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Harmonic functions in non-locally convex spaces

By
N. J. KALTON *)

1. Introduction. Let 2 be an open subset of € and let X be a complex quasi-Banach
space. A function f: @ — X is called analytic if given z, € 2 there exists ¢ > 0 so that if
|z — zy] < 4, f(z) can be expanded in a power series

o«

f@) = Z x,(z = z0)"

=0

where x,e X. If @ = 4 the open unit disk it follows from results of Turpin {7] that f can
be expressed in the form

© (")0
o= %0 o<t
n=0 ni

The general properties of analytic functions were studied in [4]. Unfortunately, in the
general non-locally convex setting there exist examples of analytic functions on 4 which
extend continuously to 4 = 4 U T and vanish on T. However, in certain spaces X, such
as L, when 0 < p < 1, a form of the maximum modulus principle holds i.e. for some C

f@al=c max tf i

whenever f: 4 — X is continuous and analytic on 4. Such spaces are characterized in 5]
and are termed A-convex.
At the other extreme one may ask at what rate one can have f(z) - 0 as |z{— 1. In[3]

it is shown that if X is p-normable and
1

£ @) = ol —z)?

then f = 0, while easy examples show that one can have f non-trivial and

i
If@l=0a-—1zp" .

Let us say amap h: 4 — X is harmonic f h(z) = f (z) + g(2) where f, g are both analytic.
One may ask similar questions for harmonic functions. It is, in fact, trivial to show that
a maximum modulus principle for harmonic functions will imply X is locally convex, so
we shall concentrate on the rate of decay of h.

*) Research supported by NSF grant DMS-8301099.
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Our main results show that if X is p-normable an harmonic function can still decay no
faster than (1 —|z[)*/?~*. Precisely we show that if #> > —1 and

Ih@) 1 =00 ~|z)*

then h = 0, while for 7 < p < 1 we prove that if
1

Ih@) = o1 —|z})”

then h = 0. In all probability this stronger conclusion holds for p < 1.

For £ < p < 1 the maximal rate of decay can be achieved in L, (which contrasts very
strongly with the analytic case since L, is A-convex}. The example is simply the Poisson
kernel. However p = 1 is a natural barrier since we also show that if X is A-convex and
h: 4 - X is harmonic with

Ihz) | =0 —1z)

then h = 0. Thus the maximal rate of decay can be achieved in an 4-convex p-normable
space only when p > 1.

We also relate our ideas to representing operators on L, and give an atomic decompo-
sition of L, for 1 < p <1 suggested by our theorems.

For some further results on harmonic functions see [6]. We may add, that as the referee
has pointed out, there is an extensive literature on analytic and harmonic vector-valued
functions, using techniques of factorization through locally convex spaces and tensor
products. (See e.g. [1], [2], [9].) These techniques are readily applicable to problems on
open sets, but seem to give little information on boundary behaviour questions.

2. Basic notation. Throughout this paper we deal only with complex vector spaces,
although our results on harmonic functions can easily be lifted to the real case by
complexification. A p-Banach space (0 < p < 1) is a complete metrizable topological
vector space whose topology is given by a quasi-norm x — || x || such that

i) x| =0if and only if x = 0;
@ fex|=lalix], aeC, xeX;
(i) fx+x1P=Ix 7+ %207 xp, %6 X

A quasi-Banach space is a p-Banach space for some p, 0 < p < 1.

We recall [4] that if ¢ > 0 and X is a p-Banach space 4_(X) denotes the space of all
analytic functions f: 4 — X so that if v = [o],

o= 2, 1790+ sup (1= 1213717 | 70" 9(3) ] <co.

We set V,(X) to be the set of all analytic f so that
sup (1 —1z|3)77 | f (@] < 0.

|z]<1
Then V,(X) < A, (X) (see [4]) and V, (X) = {0} if ¢ > % —1.
We also need the class E (X) of all continuous maps f: € — X so that f|4 and
f @) (z € 4) are both in 4,(X) and further lim f(z) =0.

lz|=
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ForO<p<ilet Lp(’l[') denote the space of all measurable functions /=T — € so that
o 1 . i/p
1S,= ﬂflf(e‘)lpdﬁ} < o0,

Ifo= % — 1 and X is a p-Banach space, the space of operators £ (L,, X) can be identified
with E_(X) (J4]) by the identification T« f where

T((1 —wz)" ) =f().

Here w — (1 — wz)" e L,(T).

IfI « IR is a bounded closed interval then a function f: I — X is in C,{I; X) if there is
a constant y = 0 so that for every subinterval J < [ there is a polynomial g: R - X of
degree at most v = [¢], with

I1f@—g®llsylJl7, el
The least such constant is denoted y,(f) and we quasi-norm C,(I; X) by

1 o= v(/)+ max (FAULE

If X is p-normable and o > £ — 1 then C,{I;X) admits an integration theory due to
Turpin and Waelbroeck (cf. [4], [7], [8]). See the full discussion in [4]. f pe M(I)is a
regular Borel measure supported on I then we can define

L(f)= i fau
and further

ILDT=CHS N,

where C = C(g, p,I) is independent of f, u.

If T is the unit circle we transport these ideas to T by setting C,{T, X) tc be
those functions f:T — X so that fe C,([— 2z, 2a], X) where f(z)=f(¢"). We set
I lle =111l

If fe A_(X) where ¢ > 0 then f extends continuously to 4 and its boundary values
belong to C,. If ¢ > £ — 1 then the Turpin-Waelbroeck integral can be used to recapture
f from its boundary values (see [2}).

Throughont this paper we use the convention that C denotes a constant which may
vary from line to line and may depend on g, p, g, v etc. but is independent of f, g, x etc.

3. Harmonic functions. Let X be a complex p-Banach space. A function #: 4 - X is
called harmonic if we can write
h(z) = f1(2) + £2(8)
where f}, f, are analytic. If 4 is harmonic then we can expand / in a series expansion
*) hre?) = 3 x, "l e
neZ

where I | x, || ? #"1? < oo whenever 0 £ r < 1. Conversely if & has such a series expansion
then h is harmonic.
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It is clear that if h is harmonic then h is infinitely differentiable and that the coefficients
x, in the series expansion (*) can be computed from the partial derivatives of 4. Thus we
shall set

d,(h)=x, nel.

Let H(X) denote the space of all bounded harmonic functions h: 4 — X with the
sup norm

I Al = sup [h(z) .
zed

Then we first investigate the continuity of the maps d,: H(X) — X for ne Z.
Forhe H(X),vz1and 0 <r <1 we write

M(r;h) = sup | [V + sup | @ |

|z|=sr |z|sr
where
fla)= ;0 d,hz", g(z)= ZO d_,(h)z".
Let

M, (h) =sup M,(r; h)

r<i

so that M, can be + co.
Now suppose o is chosen with ¢ > % — 1 and that v = [o].

Lemma 3.1. There exists C= C(p,0) and 0 < <1 where B = p(p,0) so that if
he H(X) then forneZ
Iyl < CURITP M, (B)P + | B Y).

Proof. It suffices to consider the case M, ; < co. We define

K= T B a@= 5 d 02

n=v+1
Then fy,9,€ 4,(X) and
[ folle = CMys1, 9ol S CM,yy.

In particular f, and g, extend continuously to 4 UT. Hence if we put
f@= T 402, 96)= 3 d. Bz
then f and g belong to 4,(X) and extend continuously to 4 u T. Thus & extends contin-

vously to 4 UT.
Note also that

h(e®) = f(e) + g(e™™)
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for 0 < 6 < 2z and that h € C,(T, X). Further by Theorem 6.4 of [2] we can compute d, (h)
(n € Z) as Turpin-Waelbroeck integrals:

12 .
du(h) = — [ h(e% e 49,
27[0

forneZ.
If we set

o) = fole®) + gole %)
then ¢ € C,([0, 2x], X) and in fact
[#llc, < CUlfollo+ g0l < CM,.
Now ([2]) there is a sequence of C*-functions u,: [0, 2z] » X (m = 2(v + 1)) with
rank u,, < m so that
16O —u I < Cm M, ,.
Let

0u(6) = un(6) + 3 d, () .

Then rankv,, < 2m and
1) — v, O | S Cm™" M, , ;.
Now by [2] Equation 3.7 we have

1 27 —ind@ I
dh) =5 | va®) € w1

0

é—'e:'*l
écmp M\'+1'

However
[0 = CUAI+m™7 M)

and as rank v, < 2m

| 1,
fécw Lkl +m™ M,,,).

1 2r .
3 [ v, e~ do
0

Combining .

1
ldy W < Cm® () +m™" M,.)
formz2(v+1). By adjuslti_rig the constant we may suppose
ld,WI=Ct? (Ihll +t7°M,.y)
forall t= 1. XM, , > |k| sett”=M,,.,/[h|, and conclude
()| = CME, | R|T*
where f= 1 — 1). If M,,, < || ],
ld.(mi =Clhl.

The conclusion now follows.
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Theorem 3.2. For each n e Z, there exists a constant C = C(p,0,n) so that if he H(X)

ld, (Wl = Clhj.
Proof. Suppose |[h|| =1 and,
h(z) = f(2) + 9(2)
where f,g are analytic. If z,€ 4 set
ho(2) = h(zo + (1 — 1) 2)
where |z,| = r. Note that
M,ii(ho) (1 —7)""" My, (h).

Thus
lda(ho) || < C((1 = PPCTOME, + 1)

by Lemma 3.1. In particular takingn=v + 1

14+ D(e0) | £ €t =)~ D[ = nFe* D m,,

and a similar inequality holds for g+ 1,
Thus

M, i(nh) = CA—n) D[ = nfCT D MY,

Now if 0 < r < R < 1 we can utilize this to conclude

{(v+1) 7 piv+1)
M, (nh<Cl1- ) ((1_E>

Let us suppose M, ;(3,h) = 1. Thenfor: <r<R <1,

(v+1)

Mv+1(r)§2C<1 “E) M, (R)*.

3 1
Letrnzz-—ﬂforn_z_l.Then

T

1
1 — _
LIS 4"

IV

and so if

M, = M,.,(h, 1), M,<(20) 40D MP, |
Let 4,= " logM,. Then

A, S flogRC) +np"(v+ 1) logd + A, .,
so that

+ 1]

+1].

Mv+ 1(R5 h)ﬁ + 1)’

Ay~ Az —log(20) 3 ﬁ"—(i nﬁ") (v + 1) log4.
n=1

n=1
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Since A4, — 0 we conclude f log M; < C where C = C(p,0) so that
M, £C or M, (3hsC
Now considering ho(z) = h(3z) we have M, ,,(hy) £ C and so
ldyho) | < C
so that
ld.(hy| = C 21",

Corollary 3.3. If h is harmonic on A and is written in the form h(z) = f{z)} + g{2)
where f and g are analytic then for n = 1

1f®(zo)| < Cp,o,m)r™™ max | h(z)]

{z—~zo| Er

lg™(zo) | < C(p,o,mr™" max [h(2)]

|z—zo|Sr

for every r with 0 <r <1 —|z4].

4, The failure of the maximum modulus principle. Let us consider now an exampie. Let
P(z,w) be the Poisson kernel

1—iz|?

P(st): ‘2a

jw—z

Let P(z) = P(z, - ). Then the map z — P(z) (4 — L,(T)} is harmonic. In fact

zed, we'l.

Pizy= 3% w'z"+ 3 w'Z"

nz0 n<0

If 0 < p < 1, P extends continuously to 4 T if we put P(z)=0for zeT.

Thus the maximum modulus principle fails for harmonic functions in L, when
0 < p < 1. It is not difficult to establish that if X is a p-Banach space satisfying an
estimate of the form

fhO)=C max I A w)
for every harmonic function, then X is locally convex. In fact if h has finite rank
1 27
h(0) = — | h(e%) d8
© =5 [ e

and hence one can deduce without difficulty

x1+...+xn
n

< Cmax | x|

ign

for any x,,...,x,€ X.
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At the opposite extreme one may ask for the precise rate at which an harmonic function
can decay at the boundary on 4 in a p-normable space. In [2] it is shown that if X is
p-normable and f: 4 — X is analytic and satisfies

1
1f@] =00 ~1z1%"

as [z| — 1 then f = 0. The existence of an analytic f such that

1
14

If@l=Cct—lz?

is equivalent to £ (L,/H,, X) + {0}.
For o > 0 we let VH,(x) be the space of all harmonic functions h: 4 — X such that

Ikl = CU —|z]%)°.
Lemma 4.1. If he VH_(X) and
h(z)=f(z) +9(2)
where f and g are analytic then f,g € A,(X) and

sup(1 — 12377 || f'(@) | < 0
sup(1 — [z[)!77 |4 @) | < co.

Proof. If
Ih@z)|| < BA ~|z]%)°
then by Corollary 3.3ifn =1

| f®()]| £ CB( —|z]|Y)°"
g"™(2)|| £ CB(1 —|z|})°™".

If v=[o] take n = v + 1 and then f,g € A,(X). The second conclusion takes n = 1.
We see immediately that:
Theorem 4.2. If VH_(X) + {0} and o > 1 then V,_(X) % {0}.
[Here V,(X) is the class of analytic functions f: 4 — X so that || f{z) | £ B(1 — |z]|?)].
Corollary 4.3. Let X be an A-convex quasi-Banach space and suppose h: A — X is
harmonic and
@) = o — |z]).
Then h = 0.

Proof. The argument of Lemma 4.1 here shows that || f'(z)| =0 as |z] - 1 and
lg'(z)| -0 as |z| — 1. Since X is A-convex f' = 0 and ¢’ = 0 so that h is constant.

Remark. The example h(z) = P(z) in weak L, = L(, c0) shows one can have
{h{z)] = 01 —|z]) in an A-convex space with h # 0.

Archiv der Mathematik 50 35
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Theorem 4.4. Suppose X is p-normable and o =
exists Te £ (L,, X) so that

T(P(2) = h(2).

— 1. Suppose h € VH_{X). Then there

1
P

Proof. Suppose
h(z)=f(2) + ¢(2)
where f, g are analytic and f(0) = 0. Then f,g € A,(X). Define F:C — X by
F(z) = 9(2), lz|£1

= —fG-), z} > 1.
z

Note that if |z,| > 1 and z, - z, where |z,| = 1 then

=)

so that lim F(z,) = lim g(z; !) = g{z5 }) = F(zy). Thus FeE,(X) and there exists
(4] Theorem 8.1) Te #(L,, X) so that
T(1—wz)~ Y = F(z).
Now if |z} < 1
Piezw=(1—-ws) 1 —(1—-wz Y !
so that
TP(z) = g(2) + f (2) = h(2).
Corollary 4.5, If X is p-normable and o > % — 1 then VH_(X) = {0}.
Proof. Let % = o + 1. Then if h € VH,(X) there exists Te #(L,, X) so that
T(P(z)) = h(z).
However X is p-normable and p > g so that 7= 0.
Corollary 4.6. If ;<p<1 and o=7~—1 then VH,(X)+ {0} if and only if
Z(L,, X} + {0}.
Proof. In this case P(z) € VH,(L,).

Remark. For p <} this theorem is false by Corollary 4.3.

We conclude this section by proving an atomic decomposition for L, where 1 < p < 1,
which is suggested by Corollary 4.6.

For0<r <1 and ne NN set

Ar,ny = {rw: k=0,1,2,...,n—1}

where w, = exp(2xi/n).
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Theorem 4.7. Suppose ; < p < 1. There exists § = 6(p) > 0 with the following property.
Let r,— 1 and n, — ¢ be chosen so that 6 < m(1 —r) £ M < 0. Let A = A(r,,n) and
let {z,,} ;=1 be an ordering of A. Then there exists a constant C so that if fe L,(T)

Lt
14

= % P (= 12,0

1
and (L [cnD? < C £ 1.
Remark. Note that
1

i——=
sup ”P(Zm)(l—qlzmiz) p”p=B<OO.

Proof. We shall suppose

-0
¢ =f<1.

2 T
2 p(1 — e~p5)1/p

Define T:[,— L, by
1
1 -
T(cm) =Zcm P(Zm)(l - !Zmlz) L.
Then T is bounded and | T|] = B. We must show that T is an open mapping.
Suppose fe L, is a trigonometric polynomial i.e.

fw= 3 aw.

k=~-N
Suppose A(r,n) = 4, with n > 2N and r =r,,, n = n,,. We compute g = g, where

1 n—1
g=- X f(wy) Prw)).
Ng=0

Then g = T(d) where d = d,, and
i

1

1 =1 fn—1 7
ldi =~ — 1?7 (kgolf(wﬁ)l"> :

Now
N © N

g= Z Y‘Iklakwk—F Z Z rk+lnakwk+ln+
-N I=1 —-N I=1

Let

N

F=Frw=% rlklakwk
-N

N
F,=F(rw =Y rfaw*
oy

N
Fy= F(r,w) =Y r *a,w"
v
35%
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Then
7D
I f=gulPS 1 f— F I+ 7 UL BRI+ I E 7).

Thus

. . . me ¢

limsup || f— g, 17 = 2(11111 sup ﬁ_—> [ R 2 Py IR
while

n—1
Iy 7= 71— )P 4y

so that

lim sup id,, [P <21 PMTE| £ P

m—> o

By a density argument we conclude that if f e L, there exists d e [, with
1 1

1l <22 M |1

-8

=Sl <2 1

=BiIfl.

This implies that T is onto since § < 1.
Corollary 4.8. Suppose 3 < p < 1. Let X be p-normable and suppose h < H(X) satisfies

Ly
[h(z)]| = ot —|z])?
Then h = 0.

Proof. Suppose p < 1. By Theorem 4.7 there is a set {z,} so that the map §:/,—» L
is onto where

14

1

Se) = Pz) (1 — |z,]?) *.

Let T: L,— X be the map given by Theorem 44. Then T~ S(e,) — 0 and hence T is
compact. Thus [3] T=0and h=0.
For p = 1, this follows from the Maximum Modulus Principle for harmonic functions.
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