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Compact and strictly singular operators on certain function spaces 

By 

N. J. KALTON*) 

1. Introduction. This paper improves and completes results proved about Orlicz func- 
tion spaces in [1]. It was shown in [1], for example, that if ~b is an Orlicz function satisfying 
the A 2-condition then for any non-zero operator T: Lo -* Y, either T factors through the 
containing Banach space of Lo or there is a Hilbertian subspace H of L~ so that TI H is 
an isomorphism; if L 0 has trivial dual, the first alternative is impossible. Other results 
were obtained on the existence of non-zero compact operators. Part  of the motivation of 
this paper is to replace Orlicz function spaces by general symmetric function spaces (e.g. 
Lorentz spaces); such an extension was obtained in the trivial dual case for compact 
operators in [3], by a very simple argument. For  convenience of exposition we only 
consider the locally bounded case, i.e. quasi-Banach spaces. 

As we shown in Section 3, the methods of [1] can be adapted to give a very general 
theorem concerning operators on spaces Lp(X) where 0 < p < oe and X is an arbitrary 
quasi-Banach space. We apply this result in two ways. 

In Section 4 we deduce the non-existence of "averaging projections" on Lp(X) for a 
wide class of space X. We conjecture that if X is a non-locally convex quasi-Banach space 
then for p < ov there cannot be a projection of Lp(X) onto its subspace of constants. This 
is related to the problem of whether Lp(0 < p < 1) is prime. 

In Section 5 we apply our results to symmetric function spaces. If X is a separable 
symmetric function space with trivial dual and X = Lp for some p < oe then any non- 
zero operator T: X ~ Y preserves a copy of 12, as for Orlicz spaces. If X has non-trivial 
dual the statement of the theorem must be modified somewhat and the containing 
Banach space of X does not in general play the same role. 

In [1] it is shown that an Orlicz function space with a basis is locally convex. We 
conclude by establishing a necessary and sufficient condition for a separable symmetric 
function space to have a basis. We show in fact that if X has a basis (or even embeds in 
a space with a basis) then the Haar  system in a basis. W e  show that X can be non-locally 
convex and have a basis; in fact the Lorentz spaces L(p, q) where p > 1 and q < 1 are 
examples. We also show that the spaces L(1,q) for q < 1 do not have a basis. 

2. Preliminaries. We recall that a quasi-Banach space X is a complete metrizable 
topological vector space whose topology may be given by a quasi-norm, i.e. a map 
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x ~ I1 x I[ (X ~ N) so that 

(i) Ilxll > 0  x + 0  
(ii) I[~xl[ = Icq Ilxll c~EP,, x e X  

(iii) [Ix + yll < C(llxll + ]lyl[) x , y ~ X  

where C is independent of x and y. We shall always suppose that the quasi-norm is 
lower-semi-continuous (or that {x: II x IF _-< 1} is closed). X is called an r-Banach space 
(0 < r < 1) if in addition we have 

(iv) [ I x + y l l r _ -  < l l x l f + l l y [ I  r x, y e X .  

Every quasi-Banach can be equivalently re-normed as an r-Banach space for some 
r N 1 .  

On any quasi-Banach space X we define U [[c to be the greatest semi-norm so that  

I IxL < l lx l l  x ~ X .  

Alternatively r] x lie < 1 if and only if x lies in the closed convex hull of the unit ball of X. 
The containing Banach space J( of X is the Banach space obtained by completing the 
Hausdorff  quotient of (X, II ]it)- 

For  0 < p < oo we define Lp(X) to be the space of all Borel measurable, separably 
valued, functions f: [0, 1] - ,  X so that 

11 f lip = Uf(t)[[ pdt  <oo 

(for p < Go) or 

[[ f [[ ~ = ess. sup l[ f(t)][ < oo. 

If ~b ~ Lp and x e X we write ~b | x for the function f(s)  = q~(s) x. 
We denote Lebesgue measure on (0, 1) by 2. For  f ~  Lo(0, 1) we define its decreasing 

rearrangement f *  by 

f * ( t ) =  inf sup If(s)l.  
~(A) =t  s~(O, 1)\A 

A symmetric function space X is a quasi-Banach space of measurable functions on (0, 1) 
(where functions equal almost everywhere are identified) so that 

(i) If f *  < g* and g ~ X  t h e n f ~ X  and [[f[[ __< ][g[[. 
(ii) If 0 < fn --< 1 and f ,  ~ 0 a.e. then [] f~ U --* 0. 

If X is symmetric function space then X ([0, 1] 2) denote the space of all f ~ Lo([0, 1] 2) so 
that  f *  ~ X where f *  is defined in the obvious way. 

We define, for 0 < s < oo the dilation operators Ds: X --* X by 

Dsf( t  ) = f ( t s  1) 0 < t < m i n ( 1 , s )  

= 0  s < = t < l  

5* 
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and  define the Boyd  indices of X by 

log s 
Px = l im 

s~ co log II Ds II 

log s 
qx = l im - -  

s~o log II ns  [I 
(see [6]). 

W e  also in t roduce  for f E L~ the funct ion 

t 
1 !f*(s) ds. f**( t )  = t 

The dyad ic  in tervals  D(n, k) deno te  the in tervals  ((k - 1) 2 -n, k .  2 -n) c [0, 1]. 

3. Operators on Lv(X ) spaces. W e  shall  need a l e m m a  which is p r o b a b l y  wel l -known.  
Essent ia l ly  the same l e m m a  is p roved  in [1]. 

L e m m a  3.1. Let ~: ~ ~ ~ be a continuous function satisfying the growth condition 

IO(x)l <= A + B Ixl p x ~ I~ 

where A, B > O. Let  (s P) be a probability measure space and suppose tl: f2 -* P. is normally 
distributed with mean zero and variance one. Suppose further that every e > 0 and x ~ 

we have 

E (~ (x + ~ ~)) >= r (x). 

Then r is convex. 

P r o o f .  W e  need on ly  show tha t  ~ is m i d p o i n t  convex i.e. for x, y ~ ~,. 

~(x  + y) + r - y) >= 2~(x).  

Fix  y r ~ ,  and  define q/: F,. ~ ]R by 

Y 
O(x) = ~(y - t ) (~ (x  + t) + ~(x  - t ) )dr .  

0 

F r o m  the hypo theses  we deduce  tha t  

~(~(x+~/ ) )_>__~, (x )  e > 0 ,  x e l R .  

H o w e v e r  ~ is twice-different iable  and  indeed  

r = ~(x  + y) + ~(x  - y) - 2r  

N o w  from Tay lo r ' s  t h e o rem we have  

O(x + t) + 0 ( x  - t) - 2tfi(x) = �89 + Ot) + O"(X - -  Ot)) 

where  0 < 0 < 1. Hence  

]0 (x  + t) + ifi(x --  t) --  2 0 ( x ) l  < 4[A + B( lx l  + lyl + [t l)q t 2. 
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Thus i f 0 < ~ < l ,  

e -z  [~,(x + et/) + ~,(x - et/) - 2O(x)[ < 4[A + B(lx[ + [y[ + [~/[)q t/z 
and 

~(A + B(Ix[ + lyl + [r/l) p) t/2 d P <  oo. 

Hence by the Dominated  Convergence Theorem of Lebesgue, 

O"(x) = lim ~ O(x + et/) + O(x - et/) - 2~(x)  dP  
e~0 ~2 

= lim 1 [2 (g (~b (x + e t/)) - 0 (x))] 

> 0 ,  

i.e. ~b is midpoint  convex as required. 

Theorem 3.2. Let X be any quasi-Banach space and let Y be an r-Banach space where 
r > O. Suppose 0 < p < oo and T: Lp(X) ~ Y is a bounded linear operator. Then either: 

(i) There is a subspace H of  Lp(X)  isomorphic to l 2 SO that T[ H is an isomorphism or 

(ii) IITfll < IFTII {j" Ilf(s)ll~ds} ~/~ f e L p ( X ) .  

Corollary 3.3. I f  X has trivial dual and T: Lv (X  ) ~ Y is a non-zero bounded linear 
operator then there is a subspace ovf o f  Lp(X) with H ~- l 2 SO that T] H is an isomorphism. 

Corollary 3.4. I f  1 < p < oo the containing Banach space of  Lv (X  ) can be naturally 
identified with Lp(X). 

Corollaries 3.3 and 3.4 are automatic  from Theorem 3.2, which we now prove. 

P r o o f o f T h e o r e m 3.2. Clearly we may  suppose 0 < r < p. Now let F be the 
collection of all r-subadditive semi-quasi-norms 7 on Lv(X ) so that 7( f )  < Ilfllp for 
f e Lp(X ) and, whenever H c Lp(X) is isomorphic to 12 then 

inf ? ( f )  = O. 
IlfHp=l,fEH 

The latter condition here is equivalent to insisting that the identity map  i: H ~ (H, 7) is 
strictly singular for every infinite-dimensional Hilbertian subspace H of Lp(X). 

Now let 

Ill fill = sup ?(f) .  
~r 

Clearly [[[ �9 [[[ is an r-subadditive semi-quasi-norm on Lp(X), and for the particular opera- 
tor T in the statement of the theorem, if T fails condition (i) then 

[] T f  [] __< [] T ]l [[[ f [[[ f e Lp(X). 
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We now deduce two propert ies  of III �9 III- Firs t  note that  if E: Lp(X) --* Lp(X) is any 
non-zero endomorphism then if 7 ~ F then IIE II- 1 7(Ef)  is also in E Hence 

III E f  Ill _-< bl E II III f I[I f ~ Z~(X). 

For x e X let us set 

IIIxlll = III1 | xlll. 

Using the above proper ty  twice we see that  if B is a Borel subset of [0, 1] of positive 
measure 

Ill 18 | xlll = ,~(B) a/~ 1111 | xlll 

= ,~(B) lip IIIx III. 

The other proper ty  we shall need is that  if 7, fi E F then if A and B are disjoint Borel 
subsets of [0, 1], fl ~ F where 

f l ( f)  = (7 ( la"  f)P + a (1B �9 f)p)l/p. 
Thus 

III fill p >-- Ill 1A. f Ill ~ + Ill 1B" f IIV. 

Conversely using the case 7 = ~5 we deduce 

Ill f III p = III 1A" fi l l  p + III 1B" f Ill< 

Now, combining these two propert ies  we see that  if f is simple 

1 

Ill f i l l  p = j" IIIf(s)l lV ds 
O 

and by continuity this extends to all f ~ Lp(X). 
Let B = {x e X:  IIix111 < 1}. We shall show that  B is convex and hence it will follow that  

IIIxlll _-< Ilxllc, since I[Ixlll < Ilxll. Let x, y E B  with x ~ y and define ~: I R ~ I R  by 

~( t )  = IIIx + t ( y  - x)lll ~ - oo < t < oo. 

Let {t/,: n E N} be a sequence of independent  r andom variables each with normal  distri- 
bution, mean zero and variance one. Then since y - x ~ 0 the sequence t/n | (y - x) 
spans a subset of Lp(X) i somorphic  to H. Thus for any e > 0, v > 0 and 7 e F there exists 
t / s  Lp(0, 1) with distr ibution N(0, 1) so that  

7 ( ~  | (y  - x)) __< v. 
Hence 

7 ( l |  l |  x)) r>= 7(l |  + t ( y - -  x)))'-- v r. 

We conclude that  

1 

~ (t + g t 1 (s)) d s >= (~) (t) "/p - v')P/L 
0 

As v > 0 is arbi t rary  we have 

1 

q~ (t + ~ I/(s)) d s _>-- ~b (t), 
0 
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N o w  by L e m m a  3.1 ~b is convex,  for 

I~( t ) l  < (lllxlll r + Itl' Ills - xlllW. 

In pa r t i cu l a r  ~b (t) _<_ 1 for 0 < t -< 1 and  the T h e o r e m  is p roved .  
W e  shall  need an  L~-v e r s io n  of  the above  theorem.  This  t heo rem can be  c o m p a r e d  

with  results  in [1]. 

Theorem 3.5. Let X be any quasi-Banach space and let Y be an r-Banach space where 
r > O. Suppose T: L~(X) -~ Yis  a compact linear operator such that II Tfn 11 ~ 0 whenever 
fn is a uniformly bounded sequence such that II f,(s) II -~ 0 a.e. Then 

I lTf l l  < IITII ess. sup IIf(s)llc f e L ~ ( X ) .  

P r o o f .  The  p r o o f  is very similar.  This  t ime let F be the col lec t ion  of r - subadd i t ive  
semi -quas i -no rms  7 on Loo(X) so tha t  ~ ( f )  < IF f ]1 ~,  7(f~) ~ 0 whenever  II f ,  IF oo < 1 and  
II L(s)II --' 0 a.e. and  the iden t i ty  m a p  I :  L ~  (X) ~ (L~ (X), 7) is compac t .  Let  

III f III = sup 7 (f)" 
7 E F  

N o w  by a rgumen t s  a n a l o g o u s  to  the p r o o f  of T h e o r e m  3.2 it can be shown tha t  

Ill/Ill = ess. sup Illf(s)lll 

where  for x ~ X, 

IIIxll[ = III 1 | xlll. 

W e  conclude,  as before,  by showing  tha t  B = {x e X:  IIIxlll _-< 1} is convex. Suppose  
x, y s B with  y ~ x. Let  {~r,: n ~ N}  be a sequence of i ndependen t  r a n d o m  var iables  wi th  
c o m m o n  d i s t r ibu t ion  2 ( a ,  = 1) = 2(~ ,  = - 1) = 1/2. Let  7 e F ;  then by  pass ing  to  a 
subsequence  we m a y  suppose  7 (or, | (y - x) - cr, + 1 | (Y - x)) __< 2 - ' .  I t  fol lows quickly  
tha t  

1 i - - o - i |  x ) ) = 0 .  l i m 7 ( ~ . |  x) n i = l  
n ~ G o  

H o w e v e r  

and  hence 

1 ~ a i |  a.e. 
h i =  1 

l im ~ (a,  | (y - x)) = 0. 
n---~ oo 

Thus  

7 ( 1 | 1 8 9  + y) + o , , | 1 8 9  x ) )~ 7 (1  | 1 8 9  + y)) 

so tha t  since III 1 | �89 + y) + ~. @ �89 - x)lll is i ndependen t  of n 

III1 |189 + y) + ~ .@ �89 - x)lll => [ll�89 + y)lll 
o r  

max(lllxlll, IliYlll) > �89 + Ylll- 



72 N . J .  KALTON ARCH. MATH. 

Thus  B is convex and  the t heo rem is proved.  F ina l ly  we shall  a lso note  tha t  we can 
deduce  a s imi lar  result  f rom T h e o r e m  3.4 if we assume tha t  T extends  to an o p e r a t o r  on 
Lp(x) for p < oo. 

Theorem 3.6. Let X be a quasi-Banach space and let Y be an r-Banach space where r > O. 
Suppose T: Lp(X)--* Y is a bounded linear operator which is not an isomorphism on any 
subspace of Lp(X) isomorphic to I 2. Then for f E L~(X) 

II T f  II _-< II T II oo ess. sup II f(s)IIc 

where I I r  II ~ is the norm of the operator T: Loo(X) ~ Y 

P r o o f .  By T h e o r e m  3.4 i f p  __< q < 0% andf~Lq(X) ,  

II r f l l  < II r l lq  {.[ [If(s)llgds} ~/~ 

where I[ T [Iq the n o r m  of T: Lq(X) --+ Y. NOW i f f  e Lq(X), I[ f II~ _-< 1 and  ~ > 0 we can write 
f as a dis joint  sum, 

f = g + h  

where  ligll~ < 1 + e and  ei ther  IIh(s)ll _-> 1 + e or  IIh(s)ll = 0. Thus  

[I h(s)II p __< (1 + e) p-q II h(s)II ~ 
and  

I[hllp < (1 + e) 1-alp. 
Thus  r-~q 

II T f  II ~ __< (1 + e) ~ II T 112 + (1 + 5) p II T I1~, 
so tha t  ~_,q 

II r / lq < ((1 + e)r II r l l ~  + (1 + 5) p II r l l ~ )  1/r. 
Hence  

l im sup II r [1~ =< (1 + e) 11 r II ~o 
q--* o0 

and  then l im II TII~ = [I r [ l ~ .  

Thus  if f ~ L ~  (X) 

II Zf II < II Z II ~ ess. sup  II f(s)IIc. 

4. Averaging projections. X can be na tu ra l ly  e m b e d d e d  in Lp(X)  as  the space of 
cons tan t  functions.  W e  shall  say tha t  there  is an averag ing  p ro jec t ion  on Lp(X) if there  
exists a p ro jec t ion  of Lp(X) onto  X. Of  course  if X is a Banach  space and  p > 1 there is 
an  averag ing  p ro jec t ion  given by  

1 

P f  = ~f(s) ds. 
0 

N o t e  also tha t  the existence of an  averag ing  p ro jec t ion  on Lp(X) implies  the existence of 
an  averag ing  p ro jec t ion  on Lq(X) where  p < q _<_ oc. 
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Theorem 4.1. Let X be a quasi-Banach space and suppose 0 < p < oe. Suppose there is 
an averaging projection on Lv(X ) and that either 

(a) X embeds into a space with a basis or 
(b) X contains no copy of  l 2. 

Then X is locally convex, i.e. a Banach space. 

P r o o f. (a) By [2] Theorem 2 if X is not locally convex there is a non-zero compact 
operator C: X ~ Z so that C-1  (0) is weakly dense in X. Let P be a projection of Lv(X  ) 
onto X. Then CP: Lp(X) --, Z is a compact operator and hence 

II C P f  I[ < II C P  ]l {~ II f(s)1]~ ds} lip 

for f �9 Lp(X). For  f = 1 | x we obtain 

IlCxll < IICPI[ Ilxllc 

so that C -  l(0) is also weakly closed, contrary to our assumptions. Thus X is locally 
c o n v e x .  

(b) Here we simply argue by Theorem 3.2 that 

II P f  lip =< II e II {S II f(s)I1~ as} ~/p 

so that for f = 1 | x we have 

Ilxll _-< IIPII Ilxllc 

i.e. X is locally convex. 

C o n j  e c t u r e. If there is an averaging projection on Lp(X), where 0 < p < 0% then 
1 __< p < oe and X is locally convex. 

R e m a r k s. (1) This is related to the question whether Lv(O < p < 1) is prime. In [4] 
it is shown that if L v is not prime there is a complemented subspace Z of Lp, such that 
every complemented subspace of Lv is isomorphic either to Z or to L v. It can also be 
shown that Lp(Z) admits an averaging projection. However it can be shown that Lq(Lv) 
does not admit an averaging projection i fp  __< q < oe. 

(2) If we replace [0, 1] by an arbitrary measure space then the conjecture holds. Indeed 
in Theorem 3.2, if we replace [0, 1] r for some uncountable set F then in condition (i) we 
can change 12 to 12(F ). Hence for any fixed space X we can choose F > c a r d X  and then 
the existence of an averaging projection on Lv([0, 1Jr; X) implies that X is locally convex. 

In a similar spirit we add the following result. 

Theorem 4.2. Suppose X is a separable quasi-Banach space and 1 <__ p < oo. Suppose 
Lv(X ) embeds into a quasi-Banach space Y with a basis. Then X is locally convex. 

P r o o f. We may suppose Y is an r-Banach space. Then there exist finite-rank opera- 
tors A,: Lv(X  ) --* Y so that l] An II < C(n �9 N) and 

][/ll <_- sup HA.f[[ f � 9  
n 
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For  x s X 

II 1 Q xllp ~ sup 11A,(1 @ x)ll 
n 

-<_ sup II A~ II II x IIc 
n 

by Theorem 3.2. Thus 

Ilxll < C Ilxllc 

i.e. X is locally convex. 

5. Applications to function spaces. Let h ~ L~o with h > 0. We shall let H(h)= 
{ g ~ L o :  g* < h*} and Z(h) = { g ~ L o :  g** < h**}. 

Lemma 5.1. H(h) is closed in Loo and 2(h) is the closed convex hull of II(h). 

P r o  o f .  This is essentially known (cf. [6], pp. 124-125). H(h) and Z(h) are clearly 
dosed  sets. Let F ~ L* .  Then F = F 1 + F 2 where 

1 

Fl(f) = Sfg dt 
o 

for some g ~ L 1 and F2 is such that  given e > 0 there is a Borel set B of measure 1 - ~ such 
that  

IF2(f)l < ~ Ilfllo~ 

whenever s u p p f  c B. I t  is now easy to verify that  

1 

sup IF( f ) [  = ~h*g*dt + lIFE] [ Ilhll~. 
f e/I(h) o 

Now suppose fo** < h**. Then for all t E [0, 1] 

~fg(s) ds <= h*(s) ds 
0 0 

and hence for every monotone  decreasing function u on [0, 1] 

1 1 

~ u(s) f~(s) ds < S u(s) h*(s) ds. 
0 0 

In part icular  

Thus 

1 1 

Sf~g* d t <  Sh*g* dt. 
o 0 

IF(fo)[ ~ sup I F ( f ) l  
f e l l ( h )  

and by the Hahn-Banach  theorem fo ~ K6 II(h) i.e. E(h) c K6 II(h). However X(h) ~ II(h) 
and is closed and convex. 
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Theorem 5.2. Let Y be an r-Banach space and suppose T: L~ [0, 1] ~ Y is a compact 
operator such that whenever f ,  is uniformly bounded and f,(s) --* 0 a.e. then II Tf. II -~ O. 
Suppose h ~ L~o and h > O. Then 

sup II T f  I] = sup II T f  II. 
feZ(h) fe l l (h)  

Before proving this result we state its companion  for L v where p < oo. 

Theorem 5.3. Let Y be an r-Banach space and suppose T: Lp[0, 1] ~ Y is a bounded 
linear operator with the property that whenever H ~ Lp is a subspace isomorphic to  12 then 
T I H fails to be a isomorphism. Let h e L~ with h > O. Then 

sup II Zf II = sup II r f  II. 
f eX(h) fe l l (h)  

P r o o fs  o f 5.2 a n d 5.3. Suppose f e  Z(h) is a simple function. We shall show in 
either case that  

II Zf II ~ sup II r g  I[ 
g e H(h) 

and the theorems will follow by a density argument.  Since f is simple we can find a 
measure preserving Borel map  a: [0,1] -* [0,1] 2 so that  if J~#(s)= ~(a(s)) then 
J~(1 |  = f. Here of course (1 |  (s, t) = f ( t )  for 0 <__ s, t __< 1. Now consider the map  
T o: L~ (L~) ~ Y given by 

ToO = T(~oa)  OaL~(L~) .  

We identify here q~ e L~ (Lo~) with a corresponding q~ e Loo [0, 1] 2 in the normal  way. Now 
the inclusion L~(L~)  ~ L~[0, 1] 2 is not  surjective; however To(1 |  = T f  

F o r  e > 0 we let H(h + s) the unit ball of a quasi-norm ]11 " I]] on L~ which is lower-semi- 
cont inuous and equivalent to the usual norm. Since f e Z (h), [11 f ]]]c =< 1 for this quasi- 
norm. 

In the case of 5.2, we can apply Theorem 3.5 to T o to deduce that  for ~b e L~o(Loo) 

II Zo~ll ~ III ro[[I ess, sup IIl~(s)lllc. 

N o w  IllZolll ~ sup ]1Tg[[. Thus letting ~ = 1 |  
Oe H(h + ~) 

]]Tf][=< sup ]lTgll. 
g~H(h+e) 

Letting e - ,  0, we quickly obta in  the result. 
In the case of 5.3 we note that  T o extends continuously to Lp(L~) ~ L~[0, 1] 2 and apply 

the same argument,  using instead Theorem 3.6. 
Now let X be a separable symmetric function space. If X* is non-tr ivial  then X c L t. 

F o r  f e X we shall define 

II f lid = inf{ll g I1: g** --> f**}-  
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[1 " lid is a quas i -norm on X. In general 

I[flle > II f Ilc. 

We say x has property (d) if [[ 112 is equivalent to [F "[I i.e. for some constant  C 

Ilfll < C I[g[[ 

whenever f * *  __< g**. 

Theorem 5.4. Let X be a separable symmetric function space and let Y be an r-Banach 
space where r > O. Let T: X ~ Y be an operator carrying the unit ball of Loo into a compact 
set. Then 

(i) I f  X*  = {0}, T =  0. 
(ii) I f  X* is non-trivial then for f ~ X 

]1Tf II < II T [I II f Ha- 

Theorem 5.5. Let X be a separable symmetric function space containing Lp for some 
p < o% and let Y be an r-Banach space where r > O. Then T: X ~ Ybe  an operator such 
that for every subspace Jt ~ of  X isomorphic to 12, T [ H  fails to be an isomorphism. Then 

(i) If X* = {0}, T - -  0. 
(ii) I f  X*  is non-trivial then for f E X 

II Tf  l] < I[TII Ilflla- 

P r o o fs  o f 5.4 a n d 5.5. These results follow from 5.2 and  5.3. Fo r  example in 
Theorem 5.5 we deduce that  T ILp fails to be an i somorphism on any Hilbert ian subspace 
of Lp and hence if f ~ Lv is simple 

IlZf[]_-< inf sup I[Th[[. 
g** >_ f** hell(g) 

If  X* = {0}, then there exist simple g,  > 0 so that  [I g, [[ ~ 0 but  [[ gn II1 = 1. Hence if 
[r f f[ co < 1, [[ T f  [I < 1[ T I[ [[ g, [[ for all n, i.e. T f  = O. Otherwise we obtain  

ItTfll < IlZll Hflld. 

Theorem 5.6. Let X be a separable symmetric function space. The following are equiva- 
lent. 

(i) X can be embedded into a quasi-Banach space with a basis. 
(ii) The Haar system is a basis of X. 

(iii) X has property (d). 

P r o o f. (i) ~ (iii). If  X can be embedded  in a space with a basis there exist finite-rank 
operators  A.:  X ~ Y (where Y is an r -Banach space) so that  sup [] A.  [[ = C < ~ and 

[]f]l < sup [ [ A . f  ][ f ~ X .  
n 
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Thus  since each A, is finite-rank, by Theorem 5.4, 

sup ][A,f[]  =< C [[f[le 
n 

and so X has proper ty  (d). 
(iii) ~ (ii). Let  h, be the H a a r  system normal ized in L2 and define P,: L 2 ~ L 2 by 

P , f  = ~ (hl,f)  hi. 
i = l  

Then for f ~ L 2 

(P~ f )**  < f * * .  

Hence if f e L 2 c~ X 

IIP~f]l =< C Ilfll 

so that  the operators  P. extend to an equicont inuous  family P.: X ~ X. By a density 
a rgument  it follows that  (h.) is a basis of X. 

(ii) ~ (i). Trivial. 
To  illustrate this result we prove  two further results. 

L e m m a  5.7. Suppose X has property (d) and X 4= L 1 . Then 

lim s 1 ]11[o ,s j  H = 00. 

P r o o f .  Suppose h e L ~  with [Ih][ 1 < 1  and  [ h [ < M .  Then  h** __< (Mlro,~ t q)**- 
Hence if 

lira i n f s -  1 [[ 1~o,~1 [[ = B < Go 
s ~ 0  

then [[ h Jr _-< CB, whenever  [I h [[1 ~- 1 i.e. X = L i. 

Theorem 5.8. Suppose X is a separable symmetric function space for which Px > 1. Then 
X has property (d). 

P r o o f. In this case [I Ds ]l <= c s 1Iv (1 __< s < oo) where c > 0 and p > 1. N o w  for f e X 

f**(t)  <= k 2-k f*(t/2k). 
k = l  

Suppose X is r -normable  i.e. for some 7 > 1, 

[If1 + - . .  + f . ] l  < ~(ll f~ll~ + . . .  + 1[ f .  11~) 1/" 

for any f l  . . . . .  f .  E x .  
Then  let gk(t) = f* ( t /2  k) for k _-> 1. We have 

l] gk [I ~ II V2~, 1[ II f [[ 

<= c 2 k/v [[ f []. 
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Hence  

<c,H  

As 1 _ 1 < 0 we see tha t  2; 2 -k  9k converges  in X and  so f * * ~  X with  
P 

II f * *  II =</~ II f kl 

where /~  is i ndependen t  of f 
Hence  if 9** < f * *  we have 

[[ g [I = [I g** II -<- II f * *  II --</~ II f ]L 

i.e. X has p r o p e r t y  (d). 

E x a m p  1 e s.  W e  cons ider  the Loren tz  spaces L(p,q) where 0 < p,q < Go. Here  
f ~  L(p,q) if and  only  if 

[1 f ILp, q = tq/P-lf*(t)~dt < oe. 

I t  is we l l -known tha t  L(p, q) has  non- t r iv ia l  dua l  i f e i t h e r p  > 1 o r p  = 1 and  q < 1. L(p, q) 
is loca l ly  convex if e i ther  p > 1 and  q __> t or  p = q = 1. W e  shall  see tha t  L(p, q) has a 
basis  (equivalent ly  has  p r o p e r t y  (d)) if e i ther  p > 1 or  p = q = 1. 

In  fact since Px = P for L(p,q) i f p  > 1 then  X has p r o p e r t y  (d) by  T h e o r e m  5.8; if 
p = q = 1 then L(p, q) = LI has a basis. Converse ly  i l L ( p ,  q) has  a basis  then  e i t he rp  > i 
or  p = 1 and  q =< 1 since L(p, q) must  have non- t r iv ia l  dual.  Suppose  p = 1 and  q < 1. 
Then  

II 1[o,~] II = Os 

where  0 = q-(1/q). By L e m m a  5.7 L(p,q) does  no t  then  have a basis.  
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