UNCONDITIONALLY CONVERGENT SERIES OF OPERATORS AND NARROW OPERATORS ON L_1

VLADIMIR KADETS, NIGEL KALTON AND DIRK WERNER

ABSTRACT

A class of operators is introduced on L_1 that is stable under taking sums of pointwise unconditionally convergent series, contains all compact operators and does not contain isomorphic embeddings. It follows that any operator from L_1 into a space with an unconditional basis belongs to this class.

1. Introduction

A famous theorem due to A. Pełczyński [7] states that $L_1[0,1]$ cannot be embedded in a space with an unconditional basis. A somewhat stronger version is also true [4]: if an operator $J: L_1[0,1] \to X$ is bounded from below, then it cannot be represented as a pointwise unconditionally convergent series of compact operators. This last theorem in fact also holds for embedding operators $J: E \to X$ if E has the Daugavet property; see [5].

We rephrase the theorem using the following definition.

DEFINITION 1.1. Let \mathcal{U} be a linear subspace of $\mathcal{L}(E, X)$, the space of bounded linear operators from E into X. By $unc(\mathcal{U})$ we denote the set of all operators that can be represented by pointwise unconditionally convergent series of operators from \mathcal{U} .

In terms of this definition, the above theorem says that an isomorphic embedding operator $J: L_1[0,1] \to X$ does not belong to $unc(\mathcal{K}(L_1[0,1],X))$, where $\mathcal{K}(E,X)$ stands for the space of compact operators from E into X.

Clearly, one can iterate the operation 'unc' and consider the classes

unc(unc($\mathcal{K}(L_1[0,1],X))$), $\operatorname{unc}(\operatorname{unc}(\operatorname{unc}(\mathcal{K}(L_1[0,1],X))))),$

and so on. Thus the question arises as to whether one can obtain an isomorphic embedding operator through such a chain of iterations; indeed, it is not clear at the outset whether possibly $\operatorname{unc}(\operatorname{unc}(\mathcal{K}(E,X))) = \operatorname{unc}(\mathcal{K}(E,X)).$

A natural approach to generalising Pełczyński's theorem in this direction is to find a large class of operators $T: L_1[0,1] \to X$ which is stable under taking sums of pointwise unconditionally convergent series, contains all compact operators, and does not contain isomorphic embeddings.

Received 17 November 2003.

²⁰⁰⁰ Mathematics Subject Classification 46B04 (primary), 46B15, 46B25, 47B07 (secondary).

The work of the first author was supported by a fellowship from the Alexander-von-Humboldt Stiftung. The second author was supported by NSF grant DMS-9870027.

It was shown by R. Shvidkoy in his PhD thesis [10] and independently in [3] that in the case $X = L_1[0, 1]$, the PP-narrow operators on $L_1[0, 1]$ form such a class. Here is the definition.

Let (Ω, Σ, μ) be a fixed nonatomic probability space, and let $L_p = L_p(\Omega, \Sigma, \mu)$. By Σ^+ we denote the collection of all measurable subsets of Ω having nonzero measure.

DEFINITION 1.2. Let $A \in \Sigma^+$.

(a) A function $f \in L_p$ is said to be a sign supported on A if $f = \chi_{B_1} - \chi_{B_2}$, where B_1 and B_2 form a partition of A into two measurable subsets of equal measure.

(b) An operator $T \in \mathcal{L}(L_p, X)$ is said to be *PP*-narrow if for every set $A \in \Sigma^+$ and every $\varepsilon > 0$ there is a sign f supported on A with $||Tf|| \leq \varepsilon$.

The concept of a PP-narrow operator was introduced by Plichko and Popov in [8] under the name narrow operator. We use the term 'PP-narrow' in order to distinguish such operators from a related concept of a narrow operator given in [6], where, incidentally, PP-narrow operators were called L_1 -narrow. It should be noted that PP-narrow operators appear implicitly in Rosenthal's papers on sign embeddings (for example, [9]), where an operator on L_1 is called sign preserving if it is not PP-narrow.

Obviously, no embedding operator is PP-narrow. On the other hand, it is clear that a compact operator T is PP-narrow. Indeed, let (r_n) be a Rademacher sequence supported on a set $A \in \Sigma^+$; that is, the r_n are stochastically independent with respect to the probability space $(A, \Sigma |_A, \mu/\mu(A))$ and $\mu(\{r_n = 1\}) = \mu(\{r_n = -1\}) =$ $\mu(A)/2$. Then $r_n \to 0$ weakly and hence $Tr_n \to 0$ in norm. The same argument shows that weakly compact operators on L_1 are PP-narrow, since L_1 has the Dunford–Pettis property.

The aim of this paper is to find a class of operators with the above properties that works for general X rather than just for $X = L_1[0, 1]$. For this purpose, we shall introduce the class of hereditarily PP-narrow operators in Section 2. We show that they form a linear space of operators (which is false for PP-narrow operators, at least for p > 1), and in Section 3 we derive a factorisation scheme for unconditional sums of such operators. This enables us to give an example of a Banach space X for which unc(unc($\mathcal{K}(X, X)$)) \neq unc($\mathcal{K}(X, X)$) (Theorem 3.3). In Section 4 we specialise to the case p = 1, and show that a pointwise unconditionally convergent series of hereditarily PP-narrow operators on L_1 is hereditarily PPnarrow (Theorem 4.3). As a result, it follows that no embedding operator is in any of the spaces unc(... (unc($\mathcal{K}(L_1, X)$))). A further consequence is that every operator from L_1 into a space with an unconditional basis is hereditarily PP-narrow and in particular PP-narrow; this implies that L_1 does not even sign-embed into a space with an unconditional basis. These last results are due to Rosenthal (in unpublished work).

In this paper we deal with real Banach spaces.

2. Haar-like systems and hereditarily PP-narrow operators

We start by introducing some notions that will be used throughout the paper. Denote

$$\mathcal{A}_0 = \{\varnothing\}, \qquad \mathcal{A}_n = \{-1, 1\}^n, \qquad \mathcal{A}_\infty = \bigcup_{n=0}^\infty \mathcal{A}_n.$$

The elements of \mathcal{A}_n are *n*-tuples of the form $(\alpha_1, \ldots, \alpha_n)$ with $\alpha_k = \pm 1$. For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathcal{A}_n$ and $\alpha_{n+1} \in \{-1, 1\}$, denote by α, α_{n+1} the (n+1)-tuple $(\alpha_1, \ldots, \alpha_n, \alpha_{n+1}) \in \mathcal{A}_{n+1}$; also, put $\emptyset, \alpha_1 = (\alpha_1)$. The elements of \mathcal{A}_∞ can be written as a sequence in the following *natural order*:

$$\emptyset$$
, -1, 1, (-1, -1), (-1, 1), (1, -1), (1, 1), (-1, -1, -1),

DEFINITION 2.1. Let $A \in \Sigma^+$.

(a) A collection $\{A_{\alpha}: \alpha \in \mathcal{A}_{\infty}\}$ of subsets of A is said to be a tree of subsets on A if $A_{\emptyset} = A$ and if for every $\alpha \in \mathcal{A}_{\infty}$ the subsets $A_{\alpha,1}$ and $A_{\alpha,-1}$ form a partition of A_{α} into two measurable subsets of equal measure.

(b) The collection of functions $\{h_{\alpha}: \alpha \in \mathcal{A}_{\infty}\}$ defined by $h_{\alpha} = \chi_{A_{\alpha,1}} - \chi_{A_{\alpha,-1}}$ is said to be a *Haar-like system on* A (corresponding to the tree of subsets A_{α} , $\alpha \in \mathcal{A}_{\infty}$).

It is easy to see that after deleting the constant function, the classical Haar system is an example of a Haar-like system. Moreover, every Haar-like system is equivalent to this example. In particular we make the following observations.

REMARK 2.2. (a) Let $\{h_{\alpha}: \alpha \in \mathcal{A}_{\infty}\}$ be a Haar-like system on A corresponding to a tree of subsets A_{α} , and let $1 \leq p < \infty$. Denote by Σ_1 the σ -algebra on Agenerated by the subsets A_{α} . Then the system $\{h_{\alpha}: \alpha \in \mathcal{A}_{\infty}\}$ in its natural order forms a monotone Schauder basis for the subspace $L_p^0(A, \Sigma_1, \mu)$ of $L_p(A, \Sigma_1, \mu)$ consisting of all $f \in L_p(A, \Sigma_1, \mu)$ with $\int_A f d\mu = 0$. Note that, for $\alpha \in \mathcal{A}_n$, $||h_{\alpha}|| = (2^{-n}\mu(A))^{1/p}$ for every Haar-like system on A.

(b) Therefore, if $\varepsilon > 0$ and $\{\varepsilon_{\alpha} : \alpha \in \mathcal{A}_{\infty}\}$ is a family of positive numbers such that $\sum_{\alpha} \varepsilon_{\alpha} / \|h_{\alpha}\| \leq \varepsilon/2$ and if $\{x_{\alpha} : \alpha \in \mathcal{A}_{\infty}\}$ is a family of vectors in a Banach space X such that $\|x_{\alpha}\| \leq \varepsilon_{\alpha}$, then the mapping $h_{\alpha} \mapsto x_{\alpha}$ extends to a bounded linear operator from $L_{p}^{0}(A, \Sigma_{1}, \mu)$ to X of norm at most ε .

LEMMA 2.3. Let $1 \leq p < \infty$ and let $T: L_p \to X$ be a PP-narrow operator.

(a) For every $A \in \Sigma^+$ and every family of numbers $\varepsilon_{\alpha} > 0$, there is a Haar-like system $\{h_{\alpha}: \alpha \in \mathcal{A}_{\infty}\}$ on A such that $||Th_{\alpha}|| \leq \varepsilon_{\alpha}$ for $\alpha \in \mathcal{A}_{\infty}$.

(b) For every $\varepsilon > 0$ and every $A \in \Sigma^+$, there is a σ -algebra $\Sigma_{\varepsilon} \subset \Sigma$ on A such that $(A, \Sigma_{\varepsilon}, \mu)$ is a nonatomic measure space and the restriction of T to $L^0_p(A, \Sigma_{\varepsilon}, \mu)$ has norm at most ε .

Proof. To construct a tree of subsets and the corresponding Haar-like system for (a), we repeatedly apply the definition of a PP-narrow operator. That is, we let h_{\emptyset} be a sign supported on A with $||Th_{\emptyset}|| \leq \varepsilon_{\emptyset}$. Using the notation $\{h = x\} = \{\omega: h(\omega) = x\}$, put

$$A_{-1} = \{h_{\emptyset} = -1\}, \qquad A_1 = \{h_{\emptyset} = 1\}.$$

Let h_{-1} and h_1 be signs supported on A_{-1} and A_1 respectively, with $||Th_{\pm 1}|| \leq \varepsilon_{\pm 1}$; put

$$A_{-1,-1} = \{h_{-1} = -1\}, \qquad A_{-1,1} = \{h_{-1} = 1\}, \\A_{1,-1} = \{h_1 = -1\}, \qquad A_{1,1} = \{h_1 = 1\}$$

and continue in the above fashion. This yields part (a).

Part (b) follows from (a) and Remark 2.2(b).

For $1 , the class of PP-narrow operators on <math>L_p$ is not stable under taking sums (see [8, p. 59]); this is why we have to consider a smaller class of operators, which we introduce next. Incidentally, the stability of PP-narrow operators on L_1 under sums is still an open problem.

DEFINITION 2.4. An operator $T: L_p \to X$ is said to be hereditarily PP-narrow if for every $A \in \Sigma^+$ and every nonatomic sub- σ -algebra $\Sigma_1 \subset \Sigma$ on A, the restriction of T to $L_p(A, \Sigma_1, \mu)$ is PP-narrow.

Since every compact operator on L_p is PP-narrow and compactness is inherited by restrictions, compact operators on L_p are hereditarily PP-narrow. On the other hand, the operator

$$T: L_p([0,1]^2) \to L_p[0,1], \qquad (Tf)(s) = \int_0^1 f(s,t) \, dt$$

shows that a PP-narrow operator need not be hereditarily PP-narrow.

We now show that the set of hereditarily PP-narrow operators forms a subspace of $\mathcal{L}(L_p, X)$.

PROPOSITION 2.5. Let $1 \leq p < \infty$ and let $U, V: L_p \to X$.

(a) If U is PP-narrow and V is hereditarily PP-narrow, then U+V is PP-narrow.

(b) If U and V are both hereditarily PP-narrow, then U + V is hereditarily PP-narrow as well.

Proof. (a) Let $A \in \Sigma^+$ and $\varepsilon > 0$. By Lemma 2.3(b) there is a σ -algebra $\Sigma_{\varepsilon} \subset \Sigma$ on A such that $(A, \Sigma_{\varepsilon}, \mu)$ is a nonatomic measure space and the restriction of Uto $L^0_p(A, \Sigma_{\varepsilon}, \mu)$ has norm at most ε . Since V is hereditarily PP-narrow, there is a Σ_{ε} -measurable sign f supported on A for which $\|Vf\| \leq \varepsilon$. Then $\|(U+V)f\| \leq \varepsilon \mu(A)^{1/p} + \varepsilon \leq 2\varepsilon$.

(b) This follows from (a).

3. Unconditionally convergent series of hereditarily PP-narrow operators

In this section we give an example of a Banach space X for which

 $\mathrm{Id} \in \mathrm{unc}(\mathrm{unc}(\mathcal{K}(X,X))) \setminus \mathrm{unc}(\mathcal{K}(X,X)).$

We begin with a factorisation lemma for unconditional sums of hereditarily PPnarrow operators.

LEMMA 3.1. Let $1 \leq p < \infty$, let X be a Banach space, let $T_n : L_p \to X$ be hereditarily PP-narrow operators with $\sum_{n=1}^{\infty} T_n$ converging pointwise unconditionally to an operator T, and let $M = \sup_{\pm} \|\sum_{n=1}^{\infty} \pm T_n\|$. Given $0 < \varepsilon < 1/2$, there exist a Banach space Y and a factorisation as in Figure 1, with $\|\tilde{T}\| \leq M$, $\|W\| \leq 1$. There are also a nonatomic sub- σ -algebra $\Sigma_1 \subset \Sigma$, a Haar-like system $\{h_\alpha\}$ forming a basis for $L_p^0(\Omega, \Sigma_1, \mu)$ and operators $U, V: L_p^0(\Omega, \Sigma_1, \mu) \to Y$ with $U + V = \tilde{T}$ on $L_p^0(\Omega, \Sigma_1, \mu)$ such that U maps $\{h_\alpha\}$ to a 1-unconditional basic sequence and $\|V\| \leq \varepsilon$.

268

Proof. Define Y as the space of all sequences $y = (y_1, y_2, ...), y_n \in X$, such that $\sum_{n=1}^{\infty} y_n$ converges unconditionally in X. Equip Y with the natural norm

$$\|y\| = \sup_{\pm} \left\| \sum_{n=1}^{\infty} \pm y_n \right\|.$$

Put $\tilde{T}f = (T_1f, T_2f, ...)$ and $Wy = \sum_{n=1}^{\infty} y_n$. Then Y, \tilde{T} and W satisfy the desired factorisation scheme.

Our main task is now to define, for this \tilde{T} , a Haar-like system $\{h_{\alpha}\}$ and operators U, V as claimed in the lemma. To do this, one uses a standard blocking technique and the stability of hereditarily PP-narrow operators under summation (Proposition 2.5). That is, for every $1 \leq n < m \leq \infty$, we define a projection operator $P_{n,m}$: $Y \to Y$ as follows:

$$P_{n,m}(y_1, y_2, \dots) = (0, 0, \dots, 0, y_n, y_{n+1}, \dots, y_{m-1}, 0, 0, \dots)$$

Let (ε_{α}) be positive numbers. Select an arbitrary sign h_{\emptyset} supported on Ω , and find $n_{\emptyset} \in \mathbb{N}$ for which

$$\|P_{n_{\emptyset},\infty}\tilde{T}h_{\emptyset}\| \leqslant \varepsilon_{\emptyset}.$$

Put

$$Uh_{\emptyset} = P_{1,n_{\emptyset}} \tilde{T}h_{\emptyset}, \qquad Vh_{\emptyset} = P_{n_{\emptyset},\infty} \tilde{T}h_{\emptyset}.$$

The sign h_{\emptyset} generates a partition of Ω ; that is,

$$A_{-1} = \{h_{\emptyset} = -1\}, \qquad A_1 = \{h_{\emptyset} = 1\}.$$

Since the operator $P_{1,n_{\emptyset}}\tilde{T}$ is PP-narrow by Proposition 2.5, there is a sign h_{-1} supported on A_{-1} for which

$$\|P_{1,n_{\emptyset}}\tilde{T}h_{-1}\| \leqslant \frac{1}{2}\varepsilon_{-1}$$

Find $n_{-1} > n_{\emptyset}$ such that

$$\|P_{n_{-1},\infty}\tilde{T}h_{-1}\| \leqslant \frac{1}{2}\varepsilon_{-1}.$$

Put

$$Uh_{-1} = P_{n_{\emptyset}, n_{-1}} \tilde{T}h_{-1}, \qquad Vh_{-1} = (P_{1, n_{\emptyset}} + P_{n_{-1}, \infty}) \tilde{T}h_{-1}.$$

Continuing in this fashion, we obtain a Haar-like system $\{h_{\alpha}\}$ and operators U, V: $\overline{\text{lin}}\{h_{\alpha}\} \to Y$ such that $U + V = \tilde{T}$ on $\overline{\text{lin}}\{h_{\alpha}\}$, U maps $\{h_{\alpha}\}$ to disjoint elements of the sequence space Y (and hence to a 1-unconditional basic sequence) and Vmaps $\{h_{\alpha}\}$ to elements whose norms are controlled by the numbers ε_{α} ; therefore $\|V\| \leq \varepsilon$ by Remark 2.2(b) if $\varepsilon_{\alpha} \to 0$ sufficiently fast. LEMMA 3.2. Under the conditions of Lemma 3.1 assume in addition that the operator T is bounded from below by a constant c; that is,

$$||Tf|| \ge c||f|| \qquad \forall f \in L_p.$$

Then

$$M = \sup_{\pm} \left\| \sum_{n=1}^{\infty} \pm T_n \right\| \ge \beta_p c,$$

where β_p is the unconditional constant of the Haar system in L_p .

Proof. Let $0 < \varepsilon < 1/2$. Under the above conditions, the operator U from Lemma 3.1 maps a Haar-like system $\{h_{\alpha}\}$ to a 1-unconditional basic sequence. This implies that if U is considered as acting from $\overline{\lim}\{h_{\alpha}\}$ into $\overline{\lim}\{Uh_{\alpha}\}$, then $\|U\|\|U^{-1}\| \ge \beta_p$. On the other hand,

$$||U|| \leq ||T|| + ||V|| \leq M + \varepsilon$$

and

$$|Uf|| \ge \|\tilde{T}f\| - \varepsilon \|f\| \ge \|Tf\| - \varepsilon \|f\| \ge (c - \varepsilon) \|f\|$$

for all $f \in \overline{\lim}\{h_{\alpha}\}$, so $||U^{-1}|| \leq (c-\varepsilon)^{-1}$. Hence we have $(M+\varepsilon)(c-\varepsilon)^{-1} \geq \beta_p$, which yields the desired inequality since $\varepsilon > 0$ was arbitrary.

It is known that $\beta_p \to \infty$ if $p \to 1$ or $p \to \infty$; in fact, Burkholder [2] has shown that

$$\beta_p = \max\left\{p-1, \frac{1}{p-1}\right\}.$$

THEOREM 3.3. There exists a Banach space X for which

 $\mathrm{Id} \in \mathrm{unc}(\mathrm{unc}(\mathcal{K}(X,X))) \setminus \mathrm{unc}(\mathcal{K}(X,X)).$

Proof. Consider the space $X = L_{p_1} \oplus_2 L_{p_2} \oplus_2 \ldots$ where $1 < p_n < \infty$ and $p_n \to 1$.

Suppose that $\operatorname{Id} = \sum_{n=1}^{\infty} T_n$ pointwise unconditionally with compact operators T_n . The restrictions of T_n to L_{p_j} are also compact and hence hereditarily PP-narrow, so by the previous lemma

$$\sup_{\pm} \left\| \sum_{n=1}^{\infty} \pm T_n \right\| \ge \sup_{\pm} \left\| \sum_{n=1}^{\infty} \pm T_n \upharpoonright_{L_{p_j}} \right\| \ge \beta_{p_j} \to \infty.$$

Thus the assumption of pointwise unconditional convergence of $\sum_{n=1}^{\infty} T_n$ leads to a contradiction, and hence Id does not belong to $\operatorname{unc}(\mathcal{K}(X,X))$.

On the other hand, all the natural projections $P_j: X \to L_{p_j}$ belong to $\operatorname{unc}(\mathcal{K}(X,X))$ since each L_{p_j} has an unconditional basis. Taking into account the unconditional representation $\operatorname{Id} = \sum_{n=1}^{\infty} P_n$, we find that $\operatorname{Id} \in \operatorname{unc}(\operatorname{unc}(\mathcal{K}(X,X)))$.

4. Hereditarily PP-narrow operators on L_1

In this section we prove the main result of the paper, namely that the sum of a pointwise unconditionally convergent series of hereditarily PP-narrow operators on L_1 is again a hereditarily PP-narrow operator.

The following lemma implies that the operator U from Lemma 3.1 factors through c_0 .

LEMMA 4.1. Let $\{h_{\alpha}\}$ be a Haar-like system in L_1 , and let $U: L_1 \to X$ be an operator that maps $\{h_{\alpha}\}$ into an unconditional basic sequence. Then there is a constant C such that for every element of the form $f = \sum_{\alpha} a_{\alpha}h_{\alpha}$, one has

$$\|Uf\| \leqslant C \sup_{\alpha} |a_{\alpha}|. \tag{4.1}$$

Proof. Without loss of generality we can assume that ||U|| = 1, $||h_{\emptyset}|| = 1$ and that the unconditional constant of $\{Uh_{\alpha}\}$ also equals 1. (One can achieve all these goals by an equivalent renorming of X and by multiplication of μ by a constant.)

Let us first remark that for every $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathcal{A}_n$,

$$\|\alpha_1 h_{\emptyset} + 2\alpha_2 h_{\alpha_1} + 4\alpha_3 h_{\alpha_1,\alpha_2} + \ldots + 2^{n-1} \alpha_n h_{\alpha_1,\ldots,\alpha_{n-1}}\| \leq 2;$$

indeed, it is easy to check by induction over n that this sum equals

$$2^n \chi_{A_{\alpha_1,\ldots,\alpha_n}} - \chi_{A_\emptyset}.$$

Hence

$$\|\alpha_1 U h_{\emptyset} + 2\alpha_2 U h_{\alpha_1} + \ldots + 2^{n-1} \alpha_n U h_{\alpha_1,\ldots,\alpha_{n-1}}\| \leq 2,$$

and, since $\{Uh_{\alpha}\}$ is a 1-unconditional basic sequence,

 $\|Uh_{\emptyset}+2Uh_{\alpha_1}+\ldots+2^{n-1}Uh_{\alpha_1,\ldots,\alpha_{n-1}}\|\leqslant 2.$

Passing from n-1 to n in the last inequality and averaging over $\alpha \in \mathcal{A}_n$, we obtain

$$2 \ge \left\| \frac{1}{2^n} \sum_{\alpha \in \mathcal{A}_n} (Uh_{\emptyset} + 2Uh_{\alpha_1} + \ldots + 2^{n-1}Uh_{\alpha_1,\ldots,\alpha_n}) \right\| = \left\| \sum_{k=0}^n \sum_{\alpha \in \mathcal{A}_k} Uh_{\alpha} \right\|.$$

Again by the 1-unconditionality of $\{Uh_{\alpha}\}$, the last inequality implies that for all $a_{\alpha} \in [-1, 1]$,

$$\left\|\sum_{k=0}^{n}\sum_{\alpha\in\mathcal{A}_{k}}a_{\alpha}Uh_{\alpha}\right\|\leqslant 2$$

which gives (4.1) with C = 2.

An inspection of the proof shows that

$$||Uf|| \leq 2||U||\beta^2 \sup_{\alpha} |a_{\alpha}|,$$

where β denotes the unconditional constant of the basic sequence (Uh_{α}) .

LEMMA 4.2. For every Haar-like system $\{h_{\alpha}\}$ in L_1 supported on A, and every $\delta > 0$, there is a sign

$$f = \sum_{k=0}^{\infty} \sum_{\alpha \in \mathcal{A}_k} a_{\alpha} h_{\alpha}$$
(4.2)

supported on A with $\sup_{\alpha} |a_{\alpha}| \leq \delta$.

Proof. Fix an $m \in \mathbb{N}$ such that $1/m \leq \delta$, and define

$$f_k = \sum_{\alpha \in \mathcal{A}_k} a_\alpha h_\alpha$$

as follows: $f_0 = (1/m) h_{\emptyset}$, and for every $\alpha \in \mathcal{A}_n$ put $a_{\alpha} = 1/m$ if $|\sum_{k=0}^{n-1} f_k| < 1$ on supp h_{α} and $a_{\alpha} = 0$ if $|\sum_{k=0}^{n-1} f_k| = 1$ on supp h_{α} . Under this construction, all the partial sums of the series $\sum_{k=0}^{\infty} f_k$ are bounded by 1 in modulus. Since $\{f_k\}_{k=0}^{\infty}$ is an orthogonal system, the series $\sum_{k=0}^{\infty} f_k$ converges in L_2 (and hence in L_1) to a function f supported on A that can be represented as in (4.2) with $\sup_{\alpha} |a_{\alpha}| \leq \delta$. We shall prove that f is a sign.

Obviously, $\int_A f d\mu = 0$. Consider $B = \{t \in A : |f(t)| \neq 1\}$. By our construction, we have, for each $n \in \mathbb{N}$,

$$B \subset \{t \in A: f_n(t) \neq 0\} = \left\{t \in A: |f_n(t)| = \frac{1}{m}\right\},\$$

so $\mu(B) \leq m \|f_n\|$, and since $\|f_n\| \to 0$, we conclude that $\mu(B) = 0$. Therefore f is a sign.

The previous lemma can also be proved by means of abstract martingale theory. For simplicity of notation let us work with the classical Haar system h_1, h_2, \ldots on [0, 1]. Let $\xi_n = \sum_{k=1}^n h_k$ and $T = \inf\{n: |\xi_n| \ge m\}$. Then (ξ_n) is a martingale, T is a stopping time and $(\xi'_n) = (\xi_{n \wedge T})$ is a uniformly bounded martingale. Hence (ξ'_n) converges almost surely and in L_1 to a limit ξ that takes only the values $\pm m$ on $\{T < \infty\}$, but since (ξ_n) fails to converge pointwise, the event $\{T = \infty\}$ has probability 0. This shows that $\xi = \pm m$ almost surely and $\mathbb{E}\xi = 0$. Hence $f = \xi/m$ is the sign that we are seeking.

We are now ready for the main result of this paper. An analogous theorem for operators on C(K)-spaces is proved in [1].

THEOREM 4.3. Let $T_n: L_1 \to X$ be hereditarily PP-narrow operators, and suppose that $\sum_{n=1}^{\infty} T_n$ converges pointwise unconditionally to some operator T. Then T is hereditarily PP-narrow.

Proof. Let $A \in \Sigma^+$, and let $\tilde{\Sigma}$ be a nonatomic sub- σ -algebra of $\Sigma|_A$. We have to show that for every $\varepsilon > 0$ there is a sign $f \in L_1(A, \tilde{\Sigma}, \mu)$ supported on A with $\|Tf\| \leq \varepsilon$.

Applying Lemma 3.1 to the restrictions of T_n and T to $L_1(A, \Sigma, \mu)$, we obtain a Haar-like system $\{h_\alpha\}$ forming a basis for some $L_1^0(A, \Sigma_1, \mu)$ and we obtain operators $U, V: L_1^0(A, \Sigma_1, \mu) \to Y, W: Y \to X$ such that $||W|| \leq 1, T = W(U+V)$ on $L_1^0(A, \Sigma_1, \mu), ||V|| \leq \varepsilon/2$ and U maps $\{h_\alpha\}$ to a 1-unconditional basic sequence. Let C be the constant from (4.1). Taking a sign

$$f = \sum_{k=0}^{\infty} \sum_{\alpha \in \mathcal{A}_k} a_{\alpha} h_{\alpha}$$

supported on A with $\sup_{\alpha} |a_{\alpha}| \leq \varepsilon/(2C)$ (Lemma 4.2), we obtain from (4.1) that $||Uf|| \leq \varepsilon/2$. Therefore $||Tf|| \leq ||Uf|| + ||Vf|| \leq \varepsilon$.

COROLLARY 4.4. For any Banach space X, no embedding operator is contained in $unc(...(unc(\mathcal{K}(L_1, X))))$.

Proof. Compact operators are hereditarily PP-narrow.

The next corollary is due to Rosenthal (unpublished).

COROLLARY 4.5. Every operator T from L_1 into a Banach space X with an unconditional basis is hereditarily PP-narrow; in particular, it is PP-narrow. Consequently, L_1 does not even sign-embed into a space with an unconditional basis.

Proof. If P_n , n = 1, 2, ..., are the partial sum projections associated to an unconditional basis of X, then $T = \sum_{n=1}^{\infty} (P_n - P_{n-1})T$ is a pointwise unconditionally convergent series of rank-1 operators.

5. Questions

(1) Can one describe $unc(\mathcal{K}(L_1, \mathcal{X}))$ for general X? What about $X = L_1$?

(2) Describe the smallest class of operators $\mathcal{M} \subset \mathcal{L}(L_1, X)$ that contains the compact operators and is stable under pointwise unconditional sums. In particular, is $\operatorname{unc}(\mathcal{K}(L_1, L_1)) = \operatorname{unc}(\operatorname{unc}(\mathcal{K}(L_1, L_1)))$? Note that X does not embed into a space with an unconditional basis if $\mathcal{M} \neq \mathcal{L}(L_1, X)$.

(3) Can one develop a similar theory for operators on the James space, or other spaces that do not embed into spaces with unconditional bases?

(4) Is there a space X with the Daugavet property such that

$$\mathrm{Id} \in \mathrm{unc}(\ldots(\mathrm{unc}(\mathcal{K}(X,X))))?$$

(5) Suppose that E is a Banach space with the Daugavet property, on which the set of narrow operators from E to X is a linear space. (This is not always the case; for example, it is not so for $E = X = C([0, 1], \ell_1)$; see [1].) If $T = \sum T_n$ is a pointwise unconditionally convergent series of narrow operators from E into X, must T also be narrow? It is known that under these conditions $\|\mathrm{Id} + T\| \ge 1$; see [5]. The answer is positive for $E = C([0, 1], \ell_n)$ if 1 ; see [1].

References

- D. BILIK, V. M. KADETS, R. V. SHVIDKOY, G. G. SIROTKIN and D. WERNER, 'Narrow operators on vector-valued sup-normed spaces', *Illinois J. Math.* 46 (2002) 421–441.
- D. L. BURKHOLDER, 'An elementary proof of an inequality of R. E. A. C. Paley', Bull. London Math. Soc. 17 (1985) 474–478.
- **3.** V. M. KADETS and M. M. POPOV, 'Some stability theorems on narrow operators acting in L_1 and C(K)', Matematicheskaya Fizika, Analiz, Geometria 10 (2003) 49–60.
- V. M. KADETS and R. V. SHVIDKOY, 'The Daugavet property for pairs of Banach spaces', Matematicheskaya Fizika, Analiz, Geometria 6 (1999) 253–263.

UNCONDITIONALLY CONVERGENT SERIES OF OPERATORS

- V. M. KADETS, R. V. SHVIDKOY, G. G. SIROTKIN and D. WERNER, 'Banach spaces with the Daugavet property', Trans. Amer. Math. Soc. 352 (2000) 855–873.
- V. M. KADETS, R. V. SHVIDKOY and D. WERNER, 'Narrow operators and rich subspaces of Banach spaces with the Daugavet property', Studia Math. 147 (2001) 269–298.
- A. PEŁCZYŃSKI, 'On the impossibility of embedding of the space L in certain Banach spaces', Colloq. Math. 8 (1961) 199–203.
- A. M. PLICHKO and M. M. POPOV, 'Symmetric function spaces on atomless probability spaces', Diss. Math. 306 (1990).
- H. P. ROSENTHAL, 'Embeddings of L₁ in L₁', Conference in Modern Analysis and Probability, Yale University, 1982 (ed. R. Beals et al.) Contemp. Math. 26 (1984) 335–349.
- R. V. SHVIDKOY, 'Operators and integrals in Banach spaces', PhD Thesis, University of Missouri, 2001.

Vladimir Kadets Faculty of Mechanics and Mathematics Kharkov National University pl. Svobody 4 61077 Kharkov Ukraine Nigel Kalton Department of Mathematics University of Missouri Columbia MO 65211 USA

nigel@math.missouri.edu

vova1kadets@yahoo.com

Dirk Werner Department of Mathematics Freie Universität Berlin Arnimallee 2–6 D-14 195 Berlin Germany

werner@math.fu-berlin.de