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Set-functions and factorization

By

N. J. KaLtoN and S. J. MONTGOMERY-SMITH *)

1. Introduction. Let o/ be an algebra of subsets of some set Q. Let us say that a
set-function ¢: o — R is monotone if it satisfies ¢ () = 0 and ¢ (4) < ¢ (B) whenever
A < B. We say ¢ is normalized if ¢ (€2) = 1. A monotone set-function ¢ is a submeasure if

(AU B) £ ¢(4) + ¢(B)

whenever 4, B € o are disjoint, and ¢ is a supermeasure if

¢(AuB) 2 ¢(4) + ¢(B)

whenever A, B e .o/ are disjoint. If ¢ is both a submeasure and supermeasure it is a
{finitely additive) measure.

If ¢ and Y are two monotone set-functions on &/ we shall say that ¢ is y-continuous
if lim ¢(4,) = 0 whenever lim y(4,) = 0. If ¢ is y-continuous and ¥ is ¢-continuous

then ¢ and W are equivalent. A monotone set-function ¢ is called exhaustive if
1£m ¢ (4,) = 0 whenever (4,) is a disjoint sequence in .«/. The classical (unsolved) Ma-

haram problem ([1], [5], [6] and [15]) asks whether every exhaustive submeasure is
equivalent to a measure. A submeasure ¢ is called pathological if whenever A is a measure
satisfying 0 £ A £ ¢ then A = 0. The Maharam problem has a positive answer if and only
if there is no normalized exhaustive pathological submeasure.

While the Maharam problem remains unanswered, it is known (see e.g. [1] or [15]) that
there are non-trivial pathological submeasures. In the other direction it is shown in [6]
that if ¢ is a non-trivial uniformly exhaustive submeasure then ¢ cannot be pathological.
¢ is uniformly exhaustive if given ¢ > 0 there exists N eIN such that whenever
{A,,..., Ay} are disjoint sets in </ then

min ¢ (4;) <e.
1ZisN

Let us say that a monotone set-function ¢ satisfies an upper p-estimate where
0 < p < oo if ¢* is a submeasure, and a lower p-estimate if ¢p? is a supermeasure. If ¢ is
a normalized submeasure which satisfies a lower p-estimate for some 1 < p < co then ¢
is uniformly exhaustive and hence by results of [6] there is a non-trivial measure A with
0 £/ £ ¢. In Section 2 we prove this by a direct argument which yields a quantitative
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estimate that A can be chosen so that
AQyz 227~ 1)"HP -1,

Notice that the expression on the right tends to one as p — 1 so this resuit can be regarded
for p close to 1 as a perturbation result. The dual result for supermeasures (Theorem 2.2)
is that if a normalized supermeasure ¢ satisfies an upper p-estimate where 0 < p < 1 then
there is a ¢-continuous measure 4 with 4 = ¢ and

AMQ)£20QP — 1)1 1.

While we believe these results with their relatively simple proofs have interest in their
own right, one of our motivations for considering them was to use them in the study of
some questions concerning quasi-Banach lattices, or function spaces.

It is well-known ([7]) that a Banach lattice X with a (crude) upper p-estimate is r-convex
for every 0 < r < p (for the definitions, see Section 3). This result does not hold for
arbitrary quasi-Banach lattices {2]; a quasi-Banach lattice need not be r-convex for any
r < co. However, it is shown in [2] that if X has a crude lower g-estimate for some g < oo
then the result is true. We provide first a simple proof of this fact, only depending on the
arguments of Section 2. We then investigate this result further, motivated by the fact
that if X satisfies a strict upper p-estimate (i.e. with constant one) and a strict lower
p-estimate then X is p-convex (and in fact isometric to an L, (u)-space.) We thus try to
estimate the constant of r-convexity M (X) when 0 <r < p and X has a strict upper
p-estimate and a strict lower g-estimate where p, g are close. We find that an estimate of
the form

log M?(X) £ c6(1 + |logd))

where ¢ = ¢(r, p) and @ = g/p — 1. We show by example that such an estimate is best
possible. Let us remark that in the case r = 1 < p < g the constant MY (X)) measures the
distance (in the Banach-Mazur sense) of the space X from a Banach lattice.

Finally in Section 4 we apply these results to give extensions of some factorization
theorems of Pisier [13] to the non-locally convex setting. Pisier showed the existence of
a constant B = B(p) so that if X is a Banach space and T:C(Q) — X is bounded
satisfying for a suitable constant C and all disjointly supported functions f,, ..., f, € C()

n i/p
(Z IITfklt”) = C max [|fif
k=1 15ksn

then there is as probability measure y on Q so that for fe C(Q)
ITf I =BCHS L,

where L, , (4} denotes the Lorentz space L, , with respect to .

Pisier’s approach in [13] uses duality and so cannot be used in the case when X is a
quasi-Banach space. Nevertheless the result can be extended and we prove that if
0 <r <1 there is a constant B = B(r, p) so that if X is r-normable then there exists a
probability measure u so that for all f e C(Q),

ITF I =BCIS e

RN
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We apply these results to show if X is a quasi-Banach space of cotype two then any
operator T: C(Q) - X is 2-absolutely summing and so factorizes through a Hilbert
space. We conclude by presenting a dual result and make a general conjecture that if X
and Y are quasi-Banach spaces such that X * and Y have cotype two and T: X — Y is
an approximately linear operator then T factorizes through a Hilbert space.

2. Submeasures and supermeasures. Let us define for 0 < p < o,
2
K,= (27 — 1)lr —1
Notice that for p close to 1 we have K, ~ 1 — 4(p — 1) log 2 while for p large we have
K,~pt27n
We now state our main result on submeasures with a lower estimate (see Section 1 for
the definitions).

Theorem 2.1. Let of be an algebra of subsets of Q. Suppose that ¢ is a normalized
submeasure on of, which satisfies a lower p-estimate where 1 < p < 0. Then there is a
measure , on o with0 < A < ¢ and 2(Q) =2 K.

Proof. By an elementary compactness argument we need only prove the result for the case when
Q is finite and & = 2% We fix such an .

Let y be the greatest constant such that, whenever ¢ is a normalized submeasure on Q satisfying
a lower p-estimate then there is a measure A with 0 £ 4 £ ¢ and ¢ (Q) = 7. It follows from a simple
compactness argument that there is a normalized submeasure ¢ satisfying a lower p-estimate for
which this constant is attained; that is if 4 is a measure with 0 £ 4 £ ¢ then 1(Q) < y. We choose
this ¢ and then pick an optimal measure A with 0 £ 4 £ ¢ and A1(Q) = .

Let § = (27 — 1)~ '/2, Let E be a maximal subset of Q such that A(E) = 6¢(E) and let F = Q\E.
Suppose 4 < F; then

A(A) + MUE) = H{AUVE) S 6¢(4AVE) (¢ (4) + ¢(E)),
and so
n AA) S 64(4).

Let g be the conjugate index of p,i.e. p~! +¢ ! = 1. Let v be any measure on .« so that
0 v £ ¢. Suppose c;, ¢, = 0 are such that ¢f + ¢ = 1. Consider the measure

uA)=c, M(ANE)+c,v(AnF).

Then for any A
uid) S (cf + cA)IAANE)? +v(ANn F)?)i»

S(@UANE) + $(AnF)P)'? < $(4).
Hence p{@Q) < y which translates as
L AE)+cv(F)Sy.
Taking the supremum over all ¢,, ¢,, we have:
@) AE)? + v(F) <77
Now take v(A4) = 6 "' 1(4 n F). It follows from (1) that v £ ¢ and hence from (2),
AMEY? + §TPA(F)? S 97,
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If we set £ = A(E)/y then
P2 - - st

and it follows by calculus that ¢ > % Hence A(E) Z y/2.

Now, consider the submeasure ¥ (4) = ¢ (4 N F). By hypothesis on y there exists a positive
measure v on Qsuchthat0 < v £ ¢ and v(Q) = y¢¥ (Q). Thusforall Awe have 0 Sv(4) £ ¢(ANnF),
v(E) =0 and v(F) = v(2) = y ¢(F). Returning to equation (2) we have:

MEY +yP ¢ (F)P =97,
However ¢(F) =1~ ¢(E) = 1 — § "' A(E). Thus, recalling that t = A(E)/y
N (I T L

which simplifies to

1 — (1 —t2)P
@‘5(—\7“)*)-

Since ¢ 2 7 it follows again by calculus arguments that the right-hand side is minimized when ¢ =

3
and then

y228(1—(1-277)7) =K,

and this completes the proof. {7
In almost the same manner, we can prove the dual statement for supermeasures.

Theorem 2.2. Let of be an algebra of subsets of a set Q. Suppose 0 < p < 1 and that ¢
is a normalized supermeasure on Q which satisfies an upper p-estimate. Then there is a
@-continuous measure A on of such that 4 =z ¢, 1(Q) £ K.

Proof. We first prove the existence of some measure 4 with 4 = ¢ and A(Q) £ X, without
requiring continuity. As in the preceding proof it will suffice to consider the case when @ is finite and
o =27 In this case there is a least constant y < oo with the property that if ¢ is a normalized
supermeasure on (2 then there is a measure 4 = ¢ with 1(Q) < y. We again may choose an extremal
¢ and associated extremal A for which 1(Q) = y.

Define § = (27 — 1)" 17 > 1 we now let E be a maximal subset so that 1{E) £ 6 ¢(E) and defining
F = Q\E we obtain in this case that if 4 < F then 1(4) = ¢ (4).

In this case let g be defined by 2 = 1; — 1. Let v be any measure on & such that v(4) = ¢ (4)
whenever 4 < F Suppose ¢, ¢, > 0 satisfy ¢;? + ¢; ? = 1. Consider the measure
uldy=c, A(AnE)+ c,v(AnF).
Then for any A,
$(4) S (AN E) + ¢p(An F)P)F
S(A(ANEY +v(AnF)R)tr
S AMANE)Y+ e v(ANF)er4+ 3% = u(4).
Hence 4(2) = y and so
CAEY+ev(Fyzy.
Minimizing over ¢, ¢, yields

3 ME) + v(F)" 2 vP.
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In particular if we let v(4) = 6 1 A(4 ~ F) and set i = A(E)/y we obtain
P+ 22 -1~ )P = 1.

Since in this case p < 1 we are led to the conclusion that r > > 1
Next we consider the supermeasure ¥ (4) = (AN F) and deduce the existence of a measure
y 2 ¥ with v(2)} < y¥(Q) = y¢(F). In this case {3) gives that

A(E)? + 9P @ (F)F 2 7*.
Nowas ¢(F) £ 1~ P(E)£ 1~ 51 A(E) we have:
PRl =8"y)P 21

and this agam leads by simple calculus to the fact that y < K,,. This then completes the proof if we
do not require continuity of A
Now suppose ¢ is a normalized supermeasure on & satisfying an upper p-estimate. Let 1 be a
minimal measure subject to the conditions 4 = ¢ and 4{2) £ K. (It follows from an argument based
on Zorn's Lemma that such a minimal measure exists). Suppose lim ¢(F,) = 0. Counsider the
n—w

measures 4,(A) = (4 n E,) where E, = Q\F,. Let % be any free ultrafilter on the natural numbers
and define 14{A4) = limy, 1, (4). Clearly 2, < 1. Now for any 4

In(d)=MAOE,) Z ¢(ANE,) Z ({4 ~ FEN".
Hence i, =4 by minimality. Thus lim, A(F,) =0 for every such ultrafilter and this means
Hm A(F)=0. [

B

The following corollary is proved for more general uniformly exhaustive submeasures
in [6].

Corollary 2.3. Let of be an algebra of subsets of Q and let ¢ be a submeasure on Q such
that for some constant ¢ > 0 and some q < oo, we have:

(A1 u- UA) Zc(@4y) + - + T4

whenever A,, ..., A, are disjoint. Then there is a measure p on of such that y and ¢ are
equivalent.

Proof. Define i by
¥4 = sup (21 ¢ (Ak))

where the supremum is computed over all n and all disjoint (4., ..., 4,) so that 4 = U A, Ttisnot

difficult to show that y is a supermeasure satisfyving a 1 /q -upper estimate and clearly ¢ zy < Pf S
By Theorem 2.2 we can pick a measure g 2 i which is equivalent to i and hence to ¢. [

3. Convexity in lattices. Let  be a compact Hausdorff space and suppose #(Q)
denotes the g-algebra of Borel subsets of (2. Let B(Q) denote the space of all real-valued
Borel functions on £. An admissible extended-value quasinorm on B(Q) is a
map f — | f |y, (B(2) — [0, c0]) such that:

@ 1flx=lglyforall f,geB(Q) with | | £ |g| pointwise.
(b} Nofllx=lal | flxfor feB@), acR
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(c) There is a constant C so that if f, g = 0 have disjoint supports then {|f + giy
SCUSIx+1gllx)

(d) There exists a strictly positive u with 0 < Jully < co.

(€ Iff,20and f,1f pointwise, then || f,lly = | f [

The space X = {f: | f |x < oo} is then a quasi-Banach function space on Q equipped
with the quasi-norm | f |y (more precisely one identifies functions f,g such that
I f — glix = 0). We say that X is order-continuous if, in addition, we have:

(® If £, | 0 pointwise and | f; {|x < co then || £, ||x | 0.

Conversely if X is a quasi-Banach lattice which contains no copy of ¢, and has a weak
order-unit then standard representation theorems can be applied to represent X as an
order-continuous quasi-Banach function space on some compact Hausdorff space £ in
the above sense. More precisely, if u is a weak order-unit then there is a compact
Hausdorff space Q and a lattice embedding L: C(Q2) - X so that L0, y,] = [0, u].
Since X contains no copy of ¢, we can use a result of Thomas [16] to represent L is the
form

Lf={fd®

where @ is regular X-valued Borel measure on . This formula then extends L to all
bounded Borel functions. We now define the quasi-Banach function space ¥ by

IS 1y = sup [ Lmin{|f], nxo)lx

and it may be verified by standard techniques that L extends to a lattice isomorphism of
Y onto X (which is an isometry if we assume that the quasi-norm on X is continuous).

For an arbitrary quasi-Banach function space X and 0 < p < oo we define the p-con-
vexity constant MP(X) to be the least constant (possibly infinite) such that for

fioonfeX
(i W)””
i=1 X

and we let the p-concavity constant M, (X) be the least constant such that
W/ n 1/p / n 1/p
My, Kz mv’) 22 ;> :

We also let M@ (X) be the least constant such that

" i/p
< M“”(Z ||fi|i§>

i=1

n i/n
Hfy Sl £ M© (EI1 ”fi“X) :

X is called p-convex if M (X)) < co and p-concave if M, (X) < oo; we will say that X
is geometrically convex if M@ (X) < co. In [2] X is called L-convex if it is p-convex for
some p > 0; it follows from [2] and [4] that X is L-convex if and only if it is geometrically
CONvex.
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Let us now turn to upper and lower estimates. We say X satisfies a crude upper
p-estimate with constant a if for any disjoint f}, ..., f, we have

n 1/p
U+ Lol ga(; ||f.-|!§>

and we say that X satisfies an upper p-estimate if a = 1. We say that X satisfies a crude
lower g-estimate with constant b if for any disjoint fi, ..., f, we have

n p\1/;:
bifi+ -+ fillx2 _;1 “f;”x} 5
and X satisfies a lower g-estimate if b = 1.

Lemma 3.1. Suppose 0 < p < q < 0. If X is a quasi-Banach function space satisfying
a crude upper p-estimate with constant a and a crude lower g-estimate with constant b then
there is an equivalent function space quasinorm || ||y satisfying an upper p and a lower
g-estimate with

If x2Sy 2 abliflx.

Proof. First we define
N X " ’ i/p
If = inf( 3 174,
where the infimum is taken over all possible Borel partitions {4,,..., A,} of Q. It is clear that

1w = 1S lx Salflw and it can be verified that W satisfies an upper p-estimate and a crude
lower g-estimate with constant b. Next we define

n 1/g
[flly= sup(.:Z1 “fXAk“gV)
and finally set || f |y =a || f ||,. We omit the details. [J
We now give a simple proof of the result proved in [2] that any quasi-Banach function

space which satisfies a lower estimate is L-convex. We recall first that if u is any Borel
measure on £ then L, . (u) is the space of all Borel functions such that

1 ey i = fgg t(p{fl>tH'"? < .

Theorem 3.2. Let X be a p-normable quasi-Banach function space which satisfies a crude
lower g-estimate. Then:

(1) X isr-convex for O <r<p
(i) There is a measure p on Q such that | f |y =0if andonly if f =0y — a.e.

Proof. We may assume by Lemma 3.1 that X has an upper p-estimate and a lower g-estimate.
n 1fr
Now suppose fy,...,f,€ X, and <Z f{) = f. Consider the submeasure ¢(4) = | [y, % for
i=1
A € #(2). This has a lower g/p-estimate and hence there is a Borel measure g with 4(Q2) = K, ¢(Q)
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and such that u(4) < || f x4 I” for any Borel set 4. Thus for any g € B(Q) (note that u is supported
on the set where f is finite)

I gf_l | Ly, oo (1) <liglyx-
Now the space L, (1) is r-convex with M (L, . (1)) < C = C(p, r). Thus
Ifllx = ¢ @ S K% I xele, ow
n 1/r H 1/r
s CK‘J,,””(i:Zx Ifft HZ,,w<,,)) s C'(i; Hfi“;{>
where C' = C'(p, q, 7). For (ii) let u be a strictly positive function with 0 < ||u|y < oo and define

¢(A) = Juy,||?; then by Corollary 2.3 there is a measure u equivalent to ¢ and the conclusion
follows quickly. [

Now suppose 4 is any (finite) Borel measure on Q. We define the Lorentz space L, ,
for 0 < p, g < o by

© g 114
01, = ( i —t"/"'lf*(t)"dt) .
op

Here f* is the decreasing rearrangement of | f |i.e. f*(t) = inf sup | f(w)|. It can easily
seen by integration by parts that HEIZI weE

b3 i/q
1flle, , = ((I) qt u(f]> t)"”’dt) )

It is then clear that if p < q then L, , satisfies an upper p and a lower g-estimate. If p > ¢
then L, , has an upper ¢ and a lower p-estimate.
Suppose p < g. We define the functional

n q i/g
@ 1 1,,, = sup (z (wlg; !f(w)|> u(Ai)W)
where the supremum is taken over all Borel partitions {4, ..., 4,} of Q.

Proposition 3.3. Suppose 0 < p < g. Then:
(1) The A(p, q-quasi-norm is the smallest admissible quasi-norm which satisfies a lower
g-estimate and such that ||y 41| 2 (A7 for any Borel set.
(i) If fe B(Q) and f* is the decreasing rearrangement of | f| on [0, c0) then

n 1/q
(5 If “Ap,q = SuP( 21 SH) i — Tj—1)q/p>
7 \i

where 7 = {1, =0 <1, <... < 1,} runs through all possible finite subsets of R.

@) If f e B(Q) then
1 4y, S 1SN, , S+ 0207 £,

where 1 + 6 = e

14
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Proof. (i) is clear from the definition.
(ii) Suppose f € B(Q) and let {Al, ..., 4,} be any Borel partition of . Suppose that 1 <,k S n.
Suppose mf Hfis 1nf | f1. Then it is easy to verlfy thatif welet 4, = {0 e 4;U 4,1 | f ()| 2 1nf [f|}

and let A’ (4;v Ak)\A then the partition obtained by replacing 4;, 4, by 4, 4, mcreases the
right- hand side of {4). In particular it follows that (5) defines the 4, , quasmorm when Jis nonatomic.
Further if f* is constant on an interval [o, f] it suffices to consider 4 where no 7; lies in (2, #) and
this yields the conclusion for general p.

(iii) The first inequality in (iii) is immediate from (i) since L,, , satisfies a lower g-cstimate. For the
right-hand inequality we observe thatif h =1+ 0 = ¢g/p:

© g 1/g
Il =(f —t"“’“(f*(t))“dt>
P.q oD

1/q

HA

( =§i: %(hn#-l _ hn)h(n+1)(q/p—1)f*(hn)q>

It

h(h — 1)hq/p—1 hq("“)/"f*(h” 1)q>uq

n=—w

<hoh— TP 1),

The result then follows. [

Under the hypothesis p > g we define 4, , by

170, = inf( 5 (sup lf(w)!q>#(Ai)“"’>1/q

i=1 \wed;

where the infimum is again computed over all Borel partitions of Q. Proposition 3.4 now
has an analogue whose proof is very similar and we omit most of the details.

Proposition 3.4. Suppose 0 < q < p. Then:
(i) The A(p, q)~quasinorm is the largest admissible quasi-norm which satisfies an upper
g-estimate and such that |y || £ p(A)'?, for any Borel set A.
i) If fe B(Q) then

n i/q
(A Apg = i;f( glf* (t;- 1)z — Tj—x)q/p)

where 7 = {1y =0 <1, < ... <71, = p(Q) runs through all possible finite subsets
of [0, p(Q)].
(i) If f € B(Q) then

0 Way 2 I Wy, Z L+ 87270002 f

where 6 =£— 1.
q
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Proof. We will only proof the second inequality in (iii). We define h =1 + 9 = p/q.

WW%&=<I§Wr{ﬁavmym

v

( i ﬂ(hnﬂ __hn)hn(q/p—l)f*(h(n+1))q>1/q
P

n= =00

- - _ 1/
(,Z h 1(]1—-1)/1(" 1)q/pf*(hn)q)

PPN ) PRy
zth—-1 h 1 f s,

The result then follows. [

We now immediately deduce the following:

Proposition 3.5. Let X be quasi-Banach function space on Q satisfying a crude upper
p-estimate with constant a and a crude lower g-estimate with constant b. Then if f € X , with

Iflx=1:
(i) There is a probability measure j on Q such that f >0 u—ae. and if ge X,

19/ ™ N4y, 400 S abK g7 gl

(i) There is a probability measure A on Q such that f >0 i —ae and if ge X

lglx < abKtllgf ™ 4, ().

Proof. We first introduce an equivalent quasinorm | ||, with an exact upper p and lower
g-estimate as in Lemma 3.1 so that [[g|ly < llglly Sab gl for all g.

(i) Asin Theorem 3.2 we consider the submeasure ¢ (4) = {| f 1, 5. There is a probability mea-
sure u such that

_, ®4)
q/p ¢(Q)
for all Borel sets A. Then for g € X, and any Borel partition {4,,..., 4,} of &,

(i(mmwaMAwﬂw
i=1\ 4

n

=K@ V7| X {inflgf ) fo,;il?f\“q
Ai /

0<uA) <K

q/pllp IF05 gly £ Kq/pl/p ab |igllx-

Thus (i) follows. The proof of (ii) is very similar. In this case we consider the supermeasure
& (A) = || fx41%. There is a probability measure 4 on Q such that

¢ ) _

= Kp/q
¢(9)
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for all Borel sets 4. Thus for g € X, and any Borel partition {4,,..., 4,} of O,

i=1

< ( 1 (sgp igf“v)mAi)P’q)”"

. 1/p
K Hf“y(? (sgp lgf“llp> )L(Ai)P/Q)

and the result follows. [J

n lip
lglix < lglly < (_Z (sh}_p igf"l") IS %, H‘%)

M:

I

Theorem 3.6. Suppose 0 <r < p < . Then there is a constant ¢ = c(r, p) such that if
X is a quasi-Banach function space satisfying an upper p-estimate and a lower g-estimate

1
where g/p =1+ 0 < 2 then logM®(X) < 0 <c + p |log0|>.

Proof. Weuse Proposition 3.5. Suppose fi, ..., f, are nonnegative functions in X with || f |y = 1

n ifr
where f =1 > f,-') . Then there is a probability measure p on Q with f > 0 a.e. and such that if
geXx i=1

19y < Kgp P 1 glix-

Notice that K, < e”? for some ¢,. We also have g/p < ¢® and (g — r)/(p —r) < ¢, 0 where ¢,

depends only on p,r. Let w; = f,f 1.
We note first that for any w = 0 in B{Q) we have

1
fwrdu= [w*(eyde
o

rig-p)
q\-rla I - = 1-r/q
g<w> nwnzp,q(ft e gy
p 0

pfa—r 1-orla 3 C. r
=E<p—r) iy, , < e wli, .
where ¢; = ¢;(r, p). Thus

fwidpg0-rme

A

where ¢, = ¢, (r, p). Applying this to the w; and summing we have
107 e L,
with ¢ depending only on r, p. The result now follows. [J
Example. We show that the estimate in the previous theorem is essentially best

possible. For convenience we consider the case p =1 and ¢ = 1 + 8. The conclusion of
the theorem is that, for 0 < r < p, M®(X) < exp (F,(#)) where

F,(0)

i -
50 8 [log 0|

Since M9 (X) £ M (X) for all r > 0 a similar conclusion is attained in the case r = 0.
We establish a converse by considering only the case r = Q.

Archiv der Mathematik 61 13
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For >0 we let X=X,=4,,[0,1] and we let «(8) = MP(X). We will set
¢ (0) = exp(— |log 8]*/?) so that lim ¢ (0) = 0. We further set i () = (217 — 1)72; then
Y@ =1+460log2+0(0%. °°°

We will consider the function f = f, € X defined by f () =t~ g, _ 4 ;- It follows easily
from the definition of M¥ (X) that

/1L
exp(_, { logtdt) -, ullx S % 11Lf llx-
1%

To obtain this one derives the integral version of geometric convexity and applies it to
suitable rotations of f. Thus if f(6) =1 + (1 — ¢) ¢~ *log(1 — ¢) then

e!p<wlfix

Turning to the estimation of || f [y we note that || f | is the supremum of expressions
of the form

n
> (Tj - Tj~1)q7j_q
=1

where 1 — ¢ =15 <1, <...<71,=1 Now if 7, >y7;_, it can be checked that this
expression is increased by interpolating (z;7;_ Y% into the partition. We there fore may
suppose that we consider only partitions where 7; £ y7;_,. In this case we estimate:

(== S — 1) (T — Tj—1)o Tj_—11+9

SW -0 @G-t
and after summing we get the estimate

11§ £ — 1) log(1 — §)].
Thus

kz el g — 1) log(1 — ¢)| ™.
Now for small 6 we can estimate |log(1 — ¢)] < (1 + ¢) ¢. Thus
K1z - )7+ )
so that

—log(y — 1
fim inf > lim inf (289 — 1o ~ 1)

> 1.
o0 B|logh|~ -0 |log 6]

1\

Thus we conclude from this calculation and the theorem that
logx(f) = —6logf + o(8 |log b))
as8—-0. [
4. The factorization theorems of Pisier. We next show how the results of Proposition 3

quickly give extensions of some factorization theorems due to Pisier [13]. Our approach
is valid for quasi-Banach spaces since it does not depend on any duality.
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Theorem 4.1. Suppose 0 <r < p < g < o0. Suppose Q is a compact Hausdorff space

and that Y is an r-Banach space. Suppose T: C(Q) — Y is a bounded linear operator.
Then the following conditions on T are equivalent:

(i) Thereis a constant C, so that for any f,, ..., f,in C(Q) with disjoint support we have

n 1/q
(;unmﬂ < C, max | £

(i) There is a constant C,, so that for any f,, ..., f, we have

n 1/q|
(&)

(iii) There is a constant C4 and a probability measure yu on Q such that for all f € C{(Q),

ITS ) < Cy ) f 17§ 1 £ 1P du)™.

(iv) There is a constant C, and a probability measure y on Q such that for all f e C(Q),
ITFN S Callf iy i

Proof. Some implications are essentially trivial. Thus (iv) = (iii) and (i) = (i); (iil) = (ii) is easy
and we omit it. It remains to show (i) = (iv).

To do this we first notice that if f, is a sequence of disjointly supported functions in C () then
Tf, — 0. Thus the theorem of Thomas [16] already cited allows us to find a regular Y-valued Borel
measure @ on 2 so that

Ty - [ fdo

and use this formula to extend T to the bounded Borel functions B, (Q). It is easy to verify the
condition (i) remains in effect for disjointly supported bounded Borel functions.
Now we introduce a quasi-Banach function space Z by defining

n 1/q
(;nwmﬁ <G

" 1/q
Hfilz=sup(§1 HTgH“> :

where the supremum is over disjoint g; e B (Q) with g, £ |f1. It is immediate that | |, satisfies an
upper r-estimate and a lower g-estimate. Also, we see that y,, € Z. Thus by Proposition 3.5 we can
find a probability measure u on Q so that for some C, C,

lglz £ Clgliag e =Callgle, - O
We now prove the companion factorization result for operators on L ,-spaces.

Theorem 4.2. Suppose 0 <r £ q <s < 0. Let (Q, i) be a o-finite measure space. Let Y
be an r-Banach space, and let T:L (p) > Y be a bounded linear operator. Then the
following conditions are equivalent:

(i) There is a constant C, so that for any disjoint f, ..., f, in L (1) we have:

n 1/g
(gunmﬁ =Y

> 1
i=1

Ly (1)

13#*
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() There is a constant C, and a probability measure A on Q so that for any fe L (1)
and any Borel set E we have

ITFae)l £ Co L f g AE)ET15,

(ili) There is a constant C, and a probability measure A on  so that for any e L(p)
and g€ B(Q) with |g| £ 1,

ITU D= Calf g 191,

where 1/t = 1/q — 1/s.
(iv) There exists we Ly (y) with w = 0 and [ wdy = 1 and a constant C,, such that for
all f € L,(u)

“ Tf H é C4 “fw_i/s HLq,r(wu)'

Proof. We omit the simple proof that (ii} = (i). Also (iii) = (ii) and (iv) = (ii} are obvious.
We first consider (i) = (iii). For this direction we define a quasi-Banach function space Z by

9l = sup (2 IT(59) uq)”“,

where the supremum is over disjoint f;e L (@) with || 2 [fill =1 and fig e L (g). It is clear that
i=1 s

Z satisfies an upper r-estimate. We show that Z satisfies a lower f-estimate, where 1/t = 1/g — 1/s.
Let us suppose that we have disjoint g, ..., g,, € Z such that

m
S gy > 1,
k=1

and let g =g, + -~ + g,,- Then there are f;, with f; (w) = 0 whenever g, (@) = 0, and such that
m n tig
S ZITUagle) =1
and
| T 1
l i=1
We let

- ( >: 1T () nq)"“
and fi = o, f;. Then we have that
S STl 21

k=1i=1
and

i s Fas

k=1i=1

that is, fgll, 2 1
We also notice that y, € Z. Thus by Propositions 3.4 and 3.5, there is a probability measure 1 so
that for some C, and all bounded ¢

gl £ Cs ”g”LuM)'
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Now we show that (ii) = (iv). We notice that 1 is g-continuous, and so by the Radon-Nikodym
theorem, we can find w = d1/du. Then for any measurable set A we have:

ITGaw" )l £ Co lxaw il A (AT = C, A(4).
Now define a function space W by

Hf||w=I sup | T(gw')].

glslflgeBo

Then W has an upper r-estimate and
Iallw < CoA(A).
Hence by Proposition 3.4

I flw = Callf e,
for some C,. [

To conclude the paper let us observe that Theorem 4.1 can be used to extend other
factorization results to non-locally convex spaces. Let us first recall that an operator
T:X — Y where X is a Banach space and Y is a quasi-Banach space is called 2-absolutely
summing if there is a constant C so that for x,,..., x, € X we have

( S 1T, lP)l/z <C max ( S |xt (x.~>x2>”2.
i=1 Hx*ll €1 \i=1

A quasi-Banach space X is of cotype p if there is a constant C so that if x,,...,x,e X

then
n 1/p
scl xixlr)

For the next theorem for Banach spaces see [12], p. 62. In the following more general
formulation, we understand from the referee that it has apparently been known for some
time to Maurey and Pisier, with a somewhat different proof based on extrapolation.

n

S ogx

i=

Aves,- =*1

Theorem 4.3. Suppose Q is a compact Hausdorff space and Y is a quasi-Banach space
with cotype two. Suppose T: C(Q) — Y is a bounded operator. Then T is 2-absolutely
summing and hence there is a probability measure y on Q and a constant C so that

ITf 1 = Cllf L, Jor £ C(Q).

Proof. We may assume that X is an r-Banach space where 0 < r < 1. We first note that if
fis--.» f, € X then since X has cotype two,

n 1/2 n
(;} 1T ) <CiAv,-u | T Tﬁ]
SCTlAve, -y, z > 6ifi‘
i=1

=CTI

|

where C; depends on the cotype two constant of X. Applying Theorem 4.1, we see that there is
a probability measure v on Q and a constant C, so that |Tf || < C, ||f I, 09 for f e C(Q). In

5 I
i=1
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particular it follows that | T | £ Cs [ f ||, - From this we conclude that if f{, ..., f, € C(R2), using
Khintchine’s inequality,

n 1/2 n
('21 1T 2) SCiAve, oy '—21 & Tf;“
n |
sCAve, .y || X &f;
i=1 La()
n 1/2
SC TP
=1 Latv)
u S\2
sCsit XA
i=1 c®

so that T is 2-absolutely summing. It now follows from the Grothendieck-Pietsch Factorization
Theorem (which applies to non-locally convex X} that there is a probability measure p on @
satisfying the conclusions of the Theorem. [

Remarks. We conclude with some comments on Theorem 4.3. We remark first that the theo-
rem, taking X = L, gives a circuitous proof of Grothendieck’s inequality, which is equivalent to the
assertion that every operator from C(f2) to L, is 2-absolutely summing.

We also note that there are, by now, many known non-locally convex spaces of cotype two. The
most natural examples are the spaces L, when 0 < p < 1; in this case, Theorem 4.3 is known, and
is a consequence of work of Maurey [8] (see [17], p. 271). However, more recently Pisier [14] has
shown that the spaces L,/H, have cotype two when p <1, and indeed essentially establishes
Theorem 4.3 for this space. It also follows from work of Xu [18] that the Schatten ideals §, have
cotype two when p < 1, and for these examples Theorem 4.3 is apparently new.

We conclude by noting a dual result and then make a conjecture based on these observations.
First let us recall that if X is a quasi-Banach space then its dual X* defined in the usual way is a
Banach space; here X * need not separate the points of X and may indeed reduce to zero. We define
the canonical map (not necessarily injective) j: X — X ** The Banach envelope of X is the closure
X of j(X).

We shall say that an operator T: X — Y is strongly approximable if T is in the smallest
subspace &/ of ¥ (X,Y) containing the finite-rank operators and closed under the
pointwise convergence of uniformly bounded nets.

The following theorem is essentially known.

Theorem 4.4. Suppose (Q, ) is a o-finite measure space. Let X be a quasi-Banach space
such that X* has cotype g < . Then, for 0 < p < 1, there is a constant C = C{p, X) so
that if T:X — L,(p) is a strongly approximable operator then there exists w = 0 with
[ w'du < C, where 1/s = 1/p — 1, and such that Iw ' Txlp, S CUTI x| for xe X.

Remark. If X is a Banach space, then this theorem is due to Mezrag [9], [10] with no approx-
imability assumptions on T. If X is not locally convex this result is essentially proved in [3] and we
here show how to obtain the actual statement from the equivalent Theorem 2.2 of [3]. Note also that
for spaces X with trivial dual, the theorem holds vacuously since the only strongly approximable
operators are identically zero.

Proof. It is shown in Theorem 2.2 of [3] that given ¢ > 0 there exists C, (g} so that, for any
probability measure v, if T: X — L, (v) is strongly approximable then there exists a Borel subset E
of @ so that v(E)>1—e¢ and ||Txldp < Cy | T| {x]| for xeX. Let us fix ¢=1/2 and let

E n

Co = Co(1/2). Suppose xy,...,x,€ X and let f = > |Tx,|. If | f|,> 0, definev=1f|,71f|"w
i=1
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Consider the operator S: X — L (v) defined by Sx = [ f|7* Tx(set Sx(w) = 0 when f (w) = 0.) Then
IS = len Y41y, Thus there is a Borel subset E of Q with v(E) > 1/2 and so that “ledv
SC IS ITI lix]l for x e X. Now

Z |Sx;| dv

SCIfI T >=21 [l -

and so we obtain an inequality

n r 1/ n
(f(_; lTxiz> d#) "S26ITI Z Il

where C, depends only on p, X. Now by the factorization results of Maurey [8] (see [17] p. 264) we
obtain the desired conclusion. [

Theorem 4.5, Let X be a quasi-Banach space such that X * has cotype two. Suppose Q
is a compact Hausdorff space and u is a o-finite measure on Q. Then for 0 < p < 1, there
is a constant C = C(p, X) so that if T: X — L, () is a strongly approximable bounded
operator, then there exists v 2 0, with [v'dy £ C where 1/t = 1/p — 1/2, and such that
10" Tl < CI T x| for xe X.

Proof. By Theorem 44 we can find w20 with [w'du < C, such that |w™! Tx|y,
SColIT) Ix]l. Now since L, is a Banach space we have [[wTx|, S Co|IT| [x}3 so that
wT = Sjwhere $: X — L, is bounded with |S|| < C, || T ||. Since X * = X * has cotype two and L,
has cotype two we can factor S through a Hilbert space [11] and then apply Maurey’s factorization
results to obtain u = Owith { u?du < C, and such that ™' Sx|,, £ C, | T|| | x| for x € X. Letting

v = uw completes the proof. [ B

Remarks. We discuss a question motivated by Theorems 4.3 and 4.5. An operator T: X - Y
is called approximable if given any compact set K < X and any ¢ > 0 there exists a finite-rank
operator F: X — Fwith || Tx — Fx| < efor x € K. Pisier has shown that if X, Y are Banach spaces
such that X* and Y have cotype two and T: X — Y is an approximable linear operator then T
factorizes through a Hilbert space (see {11], [12]). Does the same result hold if we assume X, Y are
quasi-Banach spaces? Theorem 4.3 and 4.5 provide evidence that this perhaps is true.

Note added 17 December, 1992, After the initial preparation of this note, the first author
and Sik-Chung Tam showed that the conjecture in the last paragraph is true, at least for strongly
approximable operators.
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