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Polynomial Approximation on Convex Subsets of Rn

Y. A. Brudnyi and N. J. Kalton

Abstract. Let K be a closed bounded convex subset ofRn; then by a result of the first
author, which extends a classical theorem of Whitney there is a constantwm(K ) so that
for every continuous functionf on K there is a polynomialϕ of degree at mostm− 1
so that

| f (x)− ϕ(x)| ≤ wm(K ) sup
x,x+mh∈K

|1m
h ( f ; x)|.

The aim of this paper is to study the constantwm(K ) in terms of the dimensionn and
the geometry ofK . For example, we show thatw2(K ) ≤ 1

2 [log2 n] + 5
4 and that for

suitableK this bound is almost attained. We place special emphasis on the case when
K is symmetric and so can be identified as the unit ball of finite-dimensional Banach
space; then there are connections between the behavior ofwm(K ) and the geometry
(particularly the Rademacher type) of the underlying Banach space. It is shown, for
example, that ifK is an ellipsoid thenw2(K ) is bounded, independent of dimension,
andw3(K ) ∼ logn. We also give estimates forw2 andw3 for the unit ball of the spaces
`n

p where 1≤ p ≤ ∞.

1. Introduction

Basic Definitions. Let K be a closed subset ofRn and letPm denote the space of
polynomials of total degree at mostm. If f is a continuous function onK we set

Em( f ; K ) := inf
ϕ∈Pm−1

max
x∈K
| f (x)− ϕ(x)|

and

ωm( f ) = ωm( f ; K ) := sup
x,x+h,...,x+mh∈K

|1m
h ( f ; x)|,

where

1m
h ( f ; x) :=

m∑
j=0

(−1)m− j

(
m
j

)
f (x + jh).

We then define theWhitney constantwm(K ) by

wm(K ) := sup{Em( f ) : f ∈ C(K ) andωm( f ) ≤ 1}.(1.1)
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We will mainly be interested in the case whenK belongs to the classCb(Rn) of
bounded convex subsetsof Rn or to the subclassSCb(Rn) of all centrally symmetric
convex subsets ofRn. In the latter case,K can be identified with the closed unit ball
BX of an n-dimensional Banach spaceX and it is natural to writewm(X) in place of
wm(BX). As we do not consider unboundedK except in the Introduction this notation
does not lead to any ambiguity.

We also define theglobal Whitney constantby

wm(n) := sup{wm(K ) : K ∈ Cb(Rn)}.(1.2)

In the spirit of the classical paper of Whitney [39] who considers the case of dimension
one,1 let us consider also the constantsw∗m(n) andw∗∗m (n) defined by (1.1) withK :=
Rn
+ := {x ∈ Rn : xi ≥ 0} andK := Rn, respectively. Using the techniques of Beurling

(see [39]) it is easy to prove the following estimates:

w∗m(n) ≤ 2, w∗∗m (n) ≤ min
1≤ j≤m

1/

(
m
j

)
.(1.3)

In contrast, the estimates forwm(n) are not independent of dimension, and in fact
limn→∞wm(n) = ∞ if m≥ 2.

The main goal of this paper is to give “good” quantitative estimates forwm(n) and for
wm(K ) in terms of the geometry of the setK .

Remarks. (a) The inequalities (1.3) are relatively precise. For instance,w∗2(2) ≥ 1.
Concerning the sharpness of the second inequality, even forn = 1, see [39]. In fact the
Beurling method yields the more general inequalitywm(K ) ≤ 2 providedK satisfies
theunbounded cone condition. This condition means that there is an unbounded coneC
with vertex at the origin so thatK + C ⊂ K .

(b) The asymptotic behavior of Whitney’s constants does not change if the supremum
in (1.2) is taken overall convex subsets ofRn. Actually, letw̃m(n) := supwm(K )where
K runs over all unbounded convex subsets ofRn. Thenwm(n − 1) ≤ w̃m(n) while
compactness arguments show thatw̃m(n) ≤ wm(n).

(c) If we let

w(s)m (n) := sup
dim X=n

wm(X),(1.4)

thenw(s)m (n) ≤ wm(n). In the casem= 2 we havew2(n) ≤ Cw(s)2 (n) for some universal
constantC independent of dimension. However we do not know of a similar inequality
whenm> 2.

(d) In his paper [40] Whitney also proved the finiteness of similar constants in a more
general situation in whichC[0,1] is replaced by the spaceB[0,1] of bounded (not
necessarily measurable) functions. He also posed the problem for the spaceL0[0,1] of
measurable functions. Let us denote bywm(K ; B) (respectively,wm(K ; L0)) the corre-
sponding constants defined by (1.1) allowingf to be bounded (respectively, measurable).
One can then prove the inequality

wm(K ; B) ≤ (22m− 1)wm(K )+ 2m.(1.5)

1 In this casewm(1)= wm([0,1]).
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A similar inequality holds forwm(K ; L0). Since we do not use this inequality we will
omit its proof.

Prior Results: The One-Dimensional Case. In [39] Whitney proved thatwm(1) <
∞ for all m and gave numerical estimates forwm(1) when m ≤ 5. Using a differ-
ent approach, the first-named author proved the analog of the Whitney inequality for
translation-invariant Banach lattices and gave, in particular, an effective but rather rough
estimate ofwm(1) for all m.This estimate was subsequently improved by a research team
(K. Ivanov, Binev, and Takev) headed by Sendov who finally showed thatwm(1) ≤ 6
for all m. The most recent result is due to Kryakin who proved thatwm(1)≤ 2 for all m
(see [20] for the references). The only known precise result isw2(1)= 1

2.

Prior Results: The Multidimensional Case. In 1970, the first-named author [2] estab-
lished the multidimensional analog of Whitney’s result for translation-invariant Banach
lattices. From this it follows, in particular, thatwm(n) < ∞ for everym, n. Later in a
lecture at Moscow State University he established an estimatew2(n) ≤ C log(n+ 1).
Following this lecture S. Konyagin suggested thatw2(X) < ∞ for every infinite-
dimensionalBanach spaceX belonging to the classK introduced by the second author
(see [12]). In particular, this implies thatw2(`

n
p) is bounded by a constant independent of

dimension if 1< p ≤ ∞. This important observation led to the authors’ collaboration
on the current paper.

Discussion of the Main Results. Our main results concern the Whitney constants for
m= 2 andm= 3 (see Section 5 for some results whenm> 3). In Section 3, we give a
fairly precise estimate forw2(n), i.e.,

1
2 log2

([n

2

]
+ 1

)
≤ w2(n) ≤ 1

2[log2 n] + 5
4.

Curiously enoughw2(n) is almost attained not for the unit simplexSn but for its Cartesian
square. Meanwhile forSn we prove in Theorem 3.6 the precise asymptotics are given by

lim
n→∞

w2(Sn)

log2 n
= 1

4
.

We also consider in this section the problem of estimatingw2(`
n
p) for 1 ≤ p ≤ ∞.

In particular, we show in Theorem 3.9 thatw2(`
n
1) ∼ logn while γ (p) := supnw2(`

n
p)

is finite for 1< p ≤ ∞. More precisely,γ (p) is equivalent up to a logarithmic factor
to (p− 1)−1 when p ↓ 1; surprisingly, for 2≤ p ≤ ∞, the constantγ (p) is bounded
by an absolute constant. This striking difference in asymptotic behavior is explained by
Theorem 3.12 which gives an upper estimate ofw2(X) in terms of the typep constant
Tp(X) of X.

In Section 4, we consider the problem of quadratic approximation on symmetric
convex bodies. In particular we show in Theorem 4.1 that

c1
√

n ≤ w(s)3 (n) ≤ c2
√

n log(n+ 1)

for some absolute constants 0< c1, c2 < ∞. As in the linear case, however, better
estimates are available for`n

p-spaces. Our results in this case are consequences of Theo-
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rem 4.5 giving upper and lower estimates ofw3(X) by the type 2 constant ofX, T2(X)
and the cotype 2 constant ofX∗, C2(X∗). Actually we show that

c1C2(X
∗)−8 ≤ w3(X)

log(n+ 1)
≤ c2T2(X)

2

for some absolute positive constantsc1, c2. As corollaries of this inequality we have, for
example, thatw3(`

n
2) ∼ log(n+ 1)while

c1 log(n+ 1)≤ w3(`
n
∞) ≤ c2(log(n+ 1))2

with absolute constantsc1, c2 > 0. See Theorem 4.3.
In Section 5 we discuss a few estimates forw(s)m (n) andwm(`

n
p) with m ≥ 4. In

particular, we prove in Corollary 5.5 that

w(s)m (X) ≤ cnm/2−1 log(n+ 1),(1.6)

wheren = dim X andC is an absolute constant. Once again, for`n
p-spaces, we have

better estimates. For instance,

wm(`
n
p) ≤ Cn(m−3)/2 log(n+ 1)

for 2 ≤ p ≤ ∞ andm ≥ 3 whilewm(`
n
1) ∼ log(n+ 1). Particularly striking is the

fact that there is a dimension-free upper bound forwm(`
n
p) for (fixed) arbitrarym if

0< p < 1 as in Theorem 5.8.
Our arguments depend, in part, on some deep results of the local theory of Banach

spaces. Most of them are concentrated in the proofs of Theorems 3.6 and 4.5. We also
need a refinement of the main result Theorem 1.1 of paper [14] and a version of Maurey’s
extension principle [24] using a dual cotype 2 assumption in place of the usual type 2
assumption. The proof of the first result is presented in Section 3 while the required
ingredients of the proof are presented in Section 2. This section also contains the proof
of the second result and those of two results related to thehomogeneousversions of the
Whitney constants.

Let us discuss our results in connection with thecurse of dimension, which, roughly
speaking, asserts that the computational complexity of a function ofn variables grows
exponentially inn. In situations where this can be precisely formulated and proved it
is, in general, a statement of the complexity of a universal (e.g., linear) approximation
method for functions in a given class. It may be anticipated that approximation methods
for individual functions can be much more efficient. In these terms we can consider
wm(K ) as a measure of approximation off ∈ C(K ) satisfyingωm( f ; K ) ≤ 1 by
polynomials of degreem− 1.We can then comparewm(K ) with a linearized Whitney
constantwl

m(K ) which is defined by

wl
m(K ) = inf

L
sup

ωm( f : K )≤1
‖ f − L f ‖C(K ),

whereL runs through all linear operatorsL : C(K )→ Pm−1. In the case whenK = B`n
2

this quantity has been estimated by Tsarkov [37], who proves

wl
m(K ) ∼ n(m−1)/2.
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Our results show thatwm(K ) ≤ Cn(m−3)/2 log(n + 1) for m ≥ 3. Thus we have a
marked improvement over linear methods which is especially striking whenm = 3
sincewl

3(K ) ∼ n butw3(K ) ∼ log(n+ 1).

Remarks on the Infinite-Dimensional Case. There is an obvious generalization of
the Whitney constantwm(X) to the case whenX is an infinite-dimensional Banach space
(or even quasi-Banach space). In this case it is quite possible thatwm(X) = ∞. Let us
consider first the case whenm= 2.We recall (see [12] or [16]) that a Banach spaceX is
called aK-space if, wheneverf : X→ R is a quasilinear map (see Section 2), then there
is a linear functionalg: X→ R with sup{|f (x)−g(x)| : x ∈ BX} := ‖ f −g‖BX <∞.
There is a clear connection between the above condition andw2(X) <∞.However, since
the definition of aK-space allows for discontinuousf (andg) it is not clear that these con-
ditions are equivalent. They are equivalent ifX has the bounded approximation property.

For the casem≥ 3 it is possible to show thatwm(X) = ∞ for most classical spaces.
More precisely,wm(X) = ∞ for m ≥ 3 if X contains uniformly complemented̀np’s
for some 1≤ p ≤ ∞; this includes the case whenX has nontrivial type. The same
conclusion can also be reached ifX∗ has cotype 2 and this covers the case of the space
P constructed by Pisier [29] as an example of a space which does not contain uniformly
complemented finite-dimensional subspaces.

For infinite-dimensional quasi-Banach spaces, this situation is quite different. For
example,wm(`p) < ∞ for anym ∈ N and 0< p < 1. The case ofLp(0,1) is even
more remarkable, sincewm(L p) < ∞ for everym ∈ N and yet the only polynomials
on L p are constant (becauseL p has trivial dual). Thus ifF : BL p → R is continuous,
satisfiesF(0)= 0 andωm(F) ≤ 1, then‖F‖BLp

≤ C whereC = C(m, p).
It is worth perhaps remarking that although the paper does not explicitly use the theory

of twisted sums of Banach and quasi-Banach spaces, this theory is implicit in many of
the results, and there is a clear connection with ideas in [12], [15], [17], and [32].

The Stability of the Equation 1m
h f = 0. There is an alternative viewpoint for the

results presented in this paper. It is well known that a continuous functionf defined on
a convex setK is a polynomial of degreem− 1 if and only if f satisfies the functional
equation1m

h f = 0. So the Whitney constantwm(K ) can be regarded as a measure of
stability of this equation. Stability problems of this type go back to the work of Hyers
and Ulam. We note in this connection the work of Casini and Papini [3] and a recent
preprint of Dilworth, Howard, and Roberts [5] on stability of convexity conditions.

Conjectures. The work in this paper was motivated by certain conjectures, and it may
be helpful to list them here:

(1) If m≥ 2, then

wm(n) ∼ w(s)m (n) ∼ nm/2−1 log(n+ 1)

asn→∞.
This conjecture is proved form= 2 while the upper estimate forw(s)m (n) is established

for all m ≥ 2. As the lower bound form ≥ 3 we have only the inequalitieswm(n) ≥
w(s)m (n) ≥ c

√
n.
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(2) If m≥ 3 and 1≤ p <∞, then

wm(`
n
p) ∼ log(n+ 1)

asn→∞.
This result is established forp = 1 and form = 3 and 2≤ p < ∞ while the lower

bound is established for allm≥ 3. It is quite possible that this conjecture is way off the
mark whenm≥ 4.

(3)w2(`
n
∞) is “small.” We propose the conjecture thatw2(`

n
∞) ≤ 2 for all n. The only

known results arew2(`
1
∞) = 1

2 andw2(`
2
∞) = 1. Note that if our conjecture were to

hold then for every convex functionf on then-cubeQn we would have the inequality
E2( f ; Qn) ≤ ω2( f ; Qn).

(4) If X is an infinite-dimensional Banach space, thenw3(X) = ∞.

2. Preliminary Results

Homogeneous Whitney Constants. Suppose thatX is an n-dimensional Banach
space. We consider the homogeneous version of the Whitney problem. We say that a
function f : X → R is m-homogeneousif f (ax) = am f (x) whenevera ∈ R and
x ∈ X.

Definition 2.1. The homogeneous Whitney constantvm(X) for m ≥ 2 is the least
constant so that iff is an(m− 1)-homogeneous continuous function onX there is an
(m− 1)-homogeneous polynomialϕ so that for allx ∈ X,

| f (x)− ϕ(x)| ≤ vm(X)‖x‖m−1ωm( f ),(2.1)

whereωm( f ) = ωm( f ; BX).

If f is continuous and homogeneous (i.e., 1-homogeneous), then

| f (x + y)− f (x)− f (y)| ≤ ω2( f ; BX)max(‖x‖, ‖y‖).
Thus f isquasilinearin the sense of [12]. This connection was first noticed by S. Konya-
gin and the following result is essentially due to him (see remarks in the Introduction):

Proposition 2.2. If X is a finite-dimensional normed space, then

v2(X) ≤ w2(X) ≤ 4v2(X)+ 3
2.

Proof. If f : X → R is continuous and homogeneous, then an affine function of
best approximation on the ball can be taken as a linear functional,x∗ say, and then
| f (x)− x∗(x)| ≤ w2(X)ω2( f ; BX) so thatv2(X) ≤ w2(X).

Conversely, supposef : BX → R is continuous and thatω2( f ) ≤ 1. Let us note that
anyx, y ∈ BX we have

| f (t x + (1− t)y)− t f (x)− (1− t) f (y)| ≤ 2E1( f ; [x, y]) ≤ 1.(2.2)
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This follows from applying Whitney’s one-dimensional result to the line-segment [x, y],
sincew2(1)= 1

2.

We defineg on X by g(x) = 1
2‖x‖( f (x/‖x‖)− f (−x/‖x‖)) for x 6= 0 andg(x) = 0.

Theng is continuous and homogeneous. We will show first thatω2(g; BX) ≤ 4.
Supposex, y ∈ X are not both zero. Let

λ = ‖x‖
‖x‖ + ‖y‖ , µ = ‖y‖

‖x‖ + ‖y‖ , ν = ‖x + y‖
‖x‖ + ‖y‖ ,

and chooseu, v, w ∈ BX so that‖u‖ = ‖v‖ = ‖w‖ = 1 and

‖x‖u = x, ‖y‖v = y, and ‖x + y‖w = x + y.

Then forε = ±1,

Iε := | f (ε(λu+ µv))− λ f (εu)− f (εv)| ≤ 1

by applying (2.2). Similarly

Jε := | f (ε(λu+ µv))− ν f (εw)− (1− ν) f (0)| ≤ 1.

From the definition ofg we have

|g(x)− 2g( 1
2(x + y))+ g(y)| = |g(x)− g(x + y)+ g(y)|

≤ 1
2‖x + y‖

∑
ε=±1

(Iε + Jε)

≤ 2‖x + y‖ ≤ 4.

Henceω2(g; BX) ≤ 4.
This implies that there existsx∗ ∈ X∗ so that if‖x‖ ≤ 1,

|g(x)− x∗(x)| ≤ 4v2(X).

We will chooseϕ(x) = x∗(x)+ f (0) as an affine approximation tof. If ‖x‖ = 1, then

| f (x)− ϕ(x)| ≤ 4v2(X)+ | f (x)− f (0)− g(x)|
≤ 4v2(X)+ 1

2| f (x)+ f (−x)− 2 f (0)| ≤ 4v2(X)+ 1
2.

Now suppose‖y‖ ≤ 1.We write y = t x where‖x‖ = 1 and 0≤ t ≤ 1.By (2.2) we
have

| f (y)− t f (x)− (1− t) f (0)| ≤ 1

and hence

| f (y)− ϕ(y)| ≤ 4v2(X)+ 3
2.

This completes the proof.
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The following lemma gives a uniform estimate onwm(X) for all X of dimensionn
(see [2]):

Lemma 2.3. For any m≥ 2, and any n-dimensional Banach space X,

wm(X) ≤ 2+ Tm−1(
√

n)(2+ wm(`
n
2)),

where Tk(t) := cos(karccost) is the Chebyshev polynomial of degree k.

Proof. By a well-known result of John [10] there is a Euclidean norm‖ · ‖E on X so
that

n−1/2‖x‖E ≤ ‖x‖X ≤ ‖x‖E

for x ∈ X. Now suppose thatf : BX → R is continuous andωm( f ) ≤ 1.Restricting f
to BE we can find a polynomialϕ ∈ Pm−1 with | f (x) − ϕ(x)| ≤ wm(`

n
2) for x ∈ BE.

Fix anyx ∈ BX. By the definition of the Whitney constant and Kryakin’s theorem [20]
there is a polynomialψ ∈ Pm−1(R) so that

| f (t x)− ψ(t)| ≤ wm([0,1]) ≤ 2

for |t | ≤ 1.Hence for|t | ≤ n−1/2 we have

|ϕ(t x)− ψ(t)| ≤ 2+ wm(`
n
2).

According to the Chebyshev inequality (see, e.g., [33, p. 108]) it follows that for|t | ≤ 1

|ϕ(t x)− ψ(t)| ≤ Tm−1(
√

n)(2+ wm(`
n
2)).

The result now follows easily.

Let us also note at this point that essentially the same argument gives us the following
elementary estimate:

Lemma 2.4. Let X,Y be two n-dimensional normed spaces and let d:= d(X,Y) be
the Banach–Mazur distance between them.Then

wm(Y) ≤ 2+ Tm−1(d)(2+ wm(X))

and

vm(Y) ≤ dm−1wm(X).

Proof. We may suppose that‖ ‖Y and‖ ‖X are two norms onRn so thatd−1‖x‖X ≤
‖x‖Y ≤ ‖x‖X for x ∈ Rn. The first estimate is proved just as in Lemma 2.3. The second
estimate follows easily from the definition ofvm(X) using (2.1).

We now prove a much more general version of Proposition 2.2.



Polynomial Approximation on Convex Subsets ofRn 169

Proposition 2.5. Suppose that m≥ 2. Then there is a constant C= C(m) (indepen-
dent of X) so that for every finite-dimensional Banach space X,

C−1 max
2≤k≤m

vk(X) ≤ wm(X) ≤ C max
2≤k≤m

vk(X).

Proof. First choose for each 0≤ i ≤ m − 1 real numbers(ci j )
m
j=1 so that for any

polynomialϕ in one variable of degree at mostm− 1 we have

ϕ(i )(0)

i !
=

m∑
j=1

ci j ϕ

(
j

m

)
.(2.3)

In particular, we have
m∑

j=1

ci j

(
j

m

)k

= δik .(2.4)

for 0≤ i, k ≤ m. Hence, ifϕ ∈ Pm−1, thenψ(x) :=∑m
j=1 ck−1, jϕ( j x/m) is a(k− 1)-

homogeneous polynomial.
Using this, let us first prove that

vk(X) ≤ C(m)wm(X), 2≤ k ≤ m.(2.5)

In fact, if f : X→ R is continuous and(k−1)-homogeneous withωk( f ) = ωk( f ; BX) ≤
1, thenωm( f ) ≤ 2m−k and so there exists a polynomialϕ ∈ Pm−1 with

| f (x)− ϕ(x)| ≤ 2m−kwm(X).

Now f (x) =∑m
j=1 ck−1, j f ( j x/m) by the(k−1)-homogeneity off and (2.4), and this

inequality leads to the estimate

| f (x)− ψ(x)| ≤ 2m−k

(
m∑

j=1

|ck−1, j |
)
wm(X)

for x ∈ BX whereψ(x) :=∑m
j=1 ck−1, jϕ( j x/m) is a(k−1)-homogeneous polynomial.

Hence (2.5) follows.
Conversely, letV := max2≤k≤m vk(X). Supposef ∈ C(BX) with ωm( f ) ≤ 1. Then

for eachx with ‖x‖ = 1 and 1≤ k ≤ m− 1 we definegk(x) =
∑m

j=1 ckj f ( j x/m) and
extendgk to bek-homogeneous. It is easy to see that eachgk is continuous. We also let
g0(x) = f (0) for all x ∈ X.

By the one-dimensional result [20] for eachx with ‖x‖ = 1 there is a polynomialϕ
on [0,1] of degree at mostm− 1 so that

| f (t x)− ϕ(t)| ≤ 4

for 0≤ t ≤ 1.Hence∣∣∣∣gk(x)− ϕ
(k)(0)

k!

∣∣∣∣ ≤ 4 max

(
1, sup

1≤l≤m−1

m∑
j=1

|cl j |
)
≤ C1,
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whereC1 = C1(m). Then, for anyx ∈ BX we have∣∣∣∣∣ f (x)−
m−1∑
k=0

gk(x)

∣∣∣∣∣ ≤ 4+mC1 = C2.

Using (2.4) for 1≤ k ≤ m− 1,we have the identity

m∑
j=1

ckj f

(
j x

m

)
− gk(x) =

m∑
j=1

ckj

[
f

(
j x

m

)
−

m−1∑
s=0

gs

(
j x

m

)]

and we can deduce∣∣∣∣∣gk(x)−
m∑

j=1

ckj f

(
j x

m

)∣∣∣∣∣ ≤ C2

m∑
j=1

|ckj | ≤ C3(m).

Hence

ωm(gk) ≤ 2mC3+
m∑

j=1

|ckj | = C4(2.6)

for 1≤ k ≤ m− 1.
We now deduce from (2.6) that

ωk+1(gk) ≤ C5(m)(2.7)

for 1 ≤ k ≤ m − 1. Indeed, letx, x + (k + 1)h ∈ BX and letF := span{x, h} be
the linear space generated byx, h. By Lemma 2.3 and the multivariate Whitney-type
inequality (in dimension 2) [2] we can find a polynomialψF of degree at mostm− 1 so
that

|gk(y)− ψF (y)| ≤ C6ωm(gk)

for y ∈ BF where C6 = C6(m). But, arguing as before, we can replaceψF by∑m
j=1 ckjψF ( j x/m) and this allows us to assume thatψF is homogeneous of degree

k (by similar arguments to those used above.) Hence

|1k+1
h gk(x)| = |1k+1

h (gk − ψF )(x)| ≤ 2k+1C6ωm(gk).

Combining with (2.6) we get (2.7). Then we can conclude that there is ak-homogeneous
polynomialψk on X so that

|gk(x)− ψk(x)| ≤ C7(m)V

for x ∈ BX. Finally, if we setψ(x) = g0(x)+
∑m−1

k=1 ψk(x), then

| f (x)− ψ(x)| ≤ (C2+mC7) ≤ C8(m)V

for ‖x‖ ≤ 1 and sowm(X) ≤ CV for a constantC depending only onm.
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Corollary 2.6. If 2≤ l ≤ m there is a constant C= C(l ,m) so that

wl (X) ≤ C(l ,m)wm(X).

Remark. All the above results are clearly true (with constants also depending onr )
for r -normed finite-dimensional spaces. Recall (see [16]) that‖ · ‖ is anr -norm onX if
we have:

(1) ‖x‖ ≥ 0 with equality if and only ifx = 0;
(2) ‖ax‖ = |a|‖x‖ for a ∈ R andx ∈ X; and
(3) ‖x1+ x2‖r ≤ ‖x1‖r + ‖x2‖r for x1, x2 ∈ X.

We note only that in the proof of Lemma 2.3, John’s theorem is replaced by itsr -
normed generalization due to Peck [27].

Indicators of Finite-Dimensional Banach Lattices. Let X = {Rn+1, ‖ · ‖X} be an
(n+1)-dimensional Banach lattice. In our setting this simply implies that ifx = (xi )

n+1
i=1

andy = (yi )
n+1
i=1 with |x| ≤ |y| (i.e., |xi | ≤ |yi | for i = 1,2, . . . ,n+ 1), then‖x‖X ≤

‖y‖X.

Definition 2.7 ([14]). The indicator8X of X is the function defined on the simplex
Sn := {u ∈ Rn+1 : u ≥ 0,

∑n+1
i=1 ui = 1} by

8X(u) := sup
‖x‖X≤1

n+1∑
i=1

ui log2 |xi |.(2.8)

Here we set 0 log2 0 = 0.We remark first that we use logarithms base two in place
of natural logarithms as in [14] for convenience. We also remark that in [26] the same
function is called theentropy functionof X.

We denote by3 the functional3(u) = ∑n+1
i=1 ui log2 |ui |. Let us note the following

straightforward properties of8X:

Proposition 2.8.

(a) 8`n+1
1
= 3.

(b) If ai > 0 for 1≤ i ≤ n+ 1, 1≤ p <∞, and`n+1
p (a) is defined by the norm

‖x‖`n+1
p (a) :=

(
n+1∑
i=1

ap
i |xi |p

)1/p

,

then

8`n+1
p (a)(u) =

1

p

(
3(u)−

n+1∑
i=1

ui log2 ai

)
.
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(c) If ‖ · ‖X and ‖ · ‖Y are C-equivalent,i.e., C−1‖x‖X ≤ ‖x‖Y ≤ C‖x‖X for all
x ∈ Rn+1, then

|8X(u)−8Y(u)| ≤ log2 C

for u ∈ Sn.

Let us use〈x, y〉 to denote the standard inner-product onRn+1. Then if X is a Banach
lattice we define the dual spaceX∗ by

‖x∗‖X∗ := sup{|〈x∗, x〉| : ‖x‖X ≤ 1}.

If X0, X1 are two (n + 1)-dimensional Banach lattices we define the (Calderón)
interpolation spaceXθ = X1−θ

0 Xθ
1 for 0< θ < 1 by

‖x‖Xθ := inf{‖x0‖1−θX0
‖x1‖θX1

}

where the infimum is taken over allx0, x1 ∈ Rn+1 satisfying

|x| ≤ |x0|1−θ|x1|θ .

The following results are taken from [14]:

Theorem 2.9. (a)For any Banach lattice X onRn+1,

8X +8X∗ = 3.

(b) If X0, X1 are two Banach lattices onRn+1, then

8X1−θ
0 Xθ

1
= (1− θ)8X0 + θ8X1.

Note that (b) is a simple consequence of the definitions, while (a) follows from the deep
duality theorem of Lozanovskii [23] (which is essentially equivalent to the statement that
X1/2(X∗)1/2 = `n+1

2 for any Banach latticeX. It is not hard to see that8X is a convex
function satisfyingδ2(8X) ≤ 1 whereδ2: C(Sn)→ R is defined by

δ2( f ) := sup{|f (αu+ (1− α)v)− α f (u)− (1− α) f (v)|},

where the supremum is taken over all 0≤ α ≤ 1 andu, v ∈ Sn.

The main result of [14] gives, in our setting, a form of converse to this statement.

Theorem 2.10. For each0 < ε < 1
2 there is a constant C= C(ε) so that whenever

n ∈ N, and f ∈ C(Sn) satisfiesδ2( f ) ≤ 1− ε there is a Banach lattice X so that

| f (u)− (8X(u)−8X∗(u))| ≤ C

for all u ∈ Sn.
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One of our goals is to refine this result to give a very general representation for
functions onSn in terms of the parameterω2( f ). This will be achieved in Theorem 3.7
below.

Extension Theorems of Maurey Type. We recall that ifX is a Banach space and
1 < p ≤ 2, then X is said to havetype p if there is a constantC so that for any
x1, . . . , xn ∈ X we have(

Aveεi=±1

∥∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥∥
p)1/p

≤ C

(
n∑

i=1

‖xi ‖p

)1/p

.

The best constantC is called the typep constant ofX and denoted byTp(X).
X is said to havecotype qwhere 2≤ q < ∞ if there is a constantC so that for any

x1, . . . , xn ∈ X we have(
n∑

i=1

‖xi ‖q
)1/q

≤ C

(
Aveεi=±1

∥∥∥∥∥ n∑
i=1

εi xi

∥∥∥∥∥
q)1/q

.

The best such constant is denoted byCq(X).
We remark that if dimX = n then we haveTp(X) ≤ n1/p andCq(X) ≤ n1/p where

1/p+ 1/q = 1.We also have a duality relationship, namelyCq(X∗) ≤ Tp(X).
Let X andY be finite-dimensional Banach spaces and supposeE is a linear subspace

of X.

Definition 2.11. The extension constantEX(E,Y) is infimum of all constantsM so that
every linear mapT : E→ Y has a linear extensionT1 : X→ Y with ‖T1‖ ≤ M‖T‖.

The Maurey extension principle [24] gives the following estimate forY = `m
2 :

EX(E, `
m
2 ) ≤ T2(X).(2.9)

In order to extend this principle to non-HilbertianY we can use the abstract Grothen-
dieck theorem of Pisier. This states [30, Theorem 4.1] that ifT : E → Y is a linear
map then there is a factorizationV : X → `m

2 andU : `m
2 → Y so that‖U‖‖V‖ ≤

(2C2(E∗)C2(Y))3/2. (In fact, we can do a little better, i.e., we can obtain‖U‖‖V‖ ≤
CC2(X∗)C2(Y)(1+ logC2(X∗)C2(Y)).) Putting these estimates together we obtain

EX(E;Y) ≤ (2C2(E
∗)C2(Y))

3/2T2(X).(2.10)

We will need an analogous result with a cotype assumption onX∗ in place of the type
restriction onX. The following result may be known to specialists but we have not been
able to find it in the literature:

Theorem 2.12. There is an increasing functionψ : (1,∞)→ (1,∞) so that

EX(E, `
m
2 ) ≤ ψ(T2(X/E))C2(X

∗).(2.11)
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Proof. Suppose thatT0 : E → `m
2 with ‖T0‖ ≤ 1.We need to find an extensionT :

X→ `m
2 of T0 with norm majorized by the right-hand side of (2.11). To do this we follow

an extension technique of Kisliakov which is used heavily in [17]. Consider the space
Z = X⊕1`

m
2 , i.e.,Z = X×`m

2 algebraically with norm‖(x, y)‖Z = ‖x‖X+‖y‖`m
2
.Then

Z∗ = X∗ ⊕∞ `m
2 , i.e., Z∗ = X∗ × `m

2 with norm‖(x∗, y∗)‖Z∗ = max(‖x∗‖X∗ , ‖y∗‖`m
2
).

SinceC2(`
m
2 ) = 1 we have

C2(Z
∗) ≤
√

2C2(X
∗).(2.12)

Let G := {(x,−T0x) : x ∈ E} ⊂ Z. Let Y := Z/G and letQ : Z → Y be the
quotient map. Note thatQ maps{0}× `m2 isometrically onto a subspaceH of Y and that
by (2.9) there is a projectionP : Y→ H with ‖P‖ ≤ T2(Y). Let S : X→ Z be defined
by S(x) := (x, 0). Then P QScan be regarded as an extension ofT0; more precisely,
T := Pr2(Q−1P QS) extendsT0 where Pr2(x, y) := y andQ−1 is the inverse ofQ on
{0} × `m2 . Then‖T‖ ≤ ‖P‖ ≤ T2(Y). It therefore remains only to estimateT2(Y).

Fix 1 < p < 2. Note thatY/H is isometric toX/E. Hence by arguments that go
back to paper [6] (see [13] for details) we have the estimateTp(Y) ≤ ϕ(T2(X/E)) for
a suitable increasing functionϕ : (1,∞) → (1,∞). Now as a direct consequence of
Pisier’s characterization ofK -convex spaces [31] we also have that an estimate on the
K -convexity constant ofY in terms ofTp(Y). Hence we get an estimate of the form

T2(Y) ≤ ϕp(Tp(Y))C2(Y
∗)

for a suitable increasingϕp : (1,∞) → (1,∞). Putting these estimates together we
have

‖T‖ ≤ ψ(T2(X/E))C2(Y
∗),

whereψ := ϕp ◦ ϕ. It remains to observe thatC2(Y∗) ≤ C2(Z∗) ≤
√

2C2(X∗) and we
are done.

Using this theorem and Pisier’s result as in (2.10) we have

Corollary 2.13.

EX(E;Y) ≤ ψ(T2(X/E))C2(X
∗)C2(E

∗)3/2C2(Y)
3/2.

3. Linear Approximation on Convex Subsets of Rn

We begin with the proof of the basic estimate forw2(n) whenn ≥ 2. We recall that
w2(1)= 1

2.

Theorem 3.1. We have the estimate

1
2 log2

([n

2

]
+ 1

)
≤ w2(n) ≤ 1

2[log2 n] + 5
4.

In particular,

lim
n→∞

w2(n)

log2 n
= 1

2
.
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Remark. See [4], [9], and [5] for results on the corresponding problem for convex
functions.

In the following discussionK will denote a closed bounded convex subset ofRn.Note
however that our first proposition does not need convexity.

Proposition 3.2. If f ∈ C(K ), then

E2( f ; K ) = 1
2 max

{
l∑

i=1

ai f (xi )−
m∑

j=1

bj f (xj )

}
,

where the maximum is computed over all pairs of positive integers l,m with l+m≤ n+2,
all subsets{x1, . . . , xl }, {y1, . . . , ym}of K and all nonnegative realsa1, . . . ,al , b1, . . . ,bm

with

l∑
i=1

ai =
m∑

j=1

bj = 1 and
l∑

i=1

ai xi =
m∑

j=1

bj yj .

Proof. We may chooseϕ affine so thatE2( f − ϕ; K ) = ‖ f − ϕ‖K . Then clearly
E2( f − ϕ; K ) dominates the expression on the right of the equation. To prove the
converse, we observe (see, e.g., [34, p. 36]) that there exist nonempty subsets6+ and
6− of K so that|6+|+|6−| ≤ n+2 and(co6+)∩ (co6−) 6= ∅ and so that forx ∈ 6±
we have

f (x)− ϕ(x) = ±E2( f ; K ).
Let6+ = {x1, . . . , xl } and6− = {y1, . . . , ym} thenl +m ≤ n+ 2 and we can find

convex combinations so that
∑l

i=1 ai xi =
∑m

j=1 bj yj . Then

E2( f ; K ) = 1

2

{
l∑

i=1

ai ( f (xi )− ϕ(xi ))−
m∑

j=1

bj ( f (yj )− ϕ(yj ))

}

= 1

2

{
l∑

i=1

ai f (xi )−
m∑

j=1

bj f (yj )

}
.

Let us defineδm : C(K )→ R (extending the definition ofδ2) by

δm( f ) := sup

∣∣∣∣∣ f

(
m∑

k=1

akxk

)
−

m∑
k=1

ak f (xk)

∣∣∣∣∣ ,(3.1)

where the supremum is taken over allx1, . . . , xm ∈ K anda1, . . . ,am ∈ R+ such that∑m
k=1 ak = 1. Let

αm(K ) = sup{δm+1( f ) : f ∈ C(K ), ω2( f ; K ) ≤ 1}.
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We then have:

Corollary 3.3.

E2( f ; K ) ≤ 1
2 max{αl (K )+ αm(K ): l ,m≥ 0, l +m= n}.

Observe we have a trivial inequalityαm(K ) ≤ αm(Sm) =: βm whereSm is, as usual,
them-dimensional simplex. Thus, combining with Corollary 3.3, we obtain the inequality

w2(n) ≤ 1
2 max{βl + βm: l +m= n}.(3.2)

Note that by Proposition 3.2,δm+1( f ) ≤ 2E2( f ; K ) and soβm ≤ 2w2(m). In particular,
β1 ≤ 1 by the results of Whitney [39]. To obtain an estimate for allm we need:

Lemma 3.4.

β2m ≤ βm + 1
2, m ∈ N.

Proof. We setSm := co{e1, . . . ,em+1} wheree1, . . . ,em+1 is the canonical basis of
Rm+1. Replacingf by f − ϕ whereϕ is an affine function satisfyingϕ(ek) = f (ek) for
1≤ k ≤ m+ 1 we can obtain an alternate expression forβm:

βm = sup{|f (x)| : ω2( f ) ≤ 1 and f (ek) = 0, 1≤ k ≤ m+ 1}.(3.3)

Suppose thenf ∈ C(S2m) satisfiesω2( f ) ≤ 1 and f (ek) = 0 for 1 ≤ k ≤ m+ 1.
Choosex ∈ S2m. Letx =∑2m+1

k=1 ξkek. Let(rk)
2m+1
k=1 be a reordering of{1,2, . . . ,2m+1}

so thatξrk is increasing. Then we may choose signs(εk)
m
k=1 so that

0≤ a :=
m∑

k=1

εk(ξr2k−1 − ξr2k) ≤ max
1≤k≤m

(ξr2k − ξr2k−1).

Then we can writex = 1
2(y+ z) where

y = x +
m∑

k=1

εk(ξr2k−1er2k−1 − ξr2ker2k)− aer2m+1

and

z= x −
m∑

k=1

εk(ξr2k−1er2k−1 − ξr2ker2k)+ aer2m+1.

Hence

| f (x)− 1
2( f (y)+ f (z))| ≤ 1

2.

If y =∑2m+1
k=1 ηkek, thenηk > 0 at mostm+1 times and so| f (y)−∑2m+1

k=1 ηk f (ek)| ≤
βm. With a similar estimate forz we obtain∣∣∣∣∣ f (x)−

2m+1∑
k=1

ξk f (ek)

∣∣∣∣∣ ≤ βm + 1
2.

This leads immediately to the claimed estimate.
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Proof of the Upper Estimate in Theorem 3.1. Sinceβ1 = 1, Lemma 3.4 and in-
duction gives us thatβm ≤ 1

2 log2 m + 1 = 1
2k + 1 whenm = 2k. Now suppose

2k ≤ n < 2k+1. Clearly if l + m = n then at most one of them exceeds 2k. Hence
βl + βm ≤ β2k + β2k+1 ≤ k + 5

2. Applying inequality (3.2) we get the estimate
w2(n) ≤ 1

2[log2 n] + 5
4.

For the lower estimate, we require the following general result:

Lemma 3.5. Suppose K1, K2 are closed bounded convex subsets ofRn1,Rn2, respec-
tively. Suppose fi ∈ C(Ki ) for i = 1,2 are convex and satisfyω2( fi ; Ki ) ≤ 1. Then if
g : K1× K2→ R is defined by g(x, y) = f1(x)− f2(y) we have:

(a) E2(g; K1× K2) = E2( f1; K1)+ E2( f2; K2); and
(b) ω2(g; K1× K2) ≤ 1.

Proof. Supposeh = (h1, h2) ∈ Rn1 × Rn2. Then

12
hg(x, y) = 12

h1
f1(x)−12

h2
f2(y).

Since f1, f2 are convex we obtainω2(g; K1× K2) ≤ 1. This proves (b). To prove (a) it
suffices to apply Proposition 3.2 (see Theorem 6.2.5 in [34]).

Proof of the Lower Estimate in Theorem 3.1. Let Sn = co{e1, . . . ,en+1} as before.
Define the function

fn(x) := 1
23(x) =

1

2

n+1∑
k=1

xk log2 xk.(3.4)

Since the functionψ(t) := t log2 t, 0 ≤ t ≤ 1, satisfies 0≤ 12
h f (t) ≤ 12

|h| f (0) =
2|h|, the function fn is convex and

0≤ 12
h fn(x) = 1

2

n+1∑
k=1

12
hk
ψ(xk) ≤

n+1∑
k=1

|hk|.

Now h = 1
2((x + 2h) − x) so that

∑n+1
k=1 |hk| ≤ 1. Thusω2( fn) ≤ 1. Let u :=

[1/(n+ 1)]
∑n+1

k=1 ek. Then by Proposition 3.2,

E2( fn) ≥ 1

n+ 1

n+1∑
k=1

fn(ek)− fn(u) = 1
4 log2(n+ 1).

We remark that this function was essentially first considered in this context (in an equiv-
alent formulation) by Ribe [32].

We can now apply Lemma 3.5. Ifn = 2m, puttingK1 = K2 = Sm and usingfn for
both f1 and f2 of the lemma, we obtain the existence ofg on Sn × Sn with ω2(g) ≤ 1
and E2(g) ≥ 1

2 log2(m+ 1). Henceω2(n) ≥ 1
2 log2(n/2+ 1). If n = 2m+ 1 we put

K1 = Sm, andK2 = Sm+1 and usefm, fm+1 to deduce that

ω2(n) ≥ 1
4(log2(m+ 1)+ log2(m+ 2))≥ 1

2 log2

([n

2

]
+ 1

)
.

The proof of Theorem 3.1 is now complete.
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Remarks. (a) For small values ofn we can use (3.2) directly to obtain better upper
bounds forw2(n). Thusβ2 ≤ 3

2, β3, β4 ≤ 2 and hencew2(2) ≤ 1, w2(3) ≤ 5
4, and

w2(4)≤ 3
2.

On the other hand, if we use the piecewise linear functionfε(t) = max((1− ε)(1−
ε−1t), 0) on [0,1], then fε is convex and satisfiesω2( fε) = 1 andE2( fε) = 1

2(1− ε).
Then using Lemma 3.5 and the functionsgε(x, y) = fε(x) − fε(y) we obtain that
w2([0,1]2) ≥ 1− ε. Combined with the upper estimates above we obtain

w2(2)= w2([0,1]2) = 1.(3.5)

Notice thatw2([0,1]2) = w2(`
2
∞) = w2(`

2
1).

(b) The corresponding examples considered in [8] show thatβ2 = 5
3 andβ3 = 2.

We now show that for the case of the simplex the lower bound1
4 log2(n + 1) is

asymptotically sharp. More precisely:

Theorem 3.6.

lim
n→∞

w2(Sn)

log2 n
= 1

4
.

We remark first that the functionsfn constructed in (3.4) show thatw2(Sn) ≥
1
4 log2(n+ 1) so that

lim inf
n→∞

w2(Sn)

log2 n
≥ 1

4
.(3.6)

The proof of Theorem 3.6 will follow from the following Theorem 3.7.

Theorem 3.7. For any0 < ε < 1
2 there is a constant C= C(ε) such that whenever

n ∈ N, and f ∈ C(Sn) satisfiesω2( f ) ≤ 1− ε there is a Banach lattice X so that

| f (u)− 1
2(8X(u)−8X∗(u))| ≤ C

for all u ∈ Sn.

Before proving 3.7 let us complete the proof of Theorem 3.6 assuming Theorem 3.7:

Proof of Theorem 3.6. Fix ε > 0. If f ∈ C(Sn) satisfiesω2( f ) ≤ 1−ε,we determine
X so that Theorem 3.7 holds. Let‖ · ‖E be the Hilbertian norm determined by the John
ellipsoid forBX [10]. Then in the terminology of Proposition 2.8 we must haveE = `2(a)
for a suitable positive sequencea = (a1, . . . ,an+1). Then by Proposition 2.8 we have
that8E −8E∗ is linear: in fact,8E(u)−8E∗(u) = −2〈u, loga〉.

From the properties of the John ellipsoid we haveBE ⊂ BX ⊂ (n+ 1)1/2BE so that
8E(u) ≤ 8X(u) ≤ 8E(u)+ 1

2 log2(n+ 1). From Theorem 2.9(a) we get

8E∗(u)− 1
2 log2(n+ 1)≤ 8X∗(u) ≤ 8E∗(u)

and so

| 12(8X(u)−8X∗(u))+ 〈u, loga〉| ≤ 1
4 log2(n+ 1).
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It follows that

E2( f ) ≤ C(ε)+ 1
4 log2(n+ 1).

This implies that

w2(S
n) ≤ (1− ε)−1(C(ε)+ 1

4 log2(n+ 1)),

which in turn gives the required upper estimate

lim sup
n→∞

w2(Sn)

log2 n
≤ 1

4
.

This completes the proof of Theorem 3.6.

We now turn to the proof of Theorem 3.7.

Proof. Let f : Sn→ R be a bounded function satisfying the conditionω2( f ) ≤ 1− ε
where 0< ε < 1

2 is fixed. By Whitney’s theorem applied to each line segment we have
δ2( f ) ≤ ω2( f ) ≤ 1−ε. Letα := 1− 1

2ε and apply Theorem 2.10 to the functionα−1 f .
Thus there is an(n+ 1)-dimensional Banach latticeY with

‖ f − α(8Y −8Y∗)‖Sn ≤ C(ε).(3.7)

To complete the proof we will find a latticeX for which

‖α(8Y −8Y∗)− 1
2(8X −8X∗)‖Sn ≤ C′(ε).(3.8)

In order to do this we will show the existence of a Banach latticeX such that if
we putθ := 1− (2α)−1, then the spacesY and X1−θ(`n+1

2 )θ have equivalent norms
with the constant of equivalence depending only onε. Assuming this fact, let us show
how the proof is completed. In this case, by Theorem 2.9 and Proposition 2.8, we
have

∥∥∥∥8Y −
(
(1− θ)8X + θ

2
3

)∥∥∥∥
Sn

≤ C1(ε).

Using the duality result Theorem 2.9(a) this implies that

‖(8Y −8Y∗)− (1− θ)(8X −8X∗)‖Sn ≤ 2C1(ε).

Since 1− θ = (2α)−1 this establishes (3.8) and combined with (3.7) the theorem is
proved.
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Thus it remains to constructX. We will need the following lemma:

Lemma 3.8. Suppose p is defined by

p :=
(

1+ 1

2α

)−1

+
(

1+ 1− ε
2α

)−1

.

Then there is a constant C depending only onε so that for every disjoint family of vectors
{yi }mi=1 ⊂ Rn+1, we have ∥∥∥∥∥ m∑

i=1

yi

∥∥∥∥∥
Y

≤ C

(
m∑

i=1

‖yi ‖p
Y

)1/p

(3.9)

and ∥∥∥∥∥ m∑
i=1

yi

∥∥∥∥∥
Y∗
≤ C

(
m∑

i=1

‖yi ‖p
Y∗

)1/p

.(3.10)

Before proving the lemma, let us show how to complete the construction ofX assuming
this lemma. We set

1

r
:= 1

2
+ 1

4α
= 1− θ

2
.(3.11)

Then p > r . By the lemma bothY andY∗ satisfy upperp-estimates with constants
depending only onε. According to a well-known theorem of Maurey and Pisier (see,
e.g., [21]) this implies thatY andY∗ are bothr -convex with constants depending only
ε. This means that for anyy1, . . . , ym ∈ Y we have∥∥∥∥∥∥

(
m∑

i=1

|yi |r
)1/r

∥∥∥∥∥∥
Y

≤ C

(
m∑

i=1

‖yi ‖rY
)1/r

,

whereC depends only onε, and a similar inequality holds inY∗. Now by Proposi-
tions 1.d.4 and 1.d.8 of [21] there is a latticeY0 so thatY0,Y∗0 arer -convex with constant
one and theY0-norm isC-equivalent to theY-norm withC depending only onε. Finally
we use the Pisier extrapolation theorem [28] to deduce that there is a Banach latticeX
so thatY0 = X1−θ(`n+1

2 )θ .

We now turn to the proof of the lemma.

Proof. Let g := 8Y − 8Y∗ . Using (3.7) we first estimateδm(g) ≤ α−1(C + δm( f ))
whereC depends only onε. Sinceω2( f ) ≤ 1 − ε, Lemma 3.4 gives thatδm( f ) ≤
(1− ε)( 1

2 log2 m+ 1).Hence

δm(g) ≤ C1+ 1− ε
2− ε log2 m,(3.12)

whereC1 = C1(ε).
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Now supposeu1, u2, . . . ,um ∈ Sn have disjoint supports and thatu =∑m
i=1 ai ui ∈ Sn

is a convex combination. Then

g(u) ≥
m∑

i=1

ai g(ui )− C1− 1− ε
2− ε log2 m.

By duality (Proposition 2.9)8Y = 1
2(g+3) and direct calculation gives us that

3(u) =
m∑

i=1

ai3(ui )+
m∑

i=1

ai log2 ai

≥
m∑

i=1

ai3(ui )− log2 m.

Combining these estimates we have

8Y(u) ≥
m∑

i=1

ai8Y(ui )− 1
2C1− 1

p1
log2 m,(3.13)

where
1

p1
:= 1

2
+ 1− ε

2(2− ε) .(3.14)

Note that we have a precisely similar estimate to (3.13) for8Y∗ in place of8Y using
instead the equation8Y∗ = 1

2(3− g).
Now supposey1, . . . , ym ∈ Y have disjoint supports. For anyu ∈ Sn we can write

u = ∑m
i=1 ai ui as a convex combination where suppui ⊃ suppyi and the(ui ) have

disjoint supports. Let us write

〈v, log2 |x|〉 :=
n+1∑
i=1

vi log2 |xi |

for v ∈ Sn andx ∈ Rn+1 (with −∞ as a possible value!). Then by (3.13)

8Y(u) ≥
m∑

i=1

ai 〈ui , log2 |yi |〉 + log2(2
−C2m−1/p1)

= 〈u, log2(2
−C2m−1/p1|y1+ · · · + ym|)〉,

whereC2 := 1
2C1. Now it is a consequence of Theorem 4.4 of [14] (which is much

simpler in our finite-dimensional setting) that this implies

‖y1+ · · · + ym‖Y ≤ 2C2m1/p1.(3.15)

Again the same inequality holds inY∗.
Now suppose{y1, . . . , ym} are any disjoint vectors with

∑m
i=1 ‖yi ‖p

Y = 1. Let Ak :=
{i : 2−k < ‖yi ‖Y ≤ 21−k}. If |Ak| denotes the cardinality ofAk, then|Ak| ≤ 2kp and by
(3.13) we have∥∥∥∥∥ m∑

i=1

yi

∥∥∥∥∥
Y

≤
∞∑

k=1

∥∥∥∥∥∑
i∈Ak

yi

∥∥∥∥∥
Y

≤
∞∑

k=1

2C2+1|Ak|1/p12−k ≤ 2C2+1
∞∑

k=1

2k(p/p1−1).
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Since

p

p1
= 1

2

(
3− 2ε

3− ε + 1

)
< 1

this implies an estimate ∥∥∥∥∥ m∑
i=1

yi

∥∥∥∥∥ ≤ C(ε) <∞

and, combined with the similar estimate forY∗, this establishes the lemma.

We now turn our attention to the case whenK = BX is the unit ball of a finite-
dimensional Banach space. Our main result concerns the case whenX = `n

p for 1 ≤
p ≤ ∞.

Theorem 3.9. (a)There exist constants c1, c2 > 0 so that

c1 log2(n+ 1)≤ w2(`
n
1) ≤ c2 log2(n+ 1).

In addition

lim sup
n→∞

w2(`
n
1)

log2 n
≤ 1

4
.(3.16)

(b) If 1< p ≤ 2, thenγ (p) := supn∈Nw2(`
n
p) <∞ and further there exist constants

d1, d2 > 0 so that

d1

p− 1
≤ γ (p) ≤ d2

p− 1
|log(p− 1)|.

(c) If 2≤ p ≤ ∞, thenγ (p) := supn∈Nw2(`
n
p) <∞, and further

γ := sup
2≤p≤∞

γ (p) ≤ 1602<∞.

Proof of (a). The upper estimate is an immediate consequence of Theorem 3.1. To
prove the lower estimate, let̃fn : B`n

1
→ R be defined by

f̃n(x) := 1

2

n∑
i=1

xi log2 |xi | = 1

2

∑
i=1

ψ(t)

whereψ(t) := t log2 |t | for −1 ≤ t ≤ 1. Since|12
hψ(t)| ≤ 2 log2(1+

√
2)|h|, we

obtain

|12
h f̃n(x)| ≤ log2(1+

√
2)
∑
i=1

|hi |

so thatω2( f̃n) ≤ log2(1+
√

2).Since f̃n|Sn−1 = fn−1 as defined in (3.4) we have

E2( f̃n; B`1) ≥ E2( fn−1; Sn−1) ≥ 1
4 log2 n.
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This implies that

w2(`
n
1) ≥

1

4 log2(1+
√

2)
log2 n.

It remains to prove (3.16). For this we need:

Lemma 3.10. w2(`
n
1) ≤ w2(Sn−1)+ 3

2.

Proof. Suppose firstf is a bounded continuous function onB`n
1

with ω2( f ) ≤ 1.Then
there is an affine functiong defined onSn−1 with | 12( f (x)− f (−x))−g(x)| ≤ w2(Sn−1).

We can extendg to a linear functional oǹn
1.We also have| 12( f (x)+ f (−x))− f (0)| ≤ 1

2
for x ∈ Sn. Hence| f (x) − g(x) − f (0)| ≤ w2(Sn−1) + 1

2 if x ∈ ±Sn−1. Now if
x ∈ B`n

1
we can findu, v ∈ Sn−1 and 0≤ t ≤ 1 so thatx = tu − (1− t)v. Hence

| f (x) − t f (u) − (1− t) f (−v)| ≤ 1 by the one-dimensional Whitney result which is
essentially the fact thatδ2( f ) ≤ β1 = 1. Sinceg is linear,| f (x) − g(x) − f (0)| ≤
w2(Sn−1)+ 3

2. It follows thatw2(`
n
1) ≤ w2(Sn−1)+ 3

2.

Now the inequality (3.16) follows from Theorem 3.6 and the proof of (a) is complete.

We postpone the proof of (b) until after (c).

Proof of (c). We will need the following lemma (see (2.1) for the definition ofv2(X)):

Lemma 3.11. (a) Let E be a subspace of a finite-dimensional Banach space X. Then
v2(X/E) ≤ 2v2(X).

(b) Suppose X,Y are two n-dimensional Banach spaces.Thenv2(Y) ≤ d(X,Y)v2(X)
where d(X,Y) is the Banach–Mazur distance between X and Y.

Proof. Let Q : X → X/E be the quotient map. Iff : X/E → R is a continuous
homogeneous function then there is a linear functionalx∗ on X so that

| f (Qx)− x∗(x)| ≤ v2(X)ω2( f ; BX/E)‖x‖

for x ∈ X. For x ∈ E we have

|x∗(x)| ≤ v2(X)ω2( f )‖x‖

and so by the Hahn–Banach theorem we can find a linear functionalu∗with u∗(e) = x∗(e)
for e∈ E and‖u∗‖ ≤ v2(X)ω2( f ).Then there existsz∗ ∈ (X/E)∗with x∗−u∗ = z∗◦Q
and we have

| f (Qx)− z∗(Qx)| ≤ | f (Qx)− x∗(x)| + |u∗(x)| ≤ 2v2(X)ω2( f )‖x‖.

Part (a) now follows.
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For part (b) supposeT : X → Y satisfies‖T‖ = 1 and‖T−1‖ = d(X,Y). Then if
f : Y → R is a continuous homogeneous function thenω2( f ◦ T; BX) ≤ ω2( f ; BY).

Now there existsx∗ ∈ X∗ so that| f (T x) − x∗(x)| ≤ v2(X)ω2( f ; BY)‖x‖. Let y∗ =
x∗ ◦ T−1. Then| f (y)− y∗(y)| ≤ v2(X)ω2( f ; BY)d(X,Y)‖y‖ and the lemma follows.

Now suppose 2≤ p ≤ ∞. Then for anyn ∈ N andε > 0 there existsN so that̀ n
p is

(1+ ε)-isomorphic to a quotient of̀N∞. Hencev2(`
n
p) ≤ 2(1+ ε)v2(`

N
∞).

However, the estimatev2(`
N
∞) ≤ 200 is proved in [18] (a factor 2 was omitted from the

argument as pointed out in [22]). Hencev2(`
n
p) ≤ 400 for alln. Now by Proposition 2.1

we have

w2(`
n
p) ≤ 4v2(`

n
p)+ 3

2 ≤ 1602.

(Note that forp = ∞ we can eliminate a factor of 2 and get an estimate of 802.)

We now proceed to the proof of (b). Let us comment first that there is a striking
difference between the casesp < 2 andp > 2 and this reflects the differing behavior of
these spaces with respect to (Rademacher) type (see Section 2 for the definitions.)

We start by establishing the lower bound. For this we note thatd(`n
1, `

n
p) ≤ n1/q where

1/p+1/q = 1.Hence by Lemma 3.11 and part (a) we havev2(`
n
p) ≥ c1n−1/q log(n+1).

If we choosen = [eq] we obtain an estimateγ (p) ≥ d1q ≥ d1(p− 1)−1 whered1 > 0.
We will derive the upper bound from a general result about the relationship between

the Whitney constants and the Rademacher-typep constant.

Theorem 3.12. There is an absolute constant C so that if X is a finite-dimensional
Banach space and1< p ≤ 2, then

w2(X) ≤ C

p− 1
(1+ |log(p− 1)| + logTp(X)).(3.17)

Proof. For this theorem we need the following elementary lemma:

Lemma 3.13. Suppose Y is a Banach space of type p where1 < p ≤ 2 with type p
constant Tp(Y). Suppose y1, . . . , yn ∈ BY and that k∈ N. Then there is a subsetσ of
{1,2, . . . ,n} with |σ | ≤ 2−kn and so that∥∥∥∥∥1

n

n∑
i=1

yi − 2k

n

∑
i∈σ

yi

∥∥∥∥∥ ≤ Tp(Y)n
−1/q 2k/q − 1

21/q − 1
,

where, as usual, 1/p+ 1/q = 1.

Proof. We prove this by induction onk,with k = 0 as the trivial starting point. Suppose
σk is the subset satisfying the conclusions of the lemma fork. Then by the definition of
the typep constant there is a choice of signsεi = ±1 with∥∥∥∥∥∑

i∈σk

εi yi

∥∥∥∥∥ ≤ Tp(Y)|σk|1/p ≤ Tp(Y)2
−k/pn1/p.
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Without loss of generality we can assume
∑

i∈σk
εi ≤ 0. Let σk+1 := {i ∈ σ : εi = 1}.

Then ∥∥∥∥∥2k

n

∑
i∈σk

yi − 2k+1

n

∑
i∈σk+1

yi

∥∥∥∥∥ = 2k

n

∥∥∥∥∥∑
i∈σk

εi yi

∥∥∥∥∥ ≤ Tp(Y)2
k/qn−1/q.

The induction step now follows easily

Returning to the proof of Theorem 3.12, we will estimatev2 := v2(X). Suppose that
f is any continuous homogeneous function onX with ω2( f ; BX) ≤ 1. We may pick
x∗ ∈ X∗ so that ifg := f − x∗, then

E2( f ; BX) = E2(g: BX) = sup{|g(x)|: ‖x‖ ≤ 1} ≤ v2.(3.18)

By Proposition 3.2,

E2(g; BX) ≤ sup{δm(g; BX) : m ∈ N},
whereδm( f ; BX) is defined in (3.1). Sinceg is continuous the right-hand side is equal
to supn∈N bn where

bn := sup

{∣∣∣∣∣g
(

1

m

m∑
i=1

xi

)
− 1

m

m∑
i=1

g(xi )

∣∣∣∣∣ : x1, . . . , xm ∈ BX, m≤ n

}
.

We will show that

bn ≤ 3+ 40q + 2q logTp + 2q logv2(3.19)

whereTp := Tp(X).
To establish (3.19) choose an integerN := [(Tpv2)

q].By Theorem 3.1,bn ≤ 2w2(n) ≤
3+ log2 n and this shows that

bN ≤ 3+ q log2 Tp + q log2 v2 ≤ 3+ 2q logTp + 2q logv2.

In particular, (3.19) holds for alln ≤ N.
Suppose nown > N and choosek ∈ N so that 2k−1N < n ≤ 2k N. We consider

the spaceY := X ⊕∞ R; then Tp(Y) ≤ 2Tp(X) = 2Tp. If x1, . . . , xn ∈ BX we
define elements ofBY by yi := (xi , v

−1
2 g(xi )). By Lemma 3.13 there is a subsetσ of

{1,2, . . . ,n} with |σ | ≤ 2−kn so that∥∥∥∥∥1

n

n∑
i=1

yi − 2k

n

∑
i∈σ

yi

∥∥∥∥∥
Y

≤ q(log 2)−1Tp(Y)2
k/qn−1/q ≤ 8qTpN−1/q.(3.20)

In particular, we have ifu := (1/n)∑n
i=1 xi andw := (2k/n)

∑
i∈σ xi

‖u− w‖ ≤ 8qTpN−1/q.(3.21)

Since u, w ∈ BX and g is homogeneous, we have|g(u − w) − g(u) + g(w)| ≤
ω2( f ; BX) ≤ 1.Hence, and by (3.18),

|g(u)− g(w)| ≤ 1+ |g(u− w)| ≤ 1+ v2‖u− w‖ ≤ 20q(3.22)
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by the choice ofN. We also have from (3.20)∣∣∣∣∣1n
n∑

i=1

g(xi )− 2k

n

∑
i∈σ

g(xi )

∣∣∣∣∣ ≤ 8qv2TpN−1/q ≤ 20q.(3.23)

Finally we note that, since|σ | ≤ 2−kn ≤ N,∣∣∣∣∣g(w)− 2k

n

∑
i∈σ

g(xi )

∣∣∣∣∣ ≤ bN ≤ 3+ 2q logTp + 2q logv2.(3.24)

Combining (3.22), (3.23), and (3.24) gives us∣∣∣∣∣g(u)− 1

n

n∑
i=1

g(xi )

∣∣∣∣∣ ≤ 3+ 40q + 2q logTp + 2q logv2

and so (3.19) holds.
Now (3.19) gives an estimate independent ofn and so implies that

E2( f ; BX) = E2(g; BX) ≤ 3+ 40q + 2q logTp + 2q logv2.

Since this estimate holds for all suchf, we obtain

v2 ≤ 3+ 40q + 2q logTp + 2q logv2.

Sinceq logv2 ≤ 1
4v2+ q logq+ q log 4 this gives the required upper estimate in (b).

The proof of Theorem 3.12 is now also complete.

Corollary 3.14. There is a universal constant C so that if X is an n-dimensional
Banach space and2< q <∞,

w2(X) ≤ Cq(logq + logCq(X
∗)+ log(1+ logn)).

Proof. If 1/ p+ 1/q = 1, thenTp(X) ≤ C(logn+ 1)Cq(X∗) (see [36]). It remains to
apply the inequality (3.17).

Note that for the case of̀n∞ this is weaker than the conclusion of Theorem 3.9(c). We
conjecture that there is an estimate of the formw2(X) ≤ ϕ(q,Cq(X∗)) for a suitable
functionϕ. It is possible that the estimatew2(X) ≤ Cq(1+ logCq(X∗)) holds, which
would implyw2(X) ≤ C(p− 1)−1(1+ logTp(X)) andw2(`

n
p) ≤ C(p− 1)−1 giving a

sharp estimate forw2(`
n
p).

4. Quadratic Approximation on Symmetric Convex Bodies

We now consider the problem of estimatingw3(X)whenX is a finite-dimensional Banach
space. Our first result gives quite a sharp estimate ofw

(s)
3 (n) := supdim X=nw3(X).
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Theorem 4.1. There are absolute constants0< c,C <∞ so that for every n≥ 1

c
√

n ≤ w(s)3 (n) ≤ C
√

n log(n+ 1).

Proof. The upper estimate is a special case of Theorem 5.2 (or Corollary 5.6), which
we therefore postpone to the next section. For the lower estimate, we use the fact that
the spacèn

1 contains a subspaceV so that every linear projectionP : `n
1→ V satisfies

‖P‖ ≥ c
√

n,(4.1)

wherec > 0 is an absolute constant. This follows from a well-known result of Kashin [19]
that we may pickV with dim V = [n/2] andd(V, `dim V

2 ) ≤ C whereC is independent
of n. For convenience letY be the spaceRn with the norm, 2-equivalent to thè1-norm,

‖x‖Y := ‖x‖`2n
1
+ ‖x‖`2n

2
.

Then (4.1) holds for every linear projectionP : Y → V , with perhaps a different
constant. SinceY is strictly convex, for everyx ∈ Rn there is a uniqueÄ(x) ∈ V so that

‖x −Ä(x)‖Y = dY(x,V) := inf
v∈V
‖x − v‖Y.

The mapÄ is called themetric projectionof Y ontoV and the following properties are
well known (see, e.g., [34, Sec. 5.1]):

Lemma 4.2. (a)Ä is homogeneous and continuous.
(b) Ä is a (nonlinear)projection,‖Ä(x)‖Y ≤ 2‖x‖Y for x ∈ Y andÄ(x + v) =

Ä(x)+ v if x ∈ Y, v ∈ V.
(c) For x, y ∈ Y,

‖Ä(x + y)−Ä(x)−Ä(y)‖ ≤ 2(dY(x,V)+ dY(y,V)).

Now let〈 , 〉 be the standard inner-product onRn. Letπ be the orthogonal projection
ontoV and letπ⊥ be the complementary projection ontoV⊥. Let ‖x‖Y∗ := sup{〈x, y〉 :
‖y‖Y ≤ 1} be the dual norm onRn.

We now define a norm‖ ‖X onRn by the formula

‖x‖X := dY∗(πx,V⊥)+ dY(π
⊥x,V),(4.2)

where

dY∗(x,V⊥) = inf{‖x − v⊥‖Y∗ : v⊥ ∈ V⊥}.
Finally, let us define the continuous homogeneous function

F(x) := 〈πx, Ä(π⊥x)〉.(4.3)

Now supposex, x + 3h ∈ BX. Let x = x1 + x2 andh = h1 + h2 wherex1, h1 ∈ V
andx2, h2 ∈ V⊥. Then

13
hF(x) = 〈x1,1

3
h2
Ä(x2)〉 + 3〈h1,1

2
h2
Ä(x2+ h2)〉.(4.4)
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Now we have

‖13
h2
Ä(x2)‖Y ≤ ‖12

h2
Ä(x2)‖Y + ‖12

h2
Ä(x2+ h2)‖Y

≤ 2(dY(x2,V)+ dY(x2+ 2h2,V)+ dY(x2+ h2,V)+ dY(x2+ 3h2,V))

≤ 8

by Lemma 4.2. Similarly

‖12
h2
Ä(x2+ h2)‖ ≤ 4.

Hence by (4.4) have

|13
hF(x)| ≤ 8dY∗(x1,V⊥)+ 12dY∗(h1,V⊥) ≤ 16(4.5)

sincedY∗(x1,V⊥) ≤ 1 anddY∗(h1,V⊥) ≤ 2
3. Thus (4.5) implies

ω3(F; BX) ≤ 16.(4.6)

Let v3 := v3(X). Then there is a quadratic formQ(x) such that

|F(x)− Q(x)| ≤ 16v3‖x‖2X
for x ∈ Rn. We can writeQ(x) = 〈x, Ax〉 where A is a symmetricn × n matrix or
equivalently a symmetric linear operator onRn.

Note for everyx ∈ Rn we haveF(πx) = F(π⊥x) = 0.Hence

|〈πx, Aπx〉| ≤ 16v3‖πx‖2X ≤ 16v3‖x‖2X
and

|〈π⊥x, Aπ⊥x〉| ≤ 16v3‖π⊥x‖2X ≤ 16v3‖x‖2X.
It follows that

|F(x)− 2〈πx, Aπ⊥x〉| ≤ 48v3‖x‖2X.(4.7)

We now defineP := π+2πAπ⊥.The linear operatorP is a projection ontoV ; we will
use (4.1) and so we estimate‖P‖Y. Assume‖y‖Y = 1 is chosen so that‖Py‖Y = ‖P‖.
Then we may pickx1 ∈ V with dY∗(x1,V⊥) ≤ 1 and

〈x1, Py〉 = ‖P‖Y.
Now x = x1+ π⊥(y) ∈ BX. Note that

F(x) = 〈x1, Ä(π
⊥(y))〉 = 〈x1, Ä(y)〉 − 〈x1, πy〉.

Hence

|F(x)+ 〈x1, πy〉| ≤ 2dY∗(x1,V⊥)‖y‖Y ≤ 2

by Lemma 4.2. By (4.7) we obtain

|〈x1, 2πAπ⊥y+ πy〉| ≤ 2+ 48v3

which implies‖P‖ ≤ 2+ 48v3 and hence gives the estimatev3(X) ≥ c
√

n for suitable
c > 0.
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Our second main result of this section gives a rather sharp estimate ofw3(`
n
p) when

p = 1 or 2≤ p ≤ ∞. It is a consequence of more general results which will proved
later.

Theorem 4.3. There are absolute constants0< c < C <∞ so that for every n≥ 1:

(a) c log(n+ 1)≤ w3(`
n
p) ≤ Cp log(n+ 1) if p = 1 or 2≤ p <∞; and

(b) c log(n+ 1)≤ w3(`
n
∞) ≤ C(log(n+ 1))2.

Remark. We emphasize thatc andC are independent ofn andp.We do not have any
really good upper estimate forw3(`

n
p) when 1< p < 2, but Theorem 4.3 gives a lower

bound in that case.

Corollary 4.4. There is a universal constant c> 0 so that for1< p < 2,

w3(`
n
p) ≥ c(p− 1) log(n+ 1).

Proof. We use the following fact proved in an equivalent form in [25, p. 21]. There is a
universal constantC and for eachn a subspaceYn of `n

p, 1< p < 2,with dimY = [n2/q]
(where 1/p+ 1/q = 1) so that:

(a) the Banach–Mazur distanced(Yn, `
dimYn
2 ) ≤ C; and

(b) there is a projectionP: `n
p→ Yn with ‖P‖ ≤ C.

Applying Lemma 4.7 and Lemma 2.4 toYn we can find a continuous 2-homogeneous
function f0: Yn → R with ω3( f0; BYn) ≤ 1 andE3( f0) ≥ c(p− 1) log(n+ 1) where
c > 0 is a universal constant. Definingf := f0 ◦ P we easily haveω3( f ) ≤ C but
E3( f ) ≥ c(p− 1) log(n+ 1) and this proves the result.

Except for the casep = 1, the estimates in Theorem 4.3 will follow from the following
very general estimate:

Theorem 4.5. There are absolute constants0 < c < C < ∞ so that for every n-
dimensional Banach space we have

c log(n+ 1)

C2(X∗)8
≤ w3(X) ≤ CT2(X)

2 log(n+ 1).

Proof (The Upper Estimate). By Theorem 3.12 we havew2(X) ≤ C(1+ logT2(X))
and by Proposition 2.5 we havew3(X) ≤ C max(w2(X), v3(X)). So it will suffice to
show a similar estimate forv3(X).We obtain the result by a linearization technique. We
can regardX asRn with an appropriate norm. Now ifP is ann × n positive-definite
matrix, we can define anRn-valued Gaussian random variableξP with covariance matrix
P. Let 0 be the cone of positive-definite matrices.

Suppose now thatf is a 2-homogeneous continuous function onX with ω3( f ; BX) ≤
1.We define a functionf̂ on0 by putting

f̂ (P) := E( f (ξP)).
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Then f̂ is 1-homogeneous on the cone0. Let00 be the convex hull of the set of matrices
{x ⊗ x : x ∈ BX} wherex ⊗ x denotes the rank 1 matrix(xi xj )1≤i, j≤n. We need the
estimate:

Lemma 4.6. There is a universal constant so that for any x1, x2 ∈ X we have

| 12( f (x1+ x2)+ f (x1− x2))− f (x1)− f (x2)| ≤ C(‖x1‖2+ ‖x2‖2).(4.8)

Proof. By the main result of [2] there is a constantC0 so thatw3(Y) ≤ C0 for all two-
dimensional subspaces. LetY := span{x1, x2}. By Proposition 2.5 there is a quadratic
form h onY so that| f (y)− h(y)| ≤ C‖y‖2 for all y ∈ Y (where againC is a universal
constant). This immediately yields the lemma.

Returning to the proof of the theorem we note that ifξP andξQ are independent then
ξP + ξQ has the same distribution asξP+Q. Hence

| f̂ (P + Q)− f̂ (P)− f̂ (Q)| = |E( f (ξP + ξQ))− E( f (ξP)+ f (ξQ))|
= |E 1

2( f (ξP + ξQ)+ f (ξP − ξQ))

− E( f (ξP)+ f (ξQ))|
≤ CE(‖ξP‖2+ ‖ξQ‖2).

Now suppose thatP, Q ∈ 00. Then we can writeP =∑m
i=1 ai xi ⊗xi where‖xi ‖ ≤ 1

for 1 ≤ i ≤ m andai ≥ 0 with
∑m

i=1 ai = 1. ThenξP has the same distribution as∑m
i=1 a1/2

i gi xi whereg1, . . . , gm are independent normalized Gaussian random variables.
Hence as is well known (see, e.g., [30, p. 25])

E(‖ξP‖2) = E

∥∥∥∥∥ m∑
i=1

a1/2
i gi xi

∥∥∥∥∥
2
 ≤ T2(X)

2.

Using the similar inequality forQ, we obtain

| f̂ (P + Q)− f̂ (P)− f̂ (Q)| ≤ CT2(X)
2

for a universal constantC.Henceω2( f̂ , 00) ≤ CT2(X)2.Since dim00 = 1
2n(n−1)≤ n2

we can apply Theorem 3.1 to00 to deduce the existence of an affine functionϕ on00

so that

| f̂ (P)− ϕ(P)| ≤ CT2(X)
2 log(n+ 1),(4.9)

whereC is again a universal constant. In particular,|ϕ(0)| is dominated byCT2(X)2 log(n+
1) so we can assume thatϕ is linear on the linear span of00. Leth(x) = ϕ(x⊗ x). Then
h is a quadratic form. Sincêf (x ⊗ x) = E( f (gx)) = f (x)E(g) = f (x) whereg is a
normalized Gaussian, we have from (4.9)

| f (x)− h(x)| ≤ CT2(X)
2 log(n+ 1)

for all x ∈ BX. This gives the desired estimate ofv3(X) and completes the proof of the
upper estimate.

(The Lower Estimate). We establish a lower estimate forv3(X); we first achieve this
for the case ofX = `n

2.
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Lemma 4.7. There is an absolute constant c> 0 so that for all n≥ 1

v3(`
n
2) ≥ c logn.(4.10)

Proof. Let ϕ(t) := t2 log |t | for −1≤ t ≤ 1. Then, by the Mean Value Theorem

13
hϕ(t) = 3h12

θhϕ
′(t + θh)

for some 0< θ < 1.Hence

|13
hϕ(t)| ≤ 6 log(1+

√
2)|h|2.

Now define forx ∈ B`n
2
,

f (x) =
n∑

i=1

ϕ(xi ).

Then forx, x + 3h ∈ B`n
2
,

|13
h f (x)| ≤ 6 log(1+

√
2)

n∑
i=1

h2
i <

8
3 log(1+

√
2).

Henceω3( f ; B`n
2
) < 6.

Since f is even andf (0)= 0 we can find a quadratic formh on`n
2 so that

sup
‖x‖≤1
| f (x)− h(x)| ≤ 2E3( f ; B`n

2
).

As the pointsn−1/2∑n
i=1 εi ei ∈ B`n

2
for εi = ±1 the left-hand side is at least

Ave
εi=±1

∣∣∣∣∣ f

(
1√
n

n∑
i=1

εi ei

)
− h

(
1√
n

n∑
i=1

εi ei

)∣∣∣∣∣ =
∣∣∣∣∣ 1

2 logn+ 1

n

n∑
i=1

h(ei )

∣∣∣∣∣ .
As f (ei ) = 0 for 1≤ i ≤ n we have

1

n

∣∣∣∣∣ n∑
i=1

h(ei )

∣∣∣∣∣ ≤ 2E3( f ; Bn
`2
).

Putting these inequalities together givesE3( f ; B`n
2
) ≥ 1

8 logn.

Next we need a lemma using the extension constants from Definition 2.11.

Lemma 4.8. Let X be an n-dimensional Banach space and let E be a linear subspace
of X. LetEX(E, E⊥) = M1 andEX(E, X∗) = M2. Then

v3(X/E) ≤ (M1+ 1)(M2+ 1)v3(X).(4.11)
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Proof. It will be convenient to regardX asRn with an appropriate norm and let〈 , 〉
be the usual inner-product onRn. Supposef is a 2-homogeneous continuous function
on X/E with ω3( f ; BX/E) ≤ 1. Let Q : X→ X/E be the quotient map. Thenf ◦ Q is
continuous and 2-homogeneous onX andω3( f ◦Q; BX) ≤ 1.Hence there is a quadratic
form h : X→ R such that

| f (Qx)− h(x)| ≤ v3(X)‖x‖2X
for x ∈ Rn. We can assumeh(x) = 〈x, Ax〉 whereA is a symmetric matrix.

Since〈x, Ay〉 = 1
4(h(x + y)− h(x − y)) we have

|〈x, Ay〉 − 1
4( f (Qx+ Qy)− f (Qx− Qy))| ≤ 1

2v3(X)(‖x‖2X + ‖y‖2X).
Assumey ∈ E. ThenQy= 0 and so

|〈x, Ay〉| ≤ 1
2v3(X)(‖x‖2X + ‖y‖2X).

Replacingx by αx andy by α−1y and minimizing the right-hand side gives

|〈x, Ay〉| ≤ v3(X)‖x‖X‖y‖X.

This implies that

‖Ay‖X∗ ≤ v3(X)‖y‖X

wheny ∈ E. From the definition of the extension constant there exists ann× n matrix
A1 so thatA1y = Ay for y ∈ E andA1 has norm at mostM2v3(X) as an operator from
X into X∗. ThenA− A1 mapsE to 0 and hence the transposeA− At

1 mapsRn to E⊥.
Now ‖At

1‖X→X∗ = ‖A1‖X→X∗ ≤ M2v3(X) and so‖A− At
1‖E→X∗ ≤ (M2 + 1)v3(X).

Using the extension constant again we can find ann× n matrix A2 which mapsRn into
E⊥ and such that‖A2‖X→X∗ ≤ M1(M2+ 1)v3(X).

Let S= A− At
1− A2. ThenSmapsE to {0}andRn into E⊥. It follows thatS= T Q

whereT is a linear operator fromX/E to E⊥ and we can define a quadratic formψ on
X/E byψ(Qx) = 〈x, Sx〉.

Then

| f (Qx)− ψ(Qx)| ≤ | f (Qx)− h(x)| + |〈x, At
1x〉| + |〈x, A2x〉|

≤ (1+ M2+ M1(M2+ 1))v3(X)‖x‖2X
= (M1+ 1)(M2+ 1)v3(X)‖x‖2X.

Now for givenu ∈ X/E we can choosex ∈ X with Qx = u and‖x‖X = ‖u‖X/E. This
impliesv3(X/E) ≤ (M1+ 1)(M2+ 1)v3(X).

We can now complete the proof of the lower estimate in Theorem 4.5. SupposeX is
a Banach space of dimensionn. We use the following powerful form of the Dvoretzky
theorem due to Figiel, Lindenstrauss, and Milman [7] (see [25, Theorem 9.6], where the
theorem is formulated in the form required here). There is a subspaceF of X∗ which is
2-isomorphic tò m

2 with

m= dim F ≥ cC2(X
∗)−2n(4.12)
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We note that the lower estimate in Theorem 4.5 is trivial for spaces such thatC2(X∗) ≥√
cn1/4. We will therefore consider only those spacesX for which C2(X∗) ≤ √cn1/4.

Then (4.12) givesm≥ √n.
Let us putE := F⊥. SinceE∗ is isometric toX∗/F andd(F, `m

2 ) ≤ 2 we can apply
Theorem 6.9 of [30] to obtain

C2(E
∗) ≤ CC2(X

∗),(4.13)

where, as usual,C is an absolute constant.
Now we use Corollary 2.13 to estimate the constantsM1,M2 of Lemma 4.8 as follows:

M1 ≤ ψ(T2(X/E))C2(X
∗)(C2(E

∗)C2(E
⊥))3/2,

M2 ≤ ψ(T2(X/E))C2(X
∗)(C2(E

∗)C2(X
∗))3/2,

whereψ : [1,∞) → [1,∞) is a suitable increasing function. SinceX/E is isometric
to F∗ we haved(X/E, `m

2 ) ≤ 2 and soT2(X/E) ≤ 2. Together with (4.13) this yields

M1,M2 ≤ CC2(X
∗)4.

Combining this with (4.11) and Lemma 2.4 we have

1
4v3(`

m
2 ) ≤ v3(X/E) ≤ CC2(X

∗)8v3(X).

Applying now (4.10) and the inequalitym≥ √n we have

v3(X) ≥ C−1 logm

C2(X∗)8
≥ c

log(n+ 1)

C2(X∗)8

for an absolute constantc > 0. The proof of Theorem 4.6 is now complete.

Proof of Theorem 4.3. For the casep = 1 we postpone the proof to the next section
(see Corollary 5.7 below). For 2≤ p ≤ ∞ it suffices to apply Theorem 4.6 toX = `n

p
noting that in this caseC2(X∗) is uniformly bounded independent ofn and p while
T2(`

n
p) ≤ C

√
p for 2≤ p <∞ andT2(`

n
∞) ≤ C(log(n+1))1/2; see, for example, [36].

5. Higher-Order Estimates

We now consider upper estimates forwn(X) when X is a finite-dimensional Banach
space andn ≥ 3 is arbitrary. In the proof we will use heavily the notion and characteristic
properties ofm-quasilinear functions, which we introduce next.

Definition 5.1. A map F : Xm→ R is said to bem-quasilinearif F is homogeneous
in each variable separately and there is a constantλ ≥ 0 so that for any 1≤ j ≤ m and
any(xi )i 6= j the mapgj (x) := F(x1, . . . , xj−1, x, xj+1, . . . , xm) satisfies

ω2(gj ; BX) ≤ λ
∏
i 6= j

‖xi ‖.(5.1)

We then set̃1m(F) to be the infimum of allλ so that (5.1) holds.
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To formulate our main result, we recall that theprojection constantλ(Y) of a finite-
dimensional Banach spaceY is the smallestλ ≥ 1 so that ifY is embedded isometrically
in a Banach spaceZ, then there is a linear projectionP : Z → Y with ‖P‖ ≤ λ. See,
for example, [41].

Theorem 5.2. For any integers m≥ k ≥ 2 there is a constant C= C(m) so that

wm(X) ≤ Cλ(X∗)m−kwk(X).(5.2)

Before proving this estimate we will establish some basic lemmas onm-quasilinear
forms. We letC denote a constant which depends only onm.

Lemma 5.3. Suppose F: Xm → R is a symmetric m-quasilinear form and that
f : X→ R is defined by f(x) = F(x, . . . , x). Then∣∣∣∣∣ f (x1+ x2)−

m∑
k=0

(
m
k

)
Fk(x1, x2)

∣∣∣∣∣ ≤ C1̃m(F)max(‖x1‖m, ‖x2‖m),(5.3)

where Fk(x1, x2) = F(x1, . . . , x1, x2, . . . , x2) with x1 repeated k times and x2 repeated
n− k times.

More generally, there is a constant C= C(m) so that if x1, . . . , xm ∈ X∣∣∣∣∣ f

(
m∑

i=1

xi

)
−
∑
|α|=m

(
m
α

)
Fα(x1, . . . , xm)

∣∣∣∣∣≤C1̃m(F)max(‖x1‖m, . . . , ‖xm‖m),(5.4)

where we adopt the notation forα ∈ Zm
+ of |α| :=∑m

i=1 αi and

Fα(x1, . . . , xm) := F(x1, . . . , x1, x2, . . . , x2, . . . , xm, . . . , xm)

with each xk repeatedαk times.

Proof. This is established by expanding in each variable separately and collecting
terms. We omit the details.

Suppose now thatf : X→ R is a continuousm-homogeneous function. We associate
with f the separately homogeneous functionF : Xm → R defined for‖x1‖ = ‖x2‖ =
· · · = ‖xn‖ = 1 by

F(x1, . . . , xm) := 1

2mm!

∑
εi=±1

ε1 . . . εm f

(
m∑

i=1

εi xi

)
.(5.5)

and extended by homogeneity.

Lemma 5.4. If f : X→ R is continuous and m-homogeneous then F defined by(5.5)
is symmetric and m-quasilinear with̃1m(F) ≤ Cωm+1( f ; BX).

Conversely, if F is continuous and m-quasilinear, then f(x) := F(x, . . . , x) is con-
tinuous and m-homogeneous withωm+1( f ; BX) ≤ C1̃m(F).
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Proof. Suppose first thatf is continuous andm-homogeneous and thatF is defined
by (5.5). Suppose(xi )i 6= j ∈ BX and x, x + 2h ∈ BX. Let E = span({xi }i 6= j , x, h).
Then dimE ≤ m + 1 and so by the Whitney-type result of [2] there is a constant
C = C(m) so thatwm+1(E) ≤ C. By Proposition 2.5 we also havevm+1(E) ≤ C. Since
ωm+1( f ; BE) ≤ ωm+1( f ; BX) there is a homogeneous polynomial of degreem on E so
that

| f (u)− g(u)| ≤ C‖u‖mωm+1( f ; BX)

for u ∈ E. We can expressg in the formg(u) = G(u, . . . ,u) whereG is a symmetric
m-linear form. Using the polarization formula from multilinear algebra, we have

|F(x1, . . . , xj−1, u, xj+1, . . . , xm)−G(x1, . . . , xj−1, u, xj+1, . . . , xm)|≤Cωm+1( f ; BX)

whenever‖u‖ ≤ 1 andu ∈ E. Let ϕ(u) = F(x1, . . . , xj−1, u, xj+1, . . . , xm). It now
follows that

|12
hϕ(x)| ≤ Cωm+1( f ; BX)

and so

1̃m(F) ≤ Cωm+1( f ; BX).

We now turn to the converse. Suppose thatx + jh ∈ BX for 0 ≤ j ≤ m+ 1.Using
(5.3) we have ∣∣∣∣∣ f (x + jh)−

m∑
k=0

(
m
k

)
j k Fk(h, x)

∣∣∣∣∣ ≤ C1̃m(F).

Hence

|1m+1
h f (x)| ≤ C1̃m(F)

as required.

Our next result shows that symmetricm-quasilinear forms can be nicely approximated
by m-linear forms.

Lemma 5.5. Suppose F: Xm → R is a continuous symmetric m-quasilinear form.
Then there is a symmetric m-linear form H: Xm→ R so that

|F(x1, . . . , xm)− H(x, . . . , xm)| ≤ Cvm+1(X)1̃m(F)
m∏

i=1

‖xi ‖.

Proof. Let f (x) := F(x, . . . , x). By the previous lemma,ωm+1( f ; BX) ≤ C1̃m(F).
Hence there is a symmetricm-linear formH so that ifh(x) = H(x, . . . , x) then

| f (x)− h(x)| ≤ Cvm+1(X)1̃m(F)‖x‖m.(5.6)

Now let us defineF ′ using (5.5) to be separately homogeneous and for‖x1‖ = ‖x2‖ =
· · · = ‖xn‖ = 1,

F ′(x1, . . . , xn) := 1

2mm!

∑
εi=±1

ε1 . . . εm f

(
m∑

i=1

εi xi

)
.(5.7)
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Note that ∑
εi=±1

∑
|α|=m

(
m
α

) m∏
i=1

ε
αi+1
i = m! 2m(5.8)

since
∑

εi=±1

∏m
i=1 ε

αi+1
i = 0 unlessαi = 1 for all i . Hence∑

εi=±1

∑
|α|=m

(
m
α

)
ε1 . . . εmFα(ε1x1, . . . , εmxm) = 2mm! F(x1, . . . , xm).

It follows, by Lemma 5.3, that for‖x1‖ = ‖x2‖ = · · · = ‖xn‖ = 1,

|F ′(x1, . . . , xn)− F(x1, . . . , xn)| ≤ C1̃m(F).

We also have, again using Lemma 5.3,

|F ′(x1, . . . , xn)− H(x1, . . . , xn)| ≤ Cvm+1(X)1̃m(F)

and the lemma follows by homogeneity.

Proof of Theorem 5.2. We will prove by induction that

vm(X) ≤ Cλ(X∗)max(vm−1(X), v2(X))(5.9)

whenm≥ 3.
Let f : X → R be a continuousm-homogeneous function withωm+1( f ) ≤ 1.We

defineF : Xm→ R using (5.5) so that̃1m(F) ≤ C. Now fixing u ∈ X we define

gu(x) := F(u, x, . . . , x)

so thatgu is (m−1)-homogeneous andωm(F) ≤ C1̃m(F)‖u‖ ≤ C‖u‖ by Lemma 5.4.
Now by Lemma 5.5 there is a symmetric(m−1)-linear formHu : Xm−1→ R so that

|F(u, x2, . . . , xm)− Hu(x2, . . . , xm)| ≤ Cvm(X)‖u‖
m∏

i=2

‖xi ‖.

We may clearly suppose that the mapu→ Hu is homogeneous. Then

|F(x1, . . . , xm)− H(x1, . . . , xm)| ≤ Cvm(X)
m∏

i=1

‖xi ‖.(5.10)

Now let Z be the space of all continuous homogenous functions onX with the norm
‖ϕ‖Z = sup‖x‖≤1 |ϕ(x)|. Then X∗ is a linear subspace ofZ and there is a projection
π : Z→ X∗ with ‖π‖ ≤ λ(X∗).

For x2, . . . , xm ∈ X we defineHx2,...,xm andFx2,...,xm ∈ Z by

Hx2,...,xm(x) = H(x, x2, . . . , xm)

and

Fx2,...,xm(x) = F(x, x2, . . . , xm).
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Then

d(Fx2,...,xm, X∗) ≤ v2(X)1̃m(F)
m∏

i=2

‖xi ‖

and by (5.10)

‖Fx2,...,xm − Hx2,...,xm‖ ≤ Cvm(X)
m∏

i=2

‖xi ‖.

Combining we obtain

d(Hx2,...,xm, X∗) ≤ C(vm(X)+ v2(X))
m∏

i=2

‖xi ‖.

Now set

G(x1, . . . , xm) = π(hx2,...,xm)(x1)

so thatG is m-linear. Then

|H(x1, . . . , xm)− G(x1, . . . , xm)| ≤ (1+ ‖π‖)
m∏

i=1

‖xi ‖.

Hence appealing again to (5.10) we have

|F(x1, . . . , xm)− G(x1, . . . , xm)| ≤ Cλ(X∗)max(vm(X), v2(X))
m∏

i=1

‖xi ‖.

This implies (5.9).
Sincevm(X) ≤ wm(X) ≤ C max(v2(X), . . . , vm(X) by Proposition 2.5 the theorem

is proved.

Corollary 5.6. For any m≥ 2 there is a constant C= C(m) so that

w(s)m (n) ≤ Cnm/2−1 log(n+ 1)

(i.e., for any n-dimensional Banach spacewm(X) ≤ Cnm/2−1 log(n+ 1)).

Proof. Using Theorem 5.2 withk = 2 and the Kadets–Snobar inequalityλ(X∗) ≤√
n [11] and [41] we havewm(X) ≤ Cnm/2−1w2(X), butw2(X) ≤ C log(n+ 1) by

Theorem 3.1.

Corollary 5.7. For any m∈ N there exists a constant C= C(m) so that

C−1 log(n+ 1)≤ wm(`
n
1) ≤ C log(n+ 1).

Proof. Sinceλ(`n
∞) = 1 (see, e.g, [31]) by Theorem 5.2 withk = 2 we havewm(`n

1) ≤
Cw2(`

n
1) ≤ C log(n + 1). Conversely, by Corollary 2.6 and Theorem 3.9, we have

C−1 log(n+ 1)≤ w2(`
n
1) ≤ Cwm(`

n
1).
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Corollary 5.8. For any m≥ 3 and2 ≤ p < ∞ there is a constant C= C(m, p) so
that

wm(`
n
p) ≤ Cn(m−3)/2 log(n+ 1).

Proof. Apply Theorem 5.2 withk = 3 and use Theorem 4.2.

There is a striking difference between the results forp ≥ 1 and for 0< p < 1, when
the setsB`n

p
are no longer convex. The following theorem is then true:

Theorem 5.9. If 0 < p < 1 and m≥ 2 there is a constant C= C(p,m) so that
wm(`

n
p) ≤ C for all n ≥ 1.

Proof. It is easily checked that the proof of Theorem 5.2 goes through with trivial
changes forr -normed spaces whenr < 1 (see Remark after Corollary 2.6). Of course
the constantC in its formulation depends now onr. Applying this result to`n

p with
r = p < 1 we therefore have

wm(`
n
p) ≤ C(m, p)λ((`n

p)
∗)m−2w2(`

n
p).

But (`n
p)
∗ = `n

∞ and it is essentially proved in [12] (in an equivalent formulation related
to the notion of aK-space) thatw2(`

n
p) ≤ C(1 − p)−1 with C an absolute constant

independent ofn. This proves the theorem.
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