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Harmonic functions in non-locally convex spaces 

By 

N. J. KALTON*) 

1. Introduction. Let s be an open subset of tE and let X be a complex quasi-Banach 
space. A function f :  s ~ X is called analytic if given z o e s there exists J > 0 so that if 
[ z - Zo I < J, f (z) can be expanded in a power series 

f (z) = ~ x,(z--Zo) n 
•=0 

where x, ~ X. If ~ = A the open unit disk it follows from results of Turpin [7] that f can 
be expressed in the form 

f(")(O) , 
f(z) = . ~ o - U - .  ~ z '  fzl < 1. 

The general properties of analytic functions were studied in [4]. Unfortunately, in the 
general non-locally convex setting there exist examples of analytic functions on zt which 
extend continuously to A = A w T and vanish on T. However, in certain spaces X, such 
as Lp when 0 < p < 1, a form of the maximum modulus principle holds i.e. for some C 

It f (z) II < c max l} f (w) II 
[wl=l 

whenever f :  zl ~ X is continuous and analytic on A. Such spaces are characterized in [5] 
and are termed A-convex. 

At the other extreme one may ask at what rate one can have f (z) --* 0 as I z ] -~ 1. In [3] 
it is shown that if X' is  p-normable and 

1 

tlf(z) lf = o(I - lzl) p 

then f - 0, while easy examples show that one can have f non-trivial and 
_1_ 1 

!If(z)]l = O(1 - I z l ) "  

Let us say a map h: A -~ X is harmonic if h (z) = f (z) + O (z) where f, g are both analytic. 
One may ask similar questions for harmonic functions. It is, in fact, trivial to show that 
a maximum modulus principle for harmonic functions will imply X is locally convex, so 
we shall concentrate on the rate of decay of h. 

*) Research supported by NSF grant DMS-8301099. 
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Our  main results show that if X is p-normable an harmonic function can still decay no 
t 1 and faster than (i - [ z D l/v- 1. Precisely we show that if fl > ~ - 

II h(z)II = 0 ( 1  - I z l )  ~ 

then h -= 0, while for �89 < p < 1 we prove that if 
_1_ 1 

II h(z)I/= o(1 - Izl)"  

1 then h - 0. In all probability this stronger conclusion holds for p _<_ g. 
For  �89 < p < I the maximal rate of decay can be achieved in Lp (which contrasts very 

strongly with the analytic case since Lp is A-convex). The example is simply the Poisson 
1 is a natural barrier since we also show that if X is A-convex and kernel. However p = g 

h: A --* X is harmonic with 

Ilh(z) lk = O(1 - ]zl) 

then h - 0. Thus the maximal rate of decay can be achieved in an A-convex p-normable 
1 space only when p > g. 

We also relate our ideas to representing operators on Lp and give an atomic decompo- 
1 sition of Lp for ~ < p < 1 suggested by our theorems. 

For  some further results on harmonic functions see [6]. We may add, that as the referee 
has pointed out, there is an extensive literature on analytic and harmonic vector-valued 
functions, using techniques of factorization through locally convex spaces and tensor 
products. (See e.g. [1], [2], [9].) These techniques are readily applicable to problems on 
open sets, but seem to give little information on boundary behaviour questions. 

2. Basic notation. Throughout  this paper we deal only with complex vector spaces, 
al though our results on harmonic functions can easily be lifted to the real case by 
complexification. A p-Banach space (0 < p < 1) is a complete metrizable topological 
vector space whose topology is given by a quasi-norm x ~ ]1 x ][ such that 

(i) I l x l ! = 0 i f a n d o n l y i f x = 0 ;  
(ii) I I ~ x l l = ] ~ l I l x ] t ,  ~ ,  x ~ X ;  

(iii) II xl + x2 IIp <-_ II xl  [Ip + [I x2 [I P, xl,  x2 e x .  

A quasi-Banach space is a p-Banach space for some p, 0 < p _< 1. 
We recall [4] that if ~ > 0 and X is a p-Banach space A~(X) denotes the space of all 

anaIytic functions f :  A -~ X so that if v = [a], 

I l f t [~=  ~ llf(g)(0)]l + sup ( 1 -  IzlZ) ~+1-~ IIf(*+1)(z)l[ <oo .  
k = O  [ z [ < l  

We set V,,(X) to be the set of all analytic f so that 

sup (1 - [ z [ 2 )  -"  t[ f(z)l[ < oo. 
I~l<l 

1 1. Then V,(X) c A,(X) (see [4]) and V~(X) = {0} if a > ~ - 
We also need the class E~(X) of all continuous maps f : l E - - * X  so that f]A and 

f(~) (z s A) are both in A~(X) and further lira f(z) = O. 
Izl~oo 
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For  0 < p < 1 let Lv(T ) denote the space of all measurable functions f :  T ~ C so that 

11 f l] ,--  ~ S f f ( # ~  <co. 

! _ 1 and X is ap-Banach space, the space of operators &a (Lp, X) can be identified I f a  = p 
with E,(X) ([41) by the identification r~--~f where 

T((1 -- wz)- 1) = f (z). 

Here w ~ (1 - wz)- 1 ~ Lp(T). 
I f l  c R is a bounded closed interval then a function f :  I --, X is in C,(I;X) if there is 

a constant ?, > 0 so that for every subinterval J c I there is a polynomial g: IR ~ X of 
degree at most  v = [a], with 

[]f(t)-g(t)H <-_7]Jl ~, t~J .  

The least such constant is denoted 7,(f) and we quasi-norm Co(I; X) by 

l[ f i[ ~ = Y~(f) + max It f(t)t[. 
t e l  

If X is p-normable and a > ! _ 1 then Co(I; X) admits an integration theory due to 
P 

Turpin and Waelbroeck (cf. [4], [7], [8]). See the full discussion in [4]. If /z E M(I) is a 
regular Borel measure supported on I then we can define 

L~(f) = ~ f dlt 

and further 

[I Z,( f )  tl < C I[ f II o It/z :,t 

where C = C (a, p , / )  is independent of f,/z. 
If T is the unit circle we transport these ideas to qF by setting C~(7s to be 

those functions f :  T ~ X so that f e  C , ( [ - 2 n ,  2n] ,X) where f ( 0  =f(eit) o We set 

I l f l l o  = II f l l ~ ,  
If f e  Ao(X) where a > 0 then f extends continuously to J and its boundary values 

1 then the Turpin-Waelbroeck integral can be used to recapture belong to Co. If a > ~ - 
f from its boundary values (see [2]). 

Throughout  this paper we use the convention that C denotes a constant which may 
vary from line to line and may depend on a, p, q, v etc. but is independent of.s g, x etc. 

3. Harmonic functions. Let X be a complex p-Banach space. A function h: A --, X is 
called harmonic if we can write 

h (z) = fl  (z) + fz (e) 

where f l , f2 are analytic. 

(*) h(re i~ = 
n e e  

where Z If x,  IIp rl"J p < 
then h is harmonic. 

If h is harmonic then we can expand h in a series expansion 

X n r In[ e i no  

whenever 0 < r < 1. Conversely if h has such a series expansion 
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It is clear that if h is harmonic then h is infinitely differentiable and that the coefficients 
x n in the series expansion (*) can be computed from the partial derivatives of h. Thus we 
shall set 

d.(h) = x~, n e ~2. 

Let H(X) denote the space of all bounded harmonic functions h: A --, X with the 
sup norm 

I1 h II = sup II h(z)II. 
z~A 

Then we first investigate the continuity of the maps d,: H(X) ~ X for n ~ Z. 
F o r h e H ( X ) , v > l a n d 0 < r < l w e w r i t e  

M~(r; h) = sup II f(~)(z)1[ + sup II o(V)(z)II 
Iz[__<, Izl<-_r 

where 

Let 

f (z)  = ~ d,(h)z", g(z)= E d_,(h)z". 
n~O n>O 

M~(h) = sup M~(r; h) 
r < : l  

so that M~ can be + oe. 
_1 _ 1 and that v = [a] Now suppose ~r is chosen with a > p 

Lemma3.1 .  There exists C= C(p,a) and 0 < f l <  1 where f l= fl(p,~) so that if 
h e H(X) then for n e 2g 

[Idn(h)]l =< C(llhll t -~  M~+~(h)~+ Ilhll). 

P r o o f. It suffices to consider the case My + ~ < oo. We define 

/o(Z) = ~ d.(h)z ~, go(Z) = ~ d-.(h)z ~. 
n = v + l  n = v + l  

Then fo, go ~ A,(X) and 

IIfoll,<CM~+l, [lgo [l~_-< CM~+~. 

In particular fo and 9o extend continuously to A u T. Hence if we put 

f (z)  = ~ d~(h)z ~, g(z)= ~ d_,(h)z ~ 
n=O n = l  

then f and g belong to A,(X) and extend continuously to A ~ ~'. Thus h extends contin- 
uously to A u T. 

Note also that 

h(e i~ = f (e ~~ + g(e -i~ 
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for 0 -< 0 _< 2n and that h e Cr X). Further  by Theorem 6.4 of[2] we can compute d.(h) 
(n ~ K r) as Turpin-Waelbroeck integrals: 

1 2~ h(ei~ e - i"~ dO, 
d.(h) = 2 n  o 

for n s;g.  
If we set 

r = f o ( d  ~ + go(e - i~ 

then r e C,([0, 2hi, X) and in fact 

1[r lic~ < C( [I fo  i! ,~ + H go II~) <= CM~+I .  

Now ([2]) there is a sequence of C~-functions urn: [0, 2hi ~ X (m => 2(v + 1)) with 
rank u,, < m so that 

[ 1 r  - u,.(O)II < c m - ~  M~+~. 
Let 

vm(O ) = um(O ) + ~ dn(h) e i~~ 

Then rank v m < 2 m  and 

ii h(el~ - v,,(O) It < C m -~ m~+ 1. 

Now by [2] Equat ion 3.7 we have 

d.(h)  1 2r: dO A - ~ -  I - ~ ~ vm(O) e - i"~  < C m p M,,+t. 
0 

However  

II v,~(0)ll 5 C(ll hit + m-~Mv§ 

and as rank v,, < 2m 

2~2~ A-I ! v~(6) e-~"~ <Cm ~ (Irhil+m-~Mv+O. 

Combining -1- i 

IId.(h)ll < C m p  (tlhli +m-~M~+l) 

+ 1). By adjusting the constant we may  suppose 
1_ 1 

< Ct" (Ilhll + t -~M~+l)  

i > Ilhll set t ' =  Mv+~/llhll, and conclude 

CM(+z [Ih[I ~-a 

If M~+~ < Hhll, 

< C Ith[I. 

for m => 2 (v 

!1 d.(h)II 

for all t _>_ 1. If M~ + 

It d,(h)li 

w h e r e  ~ = ~(~ - 1). 

]r d~(h)F[ 

The conclusion now follows. 
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Theorem 3.2. For each n e Z,  there exists a constant C = C(p,a,n) so that if h e H(X)  

l! d,(h)II _-< C I1 h I[. 

P r o o f. Suppose  II h II = 1 and, 

h (z) = f (z) + 9 (z) 

where f g are analytic. If  z o ~ A set 

ho(z) = h(zo + (1 - r)z) 

where [Zoi = r. No te  that  

M~+l(ho) <= (1 -- r) ~+1 M~+l(h). 

Thus 

U d.(ho) j[ < C((1 - r)a(~+l) M~+ 1 + 1) 

by L e m m a  3.1. In  part icular  taking n = v + 1 

II f(~+l)(Zo)II < C(1 - r)-~v+l)[(1 - r) ~(~+~) M~+~_ + 1] 

and  a similar inequali ty holds for g (~+ 1) 
Thus  

M~+ l(r,h) 

N o w  i f 0  < r < R < 

M~+i(r,h) 

Let us suppose My+ 

M~+ l(r ) < 

3 1 
Let r. - 

4 4" 
. . . .  for n 

__< c ( 1  - r ) - ~ + ' [ ( 1  - r) p(~+I) M~+i  + 1]. 

1 we can utilize this to conclude 

0 
l < r < R < l ,  1(�89 h) > 1. Then  for 5 = 

2 C ( 1 -  R ) - ( ~ + i )  M~+I(R) ~. 

> 1. Then  

and  so if 

1 r. > 1 
r.+ 1 = 4" 

M. = M~+i(r.,h), 

Let A.  = fl" log M..  Then  

so that  

~ ~ ' ~ n +  1 " 

A. =< fl" log(2C)  + nfl"(v + 1) l o g 4  + A.+ i 

An  Al log 2C,  n( n n),v+l,,og4n i 
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Since A, ~ 0 we conclude fl log M 1 < C where C = C(p, a) so that 

MI<=C or Mv+l(�89 h)<=C. 

Now considering ho(z) = h(�89 we have M~+l(ho) < C and so 

II d.(ho)11 <= C 

so that 

11 d.(h)I1 ~ C 2 j"l. 

Corollary 3.3. I f  h is harmonic on A and is written in the form h ( z ) = f  (z) + 9(5) 
where f and 9 are analytic then for n >= 1 

]t f(")(Zo) ]l ~ C(p ,a ,n ) r -"  max ][h(z) l[ 
Iz-~ol_-<r 

I[ g(")(Zo) l/ __< C(p ,a ,n )r -"  max IIh(z)il 
iz-~ol__<r 

for every r with 0 < r < 1 - ]Zo]. 

4. The failure of the maximum modulus principle. Let us consider now an example. Let 
P(z, w) be the Poisson kernel 

1 - i z l  2 
P(z,w)-lw_zl2, zeA, weT. 

Let P(z) = P(z, . ). Then the map z ~ P(z) (A ~ Lv(ql)) is harmonic. In fact 

P(z) = Z # " z " +  Z w " ~  
n > 0  n < 0  

If 0 < p < 1, P extends continuously to A u ~f if we put P(z) = 0 for z e T. 
Thus the maximum modulus principle fails for harmonic functions in Lp when 

0 < p < 1. It is not  difficult to establish that if X is a p-Banach space satisfying an 
estimate of the form 

[[ h(O)11 

for every harmonic 

h(O) = 

and hence one can 

x lq -  

< C max [1 h(w)[I 
w ~ -  

function, then X is locally convex. In fact if h has finite rank 

1 2~ 
! h(e w) dO 

deduce without difficulty 

""n + x. =< C max,_<. II xl ][ 

for any x l , . . . , x ,  e X.  
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At  the oppos i t e  ex t reme  one m a y  ask for  the precise  ra te  a t  which an  h a r m o n i c  funct ion  
can  decay  at  the b o u n d a r y  on  A in a p - n o r m a b l e  space. In  [2] it  is shown tha t  if X is 
p - n o r m a b l e  and  f :  A ~ X is ana ly t ic  and  satisfies 

1 

II f(z)I1 = o(1 - Izl=) p 

as I z I --* 1 then  f - 0. The  exis tence of  an  ana ly t ic  f such tha t  
1 
- - - 1  

II f ( z )  II _-< c ( 1  - I z l Z )  p 

is equ iva len t  to  5Y(Lp/Hv,X ) # {0}. 
F o r  ~ > 0 we let VH,(x) be the space of all h a r m o n i c  funct ions  h: A ~ X such tha t  

l[ h(z)ll < C(1 - I z [ 2 )  ~. 

L e m m a  4.1. I f  h ~ VH~(X) and 

h (z) = f (z) + g (~) 

where f and g are analytic then f g ~ A~(X) and 

s u p ( l  - Iz[2) 1-~ II f'(z)l[ < c~ 

sup(1 - [z[2) t - "  II g'(z)II < oo. 

P r o o f .  If  

It h(z)]l <_- n ( a  - I z l 2 y  

then  by  C o r o l l a r y  3.3 if n > 1 

H f(")(z)II < CB(1 -- [zl2) " - "  

II g(")(z) II < CB(I  - Iz l2V -" .  

If  v = [a] t ake  n = v + 1 and  then  f, g ~ A , (X) .  The  second  conc lus ion  takes  n = 1. 
We see i m m e d i a t e l y  tha t :  

Theorem 4.2. I f  VH~(X) # {0} and a > I then V,,_I(X):# {0}. 

[Here V.(X) is the class of ana ly t ic  funct ions  f :  A ~ X so tha t  II f (z) ]l =< B (1 --  I z] 2) r 

Coro l l a ry  4.3. Let X be an A-convex quasi-Banach space and suppose h: A ~ X is 
harmonic and 

It h(z)II = o ( l  - Izl).  

Then h - O. 

P r o o f. The  a r g u m e n t  of L e m m a  4.1 here  shows tha t  iI f ' (z)  11 ~ 0 as I zl ~ 1 and  
I[ g'(z)II ~ 0 as [zl ~ 1. Since X is A-convex  f ' -  0 and  g' = 0 so tha t  h is cons tant .  

R e m a  r k .  The  example  h(z)= P(z) in weak  L~/2 = L(�89 oo) shows one  can  have 
]1 h(z)l[ = O(1 - [z[) in an A-convex  space with  h # 0. 

Archlv der Mathematik 50 35 
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! _ 1. Suppose h ~ VH~(X). Then there Theorem 4.4. Suppose X is p-normable and a = p 
exists T e ~L~ (Lp, X) so that 

T (n (z)) = h (z). 

P r o o f. Suppose  

h (z) = f (z) + # (~) 

where  f 9  are  ana ly t ic  and  f ( 0 )  = 0. Then  f g  e A , (X) .  Define F :  C ~ X by 

F (z) = g (z), [ z [ __< 1 

N o t e  tha t  if I zn I > 1 and  z n --~ zo where  I zo I = 1 then  

F (z,) = - = # - h 

so tha t  lira F ( z n ) =  l im g(e/1)=g(eol)=F(z0). Thus  F e E ~ ( X )  and  there  exists 
n- -~  oo 11-.+ ct3 

([4] T h e o r e m  8.1) T e  ~ ( L p ,  X ) so tha t  

T ( ( I  - wz)-  !) = F(z). 

N o w  if ]z[ < 1 

P(z,w) = (1 - w~) -1 --  (1 - w z - l )  -1 

so tha t  

r n  (z) = g (z-) + f (z) = h (z). 

1 then VH~(X) = {0}. Corollary 4.5. I f  X is p-normable and a > ~ - 

1 P r o  o f. Le t  ~ = a + 1. Then  if h e VH~(X) there  exists T e  ~f (Lq,X)  so tha t  

T(P(z))  = h(z). 

H ow eve r  X is p - n o r m a b l e  a n d  p > q so tha t  T = 0. 

1 1 1 then VH~(X)-4: (0} /f and only if Corollary 4.6. I f  ~ < p < l and  a = ~ -  

~q~ (Lp, X) 4: {0}. 

P r o o f .  In  this case P ( z ) e  VH~(Lp). 

this t h e o rem is false by  C o r o l l a r y  4.3. R e m a r k .  For p < 
We conc lude  this sect ion by  p rov ing  an  a tomic  d e c o m p o s i t i o n  for Lp where  �89 < p =< 1, 

which  is suggested by  Coro l l a ry  4.6. 
F o r 0 < r < l  a n d n e N s e t  

A(r,n) = {rw~: k = 0 , 1 , 2 , . . . ,  n -  1} 

where  w, = exp(2rci/n). 
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1 Theorem 4.7. Suppose ~ < p < 1. There exists ~ = 6(p) > 0 with the following property. 
Let  rk--r 1 and nk--~ cO be chosen so that ~ ~ nk(1 -- rk) < M < Co. Let  A = w A(rk, nk) and 
let {zm}~= 1 be an ordering o f  A. Then there exists a constant C so that i f  f e Lp(T) 

1 

f =  ~ %P(z.~)(l -IZm]2) t - ~  
m = l  

i 

and (~., [c,.IP) p < C II f lip. 

R e m a r k .  N o t e  that 
1 

1 - -  
s u p l l P ( z , ~ ) ( 1 - l z m [  2) P l l p = B < c o .  

m 

P r o o f .  We shall  suppose  

e - 6  
22/p -- fl < 1. 

(1 - e -  P6) 1/p 

Def ine  T: Ip ~ Lp by 
1 

1 - -  
T(c,,) = Z c , . P ( z , , ) ( l  - [ z , , I  2) P 

Then T is bounded  and II T 1] = B. We must  show that T is an open  mapping.  
S u p p o s e  f ~ Lp is a tr igonometr ic  p o l y n o m i a l  i.e. 

N 

f (W) = S', a k w k . 

k= - N  

S u p p o s e  A(r,n) c A, with  n > 2 N  and r = r,., n = n m. We c o m p u t e  g = gm where  

1 n - 1  

g = - Z f (w~)  P(rw~). 
n k = O  

T h e n  g = T(d) where  d = d,~ and 
1 

lldll =-(1 - [ f ( w k ) [  p 
/'t \ k = O  

N o w  
N 

g=~rlk lakwk+ ~ ~+'"akwk+t"+ ~ ~.rl"-kakwk-l". 
- N  / = 1  - N  / = 1  - N  

Let 
N 

F1 = Fl(r, w) = Y. rtkl ak w k 
- N  

N 

F2 = F2(r, w) = E rk ak wk 
- N  
N 

]73 = F3(r ,w)  = E r - k a k  w~. 
-N  

35* 
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Then 

Thus 

while 

so that  

yn p 

[ I f - g r a i l  p <  i l l - F ~ I I P  + 1 _ ~ ( I I F 2 1 1 P +  IIF3 HP). 

lim sup 1I f - g~ II ~ < 2 lira sup ~ t1 f I[ p < 2 - -  
e - , a  

1 - e -p~ It f it ~" 

ild~ll p n~-P(l - r ) t - p ( l  + r)~-~ 1 '~-~ = - 2 [f(w~)l ~ 
/'/ k=O 

l im sup [Id~ll~ ~ 2 1 - P M  1-p I lf l l  ~- 
m--~ oo 

By a density argument  we conclude that  if f ~ Lv there exists d ~ Ip with 
1 1 
-- - - - 1  

ild t[ < 2g Mv II f [1 

e - 6  

II f - Sd [I < 22/~ (1 - e-P6) lip It f II 

= 3 1 1 f l l .  

This implies that  T is onto since fl < 1. 

1 Corollary 4.8. Suppose ~ < p < 1. Let  X be p-normable and suppose h ~ H (X) satisfies 
1__ 1 

[I h(z)II -- o(1 - Izl) p 

Then h =- O. 

P r o o f. Suppose p < 1. By Theorem 4.7 there is a set {z,} so that  the map  S: t,  ~ L ,  
is onto where 

1 

S(en) = e ( z , ) ( l  - l z . I  2) P 

Let T: Lp ~ X be the map  given by Theorem 4.4. Then T o S(en) ~ 0 and hence T is 
compact.  Thus [3] T = 0 and h = 0. 

F o r  p = 1, this follows from the Maximum Modulus  Principle for harmonic  functions. 
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