and Takev) headed by Sendov who finally showeduth@l) < 6

for all m. The most recent result is due to Kryakin who proved thatl) < 2 for allm

(see [20] for the references). The only known precise resulpig) = %

Prior Results: The Multidimensional Case. In1970, the first-named author [2] estab-
lished the multidimensional analog of Whitney'’s result for translation-invariant Banach
lattices. From this it follows, in particular, that,(n) < oo for everym, n. Later in a
lecture at Moscow State University he established an estimgi® < Clog(n+ 1).
Following this lecture S. Konyagin suggested that(X) < oo for every infinite-
dimensionaBanach spac& belonging to the clask introduced by the second author
(see [12]). In particular, this implies that (£}) is bounded by a constant independent of
dimension if 1< p < co. This important observation led to the authors’ collaboration
on the current paper.

Discussion of the Main Results. Our main results concern the Whitney constants for
m = 2 andm = 3 (see Section 5 for some results whnen- 3). In Section 3, we give a
fairly precise estimate faw,(n), i.e.,

$log, ([g] + 1) < wp(n) < 3[log,n] + 2.

Curiously enouglw,(n) is almost attained not for the unit simpl&Xbut for its Cartesian
square. Meanwhile fo8" we prove in Theorem 3.6 the precise asymptotics are given by

jim 2250 _ 1
n—oco log,n 4

We also consider in this section the problem of estimaﬁ)@(ﬁg) forl < p < .
In particular, we show in Theorem 3.9 tha$(¢7) ~ logn while y (p) := sup, wg(ég)
is finite for 1 < p < oco. More preciselyy (p) is equivalent up to a logarithmic factor
to (p— 1)~t whenp | 1; surprisingly, for 2< p < oo, the constany (p) is bounded
by an absolute constant. This striking difference in asymptotic behavior is explained by
Theorem 3.12 which gives an upper estimatevgfX) in terms of the typep constant
Tp(X) of X.

In Section 4, we consider the problem of quadratic approximation on symmetric
convex bodies. In particular we show in Theorem 4.1 that

civ/n < wg (n) < cv/nlog(n+ 1)

for some absolute constants<0 ci, ¢, < oo. As in the linear case, however, better
estimates are available fof-spaces. Our results in this case are consequences of Theo-
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rem 4.5 giving upper and lower estimatesugf( X) by the type 2 constant of, T>(X)
and the cotype 2 constant ¥f, C,(X*). Actually we show that

_ w3(X)
CCo(XH < —— < Ta(X)?
1C2(X%) _Iog(n—i—l)_zz()
for some absolute positive constantsc,. As corollaries of this inequality we have, for
example, thatvz(¢35) ~ log(n+ 1) while

crlog(n+ 1) < ws(£) < cx(log(n+ 1))

with absolute constantsg, ¢, > 0. See Theorem 4.3.
In Section 5 we discuss a few estimates fdf (n) and wm(£5) with m > 4. In
particular, we prove in Corollary 5.5 that

(1.6) w®(X) < cn™? Log(n + 1),

wheren = dim X andC is an absolute constant. Once again, ffspaces, we have
better estimates. For instance,

wm(£p) < Cn™32log(n + 1)

for2 < p < oo andm > 3 while wy(¢]) ~ log(n + 1). Particularly striking is the
fact that there is a dimension-free upper bounddgy(¢y) for (fixed) arbitrarym if
0 < p<1lasinTheoremb5.8.

Our arguments depend, in part, on some deep results of the local theory of Banach
spaces. Most of them are concentrated in the proofs of Theorems 3.6 and 4.5. We also
need a refinement of the main result Theorem 1.1 of paper [14] and a version of Maurey’s
extension principle [24] using a dual cotype 2 assumption in place of the usual type 2
assumption. The proof of the first result is presented in Section 3 while the required
ingredients of the proof are presented in Section 2. This section also contains the proof
of the second result and those of two results related thoneogeneougersions of the
Whitney constants.

Let us discuss our results in connection with thiese of dimensigrwhich, roughly
speaking, asserts that the computational complexity of a functionvafiables grows
exponentially inn. In situations where this can be precisely formulated and proved it
is, in general, a statement of the complexity of a universal (e.g., linear) approximation
method for functions in a given class. It may be anticipated that approximation methods
for individual functions can be much more efficient. In these terms we can consider
wm(K) as a measure of approximation 6f € C(K) satisfyingwm(f; K) < 1 by
polynomials of degreen — 1. We can then compane,(K) with a linearized Whitney
constantw! (K ) which is defined by

wh(K)=inf  sup |If — Lfllck),
L om(f: K)<1

whereL runs through all linear operatoks: C(K) — Pp_1. Inthe case wheK = Beg
this quantity has been estimated by Tsarkov [37], who proves

wh (K) ~ nM-b72,
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Our results show thai,(K) < Cn™M-3/2log(n + 1) for m > 3. Thus we have a
marked improvement over linear methods which is especially striking whea 3
sincews(K) ~ n butwz(K) ~ log(n+ 1).

Remarks on the Infinite-Dimensional Case. There is an obvious generalization of
the Whitney constanb, (X) to the case wheK is an infinite-dimensional Banach space
(or even quasi-Banach space). In this case it is quite possibla@f) = co. Let us
consider first the case whem= 2. We recall (see [12] or [16]) that a Banach spacis
called aK-space if, whenevef: X — Ris a quasilinear map (see Section 2), then there
is a linear functionad): X — R with sup{|f (x) —g(X)| : X € Bx} := || f —0]lg, < 00.
Thereis aclear connection between the above conditiomaf) < oo. However, since
the definition of dC-space allows for discontinuodgandg) itis not clear that these con-
ditions are equivalent. They are equivalerXihas the bounded approximation property.
For the casen > 3 it is possible to show thab,(X) = oo for most classical spaces.
More preciselywm(X) = oo for m > 3 if X contains uniformly complementet}’s
for some 1< p < oo; this includes the case wheX has nontrivial type. The same
conclusion can also be reachedif has cotype 2 and this covers the case of the space
P constructed by Pisier [29] as an example of a space which does not contain uniformly
complemented finite-dimensional subspaces.
For infinite-dimensional quasi-Banach spaces, this situation is quite different. For
example,wm(£,) < oo foranym e Nand O< p < 1. The case oL (0, 1) is even
more remarkable, sincem(L,) < oo for everym e N and yet the only polynomials
on L, are constant (becauss, has trivial dual). Thus ifF: B, — R is continuous,
satisfiesF (0) = 0 andwn(F) < 1, then|| Fllg, < C whereC = C(m, p).
Itis worth perhaps remarking that although the paper does not explicitly use the theory
of twisted sums of Banach and quasi-Banach spaces, this theory is implicit in many of
the results, and there is a clear connection with ideas in [12], [15], [17], and [32].

The Stability of the Equation A'f = 0. There is an alternative viewpoint for the
results presented in this paper. It is well known that a continuous funétiefined on

a convex sekK is a polynomial of degrem — 1 if and only if f satisfies the functional
equationA]' f = 0. So the Whitney constant,(K) can be regarded as a measure of
stability of this equation. Stability problems of this type go back to the work of Hyers
and Ulam. We note in this connection the work of Casini and Papini [3] and a recent
preprint of Dilworth, Howard, and Roberts [5] on stability of convexity conditions.

Conjectures. The work in this paper was motivated by certain conjectures, and it may
be helpful to list them here:
(1) If m> 2, then

wm(M) ~ wi (n) ~ n™*tlog(n+ 1)

asn — oo.
This conjecture is proved fon = 2 while the upper estimate far$ (n) is established
for all m > 2. As the lower bound fom > 3 we have only the inequalitias,(n) >

w®(n) > c/n.
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(2) If m> 3 and 1< p < oo, then
wm(£p) ~ log(n+ 1)

ash — oco.

This result is established fgr = 1 and form = 3 and 2< p < oo while the lower
bound is established for ath > 3. It is quite possible that this conjecture is way off the
mark whemm > 4.

(3) w2(£h,) is “small.” We propose the conjecture thag(¢h,) < 2 for alln. The only
known results arevp(¢L) = % andw,(¢%)) = 1. Note that if our conjecture were to
hold then for every convex functioh on then-cube Q" we would have the inequality
Ex(f; Q") < wo(f; QM.

(4) If X is an infinite-dimensional Banach space, theiX) = co.

2. Preliminary Results

Homogeneous Whitney Constants. Suppose tha is ann-dimensional Banach
space. We consider the homogeneous version of the Whitney problem. We say that a
function f : X — R is m-homogeneou$ f(ax) = a™f(x) whenevera € R and

X e X.

Definition 2.1. The homogeneous Whitney constap{(X) for m > 2 is the least
constant so that if is an(m — 1)-homogeneous continuous function Xrthere is an
(m — 1)-homogeneous polynomialso that for allx € X,

(2.1) 1) — 0] < vm(X)[IXI™ twm( ),

wherewm(f) = om(f; Bx).
If f is continuous and homogeneous (i.e., 1-homogeneous), then

[T +y) = £ = F(Y)] < wa(f; Bx) max(x[l, yID-

Thus f isquasilinearin the sense of [12]. This connection was first noticed by S. Konya-
gin and the following result is essentially due to him (see remarks in the Introduction):

Proposition 2.2. If X is a finite-dimensional normed spactleen

v2(X) < wa(X) < 4up(X) + 2.

Proof. If f: X — R is continuous and homogeneous, then an affine function of
best approximation on the ball can be taken as a linear functiahaay, and then
[f(X) = x*(X)| < wa(X)w2(f; Bx) s0 thatva(X) < wa(X).

Conversely, supposé: Bx — R is continuous and thaé,(f) < 1. Let us note that
anyx, y € Bx we have

(2.2) [fx+ A -0y —tf () - A -t f(YI = 2E(f;[x, yD =1
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This follows from applying Whitney's one-dimensional result to the line-segmenf |
sincew(1) = 1.
We definggon X by g(x) = %||x||(f(x/||x||)— f(—x/|Ix|)) for x # 0andg(x) = 0.
Theng is continuous and homogeneous. We will show first thdt; Bx) < 4.
Suppose, y € X are not both zero. Let

_ X ] L, lx+yl
X1+ 1yl X1+ Nyl X+ 1yl
and choosel, v, w € By so that|ju|| = ||v|| = ||w| = 1 and
IX]lu =X, lyllv=y, and  [x+Yyllw=x+y.

Then fore = +1,
le == | f(s(AU+ pv)) —Af(eu) — f(ev)| <1
by applying (2.2). Similarly
Jo == [f(eu + pv)) —vf(ew) — (1 —1)F(O)] < 1.

From the definition ofj we have

1900 — g(X +Y) + 9(y)!
SIXHYI DA+ 3)

e==+1
2Ix+yl < 4.

lg(x) — 29 (X + ) + 9(Y)|

IA

IA

Hencew(g; Bx) < 4.
This implies that there exists' € X* so that if||x|| < 1,

[g(x) = X*(X)| < 4va(X).
We will choosep(x) = x*(x) + f(0) as an affine approximation th If ||x|| = 1, then

1 (X) —@(X)| < 4va(X) + | f(X) — F(0) — g(X)|
< du(X) + 31 F () + f(—=x) — 2 (0)] < 4w(X) + 2.

Now supposdy| < 1. We writey = tx where||x|| = 1and 0< t < 1. By (2.2) we
have

[f(y) —tfx)—1-t)f0)] <1
and hence
1Y) — (] < 4ua(X) + 3.

This completes the proof. ]
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The following lemma gives a uniform estimate am,(X) for all X of dimensionn
(see [2]):

Lemma 2.3. For any m> 2,and any n-dimensional Banach space X
wm(X) <2+ Tmfl(\/ﬁ)(z + wm(gg)),

where T(t) := cos(karccog) is the Chebyshev polynomial of degree k

Proof. By a well-known result of John [10] there is a Euclidean ndfri|g on X so
that

-1/2
n~2lxlle < lIxlIx < lIxlle

for x € X. Now suppose that: By — R is continuous aned(f) < 1. Restricting f

to Bg we can find a polynomiap € Pry_1 with | f (X) — ¢(X)| < wm(£3) for x € Bg.

Fix anyx € Bx. By the definition of the Whitney constant and Kryakin’s theorem [20]
there is a polynomial € Pn_1(R) so that

(X)) — ¥ ()] <wm([0,1]) <2
for |t| < 1. Hence forlt] < n~¥2 we have
lp(tx) — Y (D] < 2+ wm(3).
According to the Chebyshev inequality (see, e.g., [33, p. 108]) it follows thdt|fer 1
lpx) — ¥ (O] < T2 (VN2 + wn(£3)).

The result now follows easily. ]

Let us also note at this point that essentially the same argument gives us the following
elementary estimate:

Lemma2.4. Let X Y be two n-dimensional normed spaces and letdi(X, Y) be
the Banach—Mazur distance between th&tren

wm(Y) <2+ Tm—1(d)(2 + wm(X))
and

vm(Y) < dm_lwm(x)-

Proof. We may suppose th#t ||y and| ||x are two norms oRR" so thatd~1||x||x <
IXlly < IIX|Ix for x € R". The first estimate is proved just as in Lemma 2.3. The second
estimate follows easily from the definition of,(X) using (2.1). ]

We now prove a much more general version of Proposition 2.2.
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Proposition 2.5. Suppose that & 2. Then there is a constant € C(m) (indepen-
dent of X so that for every finite-dimensional Banach spage X

C™! max w(X) < wm(X) < C max vk(X).
2<k=m 2<k<m

Proof. First choose for each & i < m — 1 real numbergci;)L,; so that for any
polynomialy in one variable of degree at mast— 1 we have

(2.3) (I)(O) Zm: ( . )

In particular, we have

(2.4) Ji;cij (Ja)k = Sik-

for0 < i,k < m. Hence, ifp € Pn_1, theny (x) := ij=1 Ce—1,je(jx/myisa(k — 1)-
homogeneous polynomial.
Using this, let us first prove that

(2.5) (X)) < C(M)wm(X), 2<k<m.

Infact,if f : X — Riscontinuous an¢k—1)-homogeneous with,(f) = wx(f; Bx) <
1, thenwn(f) < 2™ K and so there exists a polynomiale Pn,_1 with

1 (X) — ()] < 2™ Kwm(X).

Now f (X) = Z}“:l Ce—1,j T (jx/m) by the(k — 1)-homogeneity off and (2.4), and this
inequality leads to the estimate

100 — p(x)] < 2" (Z Ok, |> wm(X)

j=1

for x € Bx wherey (x) = ij:l Ck—1,j¢(jx/m) is a(k—1)-homogeneous polynomial.
Hence (2.5) follows.

Conversely, lelV := max<k<m vk(X). Supposef € C(Bx) with wn(f) < 1. Then
for eachx with ||x|| = 1 and 1< k < m — 1 we defingg(x) = Z;“zl cj f(jx/m) and
extendgy to bek-homogeneous. It is easy to see that egcis continuous. We also let
Oo(X) = f(0)forall x € X.

By the one-dimensional result [20] for eaglwith || x|| = 1 there is a polynomiap
on [0, 1] of degree at mosh — 1 so that

[f(tx) — )| <4
for0 <t < 1.Hence

e®(0)
k!

Ok (X) —

< 4max(1, sup ZIC” ) <Cy,

1<l<m-— 1
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whereC; = C;(m). Then, for anyx € Bx we have

m-1

f0) =) k()| <4+ mG =Ca.
k=0

Using (2.4) for 1< k < m — 1, we have the identity
m . m . —1 .
JX JX X
Cyj f <—) —0(X) = D) G |:f <—> - 2.0 (—)}

and we can deduce

m JX
k(X)) — ) of (—)

m
<Co ) lal < Ca(m).
=1

Hence

m
(2.6) om(G) < 2"Cs+ Y |Gl =Ca
j=1

forl<k<m-1.
We now deduce from (2.6) that

(2.7) wk+1(0k) < Cs(m)

for1 < k < m— 1. Indeed, letx, x + (k + 1)h € Bx and letF := spank, h} be
the linear space generated kyh. By Lemma 2.3 and the multivariate Whitney-type
inequality (in dimension 2) [2] we can find a polynomigt of degree at mosh — 1 so
that

19«(Y) — ¥E(Y)| = Cowm(Gk)

for y € B whereCs = Cg(m). But, arguing as before, we can replage by
Z}“zl Cqj¥r (jx/m) and this allows us to assume tha¢ is homogeneous of degree
k (by similar arguments to those used above.) Hence

IAK ()] = |AK N gk — e (0] < 2 Cowm(gk)-

Combining with (2.6) we get (2.7). Then we can conclude that therk-isanogeneous
polynomialy on X so that

1Gk(X) — Y(¥)| < Cz(M)V
for x € By. Finally, if we sety (X) = go(X) + ZE:ll Yr(X), then
[f(X) =¥ (X)| = (Co+mG) < Cg(mV

for |x]| < 1 and sown(X) < CV for a constan€ depending only om. [ |
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Corollary 2.6. If 2 <| < m there is a constant & C(I, m) so that
wi (X) < Cd, mwm(X).

Remark. All the above results are clearly true (with constants also dependimgy on
for r-normed finite-dimensional spaces. Recall (see [16])[thdtis anr-norm onX if
we have:

(1) |Ix]l = 0 with equality if and only ifx = 0;
(2) llax|| = |al|Ix|| fora € R andx € X; and
3) X +x2ll" < [IXall” + lIx2ll" for xa, x2 € X.

We note only that in the proof of Lemma 2.3, John’s theorem is replaced Iy its
normed generalization due to Peck [27].

Indicators of Finite-Dimensional Banach Lattices. Let X = {R™1 || - ||x} be an
(n+1)-dimensional Banach lattice. In our setting this S|mply implies thatif (x.)”Jrl
andy = (y.)n+l with x| < |y| (i.e., |xi| < |yl fori =1,2,...,n+ 1), then|Xx|x <
Iylix.

Definition 2.7([14]). The indicatorcbx of X is the function defined on the simplex
={ueR™:u>0, Yy =1)by

n+1

(2.8) Py (U) i= sup ZU. log, %i.

IxIx<17=

Here we set 0log0 = 0. We remark first that we use logarithms base two in place
of natural logarithms as in [14] for convenience. We also remark that in [26] the same
function is called thentropy functiorof X.

We denote byA the functionalA (u) = :‘*11 u; log, |uj|. Let us note the following
straightforward properties @b y:

Proposition 2.8.

(a) CDET“ =A
(b) Ifa >0forl<i<n+1,1<p<oo, andﬂg“(a) is defined by the norm

n+1 1/p
. Piy.
X g1 ay = (Za |x.|P) :
i=1
then

CDK?,“(a) (U) =

ol

n+1
(A(u) — Zui Iogzai> )
i1
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(© If | - |Ix and | - Iy are C-equivalentj.e., C|x[Ix < lIX|ly < C|x|x for all
x € R™1, then

|Px(u) — Py (u)| <log,C

forue S".

Let us us€x, y) to denote the standard inner-product®ii®. Then if X is a Banach
lattice we define the dual spage by

IX*[Ix+ 1= sup{|&*, x)| : lIXlIx < 1}.

If Xg, X1 are two (n + 1)-dimensional Banach lattices we define the (Calderon)
interpolation spac&, = X3 X{ for 0 < 6 < 1 by

Xl x, = inf{[Ixoll3; ”IXall%, }

where the infimum is taken over ad§, x, € R satisfying

IX| < [xol "’ Ixal.

The following results are taken from [14]:

Theorem 2.9. (a) For any Banach lattice X oR™1,

Oy + Ox- = A.
(b) If Xo, X1 are two Banach lattices oR"*1, then

Dyrox = (L= 0) Py, + Py,

Note that (b) is a simple consequence of the definitions, while (a) follows from the deep
duality theorem of Lozanovskii [23] (which is essentially equivalent to the statement that
X/2(X*)1/2 = ¢5+1 for any Banach latticeX. It is not hard to see thaby is a convex
function satisfyings,(®x) < 1 wheres,: C(S") — R is defined by

S2(f) :=sup{lf (@u+ (1 — a)v) —af () — 1 —a) fF(V)[},

where the supremum is taken over alkQxr < 1 andu, v € S".
The main result of [14] gives, in our setting, a form of converse to this statement.

Theorem 2.10. ForeachO < ¢ < % there is a constant G= C(¢) so that whenever
ne N,and f e C(S") satisfiesi>(f) < 1 — ¢ there is a Banach lattice X so that

[f(U) — (Px(u) — dx-(W)| <C

forallu e S".
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One of our goals is to refine this result to give a very general representation for
functions onS” in terms of the parametar,(f). This will be achieved in Theorem 3.7
below.

Extension Theorems of Maurey Type. We recall that ifX is a Banach space and
1 < p < 2,thenX is said to havdype pif there is a constan€ so that for any

X1, ..., Xn € X we have
P\ 1/p h 1/p
) sC<Z||xi||"> :
i=1

The best constari is called the typep constant ofX and denoted by, (X).
X is said to haveotype qwhere 2< q < oo if there is a constan€ so that for any
X1, ..., Xn € X we have
CI) 1/q

" 1/q
(Z 1 ||“> <C (Avea;ﬂ
i=1
The best such constant is denoteddy X).

We remark that if dinX = n then we havel,(X) < n*P andCq(X) < n/P where
1/p+1/g9 = 1. We also have a duality relationship, namely(X*) < T,(X).

Let X andY be finite-dimensional Banach spaces and supfosea linear subspace
of X.

n

3 e

(Avesi =+1
i=1

n

3 %

i=1

Definition 2.11. The extension constafik (E, Y) is infimum of all constantM so that
every linear maf : E — Y has a linear extensiof, : X — Y with || Ty|| < M| T]|.

The Maurey extension principle [24] gives the following estimateYfee £7':

In order to extend this principle to non-Hilberti¥rwe can use the abstract Grothen-
dieck theorem of Pisier. This states [30, Theorem 4.1] tha@t if E — Y is a linear
map then there is a factorizatioh : X — ¢3! andU : ¢5' — Y so that||U |||V <
(2C2(E*)Cy(Y))%/2. (In fact, we can do a little better, i.e., we can obtais||[|V| <
CCo(XM)Co(Y) (1 + logCo(X*)Ca(Y)).) Putting these estimates together we obtain

(2.10) Ex(E;Y) < (2C2(E*)Ca(Y))*?To(X).

We will need an analogous result with a cotype assumptioX’oim place of the type
restriction onX. The following result may be known to specialists but we have not been
able to find it in the literature:

Theorem 2.12. There is an increasing function : (1, co) — (1, co) so that

(2.11) Ex(E, 63) = ¥(T2(X/E)NCo(X™).
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Proof. Suppose thaly : E — £ with || To|l < 1. We need to find an extension :

X — €5 of To with norm majorized by the right-hand side of (2.11). To do this we follow
an extension technique of Kisliakov which is used heavily in [17]. Consider the space
Z = X147, 1.e.,Z = Xx 3 algebraically with nornfi(x, y) ||z = IXIIx+1Yller. Then

Z* = X* @ €7, 1.6, 2% = X* x €3 with norm || (x*, y*)||z- = max(|x*||x-, Iy *[lem).
SinceC;(£5) = 1 we have

(2.12) Ca(Z*) < V2Co(X*).

LetG = {(X,—Tox) : X € E} C Z. LetY := Z/G and letQ : Z — Y be the
quotient map. Note thad maps{0} x ¢3' isometrically onto a subspa¢¢ of Y and that
by (2.9) there is a projectioR : Y — H with |P|| < T>(Y).LetS: X — Z be defined
by S(x) := (x,0). ThenP QScan be regarded as an extensiorfgfmore precisely,
T := Pr(Q 1P QY9 extendsTy where Ps(x, y) := y andQ~! is the inverse ofQ on
{0} x €. Then||T|| < |IP| < T2(Y). It therefore remains only to estimate(Y).

Fix 1 < p < 2. Note thatY/H is isometric toX/E. Hence by arguments that go
back to paper [6] (see [13] for details) we have the estifigl®¥) < ¢(T>(X/E)) for
a suitable increasing functign : (1,00) — (1, 00). Now as a direct consequence of
Pisier's characterization df -convex spaces [31] we also have that an estimate on the
K -convexity constant of in terms ofT,(Y). Hence we get an estimate of the form

To(Y) < pp(Tp(Y)Ca(Y™)

for a suitable increasing, : (1,00) — (1, 00). Putting these estimates together we
have

ITI < ¢ (T2(X/ENC2(YY),

wherey := g, o . It remains to observe th&,(Y*) < C(Z*) < +/2C,(X*) and we
are done. [ |

Using this theorem and Pisier’s result as in (2.10) we have

Corollary 2.13.
Ex(E;Y) < ¥ (Ta(X/E)Ca(X*)Co(E*)¥/2Cy(Y)*/2.

3. Linear Approximation on Convex Subsets of R

We begin with the proof of the basic estimate fog(n) whenn > 2. We recall that
wa(1) = 3.

Theorem 3.1. We have the estimate
n
Liog, ([z] +1) < wa(n) = 3flog,n] + 5.
In particular,

w2 (N) . 1

n—oo log,n 2’
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Remark. See [4], [9], and [5] for results on the corresponding problem for convex
functions.

In the following discussioiK will denote a closed bounded convex subsdt'bfNote
however that our first proposition does not need convexity.

Proposition 3.2. If f € C(K), then
| m
Ex(f; Ky =gmax{ ) afoi)—Y bfx)g,
i=1 i=1

where the maximum is computed over all pairs of positive integarsiith1+m < n+2,
allsubset$xy, ..., %}, {y1, ..., ym}Oof K andallnonnegativerealsa..., a, bs, ..., by
with

|
aizibjzl and Z&Xi=ibjyi~
4 i=1 j=1

|
i=1 j=1

Proof. We may choose affine so thatE,(f — ¢; K) = || f — ¢|lk. Then clearly
Eo(f — ¢; K) dominates the expression on the right of the equation. To prove the
converse, we observe (see, e.g., [34, p. 36]) that there exist nonempty stibsatsl
Y_ofKsothaiZ,|+|X_| < n+2and(coX,)N(cox_) # Pandsothatfok € X,

we have

f(X) —(x) = £Ex(f; K).

LetZ, ={Xg,...,x}andX_ = {yi, ..., Ym} thenl + m < n+ 2 and we can find
convex combinations so that|_, aix = > L.bjy;. Then

1 | m
Ex(f;K) = 3 {Zaa(f(xi) —00)) — Y b (f(y) _W(Yj))}
i—1 j=1

| m
{Zaif(xi)_zbjf()’j)}- u
i-1 =1

NI =

Let us definéS,, : C(K) — R (extending the definition of,) by

m m
(3.1) Sm(f) :=sup| f (Z akxk) - Zakf(xk) ,

k=1 k=1
where the supremum is taken overxll ..., xn € K anday, ..., an € Ry such that
Y a = 1. Let

am(K) = sup{dn+a(f) 1 f € C(K), wo(f; K) =1}
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We then have:
Corollary 3.3.
Ea(f; K) < 2 max{a(K) + am(K): I,m >0, | + m = n}.

Observe we have a trivial inequality,(K) < am(S™) =: Bn WwhereS™ is, as usual,
them-dimensional simplex. Thus, combining with Corollary 3.3, we obtain the inequality

(3.2) wo(N) < 2max{f + Bm: | + m=n}.

B1 < 1 by the results of Whitney [39]. To obtain an estimate fonallve need:

Note that by Proposition 3.235,1(f) < 2E,(f; K) and s@8m < 2w»(m). In particular,

Lemma 3.4.

,32m§,3m+%, me N.

Proof. We setS™ .= cof{e, ..., ens1} Whereey, ..., eny1 is the canonical basis of
R™1 Replacingf by f — ¢ whereg is an affine function satisfying(ec) = f (&) for
1 < k < m+ 1 we can obtain an alternate expressiondgr

(3.3) Bm = sup{|f (X)| : wa(f) <landf(e) =0, 1<k <m+1}.

Suppose therf € C(S?™) satisfiesw,(f) < 1 andf(e) = 0forl <k < m+ 1.
Choosex € P, Letx = Zﬁfjl Exex. Let(rk)ﬁi‘l+l be areorderingdfi, 2, ..., 2m+1}
so thatg, is increasing. Then we may choose sigagy. ; so that

m
0 S a.= ggk(sf%,l - Eer) S lrgkz)r%(gr% - ngk,l)°
Then we can writet = 1(y + 2) where

m
y=X+ Sk(grzk—leer—l - Efzkefzk) —ae&,,,
k=1

and

m
Z=X— Sk(grzk—lerzk—l - Efzkefzk) + aeg,,,.-
k=1
Hence
10 = 3(fFW + f@) =< 3.
If y = > 2" ncex, thenny > 0 at mosim+ 1 times and sof (y) — Yo i f (&)| <
Bm. With a similar estimate foz we obtain

2m4-1

Fo0— > &f@)| < fnt 3
k=1

This leads immediately to the claimed estimate. ]
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Proof of the Upper Estimate in Theorem 3.1. SincepB; = 1, Lemma 3.4 and in-
duction gives us thaBy < 3log,m+ 1 = 3k + 1 whenm = 2X. Now suppose
2¢ < n < 2 Clearly if + m = n then at most one of them exceeds Blence
B+ Bm = Bx + P < K+ 3 2. Applying inequality (3.2) we get the estimate

wz(n) < 3[log,n] + 2.
For the lower estimate, we require the following general result:

Lemma 3.5. Suppose K K; are closed bounded convex subsetRSf R™, respec-
tively. Suppose ife C(K;) fori = 1,2 are convex and satisty,( fi; K;) < 1. Then if
0: Ky x K2 — Ris defined by ¢, y) = f1(x) — f2(y) we have:

(@) E2(g9: K1 x Kp) = Ex(f1; K1) + Ex(f2; Ky); and
(b) w(g; Ky x Kp) < 1.
Proof. Supposér = (hy, hy) € R™ x R™. Then

AFI(X, Y) = Af, F100 — AF, Fa(y).
Since f;, f, are convex we obtaim,(g; K1 x Kz) < 1. This proves (b). To prove (a) it

suffices to apply Proposition 3.2 (see Theorem 6.2.5 in [34]). ]
Proof of the Lower Estimate in Theorem 3.1. LetS" = co{e, ..., €11} as before.
Define the function

1 n+l
(3.4) fa(X) 1= SA( Z X 10g, Xk.

Since the functiony (t) := tlog,t, 0 <t < 1, satisfies 0< Azf(t) < Alh\ f(0) =
2|h|, the functionf, is convex and

n+1 n+1

0< A fa(x) = ZA ¥ (%) < Z|hk|

Now h = J((x + 2h) — x) so that} ;"7 |he| < 1. Thuswy(fy) < 1. Letu :=
[1/(n+ 1)] Z”’Ll@ Then by Proposition 3.2,

n+1

Ea(fn) > i Z fa(@) — fa(W) = 2logy(n + 1).

We remark that this function was essentially first considered in this context (in an equiv-
alent formulation) by Ribe [32].

We can now apply Lemma 3.5. if = 2m, puttingK; = K, = S™ and usingf, for
both f; and f, of the lemma, we obtain the existencegpdn S* x S" with wy(g) < 1
andEx(g) > 1 log,(m + 1). Hencewy(n) > $log,(n/2+ 1). If n = 2m+ 1 we put
Ky = S", andK, = S™! and usef,,, fm1to deduce that

w2(n) = 3(log,(M+ 1) + logy,(m + 2)) > 1 log, ([2] + 1) :

The proof of Theorem 3.1 is now complete. ]
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Remarks. (a) For small values afi we can use (3.2) directly to obtain better upper
bounds forw,(n). Thus B, < g B3, Ba < 2 and hencev,(2) < 1, wy(3) < %, and
wo(4) < 3.

On the other hand, if we use the piecewise linear funcfigh) = max((1—&)(1 —
£~1t), 0) on [0,1], then f, is convex and satisfias,(f,) = 1 andE,(f,) = %(1 —8).
Then using Lemma 3.5 and the functioggx, y) = f.(x) — f.(y) we obtain that
w([0, 1]%) > 1 — . Combined with the upper estimates above we obtain

(3.5) wa(2) = wy([0, 119 = 1.

Notice thatw([0, 1]%) = w2(€2)) = w(£2).
(b) The corresponding examples considered in [8] showghat g andgs = 2.

We now show that for the case of the simplex the lower bo%nfmigz(n +1)is
asymptotically sharp. More precisely:

Theorem 3.6.
wz(S”) N 1

lim —.
n—co log, N 4

We remark first that the function$, constructed in (3.4) show that,(S") >
2log,(n + 1) so that

o 1
(3.6) I|m)|oro1f log, 1 7

The proof of Theorem 3.6 will follow from the following Theorem 3.7.

Theorem 3.7. Forany0 < ¢ < % there is a constant G= C(g) such that whenever
neN,and f e C(S") satisfiesw,(f) < 1 — ¢ there is a Banach lattice X so that

|f(u) — 3(Px(u) — Px-(u)| < C
forallu e S".

Before proving 3.7 let us complete the proof of Theorem 3.6 assuming Theorem 3.7:

Proof of Theorem 3.6. Fixe > 0.If f € C(S") satisfiesv,(f) < 1—¢, we determine
X so that Theorem 3.7 holds. Lit | g be the Hilbertian norm determined by the John
ellipsoid forBy [10]. Thenin the terminology of Proposition 2.8 we must hBve: ¢»(a)
for a suitable positive sequenae= (ay, ..., an+1). Then by Proposition 2.8 we have
thatdg — @« is linear: in fact,®g(u) — g:(U) = —2(u, loga).

From the properties of the John ellipsoid we h#gec Bx ¢ (n + 1)Y/2Bg so that
Pe(u) < Ox(u) < Pe(u) + % log,(n + 1). From Theorem 2.9(a) we get

Pe-(U) — 3logy(N + 1) < Px-(U) < Pe-(U)

and so
|2(@x(u) — @x-(u)) + (u, loga)| < 7 logy(n + 1).
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It follows that
E2(f) < C(e) + 3l0g,(n + 1).
This implies that
w2(S") < (1— &)1 (C(e) + §10gy(n + 1)),

which in turn gives the required upper estimate

lim sup 2(S) < }
nooo lOg,N ~ 4
This completes the proof of Theorem 3.6. ]

We now turn to the proof of Theorem 3.7.

Proof. Let f: S" — R be a bounded function satisfying the conditios( f) < 1—¢
where O< ¢ < % is fixed. By Whitney’s theorem applied to each line segment we have
So(f) <wyr(f) <l—c. Leta:=1— %e and apply Theorem 2.10 to the functien® f .
Thus there is aiin + 1)-dimensional Banach latticé with

(3.7) If —a(Py — Pvo)lls < C(e).
To complete the proof we will find a lattice for which
(3.8) la(®@y — Py+) — 3(Px — Pxo)lls < C'(e).

In order to do this we will show the existence of a Banach laticsuch that if
we putd = 1 — (2a)7%, then the space¥ and X'~¢(¢5™)? have equivalent norms
with the constant of equivalence depending onlysoAssuming this fact, let us show
how the proof is completed. In this case, by Theorem 2.9 and Proposition 2.8, we
have

Using the duality result Theorem 2.9(a) this implies that

Dy — <(1 —0)dx + QA) H < Cy(e).
2 S

[(@y — Py+) — (1= 0)(Px — Px)llgn = 2C4(e).

Since 1— 0 = (2a)~? this establishes (3.8) and combined with (3.7) the theorem is
proved. ]
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Thus it remains to construe. We will need the following lemma:
Lemma 3.8. Suppose p is defined by
p:= <1+ i>_1+ (1+ 1_8>_1.
2a 2a

Thenthere is a constant C depending only@o that for every disjoint family of vectors
{yi}™, c R we have

" m 1/p
(3.9) doy| =c (Z Iy ||$)
=1 ly i=1
and
. m 1/p
(3.10) Yoy =c (Z Iy ||$*> :
=1 ly- i=1

Before proving the lemma, let us show how to complete the constructimassuming
this lemma. We set

1 1 1 0
3.11 —=-4+-—=1-—.
( ) r 2 + 4o 2
Thenp > r. By the lemma bott¥ and Y* satisfy upperp-estimates with constants
depending only on. According to a well-known theorem of Maurey and Pisier (see,
e.g., [21]) this implies thaY andY* are bothr -convex with constants depending only

¢. This means that for any, ..., ym € Y we have

m 1/r m 1/r
(Zw) sC(Z ||yi||’Y) :
i=1 v i=1

whereC depends only or, and a similar inequality holds i*. Now by Proposi-
tions 1.d.4 and 1.d.8 of [21] there is a lattigso thatYy, Y arer -convex with constant
one and thé&,-norm isC-equivalent to thé’-norm withC depending only oa. Finally
we use the Pisier extrapolation theorem [28] to deduce that there is a BanachXattice
so thatYy = X1 ~0(e5the. ]

We now turn to the proof of the lemma.

Proof. Letg := ®y — ®y.. Using (3.7) we first estimat&,(g) < o (C + 8m(f))

whereC depends only on. Sincew,(f) < 1 — &, Lemma 3.4 gives thai,(f) <
(1—¢)(3log, m+ 1). Hence

(3.12) Sm(g) < C1 + ;%i log, m,

whereC; = Cq(¢).
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Now suppose@, Uy, ..., Uy € S"have disjoint supports and that= Zim:la- ue S
is a convex combination. Then

& l-¢
g(u) > Zag(uﬂ _Cl— zTglogzm

i=1

By duality (Proposition 2.9%y = %(g + A) and direct calculation gives us that

A(u) = ZaA(ui) + Y ailog, a
i i=1

3

> Y aAu) — log,m
i=1
Combining these estimates we have
m 1
(3.13) Dy (U) > Y ady(u) — 3C1 — o log, m
i 1
where
1 1 1-
(3.14) Sl £

pr = 2 + 22—¢)’
Note that we have a precisely similar estimate to (3.13)for in place of®y using
instead the equatio@ry- = (A — ).
Now supposey, ..., Ym € Y have disjoint supports. For amye S" we can write
u=>", au as a convex combination where supp> suppy; and the(u;) have
disjoint supports. Let us write

n+1

(v, log, X]) : Zv. log, [
for v e S" andx € R™1 (with —co as a possible value!). Then by (3.13)

m
Dy (u) > Z (Ui, log, |yi]) + log,(2~C2m~1/Pr)
i=

= (U, logy(2~2m™Y/Py; + -+ ym)),

whereC, = %Cl. Now it is a consequence of Theorem 4.4 of [14] (which is much
simpler in our finite-dimensional setting) that this implies

(3.15) IV + - 4 Ymlly < 2°2mY/Pr,

Again the same inequality holds ¥fi.

Now supposéyi, ..., ym} are any disjoint vectors with ", [|y; ||$ =1 Let Ay =
{i :27% < |lyilly < 2'7%). If | A(| denotes the cardinality o, then|Ac| < 2P and by
(3.13) we have

o0 o0
< Z 2C2+1|Ak|l/p127k < 2Ca+1 Z ok(p/p1—1)
y k=1 k=1

Yo

ieAx

2

Y
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Since
p 1/3-2¢
— == 1 1
o2 ( 3_s )"
this implies an estimate
m
D o =Ce) <00
i=1
and, combined with the similar estimate fot, this establishes the lemma. [ |

We now turn our attention to the case whiin= By is the unit ball of a finite-
dimensional Banach space. Our main result concerns the caseXvker for 1 <
p <oo.

Theorem 3.9. (a) There exist constantg,c, > 0 so that
c1log,(n+ 1) < wa(¢]) < czlogy(n + 1).

In addition

. wa(d]) 1
3.16 I -.
( ) 'Tji’p log, n = 4

(b) If 1 < p < 2,theny (p) = sup,y w2(£p) < oo and further there exist constants
dy, d» > 0 so that

d; d,
— I - 1.
51 =7(P =5 llog(p— 1)
(c) If 2 < p < oo, theny (p) = sup,cy w2(£p) < oo, and further

y = sup y(p) <1602< .

2<p=oo

Proof of (a). The upper estimate is an immediate consequence of Theorem 3.1. To
prove the lower estimate, ld, : Bn — R be defined by

. 18 1
fax) = 5 ) % log, [xi| = 5 > ¥ ()
i=1 i=1

wherey (t) := tlog, |t| for —1 <t < 1. Since|A2y (t)| < 2logy(1 + V2)|h|, we
obtain

1A Fa(0] < log,(1+v2) ) Ihi
i=1

so thatw(f) < log,(1+ +/2). Since fy|g1 = f,_1 as defined in (3.4) we have

Ea(fa; Bey) = Ea(fooy; S™1 > 1log, n.
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This implies that

w2(€7) >

1
———log,n.
Hlog1+v2) 2
It remains to prove (3.16). For this we need:

Lemma 3.10. wz(€]) < wa(S™Y) + 2.

Proof. Suppose firsf is a bounded continuous function e with w(f) < 1.Then
there is an affine functiogdefined or8™ with |2 (f (x) — f (=x)) —g(X)| < wa(S"H).
We can extend to a linear functional oA}. We also haves (f (x)+ f (—x))— f (0)| < 3
for x € S". Hence|f(x) — g(x) — f(0)] < wo(S"Y + 3 if x € £5"1. Now if
X € B we can findu,v € S"Tand 0<t < 1 so thatx = tu — (1 — t)v. Hence
[ f(x) —tf(u) — (1 —1t)f(—v)| < 1 by the one-dimensional Whitney result which is
essentially the fact tha,(f) < g1 = 1. Sinceq is linear,|f (x) — g(x) — f(0)]| <
w2(S"7Y) + 2. It follows thatw,(¢]) < wp(S™1) + 3. ]

Now the inequality (3.16) follows from Theorem 3.6 and the proof of (a) is complete.
[ |

We postpone the proof of (b) until after (c).
Proof of (c). We will need the following lemma (see (2.1) for the definitiorvefX)):

Lemma 3.11. (a)Let E be a subspace of a finite-dimensional Banach spadeh&n
v2(X/E) < 2v(X).
(b) Suppose XY are two n-dimensional Banach spacHsernv,(Y) < d(X, Y)wvy(X)
where d X, Y) is the Banach—Mazur distance between X and Y

Proof. LetQ : X — X/E be the quotient map. If : X/E — R is a continuous
homogeneous function then there is a linear functieriain X so that

[T (Qx) — X*(X)| < v2(X)wa(f; Bx/e) Xl
for x € X. Forx € E we have
IX* ()| < v2(X)aw2(F)[IX]l
and so by the Hahn—Banach theorem we can find alinear functibnéth u*(e) = x*(e)

fore € Eand||u*|| < v2(X)wz(f). Thenthere existg" € (X/E)* withx*—u* = 20 Q
and we have

IF(Qx) —Z(QX)] = [F(QX) = X* ()| + [u*(X)| = 2v2(X)w2(F)[IX].

Part (a) now follows.
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For part (b) suppos&: X — Y satisfies|T| = 1 and||T~Y| = d(X,Y). Then if
f: Y — Ris a continuous homogeneous function thetif o T; Bx) < w(f; By).
Now there existx* € X* so that| f (Tx) — x*(X)| < v2(X)wa(f; By)||X]. Let y* =
x* o T~L. Then| f (y) — y*(y)| < va(X)wa(f; By)d(X, Y)|ly| and the lemma follows.

[ ]

Now suppose X p < oo. Then for anyn € N ande > 0 there existN so thatey is
(1+ &)-isomorphic to a quotient af} . Hencev, () < 2(1+ &)va(€Y).

However, the estimate(¢) ) < 200is proved in [18] (a factor 2 was omitted from the
argument as pointed out in [22]). Heneg¢y) < 400 for alln. Now by Proposition 2.1
we have

wa(lh) < 4up(Lh) + 3 < 1602.
(Note that forp = co we can eliminate a factor of 2 and get an estimate of 802.)m

We now proceed to the proof of (b). Let us comment first that there is a striking
difference between the casps< 2 andp > 2 and this reflects the differing behavior of
these spaces with respect to (Rademacher) type (see Section 2 for the definitions.)

We start by establishing the lower bound. For this we notedtét £p) < n%/9 where
1/p+1/q = 1.Hence by Lemma3.11 and part (a) we haye}) > cin~Ylog(n+-1).

If we choosen = [e9] we obtain an estimatg(p) > diq > di(p — 1)~* whered; > 0.

We will derive the upper bound from a general result about the relationship between

the Whitney constants and the Rademacher-fypenstant.

Theorem 3.12. There is an absolute constant C so that if X is a finite-dimensional
Banach space antl < p < 2, then

(3.17) wa(X) < %(ML [log(p — 1)| + log Tp(X)).

Proof. For this theorem we need the following elementary lemma:

Lemma 3.13. Suppose Y is a Banach space of type p whete p < 2 with type p
constant F(Y). Suppose ¥ ..., ¥n € By and that ke N. Then there is a subset of
(1,2, ...,n} with |o| < 27%n and so that

18 2K
ﬁ;yi—FZYi

ieo

244 1
210 — 1’

< Tp(Y)n~1/a

where as usual, Yp+1/q = 1.

Proof. We prove this by induction ok with k = 0 as the trivial starting point. Suppose
ok is the subset satisfying the conclusions of the lemm& faihen by the definition of
the typep constant there is a choice of sigis= +1 with

ZSiyi

iEo‘k

< Tp(Y)|Gk|1/P < Tp(Y)Z‘k/pnl/p.
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Without loss of generality we can assu@—;eak g <0.Letox,1:={i €eo:¢g =1}.
Then

2k 2k+l 2k « N
WA T T Lo = e = Te()2 e
Ok 1 €0kt1 | €ok
The induction step now follows easily ]

Returning to the proof of Theorem 3.12, we will estimate= v,(X). Suppose that
f is any continuous homogeneous functionXwith w,(f; Bx) < 1. We may pick
x* € X* so thatifg := f — x*, then

(3.18) Ea(f; Bx) = E2(9: Bx) =sup{g)[: x|l =1} < ve.
By Proposition 3.2,
E2(9; Bx) < sup{dn(g; Bx) : m € N},

wheredm( f; Byx) is defined in (3.1). Sincg is continuous the right-hand side is equal
to sup,cy bn where

18 18
b ::supHg(—in> ——Zg(xi) “Xq,...,Xm € Bx, m<n}.
m i=1 m i=1
We will show that
(3.19) bn <3+ 40g + 2qlog Ty + 2q log v,

whereT ;= Tp(X).
Toestablish (3.19) choose anintetjer= [(Tpv2)?]. By Theorem 3.1h, < 2w, (n) <
3+ log, n and this shows that

by <34 qlog, Ty + glog, v2 < 34 2qlog Ty + 29 log vs.

In particular, (3.19) holds for ali < N.

Suppose nowm > N and choosé& € N so that 2N < n < 2XN. We consider
the spaceY = X @ R; thenTp(Y) < 2Tp(X) = 2Tp. If Xq, ..., X, € Bx we
define elements oBy by y; := (X, vz‘lg(xi)). By Lemma 3.13 there is a subsetof
(1,2, ...,n} with |o| < 2 %n so that

1< 2K
ﬁ;)’i—ﬁzyi

ieo

< q(log 2) 1 Tp(Y)2¥/In~1/4 < 8qT,N /9,

(3.20) ‘
Y

In particular, we have ifi := (1/n) 31, x; andw := (2/n) 3", ., Xi
(3.21) lu—wl <8qT,N~4,

Sinceu,w € By and g is homogeneous, we havg(u — w) — g(u) + g(w)| <
w2(f; Bx) < 1.Hence, and by (3.18),

(3.22) lgw) —g(w)| <14+ |gu—w)| <1+ vzflu—wl| <20q



186 Y. A. Brudnyi and N. J. Kalton

by the choice oN. We also have from (3.20)

18 2 N
- N o ) -1/q
(3.23) ‘n i§:l<91(><.) - E g(x)| < 8qu.TpN < 20q.

ieo

Finally we note that, sincer| < 27*n < N,

(3.24) <bn <3+ 2qlog T, + 29 logv,.

2k
g(w) — — > g(x)

ieo

Combining (3.22), (3.23), and (3.24) gives us

< 34409+ 29log T, + 2qlog v,

1 n

g(u) — = > " gix)
n i=1

and so (3.19) holds.

Now (3.19) gives an estimate independenha@id so implies that
Ex(f; Bx) = Ex(g; Bx) <3+ 40g + 2qlog Ty, + 2q log vs.
Since this estimate holds for all suéhwe obtain
v <3+ 409 + 2qlog T, + 2q logv,.

Sinceqlogv; < %vz + qlogq + qlog 4 this gives the required upper estimate in #b).
The proof of Theorem 3.12 is now also complete. ]

Corollary 3.14. There is a universal constant C so that if X is an n-dimensional
Banach space angl < q < oo,

w2(X) < Cq(logq + logCq(X*) 4 log(1+ logn)).

Proof. If1/p+1/q =1, thenT,(X) < C(logn+ 1)Cq(X*) (see [36]). It remains to
apply the inequality (3.17). [ ]

Note that for the case @f, this is weaker than the conclusion of Theorem 3.9(c). We
conjecture that there is an estimate of the fara{X) < ¢(q, Cq(X*)) for a suitable
functione. It is possible that the estimate;(X) < Cq(1 + logCq(X*)) holds, which
would imply wo(X) < C(p —1)"1(1 + log Tp(X)) andwz(eg) <C(p—1tgivinga
sharp estimate fovz(ﬁ?,).

4. Quadratic Approximation on Symmetric Convex Bodies

We now consider the problem of estimating( X) whenX is afinite-dimensional Banach
space. Our first result gives quite a sharp estimategi‘}tn) ‘= SURjim x=n W3(X).
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Theorem 4.1. There are absolute constaris< ¢, C < oo so that for every r> 1
cv/n < wd(n) < Cy/nlog(n+1).

Proof. The upper estimate is a special case of Theorem 5.2 (or Corollary 5.6), which
we therefore postpone to the next section. For the lower estimate, we use the fact that
the space] contains a subspadé so that every linear projectioR : ¢] — V satisfies

(4.1) IPIl = ev/n,

wherec > Ois an absolute constant. This follows from a well-known result of Kashin [19]
that we may pick/ with dimV = [n/2] andd(V, £9™V) < C whereC is independent
of n. For convenience let be the spac®" with the norm, 2-equivalent to thig-norm,

IXIly = X ln + Xz

Then (4.1) holds for every linear projectidd : Y — V, with perhaps a different
constant. Sinc¥ is strictly convex, for everx € R" there is a uniqu& (x) € V so that

X = Q0)lly = dv(x, V) := inf X = vy

The mapK2 is called themetric projectionof Y ontoV and the following properties are
well known (see, e.g., [34, Sec. 5.1]):

Lemma4.2. (a)<2 is homogeneous and continuous.
(b) 2 is a (nonlinear)projection, |2(X)|ly < 2|X|ly for x € Y andQ(X + v) =
QX)+vifxeY, veV.
(c) Forx,y e,

[2(X+Yy) = () — QI = 2(dy (X, V) + dv(y, V).

Now let{ , ) bethe standard inner-productBA. Lets be the orthogonal projection
ontoV and letr* be the complementary projection ontd-. Let || X||y+ := sup{K, y) :
lylly < 1} be the dual norm oR".

We now define a norni || x on R" by the formula

(4.2) IX[Ix = dy« (X, V) + dy (71X, V),
where
dy-(x, V1) = inf{||x — vt|y-: vt e V1)
Finally, let us define the continuous homogeneous function
(4.3) F(X) = (mx, Q(rx)).

Now suppose, X + 3h € By. Letx = x; + X2 andh = h; + h, wherex;, h; € V
andx», h, € VL. Then

(4.9) ASF(X) = (X1, A} Q2(x2)) + 3(h1, AR (X2 + hy).
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Now we have

I3 Q)lly < 1AL QX)Ily + |47, QX2 + ho)lly

<
= 2(dY(X27 V) + dY(XZ + 2h27 V) + dY(XZ + h2s V) + dY(X2 + 3h2s V))
<8

by Lemma 4.2. Similarly
1A%, 20 +hy)ll < 4.

Hence by (4.4) have
(4.5) |AZF(X)] < 80+ (1, V5) + 120 (hy, V1) < 16
sincedy- (x;, V1) < 1 anddy- (hy, V*) < 2. Thus (4.5) implies
(4.6) w3(F; Bx) < 16.
Let vz := v3(X). Then there is a quadratic for@(x) such that

IFOO — Q| < 16us)Ix]%

for x € R". We can writeQ(x) = (x, Ax) where A is a symmetrin x n matrix or
equivalently a symmetric linear operator BAf.
Note for everyx € R" we haveF (rx) = F(r+x) = 0. Hence

(X, Arx)| < 16us]lmx[% < 16us[x]lk
and
[ X, Artx)| < 16u3]lmx|% < 16ws)x[%.
It follows that
4.7) |F(X) — 2(rx, Artx)| < 48us]|x|%.

We now defineP := 7 +2x A L. The linear operatoP is a projection ont& ; we will
use (4.1) and so we estimate||y. Assume||y|ly = 1is chosen so thdtPy|y = || P|.
Then we may pick; € V with dy-(x¢, V) < 1 and

(x1, Py) = [IPlly.
Now X = x; + 7+ (y) € Bx. Note that
F(0) = (X1, Q@) = (x1, Q(Y)) — (1, 7Y).
Hence

IF(X) + (X1, Ty)| < 20- (X, VD lylly < 2
by Lemma 4.2. By (4.7) we obtain

|(X1, 2r Aty + y)| < 2+ 4813

which implies|| P|| < 2+ 4813 and hence gives the estimatg X) > c¢./n for suitable
c>0. |
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Our second main result of this section gives a rather sharp estimatg«ff) when
p=1or2=< p < 0. ltisaconsequence of more general results which will proved
later.

Theorem 4.3. There are absolute constaris< ¢ < C < oo so that for every n> 1:

(@) clog(in+1) < w3(€g) <Cplogn+1ifp=1or2 < p < oo; and
(b) clog(n+ 1) < w3(¢) < C(log(n+ 1))%.

Remark. We emphasize thatandC are independent afandp. We do not have any
really good upper estimate fars(¢;) when 1< p < 2, but Theorem 4.3 gives a lower
bound in that case.

Corollary 4.4. There is a universal constant 0 so that forl < p < 2,

wg(zg) >c(p—1Dlog(n+1).

Proof. We use the following fact proved in an equivalent formin [25, p. 21]. There is a
universal constar@ and for eactm a subspac¥, of £, 1 < p < 2, withdimY = [n2/9]
(where 10+ 1/q = 1) so that:

(a) the Banach-Mazur distandeY,, (3™"™) < C; and
(b) there is a projectio®: ¢§ — Y, with |[P| < C.

Applying Lemma 4.7 and Lemma 2.4 Y we can find a continuous 2-homogeneous
function fo: Yy, — R with ws(fo; By,) < 1 andEs(fp) > c(p — 1)log(n + 1) where
¢ > 0 is a universal constant. Defininf := fy, o P we easily havevs(f) < C but
Es(f) > c(p— 1)log(n+ 1) and this proves the result. [ |

Except for the casp = 1, the estimatesin Theorem 4.3 will follow from the following
very general estimate:

Theorem 4.5. There are absolute constanis< ¢ < C < oo so that for every n-
dimensional Banach space we have

% < wg(X) < CT(X)?log(n + 1).
Proof (The Upper Estimate). By Theorem 3.12 we haxg X) < C(1 + log T2(X))
and by Proposition 2.5 we havwe;(X) < C max(up(X), v3(X)). So it will suffice to
show a similar estimate far(X). We obtain the result by a linearization technique. We
can regardX asR" with an appropriate norm. Now iP is ann x n positive-definite
matrix, we can define aR"-valued Gaussian random varialfewith covariance matrix
P. LetT" be the cone of positive-definite matrices.

Suppose now thatt is a 2-homogeneous continuous functiomowith ws(f; By) <
1. We define a functiorf onT by putting

f(P) := E(f(¢p)).
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Thenf is 1-homogeneous on the coRelet 'y be the convex hull of the set of matrices
{x ® x : x € Bx} wherex ® x denotes the rank 1 matri; xj)1<i j<n. We need the
estimate:

Lemma 4.6. There is a universal constant so that for any % € X we have

(4.8)  |A(f(xa+ %) + F(Xe — %)) — F(x) — F ORI < CUIxall® + I%202).

Proof. By the main result of [2] there is a const&y so thatw3(Y) < C for all two-
dimensional subspaces. Lét:= span¥i, X»}. By Proposition 2.5 there is a quadratic
formhonY so that f (y) — h(y)| < C|ly||?forall y € Y (where agairC is a universal
constant). This immediately yields the lemma. ]

Returning to the proof of the theorem we note th&tifandéq are independent then
&p + &g has the same distribution &8s, . Hence

1f(P+Q — f(P)— f(Q)I = [E(f¢p +£&q) — E(f¢p) + f(£Q))
= |E5(f(¢p +80) + F(6p — £Q))
—E(f&p) + T (&)
CE(l&p 1% + lIEQl®).
Now suppose tha®, Q € I'p. Then we can writd® = Zim:laixi ®xi where||xi|| <1
forl1 <i < manda > Owith )", & = 1. Then&p has the same distribution as

>, ail/zgi X whereg;, . . ., gm are independent normalized Gaussian random variables.
Hence as is well known (see, e.g., [30, p. 25])
) < Ta(X)%.

E(lép|?) = E (’Za”zg.x.

Using the similar inequality fof, we obtain
1f(P+Q — f(P) - f(QI = CT(X)?

for auniversal constaf. Hencews( f, T'g) < CTo(X)2. Since dinly = In(n—1) < n?
we can apply Theorem 3.1 ¢, to deduce the existence of an affine functipon I'g
so that
(4.9) |f(P) = p(P)| < CTx(X)?log(n+ 1),
whereC is again a universal constant. In particular0) | is dominated b T,(X)? log(n+
1) so we can assume thais linear on the linear span 0%. Leth(x) = ¢(X® X). Then

h is a quadratic form. Sincé(x ® X) = E(f(gx)) = f(X)E(g) = f(x) wheregis a
normalized Gaussian, we have from (4.9)

1f(x) —h(X)| < CT2(X)?log(n+ 1)

IA

for all x € Byx. This gives the desired estimatewf X) and completes the proof of the
upper estimate.

(The Lower Estimate). We establish a lower estimateyfdX); we first achieve this
for the case oX = £5.
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Lemma4.7. There is an absolute constantcO0 so that for alln> 1
(4.10) v3(£3) > clogn.
Proof. Letg(t) := t?log|t| for —1 <t < 1. Then, by the Mean Value Theorem
Adp(t) = 3nAZ, ¢ (t +6h)
for some 0< 6 < 1. Hence
AR ()] < 6log(L+ v2)lh[2.

Now define forx e ng,

n
Fo0 =) e,
i=1
Then forx, x + 3h € By,
n
AR f (0] < Blog(1+v2) ) " h? < §log(L+ v2).
i=1

Hencews(f; Bw) < 6.
Sincef is even andf (0) = 0 we can find a quadratic forimon ¢3 so that

sup | f(x) —h(x)| = 2E3(f; B).

Ixi<1

As the pointn™/2) " sig € By for &; = £1 the left-hand side is at least

As f(g) =0forl<i <nwe have

> hee)
i=1

Putting these inequalities together gies( f; Bey) > %Iog n. ]

Ave
&j =+1

1 n
1
5logn + a0 iE:l h(g)

1
- < 2E(f; BY).

Next we need a lemma using the extension constants from Definition 2.11.

Lemma 4.8. Let X be an n-dimensional Banach space and let E be a linear subspace
of X. Let&Ex(E, EL) = My and&x(E, X*) = M,. Then

(4.11) v3(X/E) < (M1 + 1)(M2 + D)vs(X).
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Proof. It will be convenient to regarX asR" with an appropriate norm and lét, )

be the usual inner-product &I'. Supposef is a 2-homogeneous continuous function
on X/E with w3(f; Bx/g) < 1.Let Q : X — X/E be the quotient map. Theho Q is
continuous and 2-homogeneousXandws( f o Q; Bx) < 1.Hence there is a quadratic
formh : X — R such that

1 (Qx) —h(X)| < v3(X)[IX]1

for x € R". We can assumie(x) = (x, AX) whereA is a symmetric matrix.
Since(x, Ay) = 3 (h(x +Y) — h(x — y)) we have

[(x, Ay) — 2(F(Qx+ Qy) — (Qx — QY| < Jvs(X)(IXII% + lIYII%)-
Assumey € E. ThenQy = 0 and so

(%, Ay)| < 2us(X)(IXI1% + IIYIZ)-

Replacingx by ax andy by a1y and minimizing the right-hand side gives

[, AV < va(X) X [Ty [T
This implies that

AYlx- < va(X) Iyl

wheny € E. From the definition of the extension constant there exists am matrix
A; so thatA;y = Ayfor y € E and A; has norm at mod¥l,v3(X) as an operator from
X into X*. ThenA — A; mapsE to 0 and hence the transpose- A) mapsR" to E*.
Now [| Al [x—x+ = lAtllx—x+ < Mauz(X) and so| A — Allg—x- < (Mz + D)v(X).
Using the extension constant again we can find ann matrix A, which mapsR" into
E' and such that Azl x— x+ < M1(M2 4+ L)wvs(X).

LetS= A— A} — A,. ThenSmapsE to {0} andR" into E*. It follows thatS= T Q
whereT is a linear operator fronX/E to E* and we can define a quadratic fogmon
X/E by ¥(QX) = (X, SX.

Then

1(QX) — ¥ (QX)| < [T(Qx) —h()| + (X, ALx)| 4 (X, Asx)|
< (14 Mz + My(Mz + 1)us(X)[Ix]1%

= (M1 + )Mz + Dus(X) Ix]1%.

Now for givenu € X/E we can choosg € X with Qx = u and|x||x = [lullx,e. This
impliesvz(X/E) < (M1 + 1)(M2 + 1)vs(X). [ |

We can now complete the proof of the lower estimate in Theorem 4.5. Suppizse
a Banach space of dimensianWe use the following powerful form of the Dvoretzky
theorem due to Figiel, Lindenstrauss, and Milman [7] (see [25, Theorem 9.6], where the
theorem is formulated in the form required here). There is a subdpated* which is
2-isomorphic toff' with

(4.12) m=dimF > cCy(X*)?n
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We note that the lower estimate in Theorem 4.5 is trivial for spaces suc@itiét) >
Jent/4. We will therefore consider only those spacégor which Co(X*) < /cnt/4,
Then (4.12) givesn > /n.

Let us putE := F*. SinceE* is isometric toX*/F andd(F, £3') < 2 we can apply
Theorem 6.9 of [30] to obtain

(4.13) Co(E*) < CCy(X™),

where, as usual; is an absolute constant.
Now we use Corollary 2.13 to estimate the constahtsM, of Lemma 4.8 as follows:

¥ (T2(X/E))Co(X*)(C2(E*)Ca(E1))/2,
¥ (T2(X/E))Co(X*)(C2(E*)Ca(X*)%/2,

M3
M>

<
=
whereyr : [1, 00) — [1, 00) is a suitable increasing function. Sin¥¢ E is isometric
to F* we haved(X/E, £3') < 2 and soTl,(X/E) < 2. Together with (4.13) this yields
Mz, Mz < CCp(X*)".
Combining this with (4.11) and Lemma 2.4 we have
7v3(63) < v3(X/E) < CCy(X*)®v3(X).
Applying now (4.10) and the inequality > ,/n we have

logm - log(n+ 1)
Ca(X*)8 = 7 Cy(X*)8
for an absolute constant> 0. The proof of Theorem 4.6 is now complete. ]

va(X) > C7t

Proof of Theorem 4.3. For the casgp = 1 we postpone the proof to the next section
(see Corollary 5.7 below). For 2 p < oo it suffices to apply Theorem 4.6 % = ¢}
noting that in this cas€,(X*) is uniformly bounded independent ofand p while
Ta(th) < C/pfor2 < p < coandTy(£],) < C(log(n+ 1))Y/?; see, for example, [36].

[ |

5. Higher-Order Estimates

We now consider upper estimates fog(X) when X is a finite-dimensional Banach
space and > 3is arbitrary. In the proof we will use heavily the notion and characteristic
properties ofn-quasilinear functions, which we introduce next.

Definition 5.1. AmapF: X™ — R s said to ben-quasilineaiif F is homogeneous
in each variable separately and there is a congtan0 so that for any & j < mand

any (X)ixj the mapg; (x) := F(X1, ..., Xj—1, X, Xj41, . . ., Xm) Satisfies
(5.1) w2(95; Bx) < A Il
i#]

We then sefA,(F) to be the infimum of alk so that (5.1) holds.
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To formulate our main result, we recall that gh@jection constani.(Y) of a finite-
dimensional Banach spavéas the smallest > 1 so that ifY is embedded isometrically
in a Banach spacg, then there is a linear projectidd : Z — Y with ||P] < A. See,
for example, [41].

Theorem 5.2. For any integers n»> k > 2 there is a constant G= C(m) so that

(5.2) Wn(X) < CAX)M K (X).

Before proving this estimate we will establish some basic lemmas-gquoasilinear
forms. We letC denote a constant which depends onlynan

Lemma5.3. Suppose F: X™ — R is a symmetric m-quasilinear form and that
f : X > Risdefined by tx) = F(x, ..., X). Then

foa+x) =Y (T) Fi(X1. X2)

k=0

(5.3) < CAm(F) max(xa[™, [Ix2™),

where (X1, X2) = F(Xq, ..., X1, X2, ..., X2) With X, repeated k times and, xepeated
n —k times.
More generallythere is a constant & C(m) so thatif x, ..., Xm € X

f (Z::xi>—2 <Z‘) Fo (X0, - X)

lel=m

(5.4) <CAm(F)ymax(lxa|™, ... [xnl™,

where we adopt the notation fare Z7 of |a| := > ; & and
Fo(X1, ..., Xm) i= F(Xq, ..., X1, X2, o ooy X2, oo oy, Xy « v vy Xm)

with each x repeatedxy times.

Proof. This is established by expanding in each variable separately and collecting
terms. We omit the details. ]

Suppose now that : X — Ris a continuousn-homogeneous function. We associate
with f the separately homogeneous functien X™ — R defined for||x,|| = [|Xz]| =
-+ = |IXall = 1 by

1

m
(5.5) F(X1,...,%Xn) = S E;fl...amf (;aXi).

and extended by homogeneity.

Lemma5.4. If f : X — Riscontinuous and m-homogeneous then F defin€8.by
is symmetric and m-quasilinear withy(F) < Cwomy1(f; By).

Converselyif F is continuous and m-quasilingahen f(x) := F(x, ..., X) is con-
tinuous and m-homogeneous With 1 ( f; Bx) < CAm(F).
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Proof. Suppose first thaf is continuous andn-homogeneous and thét is defined

by (5.5). Supposéx;)ix; € Bx andx,x + 2h € Bx. Let E = span(k;}i-j, X, h).
Then dimE < m + 1 and so by the Whitney-type result of [2] there is a constant
C = C(m) so thatwn,1(E) < C. By Proposition 2.5 we also havg,,1(E) < C. Since
wm+1(T; Be) < wms1(f; Bx) there is a homogeneous polynomial of degreen E so
that

[f(u) — g < Cllulwm1(f; Bx)

for u € E. We can expresg in the formg(u) = G(u, ..., u) whereG is a symmetric
m-linear form. Using the polarization formula from multilinear algebra, we have

[F (X1, .o Xj=1, Uy X1, oo, Xm)—G(Xe, oo, Xj—1, U, X1, - - -5 Xm) | < Compa (5 Bx)
wheneverjjul| < 1 andu € E. Letg(u) = F(Xg, ..., Xj_1, U, Xj+1, - . ., Xm). It now
follows that

|A29(X)| < Comya(f; Bx)
and so
Am(F) < Comq1(f; Bx).

We now turn to the converse. Suppose that jh € By for 0 < j < m+ 1. Using
(5.3) we have

m
fx+jh) - kX; (T) J*Fi(h, )| < CAn(F).
Hence
|ARTHE (0] < CAR(F)
as required. [ ]

Our next result shows that symmetnicquasilinear forms can be nicely approximated
by m-linear forms.

Lemma5.5. Suppose FE X™ — R is a continuous symmetric m-quasilinear form.
Then there is a symmetric m-linear form K™ — R so that

IF O, s Xm) = HOG o X | < Comgpa ) Am(F) [ ] -
i=1

Proof. Let f(x) := F(X,...,X). By the previous lemmayny1(f; Bx) < CAm(F).
Hence there is a symmetnio-linear formH so that ifth(x) = H(x, ..., X) then
(5.6) |f(X) — ()| < Compr(X)Am(F)IIXI™.

Now let us defind=" using (5.5) to be separately homogeneous ang)Xof = ||x2| =
=[xl =1,

l m
(5.7) F/(X, ..., Xn) = e 82181 emf (; & xi> .
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Note that
m
(5.8) 3D (m> []eo* = mizm
e =+1|a|=m o i=1
since)", _; [T~y et = 0 unlessy; = 1 for alli. Hence
m m
Z Z <a> 1...8mFy(e1Xe, ..., emXm) = 2"'MI F(Xq, ..., Xm).
g==%1 |a|]=m
It follows, by Lemma 5.3, that folfxy|| = ||Xo]| = -+ - = [Xnll = 1,

/(X1 .o %) = F(X, o, Xn)| < CAm(F).
We also have, again using Lemma 5.3,
IF'(Xa, -, %) — H, - )| < Comyr ) A (F)

and the lemma follows by homogeneity. ]

Proof of Theorem 5.2. We will prove by induction that
(5.9) um(X) < CA(X*) max(un-1(X), v2(X))

whenm > 3.
Letf : X - Rbea continuoum-rlomogeneous function withy,,1(f) < 1. We
defineF : X™ — R using (5.5) so thaf,(F) < C. Now fixingu € X we define

gU(X) = F(u’ X’ ey X)
so thatg, is (m— 1)-homogeneous angh,(F) < CAn(F)|lull < C|lu|| by Lemma 5.4.
Now by Lemma 5.5 there is a symmet(in — 1)-linear formH,, : X™ ! — R so that
m
IF(U X2, ., Xm) = HuO%, -, Xm)| < ComO)lull T Tl
i=2

We may clearly suppose that the map> H, is homogeneous. Then
m

(5.10) IF (X0 Xm) = HOG - X < Com) [T 111
i=1

Now let Z be the space of all continuous homogenous functionX arith the norm
lellz = supy<1 l9(X)]. ThenX* is a linear subspace af and there is a projection
7w Z — X*with ||| < A(X").

Forxy, ..., xm € X we defineHy, ., andFy, x, € Zby
Hy,..x, (X) = H(X, X2, ..., Xm)
and
Fro. xa(X) = F(X, X2, ..., Xm).
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Then

and by (5.10)

i=2
Now set
G(Xla R Xm) = T[(hXZ,M.Xm)(Xl)

so thatG is m-linear. Then
m
[H(X1, ...  Xm) = G(X1, ..., Xm)| = (1 + IIHII)]_[ i1l
i=1
Hence appealing again to (5.10) we have

IF (X0 Xm) = GO, -, Xm)| < CACX*) max(un(X), v2OX)) [ T 1% -
i=1

This implies (5.9).
Sincevn(X) < wn(X) < Cmax(w(X), ..., vm(X) by Proposition 2.5 the theorem
is proved. ]

Corollary 5.6. For any m> 2 there is a constant G= C(m) so that
w®(n) < Cn™2tlog(n+ 1)

(i.e., for any n-dimensional Banach spagg,(X) < Cn™2-1log(n + 1)).

Proof. Using Theorem 5.2 witlk = 2 and the Kadets—Snobar inequalitgX*) <
VN [11] and [41] we havavy,(X) < Cn™2 1w, (X), butwy(X) < Clog(n + 1) by
Theorem 3.1. [ |

Corollary 5.7. For any me N there exists a constant € C(m) so that
Ctlog(n+ 1) < wy(£) < Clog(n + 1).
Proof. SinceA(£y,) = 1(see, e.g, [31]) by Theorem 5.2 with= 2 we have w(¢]) <

Cwy(¢]) < Clog(n+ 1). Conversely, by Corollary 2.6 and Theorem 3.9, we have
Ctlog(n+ 1) < wp(£]) < Cwm(€). [
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Corollary 5.8. Forany m> 3and2 < p < oo there is a constant G= C(m, p) so
that

wm(€p) < CnM 2/ Zlog(n+ 1).
Proof. Apply Theorem 5.2 wittk = 3 and use Theorem 4.2. [ ]

There is a striking difference between the resultsfer 1 and for O< p < 1, when
the setsB,s are no longer convex. The following theorem is then true:

Theorem5.9. If 0 < p < 1and m> 2 there is a constant C= C(p, m) so that
wm(eg) <Cforalln> 1.

Proof. It is easily checked that the proof of Theorem 5.2 goes through with trivial
changes for-normed spaces whan< 1 (see Remark after Corollary 2.6). Of course
the constanC in its formulation depends now an Applying this result to¢j with

r = p < 1 we therefore have

W () < C(M, PIAED)™ 2w (ED).

But (¢7)* = £, and itis essentially proved in [12] (in an equivalent formulation related
to the notion of alC-space) tha’wz(ﬁg) < C(1 — p)~! with C an absolute constant
independent ofi. This proves the theorem. [ ]
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