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UNCONDITIONALLY CONVERGENT SERIES OF OPERATORS
AND NARROW OPERATORS ON L1

VLADIMIR KADETS, NIGEL KALTON and DIRK WERNER

Abstract

A class of operators is introduced on L1 that is stable under taking sums of pointwise
unconditionally convergent series, contains all compact operators and does not contain isomorphic
embeddings. It follows that any operator from L1 into a space with an unconditional basis belongs
to this class.

1. Introduction

A famous theorem due to A. Pe�lczyński [7] states that L1[0, 1] cannot be embedded
in a space with an unconditional basis. A somewhat stronger version is also true
[4]: if an operator J : L1[0, 1] → X is bounded from below, then it cannot be
represented as a pointwise unconditionally convergent series of compact operators.
This last theorem in fact also holds for embedding operators J : E → X if E has
the Daugavet property; see [5].

We rephrase the theorem using the following definition.

Definition 1.1. Let U be a linear subspace of L(E,X), the space of bounded
linear operators from E into X. By unc(U) we denote the set of all operators
that can be represented by pointwise unconditionally convergent series of operators
from U .

In terms of this definition, the above theorem says that an isomorphic embedding
operator J : L1[0, 1] → X does not belong to unc(K(L1[0, 1],X)), where K(E,X)
stands for the space of compact operators from E into X.

Clearly, one can iterate the operation ‘unc’ and consider the classes

unc(unc(K(L1[0, 1],X))), unc(unc(unc(K(L1[0, 1],X)))),

and so on. Thus the question arises as to whether one can obtain an isomorphic
embedding operator through such a chain of iterations; indeed, it is not clear at the
outset whether possibly unc(unc(K(E,X))) = unc(K(E,X)).

A natural approach to generalising Pe�lczyński’s theorem in this direction is to
find a large class of operators T : L1[0, 1] → X which is stable under taking sums
of pointwise unconditionally convergent series, contains all compact operators, and
does not contain isomorphic embeddings.
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It was shown by R. Shvidkoy in his PhD thesis [10] and independently in [3] that
in the case X = L1[0, 1], the PP-narrow operators on L1[0, 1] form such a class.
Here is the definition.

Let (Ω, Σ, µ) be a fixed nonatomic probability space, and let Lp = Lp(Ω,Σ, µ). By
Σ+ we denote the collection of all measurable subsets of Ω having nonzero measure.

Definition 1.2. Let A ∈ Σ+.
(a) A function f ∈ Lp is said to be a sign supported on A if f = χB1 −χB2 , where

B1 and B2 form a partition of A into two measurable subsets of equal measure.
(b) An operator T ∈ L(Lp,X) is said to be PP-narrow if for every set A ∈ Σ+

and every ε > 0 there is a sign f supported on A with ‖Tf‖ � ε.

The concept of a PP-narrow operator was introduced by Plichko and Popov in
[8] under the name narrow operator. We use the term ‘PP-narrow’ in order to
distinguish such operators from a related concept of a narrow operator given in
[6], where, incidentally, PP-narrow operators were called L1-narrow. It should be
noted that PP-narrow operators appear implicitly in Rosenthal’s papers on sign
embeddings (for example, [9]), where an operator on L1 is called sign preserving if
it is not PP-narrow.

Obviously, no embedding operator is PP-narrow. On the other hand, it is clear
that a compact operator T is PP-narrow. Indeed, let (rn) be a Rademacher sequence
supported on a set A ∈ Σ+; that is, the rn are stochastically independent with re-
spect to the probability space (A,Σ |A, µ/µ(A)) and µ({rn = 1}) = µ({rn = −1})=
µ(A)/2. Then rn → 0 weakly and hence Trn → 0 in norm. The same argument
shows that weakly compact operators on L1 are PP-narrow, since L1 has the
Dunford–Pettis property.

The aim of this paper is to find a class of operators with the above properties
that works for general X rather than just for X =L1[0, 1]. For this purpose, we
shall introduce the class of hereditarily PP-narrow operators in Section 2. We
show that they form a linear space of operators (which is false for PP-narrow
operators, at least for p > 1), and in Section 3 we derive a factorisation scheme
for unconditional sums of such operators. This enables us to give an example of a
Banach space X for which unc(unc(K(X,X))) �= unc(K(X,X)) (Theorem 3.3). In
Section 4 we specialise to the case p = 1, and show that a pointwise unconditionally
convergent series of hereditarily PP-narrow operators on L1 is hereditarily PP-
narrow (Theorem 4.3). As a result, it follows that no embedding operator is in any
of the spaces unc(. . . (unc(K(L1,X)))). A further consequence is that every operator
from L1 into a space with an unconditional basis is hereditarily PP-narrow and in
particular PP-narrow; this implies that L1 does not even sign-embed into a space
with an unconditional basis. These last results are due to Rosenthal (in unpublished
work).

In this paper we deal with real Banach spaces.

2. Haar-like systems and hereditarily PP-narrow operators

We start by introducing some notions that will be used throughout the paper.
Denote

A0 = {∅}, An = {−1, 1}n, A∞ =
∞⋃

n=0

An.
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The elements of An are n-tuples of the form (α1, . . . , αn) with αk =±1. For
α = (α1, . . . , αn) ∈ An and αn+1 ∈ {−1, 1}, denote by α, αn+1 the (n + 1)-tuple
(α1, . . . , αn, αn+1) ∈ An+1; also, put ∅, α1 = (α1). The elements of A∞ can be
written as a sequence in the following natural order:

∅, −1, 1, (−1,−1), (−1, 1), (1,−1), (1, 1), (−1,−1,−1), . . . .

Definition 2.1. Let A ∈ Σ+.
(a) A collection {Aα: α ∈ A∞} of subsets of A is said to be a tree of subsets on

A if A∅ = A and if for every α ∈ A∞ the subsets Aα,1 and Aα,−1 form a partition
of Aα into two measurable subsets of equal measure.

(b) The collection of functions {hα: α ∈ A∞} defined by hα = χAα ,1 − χAα ,−1

is said to be a Haar-like system on A (corresponding to the tree of subsets Aα,
α ∈ A∞).

It is easy to see that after deleting the constant function, the classical Haar
system is an example of a Haar-like system. Moreover, every Haar-like system is
equivalent to this example. In particular we make the following observations.

Remark 2.2. (a) Let {hα: α ∈ A∞} be a Haar-like system on A corresponding
to a tree of subsets Aα, and let 1 � p < ∞. Denote by Σ1 the σ-algebra on A
generated by the subsets Aα. Then the system {hα: α ∈ A∞} in its natural order
forms a monotone Schauder basis for the subspace L0

p(A,Σ1, µ) of Lp(A,Σ1, µ)
consisting of all f ∈ Lp(A,Σ1, µ) with

∫
A

f dµ = 0. Note that, for α ∈ An, ‖hα‖ =(
2−nµ(A)

)1/p for every Haar-like system on A.
(b) Therefore, if ε > 0 and {εα: α ∈ A∞} is a family of positive numbers such

that
∑

α εα/‖hα‖ � ε/2 and if {xα: α ∈ A∞} is a family of vectors in a Banach
space X such that ‖xα‖ � εα, then the mapping hα �→ xα extends to a bounded
linear operator from L0

p(A,Σ1, µ) to X of norm at most ε.

Lemma 2.3. Let 1 � p < ∞ and let T : Lp → X be a PP-narrow operator.
(a) For every A ∈ Σ+ and every family of numbers εα > 0, there is a Haar-like

system {hα: α ∈ A∞} on A such that ‖Thα‖ � εα for α ∈ A∞.
(b) For every ε > 0 and every A ∈ Σ+, there is a σ-algebra Σε ⊂ Σ on A such that

(A,Σε, µ) is a nonatomic measure space and the restriction of T to L0
p(A,Σε, µ)

has norm at most ε.

Proof. To construct a tree of subsets and the corresponding Haar-like system
for (a), we repeatedly apply the definition of a PP-narrow operator. That is, we
let h∅ be a sign supported on A with ‖Th∅‖ � ε∅. Using the notation {h = x} =
{ω: h(ω) = x}, put

A−1 = {h∅ = −1}, A1 = {h∅ = 1}.
Let h−1 and h1 be signs supported on A−1 and A1 respectively, with ‖Th±1‖ � ε±1;
put

A−1,−1 = {h−1 = −1}, A−1,1 = {h−1 = 1},
A1,−1 = {h1 = −1}, A1,1 = {h1 = 1}

and continue in the above fashion. This yields part (a).
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Part (b) follows from (a) and Remark 2.2(b).

For 1 < p < ∞, the class of PP-narrow operators on Lp is not stable under taking
sums (see [8, p. 59]); this is why we have to consider a smaller class of operators,
which we introduce next. Incidentally, the stability of PP-narrow operators on L1

under sums is still an open problem.

Definition 2.4. An operator T : Lp → X is said to be hereditarily PP-narrow
if for every A ∈ Σ+ and every nonatomic sub-σ-algebra Σ1 ⊂ Σ on A, the restriction
of T to Lp(A,Σ1, µ) is PP-narrow.

Since every compact operator on Lp is PP-narrow and compactness is inherited
by restrictions, compact operators on Lp are hereditarily PP-narrow. On the other
hand, the operator

T : Lp([0, 1]2) → Lp[0, 1], (Tf)(s) =
∫1

0

f(s, t) dt

shows that a PP-narrow operator need not be hereditarily PP-narrow.
We now show that the set of hereditarily PP-narrow operators forms a subspace

of L(Lp,X).

Proposition 2.5. Let 1 � p < ∞ and let U, V : Lp → X.
(a) If U is PP-narrow and V is hereditarily PP-narrow, then U+V is PP-narrow.
(b) If U and V are both hereditarily PP-narrow, then U + V is hereditarily

PP-narrow as well.

Proof. (a) Let A ∈ Σ+ and ε > 0. By Lemma 2.3(b) there is a σ-algebra Σε ⊂ Σ
on A such that (A,Σε, µ) is a nonatomic measure space and the restriction of U
to L0

p(A,Σε, µ) has norm at most ε. Since V is hereditarily PP-narrow, there is a
Σε-measurable sign f supported on A for which ‖V f‖ � ε. Then ‖(U + V )f‖ �
εµ(A)1/p + ε � 2ε.

(b) This follows from (a).

3. Unconditionally convergent series of hereditarily PP-narrow operators

In this section we give an example of a Banach space X for which

Id ∈ unc(unc(K(X,X))) \ unc(K(X,X)).

We begin with a factorisation lemma for unconditional sums of hereditarily PP-
narrow operators.

Lemma 3.1. Let 1� p<∞, let X be a Banach space, let Tn : Lp →X be
hereditarily PP-narrow operators with

∑∞
n=1 Tn converging pointwise uncondition-

ally to an operator T , and let M = sup± ‖
∑∞

n=1 ±Tn‖. Given 0 < ε < 1/2, there
exist a Banach space Y and a factorisation as in Figure 1, with ‖T̃‖ � M , ‖W‖ � 1.
There are also a nonatomic sub-σ-algebra Σ1 ⊂ Σ, a Haar-like system {hα} forming
a basis for L0

p(Ω,Σ1, µ) and operators U, V : L0
p(Ω,Σ1, µ) → Y with U + V = T̃

on L0
p(Ω,Σ1, µ) such that U maps {hα} to a 1-unconditional basic sequence and

‖V ‖ � ε.
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Figure 1.

Proof. Define Y as the space of all sequences y = (y1, y2, . . . ), yn ∈ X, such
that

∑∞
n=1 yn converges unconditionally in X. Equip Y with the natural norm

‖y‖ = sup
±

∥∥∥∥
∞∑

n=1

±yn

∥∥∥∥.

Put T̃ f = (T1f, T2f, . . . ) and Wy =
∑∞

n=1 yn. Then Y , T̃ and W satisfy the desired
factorisation scheme.

Our main task is now to define, for this T̃ , a Haar-like system {hα} and
operators U, V as claimed in the lemma. To do this, one uses a standard blocking
technique and the stability of hereditarily PP-narrow operators under summation
(Proposition 2.5). That is, for every 1 � n < m � ∞, we define a projection
operator Pn,m: Y → Y as follows:

Pn,m(y1, y2, . . . ) = (0, 0, . . . , 0, yn, yn+1, . . . , ym−1, 0, 0, . . . ).

Let (εα) be positive numbers. Select an arbitrary sign h∅ supported on Ω, and find
n∅ ∈ N for which

‖Pn∅,∞T̃ h∅‖ � ε∅.

Put

Uh∅ = P1,n∅ T̃ h∅, V h∅ = Pn∅,∞T̃ h∅.

The sign h∅ generates a partition of Ω; that is,

A−1 = {h∅ = −1}, A1 = {h∅ = 1}.

Since the operator P1,n∅ T̃ is PP-narrow by Proposition 2.5, there is a sign h−1

supported on A−1 for which

‖P1,n∅ T̃ h−1‖ � 1
2
ε−1.

Find n−1 > n∅ such that

‖Pn−1,∞T̃ h−1‖ � 1
2
ε−1.

Put

Uh−1 = Pn∅,n−1 T̃ h−1, V h−1 = (P1,n∅ + Pn−1,∞)T̃ h−1.

Continuing in this fashion, we obtain a Haar-like system {hα} and operators U, V :
lin{hα} → Y such that U + V = T̃ on lin{hα}, U maps {hα} to disjoint elements
of the sequence space Y (and hence to a 1-unconditional basic sequence) and V
maps {hα} to elements whose norms are controlled by the numbers εα; therefore
‖V ‖ � ε by Remark 2.2(b) if εα → 0 sufficiently fast.
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Lemma 3.2. Under the conditions of Lemma 3.1 assume in addition that the
operator T is bounded from below by a constant c; that is,

‖Tf‖ � c‖f‖ ∀ f ∈ Lp.

Then

M = sup
±

∥∥∥∥
∞∑

n=1

±Tn

∥∥∥∥ � βpc,

where βp is the unconditional constant of the Haar system in Lp.

Proof. Let 0 < ε < 1/2. Under the above conditions, the operator U from
Lemma 3.1 maps a Haar-like system {hα} to a 1-unconditional basic sequence.
This implies that if U is considered as acting from lin{hα} into lin{Uhα}, then
‖U‖‖U−1‖ � βp. On the other hand,

‖U‖ � ‖T̃‖ + ‖V ‖ � M + ε

and

‖Uf‖ � ‖T̃ f‖ − ε‖f‖ � ‖Tf‖ − ε‖f‖ � (c − ε)‖f‖

for all f ∈ lin{hα}, so ‖U−1‖ � (c − ε)−1. Hence we have (M + ε)(c − ε)−1 � βp,
which yields the desired inequality since ε > 0 was arbitrary.

It is known that βp → ∞ if p → 1 or p → ∞; in fact, Burkholder [2] has shown
that

βp = max
{

p − 1,
1

p − 1

}
.

Theorem 3.3. There exists a Banach space X for which

Id ∈ unc(unc(K(X,X))) \ unc(K(X,X)).

Proof. Consider the space X = Lp1 ⊕2 Lp2 ⊕2 . . . where 1 < pn < ∞ and
pn → 1.

Suppose that Id=
∑∞

n=1 Tn pointwise unconditionally with compact operat-
ors Tn. The restrictions of Tn to Lpj

are also compact and hence hereditarily
PP-narrow, so by the previous lemma

sup
±

∥∥∥∥
∞∑

n=1

±Tn

∥∥∥∥ � sup
±

∥∥∥∥
∞∑

n=1

±Tn �Lpj

∥∥∥∥ � βpj
→ ∞.

Thus the assumption of pointwise unconditional convergence of
∑∞

n=1 Tn leads to
a contradiction, and hence Id does not belong to unc(K(X,X)).

On the other hand, all the natural projections Pj : X →Lpj

belong to unc(K(X,X)) since each Lpj
has an unconditional basis. Taking

into account the unconditional representation Id=
∑∞

n=1 Pn, we find that
Id ∈ unc(unc(K(X,X))).



unconditionally convergent series of operators 271

4. Hereditarily PP-narrow operators on L1

In this section we prove the main result of the paper, namely that the sum of a
pointwise unconditionally convergent series of hereditarily PP-narrow operators on
L1 is again a hereditarily PP-narrow operator.

The following lemma implies that the operator U from Lemma 3.1 factors
through c0.

Lemma 4.1. Let {hα} be a Haar-like system in L1, and let U : L1 → X be
an operator that maps {hα} into an unconditional basic sequence. Then there is a
constant C such that for every element of the form f =

∑
α aαhα, one has

‖Uf‖ � C sup
α

|aα|. (4.1)

Proof. Without loss of generality we can assume that ‖U‖ = 1, ‖h∅‖ = 1 and
that the unconditional constant of {Uhα} also equals 1. (One can achieve all these
goals by an equivalent renorming of X and by multiplication of µ by a constant.)

Let us first remark that for every α = (α1, α2, . . . , αn) ∈ An,

‖α1h∅ + 2α2hα1 + 4α3hα1,α2 + . . . + 2n−1αnhα1,...,αn−1‖ � 2;

indeed, it is easy to check by induction over n that this sum equals

2nχAα1, . . . ,α n
− χA∅ .

Hence

‖α1Uh∅ + 2α2Uhα1 + . . . + 2n−1αnUhα1,...,αn−1‖ � 2,

and, since {Uhα} is a 1-unconditional basic sequence,

‖Uh∅ + 2Uhα1 + . . . + 2n−1Uhα1,...,αn−1‖ � 2.

Passing from n−1 to n in the last inequality and averaging over α ∈ An, we obtain

2 �
∥∥∥∥ 1

2n

∑
α∈An

(Uh∅ + 2Uhα1 + . . . + 2n−1Uhα1,...,αn
)
∥∥∥∥ =

∥∥∥∥
n∑

k=0

∑
α∈Ak

Uhα

∥∥∥∥.

Again by the 1-unconditionality of {Uhα}, the last inequality implies that for all
aα ∈ [−1, 1], ∥∥∥∥

n∑
k=0

∑
α∈Ak

aαUhα

∥∥∥∥ � 2,

which gives (4.1) with C = 2.

An inspection of the proof shows that

‖Uf‖ � 2‖U‖β2 sup
α

|aα|,

where β denotes the unconditional constant of the basic sequence (Uhα).
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Lemma 4.2. For every Haar-like system {hα} in L1 supported on A, and every
δ > 0, there is a sign

f =
∞∑

k=0

∑
α∈Ak

aαhα (4.2)

supported on A with supα |aα| � δ.

Proof. Fix an m ∈ N such that 1/m � δ, and define

fk =
∑

α∈Ak

aαhα

as follows: f0 = (1/m)h∅, and for every α ∈ An put aα = 1/m if |
∑n−1

k=0 fk| < 1 on
supphα and aα = 0 if |

∑n−1
k=0 fk| = 1 on supphα. Under this construction, all the

partial sums of the series
∑∞

k=0 fk are bounded by 1 in modulus. Since {fk}∞k=0 is
an orthogonal system, the series

∑∞
k=0 fk converges in L2 (and hence in L1) to a

function f supported on A that can be represented as in (4.2) with supα |aα| � δ.
We shall prove that f is a sign.

Obviously,
∫

A
f dµ = 0. Consider B = {t ∈ A: |f(t)| �= 1}. By our construction,

we have, for each n ∈ N,

B ⊂ {t ∈ A: fn(t) �= 0} =
{

t ∈ A: |fn(t)| =
1
m

}
,

so µ(B) � m‖fn‖, and since ‖fn‖ → 0, we conclude that µ(B) = 0. Therefore f is
a sign.

The previous lemma can also be proved by means of abstract martingale theory.
For simplicity of notation let us work with the classical Haar system h1, h2, . . .
on [0, 1]. Let ξn =

∑n
k=1 hk and T = inf{n: |ξn| � m}. Then (ξn) is a martingale,

T is a stopping time and (ξ′n) = (ξn∧T ) is a uniformly bounded martingale. Hence
(ξ′n) converges almost surely and in L1 to a limit ξ that takes only the values ±m
on {T < ∞}, but since (ξn) fails to converge pointwise, the event {T = ∞} has
probability 0. This shows that ξ = ±m almost surely and Eξ = 0. Hence f = ξ/m
is the sign that we are seeking.

We are now ready for the main result of this paper. An analogous theorem for
operators on C(K)-spaces is proved in [1].

Theorem 4.3. Let Tn : L1 → X be hereditarily PP-narrow operators, and
suppose that

∑∞
n=1 Tn converges pointwise unconditionally to some operator T .

Then T is hereditarily PP-narrow.

Proof. Let A ∈ Σ+, and let Σ̃ be a nonatomic sub-σ-algebra of Σ |A. We have
to show that for every ε > 0 there is a sign f ∈ L1(A, Σ̃, µ) supported on A with
‖Tf‖ � ε.

Applying Lemma 3.1 to the restrictions of Tn and T to L1(A, Σ̃, µ), we obtain
a Haar-like system {hα} forming a basis for some L0

1(A,Σ1, µ) and we obtain
operators U, V : L0

1(A,Σ1, µ) → Y , W : Y → X such that ‖W‖ � 1, T = W (U + V )
on L0

1(A,Σ1, µ), ‖V ‖ � ε/2 and U maps {hα} to a 1-unconditional basic sequence.
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Let C be the constant from (4.1). Taking a sign

f =
∞∑

k=0

∑
α∈Ak

aαhα

supported on A with supα |aα| � ε/(2C) (Lemma 4.2), we obtain from (4.1) that
‖Uf‖ � ε/2. Therefore ‖Tf‖ � ‖Uf‖ + ‖V f‖ � ε.

Corollary 4.4. For any Banach space X, no embedding operator is contained
in unc(. . . (unc(K(L1,X)))).

Proof. Compact operators are hereditarily PP-narrow.

The next corollary is due to Rosenthal (unpublished).

Corollary 4.5. Every operator T from L1 into a Banach space X with
an unconditional basis is hereditarily PP-narrow; in particular, it is PP-narrow.
Consequently, L1 does not even sign-embed into a space with an unconditional
basis.

Proof. If Pn, n= 1, 2, . . . , are the partial sum projections associated to
an unconditional basis of X, then T =

∑∞
n=1(Pn −Pn−1)T is a pointwise

unconditionally convergent series of rank-1 operators.

5. Questions

(1) Can one describe unc(K(L1,X )) for general X? What about X = L1?
(2) Describe the smallest class of operators M ⊂ L(L1,X) that contains the

compact operators and is stable under pointwise unconditional sums. In particular,
is unc(K(L1, L1)) = unc(unc(K(L1, L1)))? Note that X does not embed into a space
with an unconditional basis if M �= L(L1,X).

(3) Can one develop a similar theory for operators on the James space, or other
spaces that do not embed into spaces with unconditional bases?

(4) Is there a space X with the Daugavet property such that

Id ∈ unc(. . . (unc(K(X,X))))?

(5) Suppose that E is a Banach space with the Daugavet property, on which
the set of narrow operators from E to X is a linear space. (This is not always the
case; for example, it is not so for E = X = C([0, 1], 	1); see [1].) If T =

∑
Tn is

a pointwise unconditionally convergent series of narrow operators from E into X,
must T also be narrow? It is known that under these conditions ‖Id + T‖ � 1; see
[5]. The answer is positive for E = C([0, 1], 	p) if 1 < p < ∞; see [1].
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