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L p-maximal regularity on Banach spaces with a Schauder basis

By

N. J. KALTON and G. LANCIEN

Abstract. We investigate the problem of L p-maximal regularity on Banach spaces
having a Schauder basis. Our results improve those of a recent paper.We also address
the question of Lr -regularity in Ls spaces.

1. Introduction. We will only recall the basic facts and definitions on maximal regularity.
For further information, we refer the reader to [2], [4], [8] or [7].

We consider the following Cauchy problem:{
u ′(t)+ B(u(t)) = f(t) for 0 � t < T

u(0) = 0

where T ∈ (0,+∞), −B is the infinitesimal generator of a bounded analytic semigroup on
a complex Banach space X and u and f are X-valued functions on [0,T ). Suppose 1 < p <∞.
B is said to satisfy L p−maximal regularity if whenever f ∈ L p([0, T ); X ) then the solution

u(t) =
t∫

0
e−(t−s)B f(s) ds

satisfies u ′ ∈ L p([0,T ); X ). It is known that B has L p-maximal regularity for some 1 < p <∞
if and only if it has L p-maximal regularity for every 1 < p <∞ [3], [4], [14]. We thus say
simply that B satisfies maximal regularity (MR).

As in [7], we define:

D e f i n i t i o n 1.1. A complex Banach space X has the maximal regularity property (MRP)
if B satisfies (MR) whenever −B is the generator of a bounded analytic semigroup.

Let us recall that De Simon [3] proved that any Hilbert space has (MRP), and that the
question whether Lq for 1 < q 	= 2 <∞ has (MRP) remained open until recently. Indeed,
in [7] it is shown that a Banach space with an unconditional basis (or more generally a separable
Banach lattice) has (MRP) if and only if it is isomorphic to a Hilbert space.

In this paper we attempt to work without these unconditionality assumptions and study the
(MRP) on Banach spaces with a finite-dimensional Schauder decomposition. In particular,
we show that a UMD Banach space with an (FDD) and satisfying (MRP) must be isomorphic
to an �2 sum of finite dimensional spaces.
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In the last section we consider the question of whether the solution u of our Cauchy problem
satisfies u ′ ∈ L2([0, T ; Lr) if f ∈ L2([0, T ); Ls).

This work was done during a visit of the second author to the Department of Mathematics
of the University of Missouri in Columbia in fall 1999; he would like to thank the Department
for its warm hospitality.

2. Notation and background. We will follow the notation of [7]. Let us now introduce
more precisely a few notions.

If F is a subset of the Banach space X, we denote by [F] the closed linear span of F. We
denote by (εk)

∞
k=0 the standard sequence of Rademacher functions on [0, 1] and by (hk)

∞
k=0 the

standard Haar functions on [0, 1] (for convenience we index from 0).
Let 1 � p <∞. A Banach space X has type p if there is a constant C > 0 such that for

every finite sequence (xk)
K
k=1 in X:

(
1∫

0
‖

K∑
k=1
εk(t)xk‖2 dt

) 1
2

� C

(
K∑

k=1
‖xk‖p

) 1
p

.

Notice that every Banach space is of type 1. A Banach space X is called (UMD) if martingale
difference sequences in L2([0, 1]; X ) are unconditional i.e. there is a constant K so that for
every martingale difference sequence ( fn)

N
n=1 we have

‖
N∑

k=1
δk fk‖L2(X ) � K‖

N∑
k=1

fk‖L2(X )

if sup
k�N
|δk| � 1.

Let (En)n�1 be a sequence of closed subspaces of X. Assume that (En)n�1 is a Schauder
decomposition of X and let (Pn)n�1 be the associated sequence of projections from X onto En .
For convenience we will also denote this Schauder decomposition by (En, Pn)n�1. The decom-

position constant is defined by sup
n
‖

n∑
k=1

Pk‖; this is necessarily finite. If each (En) is finite-

dimensional we refer to (En) as an (FDD) (finite-dimensional decomposition); an uncondi-
tional (FDD) is abbreviated to (UFDD).

If (En)n�1 is a Schauder decomposition of X and (un)
N
n=1 is a finite or infinite sequence (i.e.

N �∞) of the form un =
rn∑

k=rn−1+1
xk where xk ∈ Ek and 1 = r0 < r1 < . . . < rn < . . . , then

(un)n�1 is called a block basic sequence of the decomposition (En).

We denote by ω<ω the set of all finite sequences of positive integers, including the empty
sequence denoted ∅. For a = (a1, . . . , an) ∈ ω<ω, |a| = n is the length of a (|∅| = 0). For a =
(a1, . . . ,ak) (respectively a = ∅), we denote (a,n)= (a1, . . . ,ak,n) (respectively (a,n)= (n)).
A subset β of ω<ω is a branch of ω<ω if there exists (σn)

∞
n=1 ⊂ N such that β = {(σ1, . . . , σn);

n � 1}. In this paper, for a Banach space X, we call a tree in X any family (ya)a∈ω<ω ⊂ X.
A tree (ya)a∈ω<ω is weakly null if for any a ∈ ω<ω, (y(a,n))n�1 is a weakly null sequence.

Let (ya)a∈ω<ω be a tree in the Banach space X. Let T ⊂ ω<ω, (ya)a∈T is a full subtree of
(ya)a∈ω<ω if ∅ ∈ T and for all a ∈ T , there are infinitely many n ∈ N such that (a, n) ∈ T .
Notice that if (ya)a∈T is a full subtree of a weakly null tree (ya)a∈ω<ω , then it can be reindexed
as a weakly null tree (za)a∈ω<ω .



L p regularity on Banach spaces with a Schauder basisVol. 78, 2002 399

We now state a result of [7] that will be an essential tool for this paper:

Theorem 2.1. Let (En, Pn)n�1 be a Schauder decomposition of the Banach space X. Let
Zn = P∗n X∗ and Z = [∪∞n=1 Zn]. Assume X has (MRP). Then there is a constant C > 0 so that
whenever (un)

N
n=1 are such that un ∈ [E2n−1, E2n] and (u∗n)

N
n=1 are such that u∗n ∈ [Z2n−1, Z2n]

then (
2π∫
0
‖

N∑
n=1

P2nunei2n t‖2 dt

2π

) 1
2

� C

(
2π∫
0
‖

N∑
n=1

unei2n t‖2 dt

2π

) 1
2

and (
2π∫
0
‖

N∑
n=1

P∗2nu∗nei2n t‖2 dt

2π

) 1
2

� C

(
2π∫
0
‖

N∑
n=1

u∗nei2n t‖2 dt

2π

) 1
2

.

We observe that, by a well-known result of Pisier [12] these inequalities can be replaced
by equivalent inequalities (with a modified constant) using εk in place of ei2kt :

‖
N∑

n=1
P2nunεn‖L2(X ) � C‖

N∑
n=1

unεn‖L2(X )(2.1)

and

‖
N∑

n=1
P2nu∗nεn‖L2(X ) � C‖

N∑
n=1

u∗nεn‖L2(X
∗).(2.2)

We refer the reader to [15] for further recent developments in this area.

3. The main results. We begin with a general result on spaces with a Schauder decompos-
ition:

Theorem 3.1. Let X be a Banach space of type p > 1 and with a Schauder decomposition
(En)

∞
n=1. If X has (MRP), then there is a constant C > 0 so that for any block basic sequence

(uk)
N
k=1 with respect to the decomposition (En):

1
C

N∑
k=1
‖uk‖2 �

1∫
0
‖

N∑
k=1
εk(t)uk‖2 dt � C

N∑
k=1
‖uk‖2.(3.1)

P r o o f. If the result is false we can clearly inductively construct an infinite normalized
block basic sequence (un)

∞
n=1 so that there is no constant C so that for all finitely nonzero

sequences (ak)
∞
k=1 we have:

1
C

N∑
k=1
|ak|2 �

1∫
0
‖

N∑
k=1

akεk(t)uk‖2 dt � C
N∑

k=1
|ak|2.(3.2)

It therefore suffices to show that (3.2) holds for every normalized block basic sequence
(un)

∞
n=1. We can clearly then suppose un ∈ En .

We next use a theorem of Figiel and Tomczak-Jaegermann [5] combined with [13] (see
also [10] p. 112) that, since X has nontrivial type for every n ∈ N there exists ϕ(n) ∈ N so
that any subspace F of X with dimension ϕ(n) has a subspace H of dimension n which is
2-complemented in X and 2-isomorphic to �n

2.
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Assume (3.2) is false. Then we can inductively find a sequence (an)n�1 and an increasing
sequence (rn)n�0 with r0 = 0 so that r2n > r2n−1 + ϕ(r2n−1 − r2n−2) for n � 1,

r2n+1∑
r2n+1
|ak|2 = 1

and either
1∫

0
‖

r2n+1∑
k=r2n+1

akεk(t)uk‖2 dt > 2n

or
1∫

0
‖

r2n+1∑
k=r2n+1

akεk(t)uk‖2 dt < 2−n.

In order to create new Schauder decompositions of X, we will need the following elementary
lemma, that we state without a proof:

Lemma 3.2. Let (En)n�1 be a Schauder decomposition of a Banach space X. Assume that
each En has a finite Schauder decomposition (Fn,k)

mn
k=1 with a uniform bound on the decompos-

ition constant. Then (F1,1, . . . , F1,m1 , F2,1, . . . , F2,m2 , . . . ) is also a Schauder decomposition
of X.

We denote the induced decomposition by
∞∑

n=1
⊕(

mn∑
k=1
⊕ Fn,k). Now by assumption Er2n−1+1 +

· · · + Er2n which has dimension at least ϕ(r2n − r2n−1) contains a subspace Hn which is
2-Hilbertian and 2-complemented in X. Let Gn be the complement of Hn in Er2n−1+1 +
· · · + Er2n by the projection of norm 2. At the same time [uk] is 1-complemented (by the
Hahn-Banach theorem) in Ek for r2n−1 + 1 � k � r2n and let Fk be its associated complement.
We thus have a new Schauder decomposition:

(F1, [u1], F2, [u2], . . . , Fr1 , [ur1 ], H1,G1, Fr2+1, [ur2+1], . . . , [ur3 ], H2,G2, . . . ).

If we write Dn = Fr2n−2+1 + · · · + Fr2n−1 + Gn then we have a Schauder decomposition

∞∑
n=1
⊕(Dn⊕ Hn ⊕

r2n−1∑
k=r2n−2+1

⊕[uk]).

Next select a normalized basis (vk)
r2n−1
k=r2n−2+1 of Hn which is 2-equivalent to the canonical basis

of �
r2n−r2n−1
2 . It is easy to see that we can obtain a new Schauder decomposition by interlacing

the (vk) with the (uk) i.e.:
∞∑

n=1
(Dn ⊕[ur2n−2+1]⊕[vr2n−2+1]⊕ . . .⊕[ur2n−1 ] ⊕[vr2n−1 ]).(3.3)

Now again using Lemma 3.2 we can form two further decompositions:
∞∑

n=1
(Dn ⊕[ur2n−2+1 + vr2n−2+1] ⊕[vr2n−2+1]⊕ . . .⊕[ur2n−1 + vr2n−1 ]⊕[vr2n−1 ]),(3.4)

and
∞∑

n=1
(Dn ⊕[ur2n−2+1 + vr2n−2+1] ⊕[ur2n−2+1]⊕ . . .⊕[ur2n−1 + vr2n−1 ] ⊕[ur2n−1 ]).(3.5)
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Now we can apply Theorem 2.1. If we use decomposition (3.4) we note that uk = (uk+ vk)− vk

and so for a suitable C and all n,

‖
r2n∑

k=r2n−2+1
ak(uk + vk)εk‖L2(X ) � C‖

r2n−1∑
k=r2n−2+1

akukεk‖L2(X ).

However, using decomposition (3.3) there is also a constant C′ so that

‖
r2n∑

k=r2n−2+1
akvkεk‖L2(X ) � C′‖

r2n∑
k=r2n−2+1

ak(uk + vk)εk‖L2(X ).

This leads to an estimate:(
r2n−1∑

k=r2n−2+1
|ak|2

) 1
2

� C1‖
r2n−1∑

k=r2n−2+1
akukεk‖L2(X ).

If we use decomposition (3.5) instead we obtain an estimate:

‖
r2n−1∑

k=r2n−2+1
akukei2kt‖L2(X ) � C2

(
r2n−1∑

k=r2n−2+1
|ak|2

) 1
2

.

Combining gives us (3.2) and completes the proof. ��
Let us first use this result to give a mild improvement of a result from [7]:

Theorem 3.3. Let X be a reflexive space with an (FDD) and with non-trivial type which
embeds into a space Y with a (UFDD). If X has (MRP) then X is isomorphic to an �2−sum

of finite-dimensional spaces (
∞∑

n=1
⊕ En)�2 .

P r o o f. Using Proposition 1.g.4 of [9] (cf. [6]) we can block the given (FDD) to produce
an (FDD) (En) so that (E2n)

∞
n=1 and (E2n−1)

∞
n=1 are both (UFDD)’s. Let us denote, as in

Theorem 2.1, the dual (FDD) of X∗ by (Zn)
∞
n=1. Now it follows applying Theorem 3.1 to both

X and X∗ (which also has (MRP)) that there exists a constant C so that if xn ∈ En and x∗n ∈ Zn

are two finitely nonzero sequences

‖
∞∑

k=1
x2k− j‖ � C(

∞∑
k=1
‖x2k− j‖2)

1
2

‖
∞∑

k=1
x∗2k− j‖ � C(

∞∑
k=1
‖x∗2k− j‖2)

1
2

for j = 0, 1. Hence

‖
∞∑

k=1
xk‖ � 2C(

∞∑
k=1
‖xk‖2)

1
2

‖
∞∑

k=1
x∗k‖ � 2C(

∞∑
k=1
‖x∗k‖2)

1
2 .

Now for given xk we may find y∗k ∈ X∗ with ‖y∗k‖ = ‖xk‖ and yk(x∗k ) = ‖x∗k‖. Let x∗k = P∗k y∗k
(where Pk : X → Ek is the projection associated with the FDD (En)). Then ‖x∗k‖ � C1‖xk‖
where C1 = sup

n
‖Pn‖ <∞. Hence if (xk)

∞
k=1 is finitely nonzero, we have

‖
∞∑

k=1
x∗k‖ � 2CC1(

∞∑
k=1
‖xk‖2)

1
2 .

Archiv der Mathematik 78 26



N. J. KALTON and G. LANCIEN402 ARCH. MATH.

Thus
∞∑

k=1
‖xk‖2 =

∞∑
k=1

x∗k (xk)

= (
∞∑

k=1
x∗k )(

∞∑
k=1

xk)

� 2CC1(
∞∑

k=1
‖x∗k‖2)

1
2 ‖
∞∑

k=1
xk‖

so that we obtain the lower estimate:

(
∞∑

k=1
‖xk‖2)

1
2 � 2CC1‖

∞∑
k=1

xk‖.
This completes the proof. ��

We next give another application to (UMD)-spaces with (MRP).

Theorem 3.4. Let X be a (UMD) Banach space with an (FDD) satisfying (MRP). Then X

is isomorphic to an �2-sum of finite dimensional spaces, (
∞∑

n=1
⊕ En)�2 .

P r o o f. Let (En) be the given (FDD) of X. We will show first that there is a blocking (Fn)

of (En) which satisfies an upper 2−estimate i.e. if there is a constant A so that if (xn) is block
basic with respect to (Fn) and finitely non-zero then

‖
∞∑

n=1
xn‖ � A(

∞∑
n=1
‖xn‖2)

1
2 .(3.6)

Once this is done, the proof can be completed easily. Indeed if (Zn) is the dual decomposition
to (Fn) for X∗ then we can apply the fact that X∗ also has (MRP) (X is reflexive) to block
(Zn) to obtain a decomposition which also has an upper 2-estimate. Thus we can assume (Fn)

and (Zn) both have an upper 2-estimate and then repeat the argument used in Theorem 3.3 to

deduce that X = (
∞∑

n=1
⊕ Fn)�2 .

Since X necessarily has type p > 1, we can apply Theorem 3.1 and assume (En) obeys
(3.1).

We now introduce a particular type of tree in the space L2([0,1); X ). Let Dn for n � 0 be
the sub-algebra of the Borel sets of [0, 1) generated by the dyadic intervals [(k− 1)2−n, k2−n)

for 1 � k � 2n. Let En denote the conditional expectation operator En f = E( f |Dn).

We will say that a tree ( fa)a∈ω<ω is a martingale difference tree or (MDT) if

• each fa is D|a|− measurable,
• if |a| > 0 then E|a|−1 fa = 0,
• there exists N so that if |a| > N then fa = 0.

In such a tree the partial sums along any branch form a dyadic martingale which is eventually
constant.

We will prove the following lemma:

Lemma 3.5. There is a constant K so that if ( fa)a∈ω<ω is a weakly null (MDT), there is
a full subtree ( fa)a∈T so that for any branch β we have:

‖∑
a∈β

fa‖L2(X ) � K(
∑
a∈β
‖ fa‖2

L2(X )
)

1
2 .
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P r o o f. For each a we define integers m−(a) and m+(a). If fa 	= 0 we set m−(a) to be the
greatest m so that

‖
m∑

k=1
Pm fa‖L2(X ) � 2−|a|−1‖ fa‖L2(X )

and m+(a) to be the least m > m−(a) so that

‖
∞∑

k=m+1
Pk fa‖L2(X ) � 2−|a|−1‖ fa‖L2(X ).

If f∅ = 0 we set m−(∅) = 0 and m+(∅) = 1; if fa = 0 where a 	= ∅ we set m−(a) to be the last
member of a and m+(a) = m−(a)+ 1.

Since ( fa) is weakly null we have lim
n→∞m−(a, n) = ∞ for every a. It is then easy to pick

a full subtree T so that m−(a, n) > m+(a) whenever a, (a, n) ∈ T. Now let ga =
m+(a)∑

k=m−(a)+1
fa.

Then ‖ fa − ga‖L2(X ) � 2−|a|‖ fa‖L2(X ).

For any branch β of T , we have that ga(t) is a block basic sequence with respect to (En) for
every 0 � t < 1. Hence(

1∫
0
‖∑

a∈β
ε|a|(s)ga(t)‖2

X ds

) 1
2

� C

(∑
a∈β
‖ga(t)‖2

X

) 1
2

.

Integrating again we have(
1∫

0
‖∑

a∈β
ε|a|(s)ga‖2

L2(X )
ds

) 1
2

� C

(∑
a∈β
‖ga‖2

L2(X )

) 1
2

.

From this we get(
1∫

0
‖∑

a∈β
ε|a|(s) fa‖2

L2(X )
ds

) 1
2

� 2C

(∑
a∈β
‖ fa‖2

L2(X )

) 1
2

+∑
a∈β

2−|a|‖ fa‖.

Estimating the last term by the Cauchy-Schwarz inequality and using the fact that X is (UMD)
we get the lemma. ��

Now we introduce a functional Φ on X by defining Φ(x) to be the infimum of all λ > 0 so
that for every weakly null (MDT) ( fa)a∈ω<ω with f∅ = xχ[0,1) we have a full subtree T so that
for any branch β

‖∑
a∈β

fa‖2
L2(X )

� λ+ 2K 2
∑
a∈β
a 	=∅

‖ fa‖2
L2(X )

.(3.7)

Note that since

‖∑
a∈β

fa‖2
L2(X )

� 2(‖x‖2 + ‖∑
a∈β
a 	=∅

fa‖2
L2(X )

)

we have an estimate Φ(x) � 2‖x‖2. By considering the null tree we have F(x) � ‖x‖2. It
is clear that Φ is continuous and 2-homogeneous. Most importantly we observe that Φ is

26*
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convex; the proof of this is quite elementary and we omit it. It follows that we can define an
equivalent norm by |||x|||2 = Φ(x) and ‖x‖ � |||x||| � 2‖x‖ for x ∈ X.

Next we prove that if x ∈ X and (yn) is a weakly null sequence then

lim sup
n→∞

(|||x + yn|||2 + |||x − yn|||2) � 2|||x|||2 + 4K 2 lim sup
n→∞

‖yn‖2.(3.8)

We first note that we can suppose lim
n→∞|||x ± yn||| and lim

n→∞‖yn‖2 all exist. Now suppose ε > 0.

Then we can find weakly null (MDT)’s ( f n
a )a∈ω<ω with f n

∅ ≡ x + yn so that for every full
subtree T we have a branch β on which:

‖∑
a∈β

f n
a ‖2

L2(X )
+ ε > |||x + yn|||2 + 2K 2

∑
a∈β
a 	=∅

‖ f n
a ‖2

L2(X )
.(3.9)

In fact by easy induction we can pick a full subtree so that (3.9) holds for every branch. Hence
we suppose the original tree satisfies (3.9) for every branch.

Similarly we may find weakly null (MDT)’s (gn
a)a∈ω<ω with gn

∅ ≡ x − yn and for every
branch β,

‖∑
a∈β

gn
a‖2

L2(X )
+ ε > |||x − yn|||2 + 2K 2

∑
a∈β
a 	=∅

‖gn
a‖2

L2(X )
.

We next consider the (MDT) defined by h∅ ≡ x,

h(n)(t) =
{

yn if 0 � t < 1
2

−yn if 1
2 � t < 1

and if |a| > 1 then

h(a,n)(t) =
{

f n
a (2t − 1) if 0 � t < 1

2

gn
a(2t) if 1

2 � t < 1.

Now for every branch of the (MDT) (ha)a∈ω<ω with initial element {n} we have

‖∑
a∈β

ha‖2
L2(X )
+ ε > 1

2 (|||x + yn|||2 + |||x − yn|||2)+ 2K 2
∑
a∈β
|a|>1

‖ha‖2
L2(X )

.

However, from the definition of Φ(x) = |||x|||2 it follows that there exists n0 so that if n � n0

we can find a branch β whose initial element is n and such that

‖∑
a∈β

ha‖2
L2(X )

< |||x|||2 + 2K 2
∑
a∈β
|a|>0

‖ha‖2
L2(X )
+ ε.

Combining gives the equation (for n � n0),

1
2 (|||x + yn|||2 + |||x − yn|||2) � |||x|||2 + 2K 2‖yn‖2 + 2ε.

This proves (3.8). But note that if yn is weakly null we have lim inf
n→∞ |||x − yn||| � |||x||| and

so we deduce:

lim sup
n→∞

|||x + yn|||2 � |||x|||2 + 4K 2 lim sup ‖yn‖2.
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Using this equation it is now easy to block the Schauder decomposition (En) to produce
a Schauder decomposition (Fn) with the property that for any N if x ∈ F1 + · · · + FN and

y ∈
∞∑

k=N+2
Fk then

|||x + y||| � (1+ δN )(|||x|||2 + 4K 2‖y‖2)
1
2 ,

where δN > 0 are chosen to be decreasing and so that
∞∏

N=1
(1+ δN ) � 2. Next suppose (xk)

is any finitely non-zero block basic sequence with respect to (Fn). By an easy induction we
obtain for j = 0, 1:

|||
n∑

k=1
x2k− j ||| � 4K 2

n−1∏
k=1
(1+ δ2k− j)(

n∑
k=1
|||x2k− j |||2) 1

2 .

Hence

‖
n∑

k=1
xk‖ � 32K 2(

n∑
k=1
‖xk‖2)

1
2 .

This establishes (3.6) and as shown earlier this suffices to complete the proof. ��
R e m a r k. Recently Odell and Schlumprecht [11] showed that a separable Banach space

X can be embedded in an �p−sum of finite-dimensional spaces for 1 < p <∞ if and only if
X is reflexive and every normalized weakly null tree has a branch which is equivalent to the
usual �p−basis. This result is closely related to the proof of the previous theorem.

4. On Lr-regularity in Ls spaces. Let s ∈ [1,∞). We consider our usual Cauchy problem:{
u ′(t)+ B(u(t)) = f(t) for 0 � t < T

u(0) = 0

where T ∈ (0,+∞), −B is the infinitesimal generator of a bounded analytic semigroup on
Ls = Ls([0, 1]) and f ∈ L2([0, T ); Ls). Then we ask the following question: for what values
of s and r in [1,∞) does the solution

u(t) =
t∫

0
e−(t−s)B f(s) ds

necessarily satisfies u ′ ∈ L p([0, T ); Lr)? Thus we introduce the following definition:

D e f i n i t i o n 4.1. Let r and s in [1,∞). We say that (r, s) is a regularity pair if whenever
−B is the infinitesimal generator of a bounded analytic semigroup on Ls = Ls([0,1]) and
f ∈ L2([0, T ); Ls), the solution u of{

u ′(t)+ B(u(t)) = f(t) for 0 � t < T

u(0) = 0

satisfies u ′ ∈ L p([0, T ); Lr).

Notice that it follows from previous results ([3], [8] and [7]) that (s, s) is a regularity pair
if and only if s = 2. This is extended by our next result:

Theorem 4.2. Let r and s in [1,∞). Then (r, s) is a regularity pair if and only if r � s = 2.

P r o o f. It follows clearly from the work of De Simon [3], that if r � s = 2 then (r, s) is
a regularity pair.
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So let now (r, s) be a regularity pair. Since L1 does not have (MRP) ([8]), we have that s > 1.
Then, solving our Cauchy problem with B = 0, we obtain that r � s. Thus we can limit
ourselves to the case s > 1 and 1 � r � s.

Then by the closed graph Theorem, for any B so that −B is the infinitesimal generator of
a bounded analytic semigroup on Ls = Ls([0,1]), there is a constant C > 0 such that for any
f ∈ L2([0, T ); Ls):

‖u ′‖L2(Ls) � C‖ f ‖L2(Ls).

Using the inclusion Ls ⊂ Lr for r � s, we can now state the following analogue of Theo-
rem 2.1:

Proposition 4.3. Let (En, Pn)n�1 be a Schauder decomposition of Ls. Assume that (r, s)
is a regularity pair. Then there is a constant C > 0 so that whenever (un)

N
n=1 are such that

un ∈ [E2n−1, E2n] then

‖
N∑

n=1
P2nunεn‖L2(Lr ) � C‖

N∑
n=1

unεn‖L2(Ls).

Then our first step will be to show that the Haar system satisfies some lower-2 estimates in
Ls in the following sense:

Lemma 4.4. If there exists r � s such that (r, s) is a regularity pair, and if s < p < 2 or
p = 2 then there is a constant C > 0 such that for any normalized block basic sequence
(v1, . . . , vn) of (hk) and for any a1, . . . , an in C:

‖
n∑

k=1
akvk‖Ls � C(

n∑
k=1
|ak|p) 1

p .

P r o o f. We first observe that if 1 < p < 2, it follows from the work of J. Bretagnolle,
D. Dacunha-Castelle and J. L. Krivine [1] on p-stable random variables that there is a sequence
(en)n�1 in L1 which is equivalent to the canonical basis of �p in any Lq for 1 � q < p. Thus
(en) is weakly null in Ls, and by a gliding hump argument, we may assume that (en) is actually
a block basic sequence with respect to the Haar basis. If p = 2 then the Rademacher functions
already form a block basic sequence in every Lq for 1 � q <∞.

Now assume the lemma is false. We pick a normalized block basic sequence (v1, . . . , vn1)

of (hk) and a1, . . . , an1 in C so that

‖
n1∑

k=1
akvk‖Ls � (

n1∑
k=1
|ak|p) 1

p = 1.

Then pick m1 ∈ N such that (v1, . . . , vn1, em1) is a block basic sequence of (hk). By induction,
we pick a normalized block basic sequence (vn j+1, . . . , vn j+1) of (hk), an j+1, . . . , an j+1 in C
and m j+1 ∈ N so that (v1, . . . , vn1 , εm1 , vn1+1, . . . , vn j+1, εm j+1) is a block basic sequence of
(hk) and

‖
n j+1∑

k=n j+1
akvk‖Ls � 1

2 j (

n j+1∑
k=n j+1

|ak|p) 1
p = 1

2 j .
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So we can find (Ik)k�1 and (Jk)k�1 two sequences of finite intervals ofN such that {Ik , Jk : k � 1}
is a partition of N and for all k � 1, vk ∈ [h j, j ∈ Ik] and emk ∈ [h j, j ∈ Jk]. Then set

Xk = [h j : j ∈ Ik ∪ Jk].
Then (Xk) is an unconditional Schauder decomposition of Ls. Each Xk can be decomposed
into Xk = E2k−1⊕ E2k, where E2k−1 = [vk + εmk ], emk ∈ E2k and the corresponding projections
are uniformly bounded. So, by Lemma 3.2, (Ek)k�1 is a Schauder decomposition of Ls. We can
now make use of Proposition 4.3. If we decompose akvk = ak(vk + emk )− akemk in E2k−1⊕E2k,
we obtain that there is a constant C > 0 such that for all n � 1:

‖
n∑

k=1
akvkεk‖L2(Ls) � C(

n∑
k=1
|ak|p) 1

p .

Since (vk) is an unconditional basic sequence in Ls, there is a constant K > 0 so that for all
n � 1:

‖
n∑

k=1
akvk‖Ls � K(

n∑
k=1
|ak|p) 1

p ,

which is in contradiction with our construction. ��
We now conclude the proof of Theorem 4.2. The Haar basis of Ls has a block basic sequence

equivalent to the standard basis of �max(s,2). Hence Lemma 4.4 shows that max(s, 2) � p
whenever s < p < 2 or p = 2. Thus s = 2. ��
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[12] G. PISIER, Les inégalités de Kahane-Khintchin d’après C. Borell. Séminaire sur la Géometrie des
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Université de Franche-Comté
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