SCHAUDER DECOMPOSITIONS AND COMPLETENESS

N. KALTON

A sequence $(E_n)_{n=1}^{\infty}$ of non-trivial subspaces of a topological vector space E is said to be a Schauder decomposition of E if there exists a sequence $(Q_n)_{n=1}^{\infty}$ of continuous orthogonal projections, such that $Q_n(E) = E_n$ for each n and, for each $x \in E$, $x = \sum_{n=1}^{\infty} Q_n x$. If, in addition, the projections $P_n = \sum_{i=1}^{n} Q_i$ are equicontinuous, then $(E_n)_{n=1}^{\infty}$ is said to be an equi-Schauder decomposition of E. It is obvious that a Schauder basis is equivalent to a Schauder decomposition in which each subspace is one-dimensional, and that it is equi-Schauder if and only if the corresponding decomposition is equi-Schauder. For more information on Schauder decompositions see, for example [2 and 3].

In this paper, it will be shown that if E is locally convex and possesses an equi-Schauder decomposition, the properties of sequential completeness, quasicompleteness or completeness of E may be related very simply to the properties of the decomposition; and that if E possesses an equi-Schauder basis, these three types of completeness are equivalent.

If $(E_n)_{n=1}^{\infty}$ is a Schauder decomposition of E, the sequences $(Q_n)_{n=1}^{\infty}$ and $(P_n)_{n=1}^{\infty}$ will always denote the corresponding sequences of projections as defined above.

LEMMA. Let $\langle E, F \rangle$ be a separated dual pair of vector spaces and let τ be an $\langle E, F \rangle$ polar topology on E. Suppose $(E_n)_{n=1}^{\infty}$ is an equi-Schauder decomposition for (E, τ) and let $(x_a)_{a \in A}$ be a τ -Cauchy net on E such that for each $n (Q_n x_a)_{a \in A}$ converges. Then:

(i) $(\lim_{\alpha} P_n x_{\alpha})_{n=1}^{\infty}$ is a τ -Cauchy sequence.

(ii) If w-lim $\lim_{n \to a} P_n x_a$ exists (where w-lim denotes the limit with respect to the weak topology $\sigma(E, F)$), then $\lim_{n \to a} x_a$ exists and $\lim_{n \to a} x_a = w$ -lim $\lim_{n \to a} P_n x_a$.

(i) Let U be any τ -neighbourhood of 0, and let V be a closed absolutely convex τ -neighbourhood of 0 such that $V + V + V \subset U$. Then since $(P_n)_{n=1}^{\infty}$ is τ -equicontinuous at 0, there exists a τ -neighbourhood W of 0 such that $P_n(W) \subset V$ for all n. Since $(x_a)_{a \in A}$ is a τ -Cauchy net, there exists $\beta \in A$ such that whenever $\gamma \ge \beta$, $x_\gamma - x_\beta \in W$, and so for all $n P_n(x_\gamma - x_\beta) \in V$.

For each $n(P_n x_a)_{\alpha \in A}$ is a convergent net, for $P_n x_\alpha = \sum_{i=1}^n Q_i x_\alpha$; let $\lim_{\alpha} P_n x_\alpha = y_n$. Then since V is closed, $y_n - P_n(x_\beta) \in V$ for all n. The sequence $(P_n(x_\beta))_{n=1}^{\infty}$ is convergent and so there exists k such that whenever $m, n \ge k$, $P_m(x_\beta) - P_n(x_\beta) \in V$.

Received 14 May, 1969.

Thus whenever $m, n \ge k$

$$y_m - y_n = (y_m - P_m(x_\beta)) + (P_m(x_\beta) - P_n(x_\beta)) + (P_n(x_\beta) - y_n) \in V + V + V \subset U.$$

(ii) Suppose w-lim $y_n = y$, and let U be any τ -neighbourhood of 0; then there exists a subset G of F whose polar G^0 is a τ -neighbourhood contained in U. Then since by part (i) (y_n) is τ -Cauchy, there exists k such that whenever m, $n \ge k$, $y_m - y_n \in G^0$, i.e.

$$\sup_{g \in G} |g(y_m - y_n)| \leq 1,$$

and so

$$\sup_{g \in G} |g(y-y_n)| \leq 1,$$

i.e. $y - y_n \in G^0 \subset U$, whenever $n \ge k$. Thus

$$\lim y_n = y.$$

Choosing V as in part (i), there exists m such that, whenever $n \ge m$, $y - y_n \in V$; and choosing β as in part (i), whenever $\alpha \ge \beta$, $y_n - P_n(x_\alpha) \in V$ for each n. For fixed $\alpha \ge \beta$, there exists $l \ge m$ such that $x_\alpha - P_l(x_\alpha) \in V$; and so we have

 $y - x_{\alpha} = (y - y_i) + (y_i - P_i x_{\alpha}) + (P_i x_{\alpha} - x_{\alpha}) \in V + V + V \subset U,$

and so τ -lim $x_{\alpha} = y$.

Naturally in part (ii) of the lemma, the existence of w-lim $\lim_{n \to \alpha} P_n x_{\alpha}$ may be replaced by the existence of $\lim_{n \to \alpha} \lim_{\alpha} P_n x_{\alpha}$, since this is a stronger condition; and it is in this form that the lemma is applied to derive the main criteria for completeness. First we define a Schauder decomposition (E_n) to be *complete* if whenever $\left(\sum_{n=1}^{\infty} x_n\right)_{m=1}^{\infty}$ is a Cauchy sequence with $x_n \in E_n$ then $\sum_{n=1}^{\infty} x_n$ converges; and a Schauder basis (x_n) is complete if the corresponding decomposition is complete.

THEOREM. Let (E_n) be an equi-Schauder decomposition for the locally convex space E. Then E is complete (resp. quasi-complete; resp. sequentially complete) if and only if:

- (i) Each E_n is complete (resp. quasi-complete; resp. sequentially complete), and
- (ii) $(E_n)_{n=1}^{\infty}$ is a complete decomposition.

If E is complete (resp. quasi-complete; resp. sequentially complete) then both conditions follow at once since each E_n is closed. Conversely if $(x_{\alpha})_{\alpha \in A}$ is a net (resp. bounded net; resp. sequence) then by the application of the lemma to the dual pair $\langle E, E' \rangle$ the result follows.

The most important implications of this result appear to be those for bases; for we have

COROLLARY 1. Let E be a locally convex space with an equi-Schauder basis (x_n) . Then the following are equivalent:

(i) E is complete,

(ii) E is sequentially complete,

(iii) (x_n) is a complete basis.

COROLLARY 2. A sequentially complete barrelled space with a basis is complete.

For each $x \in E$ $(P_n x)_{n=1}^{\infty}$ is bounded, and so, since E is barrelled $(P_n)_{n=1}^{\infty}$ is equicontinuous, i.e. the basis is equi-Schauder and we can apply Corollary 1.

Corollary 2 raises the following question: does there exist a separable sequentially complete barrelled space which is not complete? If there did, it could not have a basis, and so there would be a contradiction to the existence of a basis for every separable barrelled space. Komura [1] has shown that there does indeed exist a barrelled space which is sequentially complete (in fact quasi-complete) but not complete, but his example is probably non-separable. It is known from an example of Singer [4] that not every separable locally convex space has a Schauder basis, but his example is not barrelled.

References

- 1. Y. Komura, "Some examples in linear topological spaces", Math. Ann., 153 (1964), 150-162.
- 2. C. W. McArthur and J. R. Retherford, "Uniform and equi-continuous Schauder bases of subspaces", Canad. J. Math., 17 (1965), 207-212.
- 3. W. Ruckle, "The indirect sum of closed subspaces of an F-space", Duke Math. J., 31 (1964), 543-554.
- 4. I. Singer, "On the basis problem in linear topological spaces", Rev. Math. Pures Appl., 10 (1965), 453-457.

Lehigh University, Bethlehem, U.S.A.