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Abstract. We survey some questions on Rademacher series in both Banach and quasi-Banach

spaces which have been the subject of extensive research from the time of Orlicz to the present

day.

1. Introduction. Orlicz’s work spanned over sixty years and it left a profound influence

on many areas of mathematics. The result is that we all feel the influence of Orlicz on

our own research in different ways.

In this article, which is based on my talk at the conference, I am going to consider

the aspect of Orlicz’s work which I feel had the most impact on my own research. This is

the study of unconditional series and Rademacher series in Banach spaces. My aim is to

show how Orlicz’s original papers in the 1930’s were instrumental in planting the seeds for

some of the most profound developments in Banach space theory in the last fifty years.

In particular I will emphasize the circle of ideas around type, cotype, Grothendieck’s

inequality and factorization theorems.

At the same time I want also to look in parallel at how the same ideas look in the

setting of quasi-Banach spaces. Quasi-Banach spaces have been an interest of this author

for over thirty years, and, although the theory has never enjoyed the popularity I would

have hoped for, I think Orlicz, at least, would have been sympathetic to this line of

research. Indeed the Banach school was clearly very interested in studying this wider

class of spaces, and it is only the power of the Hahn-Banach theorem which has caused

research since that time to emphasize the theory of Banach spaces over quasi-Banach

spaces.

It is perhaps somewhat surprising that some of the main factorization results can

be extended to quasi-Banach spaces. We will also see that some interesting additional

phenomena can arise when we look at quasi-Banach spaces.
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I also give a discussion of some recent work of the author on decoupling of Rademacher

series in the setting of quasi-Banach spaces. I will conclude with some thoughts on the

possibility of a “non-locally convex” extension of Grothendieck’s theorem.

2. Orlicz and the origins of type and cotype. Let (εn)n∈N denote a sequence of inde-

pendent random variables with P(εn = ±1) = 1
2 . We call this a sequence of Rademachers.

In 1933, Orlicz ([32] and [33]) proved:

Theorem 2.1. Suppose (fn)n∈N is a sequence in Lp(0, 1) where 1 ≤ p <∞. If
∑∞
n=1 fn

converges unconditionally then ∞∑

n=1

‖fn‖r <∞,

where r = max(p, 2).

In these two papers, Orlicz became the first to apply Khintchine’s inequality to prob-

lems in Banach space theory. At the time Khintchine’s inequality was very new. It was

proved by Khintchine only in 1925, and it should be remembered that information was

not disseminated as quickly in those times as in the modern era. Orlicz saw that Khint-

chine’s work had implications for Banach space theory, and in proving these results, he

may be said to have introduced the probabilistic method into Banach space theory.

The study of Rademacher series has been particularly fruitful and it is also possible

to argue that Orlicz in 1933 has essentially introduced the modern concept of cotype

even though it was not to be formalized until many years later around 1972-1974 in work

of Hoffmann-Jorgensen, Maurey and Pisier. The actual development of the precise no-

tions of type and cotype is discussed in the recent article of Maurey in the Banach space

Handbook [28].

Let us recall the definitions of type and cotype. A Banach space X has (Rademacher)

type p where 1 < p ≤ 2 if there is a constant C such that for x1, . . . , xn ∈ X,
(
E
∥∥∥

n∑

j=1

εjxj

∥∥∥
p) 1

p ≤ C
( n∑

j=1

‖xj‖p
) 1
p

and cotype q where 2 ≤ q <∞ if there is a constant C such that, for x1, . . . , xn ∈ X,
( n∑

j=1

‖xj‖q
) 1
q ≤ C

(
E
∥∥∥

n∑

j=1

εjxj

∥∥∥
q) 1

q

.

One may argue that the following theorem is due to Orlicz for the case of cotype and

Nordlander for the case of type [31].

Theorem 2.2. Lp(0, 1) has type min(p, 2) and cotype max(p, 2) when 1 ≤ p <∞.
We should mention here the Kahane-Khintchine inequality which generalizes the

Khintchine inequality to an arbitrary Banach space [13] :

Theorem 2.3. For any 0 < p < q < ∞ there is a constant C = C(p, q) so that in any

Banach space X we have
(
E
∥∥∥

n∑

j=1

εjxj

∥∥∥
q) 1

q ≤ C
(
E
∥∥∥

n∑

j=1

εjxj

∥∥∥
p) 1

p

when x1, . . . , xn ∈ X.
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This theorem then expresses the equivalence of the quantities (E‖∑n
j=1 εjxj‖p)

1
p for

any two choices of p and allows us some flexibility in expressing the notions and cotype.

Let us conclude this section with an observation which combines the Kahane-Khin-

tchine inequality and ideas implicit in Orlicz’s 1933 paper:

Theorem 2.4. For each 1 ≤ p <∞ there is a constant C so that

C−1E
∥∥∥

n∑

j=1

εjfj

∥∥∥
p
≤
∥∥∥
( n∑

j=1

|fj |2
) 1

2
∥∥∥
p
≤ CE

∥∥∥
n∑

j=1

εjfj

∥∥∥
p
, f1, . . . , fn ∈ Lp.

3. Factorization theorems and Grothendieck’s inequality. Theorem 2.4 leads al-

most immediately to a vector-valued estimate for operators. A precursor of the following

result was proved by Paley [34] and in its full force it is due to Marcinkiewicz and Zyg-

mund [26] in 1939:

Theorem 3.1 (Marcinkiewicz-Zygmund). Suppose 1 ≤ p, q < ∞; then there is a con-

stant C = C(p, q) so that if T : Lp → Lq is a bounded operator then

∥∥∥
( n∑

j=1

|Tfj |2
) 1

2
∥∥∥
q
≤ C‖T‖

∥∥∥
( n∑

j=1

|fj |2
) 1

2
∥∥∥
p
, f1, . . . , fn ∈ Lp. (3.1)

In Maurey’s thesis [27] (published in 1974) vector-valued estimates such as (3.1) were

used to obtain factorization theorems via a change of density. It follows that every oper-

ator T : Lp → Lq where 1 ≤ q ≤ 2 ≤ p <∞ factors through a Hilbert space. Thus there

is a direct line from Orlicz’s early work to the study of operators which factor through

Hilbert spaces. It was again Maurey who observed that an elegant theorem of Kwapień

[23] could be recast as a factorization theorem for more general Banach spaces.

Theorem 3.2. Suppose X be a Banach space of type 2 and Y is a Banach space of cotype

2. Then every operator T : X → Y factors through a Hilbert space, i.e. there is a Hilbert

space H and operators S : X → H and R : H → Y so that T = RS. In particular, a

Banach space of type 2 and cotype 2 is isomorphic to a Hilbert space.

At this point we backtrack a little to recall the celebrated work of Grothendieck from

1956 [10] (note here that the journal volume is dated 1953 but the paper appeared in

1956). In fact for more than ten years this work was essentially overlooked prior to the

appearance of the article of Lindenstrauss and Pe lczyński in 1968 [25]. After 1968, the

importance of Grothendieck’s work was integrated rapidly into Banach space theory.

Grothendieck’s work revolved around a remarkable inequality, which can perhaps be seen

best as a far-reaching extension of the Khintchine’s inequality:

Theorem 3.3 (Grothendieck’s inequality). There is an absolute constant KG with the

following property. If (ajk)nj,k=1 is an arbitrary real matrix then for any elements u1, . . . ,

un, v1, . . . , vn in a real Hilbert space with

max
1≤j≤n

‖uj‖, max
1≤k≤n

‖vk‖ ≤ 1
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we have
∣∣∣
n∑

j=1

n∑

k=1

ajk(uj , vk)
∣∣∣ ≤ KG max

|ξj |≤1
|ηk|≤1

∣∣∣
n∑

j=1

n∑

k=1

ajkξjηk

∣∣∣. (3.2)

Grothendieck’s inequality has numerous applications, but one is the remarkable result

that the vector-valued inequality (3.1) of Marcinkiewicz and Zygmund (Theorem 3.1)

holds equally when the domain is either a C(K)-space or L∞. Thus if T : C(K)→ Lq is

a bounded operator then

∥∥∥
( n∑

j=1

|Tfj |2
) 1

2
∥∥∥
q
≤ KG‖T‖

∥∥∥
( n∑

j=1

|fj |2
) 1

2
∥∥∥
C(K)

, f1, . . . , fn ∈ C(K). (3.3)

This inequality leads in similar fashion to the fact that every operator T : C(K) → Lq
where q ≤ 2 must factor through a Hilbert space. Since C(K) is very far from being

of type 2 this is a surprising extension of Theorem 3.2. Thus Grothendieck’s inequality

injects something new and unexpected into factorization theory.

Why should Theorem 3.2 hold even for C(K) spaces? This anomaly was resolved in

1980 by Pisier [37] with the following remarkable result:

Theorem 3.4 (The abstract Grothendieck theorem). Let X,Y be Banach spaces such

that X∗ and Y have cotype 2 and either X or Y has the approximation property. Then

every operator T : X → Y factors through a Hilbert space.

We recall that a Banach space X has the approximation property if for every compact

subset K of X and every ε > 0 there is a finite-rank operator T on X with ‖Tx− x‖ < ε

for x ∈ K.
See [39] for a fuller discussion and a more precise statement in terms of approximable

operators. Pisier [38] also constructed a Banach space X with the property that X and

X∗ have cotype 2 but X is not a Hilbert space. This space must fail the approximation

property!

4. Factorization in quasi-Banach spaces. Let us now examine the same ideas in the

setting of quasi-Banach spaces. We first recall that if X is a quasi-Banach space then X

is said to be p-normable if for some constant C we have

∥∥∥
n∑

j=1

xj

∥∥∥ ≤ C
( n∑

j=1

‖xj‖p
) 1
p

, x1, . . . , xn ∈ X.

A fundamental result of Aoki [2] and Rolewicz [42] asserts that every quasi-Banach space

is p-normable for some 0 < p ≤ 1. It follows in particular that we can, without loss of

generality, assume that the quasi-norm is always a continuous function on X.

The notions of type and cotype may be defined equally in quasi-Banach spaces. A

p-normable quasi-Banach space has type p (when 0 < p ≤ 1). In fact if 0 < p < 1

then a quasi-Banach space has type p if and only if it is p-normable ([15]), but there are

quasi-Banach spaces which have type 1 without being locally convex (for example the Ribe

space, see [15]). On the other hand any quasi-Banach space of type p > 1 is automatically
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isomorphic to a Banach space [14]. We also note that the Kahane-Khintchine inequality

(Theorem 2.3) is equally valid for quasi-Banach spaces [15].

Much of our discussion of the spaces Lp extends to the case when 0 < p < 1 without

alteration. The spaces Lp when 0 < p < 1 are of cotype 2 and type p (which is equivalent

to being p-normable of course). For example Theorem 2.4 holds equally if 0 < p < 1 and

this allows the extension of Theorem 3.1 to the full range 0 < p, q < ∞. We also note

that Bennett [4] using results of Maurey [27] showed that (3.3) holds when 0 < p < 1.

All of this suggests that the main results of the previous section all hold in quasi-

Banach spaces. In fact Theorem 3.2 certainly holds for X,Y quasi-Banach spaces (al-

though of course any quasi-Banach space of type 2 is a Banach space) but we do not

know an explicit reference. On the other hand, Pisier’s abstract Grothendieck theorem

does have an appropriate formulation for quasi-Banach spaces, as was proved by the

author and S. C. Tam in 1993 [21]:

Theorem 4.1. Suppose X and Y are quasi-Banach spaces such that X∗ and Y have

cotype 2 and either X or Y has the bounded approximation property (BAP). Then every

operator T : X → Y factors through a Hilbert space.

Here the dual of a quasi-Banach space X is the Banach space of all continuous linear

functionals x∗ with the norm ‖x∗‖ = sup‖x‖≤1 |x∗(x)|. X is said to have the bounded

approximation property or (BAP) if there is a constant C so that for every compact

subset K of X and ε > 0 there is a finite-rank operator T on X so that ‖T‖ ≤ C and

‖Tx − x‖ < ε for x ∈ K. Notice that the approximation assumption is stronger than in

Theorem 3.4; it is unknown if the result can be improved in this respect.

A more precise statement, with the approximation assumption on the operator, is

given in [21]. Note here that the assumption that X∗ has cotype two can be fulfilled

vacuously if X∗ = {0} (e.g. when X = Lp for 0 < p < 1) but in that case the theorem

is vacuous because T = 0. The theorem really concerns finite-rank operators and the

existence of non-trivial finite-rank operators which can only exist if X∗ does not reduce

to zero. One immediate consequence is that if X has (BAP) and both X and X∗ have

cotype two then X is a Hilbert space. In the locally convex setting this result follows

from Pisier’s original abstract Grothendieck theorem under the weaker hypothesis that

X has the approximation property.

We recall that the Banach envelope Xc of a quasi-Banach space X is the Banach

space obtained by completing the Hausdorff quotient of X under the seminorm

‖x‖c = sup{|x∗(x)| : ‖x∗‖ ≤ 1}.
Then an operator T : X → Y factors through a Banach space if and only if it factors

through the natural map X → Xc or if and only if

‖Tx‖ ≤ C‖x‖c, x ∈ X,
for some constant C. The following factorization theorem was also proved in [21].

Theorem 4.2. Suppose X and Y are quasi-Banach spaces such that X∗ embeds into an

L1−space and Y has nontrivial cotype. Suppose either X or Y has the bounded approxi-

mation property. Then every operator T : X → Y factors through a Banach space.
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It is not known whether this theorem can be improved to simply require that X∗ has

some cotype (or even cotype 2). We may note also that the special case of Theorem 4.2

when Y = Lp for p > 0 was proved earlier (1986) in [17] and is a variation on the results

of Bennett [4] and Maurey [27] cited above.

5. Special classes of quasi-Banach spaces. One of the themes of this article is that

while Banach spaces may be somewhat bland, quasi-Banach spaces exhibit a rich variety

in their behavior. While it might appear that all quasi-Banach spaces are uniformly bad,

we may in fact isolate several different types of relatively good quasi-Banach spaces.

In [16] we introduced the notion of a natural quasi-Banach space. A quasi-Banach

space X is natural if it is isomorphic to a subspace of a quasi-Banach lattice Y which is

p-convex for some p > 0, i.e. for some constant C we have

∥∥∥
( n∑

j=1

|yj |p
) 1
p
∥∥∥ ≤ C

( n∑

j=1

‖yj‖p
) 1
p

, y1, . . . , yn ∈ Y.

The motivation for this definition is that most spaces that arise in analysis are natural

(e.g. subspaces of Orlicz spaces, Lorentz spaces, etc.).

There is an alternative useful way to look at natural spaces. Let us say that a quasi-

Banach space X is subordinate to a quasi-Banach space Y if it is isomorphic to a subspace

of an `∞-product of Y , or, alternatively, if there exists a constant C so that for every

x ∈ X there exists an operator T : X → Y such that ‖T‖ ≤ 1 and ‖x‖ ≤ C‖Tx‖. Then

a separable space X is natural if and only if it is subordinate to Lp for some p > 0 (see

[17]).

If X is a complex quasi-Banach space we say that X is A-convex if it has an equivalent

(continuous) quasi-norm which is plurisubharmonic, i.e.

‖x‖ ≤
∫ 2π

0

‖x+ eiθy‖ dθ
2π
, x, y ∈ X.

Since the quasi-norm on Lp is plurisubharmonic every complex natural space is A-convex.

There are some basic examples to bear in mind here. The canonical example of a

space which is not A-convex is the space Lp/Hp. More precisely we consider the space

Lp(T, dθ/2π) for 0 < p < 1 and let Hp be the subspace [einθ : n ∈ N]. This example is

due to Aleksandrov [1].

On the other hand consider the Schatten ideal Sp (where 0 < p < 1) of all compact

operators x on a separable Hilbert space satisfying
∑
sn(x)p < ∞ where sn(x) is the

n-th singular value of x. This space is A-convex but fails to be natural [18]; we will see

the reason this space fails to be natural below in Section 8.

6. Sidon sets and Rademacher series. Let (fn)∞n=1 and (gn)∞n=1 be a pair of se-

quences of real or complex-valued random variables. If X is a quasi-Banach space we

shall say that (fn) and (gn) are (X, p)-commensurate if there exists a constant C so that

C−1
(
E
∥∥∥

n∑

j=1

fjxj

∥∥∥
p) 1

p ≤
(
E
∥∥∥

n∑

j=1

gjxj

∥∥∥
p) 1

p ≤ C
(
E
∥∥∥

n∑

j=1

fjxj

∥∥∥
p) 1

p

, x1, . . . , xn ∈ X.
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Let us say that (fn) and (gn) are X-commensurate if there exists C so that

P
(∥∥∥

n∑

j=1

fjxj

∥∥∥ ≥ t
)
≤ CP

(∥∥∥
n∑

j=1

gjxj

∥∥∥ ≥ C−1t
)
, x1, . . . , xn ∈ X

and

P
(∥∥∥

n∑

j=1

gjxj

∥∥∥ ≥ t
)
≤ CP

(∥∥∥
n∑

j=1

fjxj

∥∥∥ ≥ C−1t
)
, x1, . . . , xn ∈ X.

This terminology is a slight abuse of that introduced by Pe lczyński in [35].

Let us suppose that G is a compact abelian group and that P denotes normalized

Haar measure on G. We recall that a sequence (χn)∞n=1 of characters on G is called a

Sidon set if for every choice of signs δn = ±1 there is a finite Borel measure µ on G with∫

G

χndµ = δn, n = 1, 2, . . . .

The sequence of Rademachers can be considered as a Sidon set of characters on the Cantor

group {−1, 1}N. Then Pisier in 1978 [36] (see also Pe lczyński [35] for a generalization)

showed that:

Theorem 6.1. Let (χn)∞n=1 be a sequence of characters on G and suppose 1 ≤ p < ∞.

Then (χn) is (X, p)-commensurate with the Rademachers (εn) for every Banach space X

if and only if (χn)∞n=1 is a Sidon set.

From this Asmar and Montgomery-Smith [3] deduced that (χn) and (εn) are X-com-

mensurate when (χn) is a Sidon set. They then raised the question of extending such

results to quasi-Banach spaces. It turns out that Pisier’s result does not extend to quasi-

Banach spaces, but there is a very satisfactory theorem. We recall that (χn)∞n=1 is called

an I0-set if for every sequence of signs δn = ±1 there is a finite purely atomic Borel

measure µ such that ∫
χndµ = δn, n = 1, 2, . . . .

Equivalently given (δn) we can find gn ∈ G and complex an with
∞∑

n=1

|an| <∞

so that ∞∑

k=1

akχn(gk) = δn, n = 1, 2, . . . .

(This is not the original definition [11] but it is equivalent by a theorem of Kahane and

Méla [12] and [29].)

The corresponding theorem to Theorem 6.1 is [19]:

Theorem 6.2. Let (χn)∞n=1 be a sequence of characters on G and suppose 0 < p < ∞.

Then (χn) is (X, p)-commensurate with the Rademachers (εn) for every quasi-Banach

space X if and only if (χn)∞n=1 is an I0-set.

Every Hadamard gap sequence in N ⊂ Z is an I0-set but not every Sidon set is an

I0-set. An example of a Sidon set in Z which is not an I0-set is {3n}∞n=1 ∪ {3n + n}∞n=1.
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Nevertheless one can ask if for some quasi-Banach spaces Pisier’s theorem remains

true. The answer is yes:

Theorem 6.3. Let X be a quasi-Banach space which is subordinate to a space with non-

trivial cotype (e.g. X is natural). Then for any 0 < p < ∞ every Sidon set is (X, p)-

commensurate with the Rademachers.

For natural spaces this was proved in [19]; the more general statement (which applies

for example to the Schatten ideals Sp) is given in [21]. It is in fact a direct consequence

of Theorem 4.2 above.

7. Decoupling. We now turn to the topic of decoupling. Let (εn)∞n=1 and (ε′n)∞n=1 be

two mutually independent sequences of Rademachers. If we consider the sets (εjεk)j<k
and (ε′jεk)j,k as characters on the Cantor group (or its square) they do not form Sidon

sets. However it follows quite easily from Theorem 3.1 by a Fubini argument that for

0 < p <∞ there is a constant C = C(p) so that if (fjk)nj,k=1 is an Lp-valued matrix then

C−1E
∥∥∥
∑

j,k

ε′jεkfjk
∥∥∥
p
≤
∥∥∥
(∑

j,k

|fjk|2
) 1

2
∥∥∥
p
≤ CE

∥∥∥
∑

j,k

ε′jεkfjk
∥∥∥
p
.

Following Pisier [36] we say that a quasi-Banach space X has property (α) if there

is a constant C so that for every X-valued matrix (xjk)nj,k=1 and every scalar matrix

(ajk)nj,k=1 we have

E
∥∥∥
∑

j,k

ajkε
′
jεkxjk

∥∥∥ ≤ C max |ajk|E
∥∥∥
∑

j,k

ε′jεkxjk
∥∥∥.

The above remarks show that Lp has property (α) when 0 < p < ∞. This is equivalent

to the statement that (ε′jεk) is (Lp, q)-commensurate with the Rademachers for any 0 <

p, q <∞ (using also a Kahane-Khintchine inequality).

Of course not every Banach space has property (α); it fails for the Schatten ideals Sp
when 1 ≤ p <∞. It is also not in general true that the sequences (εjεk)j<k and (ε′jεk)j<k
are (X, p)-commensurate for any choice of p; this fails for the trace-class S1. However

the simplest form of a decoupling theorem asserts that (εjεk)j<k is (X, p)-commensurate

with ( 1
2 (ε′jεk + ε′kεj))j<k for every p and every Banach space X (indeed they are even

X-commensurate).

Let us therefore define a quasi-Banach space X to have the decoupling property if there

is a constant C so that if (xjk)nj,k=1 is a symmetric X-valued matrix with zero diagonal

then

C−1E
∥∥∥
∑

j,k

εjεkxjk

∥∥∥ ≤ E
∥∥∥
∑

j,k

ε′jεkxjk
∥∥∥ ≤ CE

∥∥∥
∑

j,k

εjεkxjk

∥∥∥. (7.1)

Every Banach space has the decoupling property; this is a special case of a result of

Kwapień [24] (see also [6]). In fact Banach spaces satisfy much more general decoupling

results; we refer to the work of de la Peña and Montgomery-Smith [8] and [9] or the book

of de la Peña and Giné [7] for further details. It turns out that essentially the same results

can be proved in any quasi-Banach space with the decoupling property as shown in [20].
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The question thus arises as to which spaces have the decoupling property. It is not too

hard to show that Lp for 0 < p < 1 has the decoupling property; this can be shown by

using classical work of Bonami on multiple Rademacher series [5] but also follows from

the following theorem [20]:

Theorem 7.1. Property (α) implies the decoupling property.

Based on the case of Lp it is easy to show that:

Theorem 7.2. Every natural space has the decoupling property.

It may also be shown that the space Lp/Hp (which is not A-convex) also has property

(α) and hence the decoupling property [20]. This uses ideas of Pisier [41] and Kislyakov

[22].

On the other hand the Schatten ideals Sp for 0 < p < 1 fail decoupling; this will be

clear from the next section.

8. Bilinear maps and Grothendieck’s theorem revisited. Let us now give an ap-

plication of the decoupling property (see [18] and [20]).

Theorem 8.1. Let X and Y be Banach spaces of type 2 and suppose Z is a quasi-Banach

space with the decoupling property. Let B : X × Y → Z be a bounded bilinear map. Then

there is a constant C so that
∥∥∥

n∑

j=1

B(xj , yj)
∥∥∥ ≤ C

n∑

j=1

‖xj‖‖yj‖, x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y. (8.1)

Thus B factors through a Banach space, i.e. there is a Banach space E, a bounded bilinear

map B0 : X × Y → E and a linear operator S : E → Z so that B = TB0.

If we consider the canonical bilinear map B : `2× `2 → Sp, where 0 < p < 1, given by

B(x, y) = x⊗ y then it is clear that (8.1) does not hold and B does not factorize through

a Banach space. Thus Sp fails the decoupling property and is not natural.

If we consider Theorem 8.1 as a factorization theorem it is natural to consider it as

an analogue of the Kwapień-Maurey theorem (Theorem 3.2) and ask if there is a similar

abstract Grothendieck type theorem as in Theorem 3.4 or Theorem 4.1. Thus we would

hope to replace the hypothesis in Theorem 8.1 that X and Y have type 2 with the

hypothesis that X and Y have the (BAP) and X∗ and Y ∗ have cotype 2.

In the special case when X = Y = c0 and Z = Lp for 0 < p < 1 this reduces to a

question about a generalized form of Grothendieck’s inequality. Let us state this formally:

Problem. Suppose 0 < p < 1; is there a constant K = K(p) so that if (fjk)nj,k=1 is an

Lp-valued matrix such that

sup
δj=±1

sup
δ′k=±1

∥∥∥
n∑

j=1

n∑

k=1

δjδ
′
kfjk

∥∥∥
p
≤ 1

then ∥∥∥
n∑

j=1

n∑

k=1

(uj , vk)fjk

∥∥∥
p
≤ K

where u1, . . . , un, v1, . . . , vn ∈ `2 with max ‖uj‖, max ‖vk‖ ≤ 1?
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It is possible to prove some results which are quite close to our conjecture. For example

the following result would follow from the Nikishin factorization theorem [30] or [40] if we

could achieve a factorization through a Banach space. We however can derive it directly

from Theorem 4.1 above (see [20]):

Theorem 8.2. Suppose 0 < p < 1 and that X and Y are quasi-Banach spaces with the

bounded approximation property and such that X∗ and Y ∗ have cotype two. Then there

is a constant C = C(X,Y, p) so that if B : X × Y → Lp(Ω, µ) is a bounded bilinear map

then there is function w ∈ L1(µ) with w ≥ 0 a.e.,
∫
wdµ = 1, {w = 0} ⊂ {|B(x, y)| = 0}

a.e. for all x ∈ X and y ∈ Y and

‖w− 1
pB(x, y)‖L1,∞(w dµ) ≤ C‖B‖‖x‖‖y‖.

Finally we can deduce from Theorem 8.2 a result which says that (8.1) almost holds

under these hypotheses:

Corollary 8.3. Suppose that X and Y are Banach spaces with the bounded approxima-

tion property and such that X∗ and Y ∗ have cotype two and Z is a natural quasi-Banach

space. Then there is constant C = C(X,Y, Z) so that if B : X × Y → Z is a bounded

bilinear map and x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y are such that
∑n

j=1 ‖xj‖‖yj‖ = 1 then

∥∥∥
n∑

j=1

B(xj , yj)
∥∥∥ ≤ C‖B‖

(
1 +

n∑

j=1

‖xj‖‖yj‖ log
1

‖xj‖‖yj‖

)
. (8.2)
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33–37.

[33] —, Über unbedingte Konvergenz in Funktionenraümen II , Studia Math. 4 (1933), 41–47.

[34] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc.

34 (1932), 241–264.
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