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Set-functions and factorization 

By 

N. J. KALTON and S. J. MONTGOMERY-SMITH *) 

1. Introduction. Let s~ be an algebra of subsets of some set sQ. Let us say that a 
set-function 4) : ~ -~ N is monotone if it satisfies 4) (0) = 0 and 4) (A) < 4) (B) whenever 
A c B. We say 4) is normalized if 4) (~) = 1. A monotone set-function ~b is a submeasure if 

4) (A u B) < 4) (A) + 4) (B) 

whenever A, B ~ d are disjoint, and 4) is a supermeasure if 

4) (A w B) _>- 4) (A) + 4) (B) 

whenever A, B ~ d are disjoint. If 4) is both a submeasure and supermeasure it is a 
(finitely additive) measure. 

If 4) and $ are two monotone  set-functions on d we shall say that 4) is $-continuous 
if lira 4) (A~) = 0 whenever lim $ (A,) = 0. If 4) is S-continuous and ~ is 4)-continuous 

then 4) and $ are equivalent. A monotone  set-function 4) is called exhaustive if 
lira 4)(A,) = 0 whenever (A,) is a disjoint sequence in d .  The classical (unsolved) Ma- 

haram problem ([1], [5], [6] and [15]) asks whether every exhaustive submeasure is 
equivalent to a measure. A submeasure 4) is called pathological if whenever 2 is a measure 
satisfying 0 < 2 = 4) then 2 = 0. The Maharam problem has a positive answer if and only 
if there is no normalized exhaustive pathological submeasure. 

While the Maharam problem remains unanswered, it is known (see e.g. [1] or [15]) that 
there are non-trivial pathological submeasures. In the other direction it is shown in [6] 
that if 4) is a non-trivial uniformly exhaustive submeasure then 4) cannot be pathological. 
4) is uniformly exhaustive if given e > 0 there exists N ~ N such that whenever 
{A 1 . . . . .  AN} are disjoint sets in ~ then 

min 4)(Ai) < e. l <=i<=N 

Let us say that a monotone set-function q5 satisfies an upper p-estimate where 
0 < p < oo if 4 p is a submeasure, and a lower p-estimate if 4)P is a supermeasure. If 4) is 
a normalized submeasure which satisfies a lower p-estimate for some 1 < p < co then 4) 
is uniformly exhaustive and hence by results of [6] there is a non-trivial measure 2 with 
0 -< 2 <- 4)- In Section 2 we prove this by a direct argument which yields a quantitative 
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estimate that  2 can be chosen so that  

2(f2) > 2(2 P -  1) -1/" - 1. 

Notice that  the expression on the right tends to one as p ~ 1 so this result can be regarded 
for p close to 1 as a per turba t ion  result. The dual  result for supermeasures (Theorem 2.2) 
is that  if a normalized supermeasure q~ satisfies an upper  p-estimate where 0 < p < I then 
there is a ~b-continuous measure 2 with )~ > ~b and 

2((2) ____ 2(2 P - 1) -1/v - 1. 

While we believe these results with their relatively simple proofs have interest in their 
own right, one of our motivat ions for considering them was to use them in the study of 
some questions concerning quasi-Banach lattices, or function spaces. 

I t  is well-known ([7]) that a Banach lattice X with a (crude) upper  p-estimate is r-convex 
for every 0 < r < p (for the definitions, see Section 3). This result does not  hold for 
arbi t rary  quasi-Banach lattices [2]; a quasi-Banach lattice need not  be r-convex for any 
r < ~ .  However,  it is shown in [2] that  if X has a crude lower q-estimate for some q < 
then the result is true. We provide first a simple proof  of this fact, only depending on the 
arguments of Section 2. We then investigate this result further, mot ivated by the fact 
that if X satisfies a strict upper  p-estimate (i.e. with constant  one) and a strict lower 
p-estimate then X is p-convex (and in fact isometric to an L v (#)-space.) We thus try to 
estimate the constant  of r-convexity M (r) (X) when 0 < r < p and X has a strict upper 
p-estimate and a strict lower q-estimate where p, q are close. We find that  an estimate of 
the form 

logM(r)(X)  < cO(l + Ilog01) 

where c = c (r, p) and 0 = q/p - 1. We show by example that  such an estimate is best 
possible. Let us remark  that  in the case r = i < p < q the constant  M (1) (X) measures the 
distance (in the Banach-Mazur  sense) of the space X from a Banach lattice. 

Final ly in Section 4 we apply these results to give extensions of some factorization 
theorems of Pisier [13] to the non-locally convex setting. Pisier showed the existence of 
a constant  B = B(p) so that  if X is a Banach space and T:  C(~2)-> X is bounded 
satisfying for a suitable constant  C and all disjointly suppor ted  functions f l ,  . . . ,  f ,  e C (g2) 

II rfk II < C max I/fk II 
k = l  1-<k-<n 

then there is as probabi l i ty  measure # on (2 so that for f e C((2) 

II T f  If <= BC Iff HLv,,~,) 

where Lv, 1 (#) denotes the Lorentz space Lv, 1 with respect to #. 
Pisier's approach in [13] uses duali ty and so cannot  be used in the case when X is a 

quasi-Banach space. Nevertheless the result can be extended and we prove that if 
0 < r < 1 there is a constant  B = B (r, p) so that  if X is r -normable  then there exists a 
probabi l i ty  measure/~ so that  for all f ~ C (Y2), 

II Tf  II ~ BC IIf ItL~,~<,,). 
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We apply  these results to show if X is a quas i -Banach  space of  co type  two then  any 

ope ra to r  T :  C ( O ) ~  X is 2-absolu te ly  s u m m i n g  and  so factorizes t h rough  a Hi lber t  

space. We conc lude  by present ing  a dual  result  and  m a k e  a general  con jec tu re  that  if X 

and Y are quas i -Banach  spaces such tha t  X *  and Y have  co type  two  and  T :  X ~ Y is 

an a p p r o x i m a t e l y  l inear  o p e r a t o r  then  T factorizes t h rough  a Hi lber t  space. 

2. Submeasures and supermeasures. Let  us define for 0 < p < ~ ,  

2 
K p -  (2 p -  1)1/p 1. 

No t i ce  tha t  for p close to 1 we have  Kp ~ 1 - 4 ( p  - 1 ) log  2 while for p large we have  
Kp ~ p - 1 2 - P .  

We n o w  state our  m a i n  result  on  submeasures  wi th  a lower  es t imate  (see Sect ion  1 for 

the definitions). 

Theorem 2.1. Le t  ~ be an algebra o f  subsets o f  s Suppose that dp is a normalized 
submeasure on d ,  which satisfies a lower p-estimate where 1 < p < 0o. Then there is a 
measure 2 on d with 0 < 2 <- (p and 2(f2) > Kp. 

P r o o f. By an elementary compactness argument we need only prove the result for the case when 
f2 is finite and d = 2 a. We fix such an s 

Let 7 be the greatest constant such that, whenever ~b is a normalized submeasure on s satisfying 
a lower p-estimate then there is a measure 2 with 0 -< 2 -< 4) and q5 (O) > ?. It follows from a simple 
compactness argument that there is a normalized submeasure ~b satisfying a lower p-estimate for 
which this constant is attained; that is if 2 is a measure with 0 < 2 -< 4) then 2 (O) < ?. We choose 
this ~b and then pick an optimal measure 2 with 0 -<- 2 < ~b and 2(I2) = 7. 

Let 6 = (2 p - 1)-t/p. Let E be a maximal subset of O such that 2 (E) > 6 ~b (E) and let F = I2\E. 
Suppose A c F; then 

2(A) + )o(E) = 2 (AWE)  < 6$(A  u E) < 6(r + (~(E)), 

and so 

(1) )o(A) <= 5 d?(A). 

Let q be the conjugate index of p,i.e, p - l +  q-l_ ]. Let v be any measure on ~4 so that 
0 _< v _< qk Suppose cl, c 2 > 0 are such that c~ + c~ = 1. Consider the measure 

#(A) = cl 2(A n E ) + c2 v(A n F ). 

Then for any A 
#(A) < (c~ + cq2)l/q(2(A c~ E) P + v(A c~ F)P) 1/p 

< (q~(A c~ E) p + r  c~ F)P) 1/P __< q5 (A). 

Hence/,(s __< y which translates as 

cl.~(E) + c2v(F) <= ?. 

Taking the supremum over all cl, c2, we have: 

(2) 2(E) v + v (F) '  __< 7 p. 

Now take v(A) = 6-1 2(A n F). It follows from (1) that v < ~b and hence from (2), 

)~(E) P + 5 - P 2 ( F ) '  __< 7 p. 
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If we set t = 2(E)/7 then 

t p + ( 2 ~ -  1)(1 - t) p ~ 1 

Hence 2(E) > ~/2. and it follows by calculus that  t > 5. = 
Now, consider the submeasure  O ( A ) =  49(A c~ F). By hypothesis  on Y there exists a positive 

measure v on 9. such that  0 < v -< ~ and v (f2) > Y ~ (f2). Thus for all A we have 0 < v (A) < 49 (A ~ F), 
v(E) = 0 and v(F) = v(~2) > 749(F). Returning to equat ion (2) we have: 

) . (EF + 7~ 49(F) ~ _-< 7 ~. 

However  49(F) > 1 -- 49(E) > 1 - 3 - ~  2(E). Thus, recalling that  t = 2(E)/7 

t p + (1 - 3-~7t )  p < 1, 

which simplifies to 

Since t > g~ it follows again by calculus arguments  that  the r ight-hand side is minimized when t = g'~ 
and then 

y > 26(1 - (1 - 2-P)  ~/p) = Kp 

and this completes the proof. [ ]  

I n  a l m o s t  t h e  s a m e  m a n n e r ,  we  c a n  p r o v e  t h e  d u a l  s t a t e m e n t  fo r  s u p e r m e a s u r e s .  

T h e o r e m  2.2. Le t  d be an algebra o f  subsets o f  a set f2. Suppose 0 < p < • and that 

is a normalized supermeasure on Y2 which satisfies an upper p-estimate. Then there is a 

@continuous measure 2 on d such that 2 > q~, 2 (f2) < Kp.  

P r o o f .  We first prove the existence of some measure 2 with 2 > 49 and 2(f2) < Kp without  
requiring continuity.  As in the preceding p roof  it will suffice to consider the case when f2 is finite and 
s r  = 2 e. In this case there is a least constant  7 < oo with the proper ty  that  if 49 is a normalized 
supermeasure on O then there is a measure 2 > 49 with 2 ( 0 )  < 7- We again may choose an extremal 
49 and associated extremal 2 for which 2 (0 )  = 7- 

Define 6 = (2 p - / ) -  1/p > I we now let E be a maximal  subset so that  2 (E) < 6 49 (E) and defining 
F = f2 \E  we obtain in this case that  i f A  c F then 2(A) > 349(A). 

1 1 
. . . .  1. Let v be any measure  on d such that  v (A) > 49 (A) In this case let q be defined by q P 

whenever A ~ E Suppose c 1, c 2 > 0 satisfy c~ -q + c~ q = 1. Consider  the measure 

#(A) = c I 2 ( A n  E) + c 2 v(A c~ F). 

Then for any A, 

49 (A) _= (49 (A • E F  + 49 (A n F)P) 1/~ 

< (2(A c~ E) p + v (A c~ F)P) lip 

< (c 1 )~(A n E) + c 2 v(A n F)) (c~ q + c~ q) = #(A). 

Hence #(f2) > Y and so 

c 1 2(E) + ear(F) > 7. 

Minimizing over c 1 , c 2 yields 

(3) 2(E) p + v(F) p >= 7 p. 
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In particular if we let v(A) = 5-12(A c~ F) and set t = 2(E)/7 we obtain 

t ,  + (2 ,  - t)  (t - t)~ __> 1.  

Since in this case p < 1 we are ted to the conclusion that t > 4. 
Next we consider the supermeasure ~k (A) = tb (A c~ F) and'deduce the existence of a measure 

v > ~k with v(Q) < ),$(f2) = VqS(F). In this case (3) gives that 

.~ (E) ,  + ~ ,  4 , ( F ) ,  __> 7~. 

Now as $(F)  < 1 - $(E) < t -- b-~ 2(E) we have: 

P ' +  (1 -- ~ - ~ t )  p > 1 

and this again leads by simple calculus to the fact that y __< Kp. This then completes the proof if we 
do not require continuity of 2. 

Now suppose q~ is a normalized supermeasure on ~r satisfying an upper p-estimate. Let 2 be a 
minimal measure subject to the conditions )o => q~ and ), (~2) <= K e. (It follows from an argument based 
on Zorn's Lemma that such a minimal measure exists). Suppose Jim~ q~(F,)= 0. Consider the 

measures 2.(A) = )~(A c~ E,) where E, = l~\F,. Let q/be any free ultrafilter on the natural numbers 
and define 2~ (A) = lim~ 2, (A). Clearly )oq~ __< 2. Now for any A 

2,(A) = 2(A c~ E,) > q~(A c~ E.) > ($(A) p - qS(F,)) ~/" . 

Hence 2 ,  = 2 by minimality. Thus lim~u2(F.)= 0 for every such ultrafilter and this means 
lim 2(F,,) = O. [] 

n ,-~ co 

The fol lowing corol lary  is p roved  for more  general  un i formly  exhaust ive submeasures  

in [61. 

Corol lary  2.3. Le t  ~4 be an algebra o f  subsets o f  g2 and let ~ be a submeasure on f2 such 
that fo r  some constant c > 0 and some q < oe, we have: 

4)(A 1 w . . .  u A . )  > c(~bq(A1) + " ,  + dpq(A.)) 1/q 

whenever A 1 , . . . ,  A ,  are disjoint. Then there is a measure t2 on d such that 12 and ~ are 
equivalent. 

P r o o f. Define ~ by 

O (A) = sup q (A k 
k 

where the supremum is computed over all n and all disjoint (A1 . . . . .  A,) so that A = ~j A k. It is not 
k = l  

difficult to show that $ is a supermeasure satisfying a 1/q-upper estimate and clearly c q $ < qiq <_ $. 
By Theorem 2.2 we can pick a measure # > $ which is equivalent to $ and hence to q9. [] 

3. Convexi ty in lattices. Let f2 be a compac t  Hausdor f f  space and  suppose  N(~2) 
denotes  the a -a lgebra  of Borel  subsets  of  s Let B (~2) denote  the space of all rea l -valued 
Borel funct ions  o n  f2. An  admiss ible  extended-value  q u a s i n o r m  on  B(f2) is a 

m a p f  ~ I[f Ilx, ( n ( f 2 ) ,  [0, oe]) such that :  

(a) ]If[Ix --< [Igllx for all f , g ~ B ( O )  with I f ]  < ]g] pointwise.  
(b) t i f f  fix = ]c~[ H f l [ x f o r f ~ B ( O ) ,  a ~ I R  
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(c) There is a constant C so that if f ,  g > 0 have disjoint supports then l l f  + gilx 
<C(]l f] lx  + llgllx). 

(d) There exists a strictly positive u with 0 < ]]UHx < co. 
(e) I f fo > 0 and f.  T f  pointwise, then [If,[]x ~ Hf ]Ix. 

The space X = {f :  j[f [Ix < oo} is then a quasi-Banach function space on • equipped 
with the quasi-norm ]]f]]x (more precisely one identifies functions f , g  such that 
l] f - 9 ]Ix = 0). We say that X is order-continuous if, in addition, we have: 

(f) I f f ,  ~. 0 pointwise and ]If11Fx < ~ then Nf,[[x ~ O. 

Conversely if X is a quasi-Banach lattice which contains no copy of c o and has a weak 
order-unit then standard representation theorems can be applied to represent X as an 
order-continuous quasi-Banach function space on some compact Hausdorff space s in 
the above sense. More precisely, if u is a weak order-unit then there is a compact 
Hausdorff space s and a lattice embedding L:  C(~)  ~ X so that L[O, X~] = [0, u]. 
Since X contains no copy of co we can use a result of Thomas [16] to represent L is the 
form 

L f  = ~ f dq~ 
f t  

where �9 is regular X-valued Borel measure on f2. This formula then extends L to all 
bounded Borel functions. We now define the quasi-Banach function space Y by 

i]f lit = sup [[L(min([f [, n ~ ) l l x  

and it may be verified by standard techniques that L extends to a lattice isomorphism of 
Y onto X (which is an isometry if we assume that the quasi-norm on X is continuous). 

For  an arbitrary quasi-Banach function space X and 0 < p < ~ we define the p-con- 
vexity constant M~P)(X) to be the least constant (possibly infinite) such that for 
A . . . . .  L + x  

x 

and we let the p-concavity c o n s t a n t  M(p)(X) be the least constant such that 

We also let M~~ be the least constant such that 

II IZ...f.ll/"FIx < M ~~ [ I  IIf~ll 
i = 1  

X is called p-convex if M (~) (X) < oo and p-concave if Mp (X) < oo; we will say that X 
is geometrically convex if M (~ (X) < oo. In [2] X is called L-convex if it is p-convex for 
some p > 0; it follows from [2] and [4] that X is L-convex if and only if it is geometrically 
convex. 
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Let us now tu rn  to upper  a n d  lower estimates. We say X satisfies a crude upper  

p-est imate with cons t an t  a if for any  dis joint  f l  . . . . .  f ,  we have 

1171 + " "  + f . l l x  < a _ Ilf~l[ 
i = 1  

and  we say that  X satisfies an  upper  p-est imate if a = 1. We say that  X satisfies a crude 
lower q-est imate with cons t an t  b if for any  dis joint  f l  . . . .  , f ,  we have 

b IIA + + Lllx > ( Z IIf~fl p'~I/p i = J -  X ]  

and  X satisfies a lower q-est imate if b = 1. 

L e m m a  3.1. Suppose 0 < p < q < oo. I f  X is a quasi-Banach function space satisfying 
a crude upper p-estimate with constant a and a crude lower q-estimate with constant b then 
there is an equivalent function space quasinorm 1[ ]t r satisfying an upper p and a lower 
q-estimate with 

[If Ilx < l l f  lit < ab IIf  Ilx. 

P r o o f. First we define 

,O + i lf  Ilw = inf II/xA~ p 
i=  

where the infimum is taken over all possible Borel partitions {A 1 . . . . .  A.} of O. It is clear that 
Ilf liw < [If Hx < a l lf  ilw and it can be verified that W satisfies an upper p-estimate and a crude 
lower q-estimate with constant b. Next we define 

" f " v  = s u p (  ~,=, 'ifXAkl'~) '/q 

and finally set [if []r = a [if lip We omit the details. [] 

We now give a simple p roof  of the result  proved in  [2] that  any  quas i -Banach  funct ion  
space which satisfies a lower est imate is L-convex.  We recall first that  if 12 is any  Borel 
measure  on  f2 then  Lp, o0 (12) is the space of all Borel funct ions  such that  

Hf IlL,,oo(~) = sup t(12 {[f l  > t}) 1/p < o0. 
t > O  

Theorem 3.2. Let  X be a p-normable quasi-Banach function space which satisfies a crude 
lower q-estimate. Then: 

(i) X is r-convex for  0 < r < p 
(ii) There is a measure 12 on f2 such that [ i f  [ix = 0 / f  and only i f  f = 0 # - a.e. 

P r o o f. We may assume by Lemma 3.1 that X has an upper p-estimate and a lower q-estimate. 

Now suppose f ,  . . . . .  f ,  e X+ and t , ~ ,  fF) = f. Consider the submeasure q~ (A) = II fZA l[ p for 
\ - -  / 

A E ~ (f2). This has a lower q/p-estimate and hence there is a Borel measure/~ with # (f2) > Kq/p ~ (~2) 
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and such that # (A) __< II f x a  Itp for any Borel set A. Thus for any g E B (f2) (note that # is supported 
on the set where f is finite) 

I [gf -1  ][L.,~(.)< [[g[lx. 

Now the space Lp,~(#) is r-convex with M (~) (Lp, ~ (#)) < C = C(p, r). Thus 

[If Ilx = d2(s lip <= Kq/-e I/p II X~ ItL.,~(.) 

where C' = C'(p, q, r). For (ii) let u be a strictly positive function with 0 < ]]U[Ix < ~ and define 
~b(A) = ]l uxA tiP; then by Corollary 2.3 there is a measure # equivalent to ~b and the conclusion 
follows quickly. []  

N o w  suppose  # is any  (finite) Borel  measure  on  s We define the Loren tz  space Lp, q 
for 0 < p , q  < oe by  

~ q  

ll f ]lLp q = ( ~ - tq/P- l f * (t)q dO k o P  

Here  f *  is the decreas ing  r ea r r angemen t  of I f I i.e. f *  (t) = inf  sup [f(~o)j. I t  can  easily 
seen by  in tegra t ion  by  par t s  tha t  '~ ~) --<t o~ ~ e 

, , f l [ t . p . q = ( i q t q - l # ( , f , > t ) q / P d O l / q .  

It  is then clear  tha t  i f p  < q then  Lp, q satisfies an uppe r  p and  a lower  q-est imate.  I f p  > q 
then Lp, q has an  upper  q and  a lower  p-est imate .  

Suppose  p < q. We define the func t iona l  

(4) ! I f  [[Ap,,~ sup ( ~ ( i n f  \q \~/q -- If(o))[) t~(Ai) q/p) 
i = 1  \~ 

where the s u p r e m u m  is t aken  over  all Borel  pa r t i t i ons  {A~ . . . . .  A,}  of f2. 

P r o p o s i t i o n  3.3. Suppose 0 < p < q. Then: 
(i) The A (p, q)-quasi-norm is the smallest admissible quasi-norm which satisfies a lower 

q-estimate and such that 11ZA [1 > ~(A) I/p for any Borel set. 
(ii) I f  f ~ B(f2) and f *  is the decreasing rearrangement of  If] on [0, oo) then 

(5) I l f  Ilap,~ = sup * (zj)q(zj - zj_l) q/ 
f j =  

where 3-- = {z o = 0 < z 1 < . . .  < r ,}  runs through all possible finite subsets of IR. 

(iii) I f  f ~ B (f2) then 

I l f  Ih,.o <= I l l  IlL,,q -< ((1 + 0)2<1+~176 l/q L!f IIA,,~ 

q 
where l + 0 = - .  

P 
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P r o o f. (i) is clear from the definition. 
(ii) Suppose f e B(f~) and let {A 1 . . . . .  A,} be any Borel partition of g2. Suppose that 1 < L  k < n. 

Suppose inf I f  [ < in: I f  I. Then it is easy to verify that if we let A'k = {co E A s w A k: I f  (co) l > in: I f  ]} 
Aj 

and let A~ = (Aj u Ak)\A'  k then the partition obtained by replacing A j, A k by A), A~, increases the 
right-hand side of (4). In particular it follows that (5) defines the Ap, q quasinorm when # is nonatomic. 
Further if f *  is constant on an interval [ct, fl] it suffices to consider 5 where no zj lies in (c~, fl) and 
this yields the conclusion for general/~. 

(iii) The first inequality in (iii) is immediate from (i) since Lp, q satisfies a lower q-estimate. For  the 
right-hand inequality we observe that if h = 1 + 0 =- q/p: 

"~ l /q 

<= ~ p ( q(h"+i-h")h~ - .  

2 1 1 

< h~(h - ~) (~-~)  I I f  I1~,.~- 

The result then follows. []  

U n d e r  the hypo thes i s  p > q we define Ap, q by  

( \ Xl/q 
II: 

where  the in f imum is aga in  c o m p u t e d  over  all  Borel  pa r t i t i ons  of ~2. P r o p o s i t i o n  3.4 now 
has  an  ana logue  whose  p r o o f  is very s imi lar  and  we omi t  mos t  of the detai ls .  

Propos i t ion  3.4. Suppose 0 < q < p. Then: 
(i) The A (p, q)-quasinorm is the largest admissible quasi-norm which satisfies an upper 

q-estimate and such that N 7~A II <--_ 1 ~ (A) l/p, for  any Borel set A. 
(it) I f  f e B(f~) then 

in,( t l f  l[ A p , q  = sZ=l f*(r i -1)q(z j  - z~- t )  q! 

(iii) 

where Y = {z o = 0 < z 1 < . . .  < % = ~ (t2)} runs through all possible f in i te  subsets 
o f  [0, # (•)1. 
I f  f ~ B(f2)  then 

> ((1 + 0)-2-~176 I I f  IIz,  q II f It L,,q ~ II f II A,,q = , 

where 0 =--P 1. 
q 
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P r o o f. We will only proof  the second inequality in (iii). We define h = 1 + 0 = p/q. 

[If liLy, q = (~_ ! ;,q : : "  -~  / * (tt q dr) "~ 
/ 

> ~ _ h")hn(q/v-1)f*(h(~+l~) 1/q 
n = - - c ~  p 

1 1 

>= (h - I)(7--~)h -:/'-l/q lit Ila,,~. 

The result then follows. [ ]  

We n o w  i m m e d i a t e l y  d e d u c e  the  fo l l owing :  

P r o p o s i t i o n  3.5. Let X be quasi-Banach function space on Q satisfying a crude upper 
p-estimate with constant a and a crude lower q-estimate with constant b. Then if f c X+ with 

/ I f  IIx = 1: 
(i) There is a probability measure # on ~2 such that f > 0 # - a.e. and if g ~ X,  

Ir g f -  l llA,,q(,) <= abK~) /p  [I g Hx. 

(ii) There is a probability measure 2 on O such that f > 0 2 - a.e. and if g c X 

[I g IIx < . h , :  :/q . . . . .  p/q I[ g f -  !]Jaq,, (2). 

P r o o f. We first introduce an equivalent quasinorm FJ Ilr with an exact upper p and lower 
q-estimate as in Lemma 3.1 so that I[gl[x < [[gIlr < ab [[gl[x for all g. 

(i) As in Theorem 3.2 we consider the submeasure r (A) = FI fZa [[~. There is a probability mea- 
sure p such that 

_ q~(A) 
0 __< ~,(A) _6< K q : / r  

for all Borel sets A. Then for g ~ X, and any Borel partit ion {A 1 . . . . .  A , }  of ~2, 

< Kq:-v'/v Ilf I l l '  Itgl/~ --< Kq/-y v ab llgllx. 

Thus (i) follows. The proof  of (ii) is very similar. In this case we consider the supermeasure 
r = ]lf)~A II}- There is a probabili ty measure 2 on O such that 

r (A) _< 3, 0 __< K ; )  r  _ 
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for all Borel sets A. Thus for g ~ X, and any Borel partition {A1,.. . ,  A,,} of f2, 

: , ,tsur,- ' ,?+(A,) '? 

(=~1 ( 0 ) 1/' =< z~l" sup I g f - l l  )~(Ai)Plq 

and the result follows. [] 

Theorem 3.6. Suppose 0 < r < p < oo. Then there is a constant c = c (r, p) such that if 
X is a quasi-Banach function space satisfying an upper p-estimate and a lower q-estimate 

where q/p = l + O < 2 then logM( ' ) (X)  <= O (c + ~ [logO,). 

P r o o f. We use Proposition 3.5. Suppose f i  . . . . .  f ,  are nonnegative functions in X with II f I1 x = 1 

where f = t =~1 f [ )  " Then there is a probability measure # on O with f > 0 a.e. and such that if 
g ~ X  ~= 

Il g f - ~ lIAr.., N K~/~i~ !lgllx- 
Notice that K ~  _<_ e c'~ for some c 1. We also have qlp <= e ~ and ( q -  r ) l (p-  r)<= caO where c 2 
depends only on p, r. Let w~ = f i f -  1. 

We note first that for any w >= 0 in B (~'2) we have 
1 

w'd~  = I w* (t)' a 
0 

- r/q 1 - r/q 

Itwll i,., t "<-T;~r-"d 

p ( q -  r~I-r/q 
< q \ p _ r /  IlwllLp,, <eC3~ 

where c a = c 3 (r, p). Thus 

f w r d[,t " (  0 - r O I q  e"~ w I1~,,~ 

where c 4 = c4 (r, p). Applying this to the w i and summing we have 

1 <= O-'~ c~~ ~ IILII~<. i-1 
with c 5 depending only on r, p. The result now follows. [] 

E x a m p 1 e. We show tha t  the es t imate  in the prev ious  t heo rem is essential ly best 

possible.  F o r  conven ience  we cons ider  the case p = 1 and  q -- 1 + 0. The  conc lus ion  of  

the t heo rem is that,  for  0 < r < p, M( ' ) (X)  < exp (F,(O)) where  

F,(O) 
l im - t .  
0~o 0 ]logOI 

Since M (~ (X) = M (r) (X) for all r > 0 a s imilar  conc lus ion  is a t ta ined  in the case r = O. 

We establ ish a converse  by cons ider ing  only the case r = O. 

Arehiv der Mathematik 61 13 
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For  0 > 0  we let X = X o = A I , q [ O , I  ] and we let K ( O ) = M ( ~  We will set 
q~(0) = e x p ( - [ l o g O [  l/z) so that lira r  = 0. We further set r  = (21/q - 1)-2; then 
~,(0) = 1 + 401og2  + 0(02). 0-~o 

We will consider the function f = f0 ~ X defined by f ( t )  = t -  17ql -r  1~. It follows easily 
from the definition of M (~ (X) that  

1 
~ l o g t d  HXtl_, l , .1j l]x<Kr[f l tx .  exp - ~ 1-4~ 

To obtain this one derives the integral version of geometric convexity and applies it to 
suitable rotat ions of f Thus if fl(0) = I + (1 - r 1 6 2  - r  then 

eP r < x []f ]]x. 

Turning to the est imation of [[ f l[x we note that [[ f [[} is the supremum of expressions 
of the form 

j = t  

where 1 - r = z o < r I < . . .  < % = 1. Now if zj > ~pzj_l it can be checked that  this 
expression is increased by interpolat ing (z i z j_ i) 1/2 into the part i t ion.  We there fore may 
suppose that we consider only part i t ions where zj < O zj_ 1. In  this case we estimate: 

("Cj - -  Tj_ !) q Tj - q  ~ (Tj - -  Tj_ 1) (Tj - -  T j_  1) 0 72j-_i? 0 

"~ (I// - -  1) 0 (Tj - -  Tj_ i)  Tj-_11 

and after summing we get the estimate 

I l f  II} < (~ - 1) 0 [ l og0  - r 

Thus 

lc > ea 49(O - 1) -~ l log( l  - r 

Now for small 0 we can estimate ]log O - r < (1 + 40r Thus 

so that  

xq _> e.~ r _ 1)-0(1 + r  

lira inf --l~ _> lira inf ( l ~ 1 6 2  - log(~  - 1)) _ 1. 
o~o O [ l o g O [ -  0-~o [logO] - 

Thus we conclude from this calculation and the theorem that  

log x (0) = -- 0 log 0 + o (0 ]log O I) 

as 0 - +  O. []  

4. The factorization theorems of  Pisier. We next show how the results of Proposi t ion  3 
quickly give extensions of some factorization theorems due to Pisier [13]. Our  approach  
is valid for quasi-Banach spaces since it does not  depend on any duality. 
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Theo rem  4.1. Suppose 0 < r < p < q < oo. Suppose f2 is a compact Hausdorff space 
and that Y is an r-Banach space. Suppose T: C(f2) --+ Y is a bounded linear operator. 

Then the following conditions on T are equivalent: 

(i) There is a constant C 1 so that for any f l, . . . ,  f ,  in C (El) with disjoint support we have 

( ~ II Tf~ll q'~t/q | -< Ct max IIf~ll. 
i = l  / 1Nigh 

(fi) There is a constant C 2 so that for any f l , - . . ,  f ,  we have 

(~ "Tfil'q) Q~ lfilP) 1]q 
Off) There is a constant C3 and a probability measure # on f2 such that for all f e C (f2), 

jj Tf Jl <= C~ IIf It~-~/~(~ Ifl" d~) "~. 

(iv) There is a constant C ,  and a probability measure # on f2 such that for all f e C (9), 

II T f  II < C,, II f IIL~,~(~). 

P r O o f. Some implications are essentially trivial. Thus (iv) ~ (iii) and (ii) ~ (i); (iii) ~ (ii) is easy 
and we omit it, It remains to show (i) ~ (iv). 

To do this we first notice that i f f ,  is a sequence of disjointly supported functions in C(f2) then 
Tf,, --,, O. Thus the theorem of Thomas [16] already cited allows us to find a regular Y-valued Borel 
measure 4' on f2 so that 

Tf = Sfd~ 

and use this formula to extend T to the bounded Borel functions B~ (f2). It is easy to verify the 
condition (i) remains in effect for disjointly supported bounded Borel functions. 

Now we introduce a quasi-Banach function space Z by defining 

n \l/q 
I t f l l z=SUp ~1 [IToltq) , 

where the supremum is over disjoint g~ e Bo~ (f2) with Ig~l < If l. It is immediate that II Iiz satisfies an 
upper r-estimate and a lower q-estimate. Also, we see that Xe e Z. Thus by Proposition 3.5 we can 
find a probability measure/z on f2 so that for some C, C 4 

If g ffz 6 c II g flaq,~(.~ < C4 II g I[L,,r(.~. [ ]  

We now p rove  the c o m p a n i o n  fac to r iza t ion  resul t  for ope ra to r s  on Lp-spaces .  

Theorem 4.2. Suppose 0 < r <= q < s < oe. Let  (~2, #) be a a-finite measure space. Let  Y 
be an r-Banach space, and let T: L~(Iz) ~ Y be a bounded linear operator. Then the 
following conditions are equivalent: 
(i) There is a constant C 1 so that for any disjoint ]'1 . . . . .  f ,  in L~(p) we have: 

( i=1  ~ It T f i " ~ )  1/q =< C1 i=1~ !fil L~(,)" 

13" 
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(ii) 

(iii) 

(iv) 

There is a cons tan t  C 2 and a probability measure 2 on f2 so that for  any f ~ L~ (#) 
and any Borel set E we have 

II Z ( f z E )  l! ~ C2 t l f  IIL,(.)A(E) 1/q-'/~" 

There is a constant Ca and a probability measure 2 on f2 so that for any f ~ L~(l~) 
and g e B(f2) with Igl < 1, 

I[ T ( f  g)[I < C3 II f ]lL~(u) l[ g IIL~,.~) 
where 1/t = l /q  - 1/s. 
There exists w ~ L 1 (it) with w > 0 and ~ w d #  = 1 and a constant C4 such that for  
all f e L~ (#) 

II T f  t[ <- C4 Ilfw-~/StlL,,~(~,u). 

P r o o f. We omit the simple proof  that (ii) ~ (i). Also (iii) ~ (ii) and (iv) ~ (ii) are obvious. 
We first consider (i) ~ (iii). For  this direction we define a quasi-Banach function space Z by 

( ,  "~I/q 
i lgHZ ~--- s u p  i=~l [1 T ( f i . ) l l  q) , 

supremum is over disjoint fi e Ls(#) with i=~1 tfil ~ =< 1 and f~g e L~(#). where the It is clear that 

Z satisfies an upper r-estimate. We show that Z satisfies a lower t-estimate, where t/t = !/q - l/s. 
Let us suppose that we have disjoint gl ,  . . . ,  g,~ E Z such that 

Il gk ll~Z > 1, 
k=l 

and let g = gl + "'" + gin" Then there are flk with flk (~0) ---- 0 whenever gk(e)) = O, and such that 

It T(fikgk) rlq = 1 
k = l  \ i = l  / 

and 

We let 
i=1 

and f~  = :~k fk" Then we have that 

5 o IJ r ( f~g ) l l  q => 1, 
k ~ l  i = l  

and 

�9 = '= k = l  

that is, [[ g ]lz > 1. 
We also notice that Xa e Z. Thus by Proposit ions 3.4 and 3.5, there is a probabili ty measure ,~ so 

that for some C3 and all bounded g 

IJ g Itz ~ 63 II g IPL~,.~>- 
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Now we show that (ii) ~ (iv). We notice that 2 is #-continuous, and so by the Radon-Nikodym 
theorem, we can find w = d2/d#. Then for any measurable set A we have: 

]1 T(ZA w1/S)[I ~ C2 I[ ~A W1/s IlLs(#} ~ (A) l/q- 1/s = C2 ,~ (A)l/q. 

Now define a function space W by 

LIf ]lw = sup i] T(gwl/~)]]. 
igt<[f[,geB~ 

Then W has an upper r-estimate and 

II ZA li w < C2 ). (A) 1/q �9 

Hence by Proposition 3.4 

I!f Ilw < C, Ilf IIL~,,o.) 

for some C4. [] 

To conclude the paper  let us observe that  Theorem 4.1 can be used to extend other  
factor izat ion results to non- loca l ly  convex spaces. Let us first recall tha t  an  opera to r  
T :  X --* Y where X is a Banach  space a n d  Y is a quas i -Banach  space is called 2-absolute ly  
s u m m i n g  if there is a cons t an t  C so that  for x l , . . . ,  x ,  ~ X we have 

( 2) 1/2 ( ) 
II Tx, ll <= C max ~ lx*(x31 ~\'~. 

i=i II x* II < i  i=i 

A quas i -Banach  space X is of cotype p if there is a cons t an t  C so that  if x I . . . . .  x n e X 
then  

,,0 A v e e . -  +_ 1 giX~ < C tl X, 
i=1 i 

F o r  the next  theorem for Banach  spaces see [12], p. 62. In  the fol lowing more  general  
formula t ion ,  we u n d e r s t a n d  from the referee that  it has apparen t ly  been k n o w n  for some 
t ime to M a u r e y  and  Pisier, with a somewhat  different p roof  based on  ext rapola t ion.  

Theorem 4.3. Suppose • is a compact  Hausdor f f  space and Y is a quasi-Banach space 
with cotype two. Suppose T:  C (g2) ~ Y is a bounded operator. Then T is 2-absolutely 
summing and hence there is a probabili ty measure i~ on s and a constant  C so that  

II T f  II =< c t l f  IIL~(,)for f a C(f2). 

P r o o f. We may assume that X is an r-Banach space where 0 < r < 1. We first note that if 
f l  . . . . .  f ,  ~ X then since X has cotype two, 

(i=~l 1] " f i [] 2)i/2 ~ Ci Aveei = +_ i i =~l ~i r f i 

n 
< c~ !l Z II Av% = • t ,~1= elfl 

= c ,  Ii T/I Z If,-I 
i=1 

where Ci depends on the cotype two constant of X. Applying Theorem 4.1, we see that there is 
a probability measure v on O and a constant C 2 so that II Z f  II < C2 Il l  IIL~.,,,~ for f e C(t?). In 
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particular it follows that ![ Tf  FI < C3 [[ f IlL4 (~)" From this we conclude that i f f  1 . . . . .  f .  c C (g2), using 
Khintchine's inequality, 

~" Ilrf~ll2)l/2<CIAv%=~l z e, rf~ 
i = 1  i 

. I 

i = 1  L4(v) 

so that T is 2-absolutely summing. It now follows from the Grothendieck-Pietsch Factorization 
Theorem (which applies to non-locally convex X) that there is a probability measure # on f2 
satisfying the conclusions of the Theorem. [] 

R e m a r k s. We conclude with some comments on Theorem 4.3. We remark first that the theo- 
rem, taking X = L 1, gives a circuitous proof of Grothendieck's inequality, which is equivalent to the 
assertion that every operator from C(E2) to Lx is 2-absolutely summing. 

We also note that there are, by now, many known non-locally convex spaces of cotype two. The 
most natural examples are the spaces L v when 0 < p < 1; in this case, Theorem 4.3 is known, and 
is a consequence of work of Maurey [8] (see [17], p. 271). However, more recently Pisier [14] has 
shown that the spaces Lv/Hp have cotype two when p < 1, and indeed essentially establishes 
Theorem 4.3 for this space. It also follows from work of Xu [18] that the Schatten ideals Sp have 
cotype two when p < l, and for these examples Theorem 4.3 is apparently new. 

We conclude by noting a dual result and then make a conjecture based on these observations. 
First let us recall that if X is a quasi-Banach space then its dual X* defined in the usual way is a 
Banach space; here X* need not separate the points of X and may indeed reduce to zero: we define 
the canonical map (not necessarily injective)j: X -~ X**. The Banach envelope of X is the closure 
J~ of j(X). 

We shall say that  an ope ra to r  T:  X ~ Y is strongly approximable if T is in the smallest  

subspace d of  Y (X, Y) con ta in ing  the f ini te-rank opera to rs  and closed under  the 

pointwise  convergence  of  uni formly  b o u n d e d  nets. 

The  fo l lowing theo rem is essentially known.  

Theorem 4.4. Suppose (f2, #) is a ~-finite measure space. Let  X be a quasi-Banach space 
such that X *  has cotype q < oo. Then, for 0 < p < 1, there is a constant C = C (p, X )  so 
that if T: X ~ Lp(ll ) is a strongly approximable operator then there exists w > 0 with 
.[ w' d# N C, where l /s  = l ip - 1, and such that ]lw -1 TXI]LI(u ) ~ C 1] T H IlxH for  x e X.  

R e m a r k .  I f X  is a Banach space, then this theorem is due to Mezrag [9], [10] with no approx- 
imability assumptions on T. If X is not locally convex this result is essentially proved in [3] and we 
here show how to obtain the actual statement from the equivalent Theorem 2.2 of [3]. Note also that 
for spaces X with trivial dual, the theorem holds vacuously since the only strongly approximable 
operators are identically zero. 

P r o o f .  It is shown in Theorem 2.2 of [3] that given e > 0 there exists Co(e) so that, for any 
probability measure v, if T: X --* Lp(V) is strongly approximable then there exists a Borel subset E 
of f2 so that v(E) > 1 -- e and f ]Tx ld#  <<- C O IITII [Ix[/ for x ~ X .  Let us fix e = 1/2 and let 

E - -  n 

Co = Co (1/2). Suppose x 1 . . . . .  x, s X and let f = ~2 I Tx,  l. If [I f 1[, > 0, define v = [I f ]t ,Vlf[ p I~. 
i - 1  
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Consider the operator S : X -.+ L v (v) defined by S x = I f  I- 1 Tx (set S x (a~) = 0 when f (o)) = 0,) Then 
IISll < i lf l l~ ~ I[T[t. Thus there is a Borel subset E of g2 with v(E)> 1/2 and so that S ISxldv 
=< Co Ilf [I; 1 IITII [Ix[l for x e X .  Now e 

1 

<=Collfll; ~ tITl[ ~ IIxgll. 
i=1 

and so we obtain an inequality 

i=.,]TxiD d#) < 2 C ~  i=l ~ ][Xil[' 

where C, depends only on p, X. Now by the factorization results of Maurey [8] (see [17] p. 264) we 
obtain the desired conclusion. [] 

Theorem 4.5. Let  X be a quasi-Banach space such that X *  has cotype two. Suppose f2 

is a compact Hausdorf f  space and # is a a-finite measure on (2. Then for  0 < p < 1, there 
is a constant C = C(p ,  X )  so that i f  T: X ~ Lp(#)  is a strongly approximable bounded 

operator, then there exists v > O, with ~ v t d# < C where l / t  = l /p  - 1/2, and such that 

[I v-1 rxllL2(.~ < CllTIf Ilxl[ for x e X .  

P r o o f .  By Theorem4.4 we can find w = 0  with ~w*d,u<C o such that Ilw-lTX]lL~ 
< Co IITII Ilxll. Now since L 1 is a Banach space we have [1wTx[]L~ <= C O HTI[ IIxlb? so that 
w T = Sj where S: )~ --+ L 1 is bounded with II S 1[ =< C O ][ T [[. Since )?* = X* has cotype two and L 1 
has cotype two we can factor S through a Hilbert space [11] and then apply Maurey's factorization 
results to obtain u > 0 with S u2 d/~ -< C t and such that I[ u-  1 Sx [[L2 =< C1 1[ T [] 1[ x !1 for x e X. Letting 
v = uw completes the proof. [] 

R e m a r k s. We discuss a question motivated by Theorems 4.3 and 4.5. An operator T: X --+ Y 
is called approximable if given any compact set K c X and any e > 0 there exists a finite-rank 
operator F:  X ~ F with [I Tx - Fx  II < e for x ~ K. Pisier has shown that if X, Y are Banach spaces 
such that X* and Y have cotype two and T: X --+ Y is an approximable linear operator then T 
factorizes through a Hilbert space (see [11], [12]). Does the same result hold if we assume X, Y are 
quasi-Banach spaces? Theorem 4.3 and 4.5 provide evidence that this perhaps is true. 

N o t e a d d e d 17 D e c e m b e r, 199 2. After the initial preparation of this note, the first author 
and Sik-Chung Tam showed that the conjecture in the last paragraph is true, at least for strongly 
approximable operators. 
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