Compact and strictly singular operators on certain function spaces

By

N. J. KALTON*)

1. Introduction. This paper improves and completes results proved about Orlicz function spaces in [1]. It was shown in [1], for example, that if ϕ is an Orlicz function satisfying the Δ_2 -condition then for any non-zero operator $T: L_{\phi} \to Y$, either T factors through the containing Banach space of L_{ϕ} or there is a Hilbertian subspace H of L_{ϕ} so that T|H is an isomorphism; if L_{ϕ} has trivial dual, the first alternative is impossible. Other results were obtained on the existence of non-zero compact operators. Part of the motivation of this paper is to replace Orlicz function spaces by general symmetric function spaces (e.g. Lorentz spaces); such an extension was obtained in the trivial dual case for compact operators in [3], by a very simple argument. For convenience of exposition we only consider the locally bounded case, i.e. quasi-Banach spaces.

As we shown in Section 3, the methods of [1] can be adapted to give a very general theorem concerning operators on spaces $L_p(X)$ where 0 and X is an arbitrary quasi-Banach space. We apply this result in two ways.

In Section 4 we deduce the non-existence of "averaging projections" on $L_p(X)$ for a wide class of space X. We conjecture that if X is a non-locally convex quasi-Banach space then for $p < \infty$ there cannot be a projection of $L_p(X)$ onto its subspace of constants. This is related to the problem of whether $L_p(0 is prime.$

In Section 5 we apply our results to symmetric function spaces. If X is a separable symmetric function space with trivial dual and $X \supset L_p$ for some $p < \infty$ then any non-zero operator $T: X \rightarrow Y$ preserves a copy of l_2 , as for Orlicz spaces. If X has non-trivial dual the statement of the theorem must be modified somewhat and the containing Banach space of X does not in general play the same role.

In [1] it is shown that an Orlicz function space with a basis is locally convex. We conclude by establishing a necessary and sufficient condition for a separable symmetric function space to have a basis. We show in fact that if X has a basis (or even embeds in a space with a basis) then the Haar system in a basis. We show that X can be non-locally convex and have a basis; in fact the Lorentz spaces L(p,q) where p > 1 and q < 1 are examples. We also show that the spaces L(1,q) for q < 1 do not have a basis.

2. Preliminaries. We recall that a quasi-Banach space X is a complete metrizable topological vector space whose topology may be given by a quasi-norm, i.e. a map

^{*)} Research supported by NSF grant MCS-8301099.

 $x \to ||x|| (X \mapsto \mathbb{R})$ so that

(i) ||x|| > 0 $x \neq 0$ (ii) $||\alpha x|| = |\alpha| ||x||$ $\alpha \in \mathbb{R}, x \in X$ (iii) $||x + y|| \le C(||x|| + ||y||)$ $x, y \in X$

where C is independent of x and y. We shall always suppose that the quasi-norm is lower-semi-continuous (or that $\{x: ||x|| \le 1\}$ is closed). X is called an r-Banach space $(0 < r \le 1)$ if in addition we have

(iv)
$$||x + y||^r \le ||x||^r + ||y||^r$$
 $x, y \in X$.

Every quasi-Banach can be equivalently re-normed as an r-Banach space for some $r \leq 1$.

On any quasi-Banach space X we define $\| \|_c$ to be the greatest semi-norm so that

 $\|x\|_c \leq \|x\| \qquad x \in X.$

Alternatively $||x||_c \leq 1$ if and only if x lies in the closed convex hull of the unit ball of X. The containing Banach space \hat{X} of X is the Banach space obtained by completing the Hausdorff quotient of $(X, || ||_c)$.

For $0 we define <math>L_p(X)$ to be the space of all Borel measurable, separably valued, functions $f: [0, 1] \to X$ so that

$$\|f\|_{p} = \left\{ \int_{0}^{1} \|f(t)\|^{p} dt \right\}^{1/p} < \infty$$

(for $p < \infty$) or

$$\|f\|_{\infty} = \operatorname{ess.} \sup \|f(t)\| < \infty.$$

If $\phi \in L_p$ and $x \in X$ we write $\phi \otimes x$ for the function $f(s) = \phi(s) x$.

We denote Lebesgue measure on (0, 1) by λ . For $f \in L_0(0, 1)$ we define its *decreasing* rearrangement f^* by

$$f^*(t) = \inf_{\lambda(A)=t} \sup_{s \in (0, 1) \setminus A} |f(s)|.$$

A symmetric function space X is a quasi-Banach space of measurable functions on (0, 1) (where functions equal almost everywhere are identified) so that

(i) If $f^* \leq g^*$ and $g \in X$ then $f \in X$ and $||f|| \leq ||g||$. (ii) If $0 \leq f_n \leq 1$ and $f_n \to 0$ a.e. then $||f_n|| \to 0$.

If X is symmetric function space then $X([0, 1]^2)$ denote the space of all $f \in L_0([0, 1]^2)$ so that $f^* \in X$ where f^* is defined in the obvious way.

We define, for $0 < s < \infty$ the dilation operators $D_s: X \to X$ by

$$D_s f(t) = f(t s^{-1}) \qquad 0 < t < \min(1, s)$$

= 0 $\qquad s \le t < 1$

5*

and define the Boyd indices of X by

$$p_X = \lim_{s \to \infty} \frac{\log s}{\log \|D_s\|}$$
$$q_X = \lim_{s \to 0} \frac{\log s}{\log \|D_s\|}$$

(see [6]).

We also introduce for $f \in L_1$ the function

$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(s) \, ds.$$

The dyadic intervals D(n, k) denote the intervals $((k - 1) 2^{-n}, k \cdot 2^{-n}) \subset [0, 1]$.

3. Operators on $L_p(X)$ spaces. We shall need a lemma which is probably well-known. Essentially the same lemma is proved in [1].

Lemma 3.1. Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying the growth condition

$$|\phi(x)| \leq A + B |x|^p \quad x \in \mathbb{R}$$

where A, B > 0. Let (Ω, P) be a probability measure space and suppose $\eta: \Omega \to \mathbb{R}$ is normally distributed with mean zero and variance one. Suppose further that every $\varepsilon > 0$ and $x \in \mathbb{R}$ we have

$$\mathscr{E}(\phi(x+\varepsilon\eta)) \ge \phi(x).$$

Then ϕ is convex.

Proof. We need only show that ϕ is midpoint convex i.e. for $x, y \in \mathbb{R}$

$$\phi(x+y) + \phi(x-y) \ge 2\phi(x).$$

Fix $y \in \mathbb{R}$, and define $\psi \colon \mathbb{R} \to \mathbb{R}$ by

$$\psi(x) = \int_{0}^{y} (y-t) \left(\phi(x+t) + \phi(x-t)\right) dt.$$

From the hypotheses we deduce that

$$\mathscr{E}(\psi(x+\varepsilon\eta)) \ge \psi(x) \quad \varepsilon > 0, \ x \in \mathbb{R}.$$

However ψ is twice-differentiable and indeed

$$\psi''(x) = \phi(x + y) + \phi(x - y) - 2\phi(x).$$

Now from Taylor's theorem we have

$$\psi(x+t) + \psi(x-t) - 2\psi(x) = \frac{1}{2}t^2(\psi''(x+\theta t) + \psi''(x-\theta t))$$

where $0 < \theta < 1$. Hence

$$|\psi(x+t) + \psi(x-t) - 2\psi(x)| \le 4[A + B(|x| + |y| + |t|)^p]t^2.$$

Thus if $0 < \varepsilon < 1$,

$$\varepsilon^{-2} |\psi(x + \varepsilon \eta) + \psi(x - \varepsilon \eta) - 2\psi(x)| \leq 4[A + B(|x| + |y| + |\eta|)^p] \eta^2$$

and

$$\int_{\Omega} (A + B(|x| + |y| + |\eta|)^p) \eta^2 dP < \infty.$$

Hence by the Dominated Convergence Theorem of Lebesgue,

$$\psi''(x) = \lim_{\varepsilon \to 0} \int \frac{\psi(x + \varepsilon \eta) + \psi(x - \varepsilon \eta) - 2\psi(x)}{\varepsilon^2} dP$$
$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} [2(\mathscr{E}(\psi(x + \varepsilon \eta)) - \psi(x))]$$
$$\geq 0,$$

i.e. ϕ is midpoint convex as required.

Theorem 3.2. Let X be any quasi-Banach space and let Y be an r-Banach space where r > 0. Suppose $0 and T: <math>L_p(X) \rightarrow Y$ is a bounded linear operator. Then either:

(i) There is a subspace H of $L_p(X)$ isomorphic to l_2 so that T|H is an isomorphism or (ii) $||Tf|| \leq ||T|| \{\int ||f(s)||_c^p ds\}^{1/p}$ $f \in L_p(X)$.

Corollary 3.3. If X has trivial dual and T: $L_p(X) \to Y$ is a non-zero bounded linear operator then there is a subspace \mathscr{H} of $L_p(X)$ with $H \cong l_2$ so that T|H is an isomorphism.

Corollary 3.4. If $1 \leq p < \infty$ the containing Banach space of $L_p(X)$ can be naturally identified with $L_p(\hat{X})$.

Corollaries 3.3 and 3.4 are automatic from Theorem 3.2, which we now prove.

Proof of Theorem 3.2. Clearly we may suppose 0 < r < p. Now let Γ be the collection of all *r*-subadditive semi-quasi-norms γ on $L_p(X)$ so that $\gamma(f) \leq ||f||_p$ for $f \in L_p(X)$ and, whenever $H \subset L_p(X)$ is isomorphic to l_2 then

$$\inf_{\|f\|_p=1, f\in H}\gamma(f)=0.$$

The latter condition here is equivalent to insisting that the identity map $i: H \to (H, \gamma)$ is strictly singular for every infinite-dimensional Hilbertian subspace H of $L_p(X)$.

Now let

$$||| f ||| = \sup_{\gamma \in \Gamma} \gamma(f).$$

Clearly $\|\cdot\|$ is an *r*-subadditive semi-quasi-norm on $L_p(X)$, and for the particular operator *T* in the statement of the theorem, if *T* fails condition (i) then

$$|| Tf || \leq || T || || f || = f \in L_p(X).$$

We now deduce two properties of $||| \cdot |||$. First note that if $E: L_p(X) \to L_p(X)$ is any non-zero endomorphism then if $\gamma \in \Gamma$ then $||E||^{-1} \gamma(Ef)$ is also in Γ . Hence

$$||| Ef ||| \le || E || ||| f ||| \quad f \in L_p(X).$$

For $x \in X$ let us set

$$\|x\| = \|1 \otimes x\|.$$

Using the above property twice we see that if B is a Borel subset of [0, 1] of positive measure

$$\|\| \mathbf{1}_B \otimes x \|\| = \lambda(B)^{1/p} \|\| \mathbf{1} \otimes x \|\|$$
$$= \lambda(B)^{1/p} \|\| x \|\|.$$

The other property we shall need is that if $\gamma, \delta \in \Gamma$ then if A and B are disjoint Borel subsets of [0, 1], $\beta \in \Gamma$ where

$$\beta(f) = (\gamma (\mathbf{1}_A \cdot f)^p + \delta (\mathbf{1}_B \cdot f)^p)^{1/p}.$$

Thus

$$||| f |||^{p} \ge ||| 1_{A} \cdot f |||^{p} + ||| 1_{B} \cdot f |||^{p}$$

Conversely using the case $\gamma = \delta$ we deduce

$$\| f \|^{p} = \| 1_{A} \cdot f \|^{p} + \| 1_{B} \cdot f \|^{p}.$$

Now, combining these two properties we see that if f is simple

$$||| f |||^p = \int_0^1 ||| f(s) |||^p ds$$

and by continuity this extends to all $f \in L_p(X)$.

 $\gamma(\varepsilon\eta\otimes(y-x))\leq v.$

Let $B = \{x \in X : |||x||| \le 1\}$. We shall show that B is convex and hence it will follow that $|||x||| \le ||x||_c$, since $|||x||| \le ||x||$. Let $x, y \in B$ with $x \neq y$ and define $\phi : \mathbb{R} \to \mathbb{R}$ by

$$\phi(t) = \||x + t(y - x)||^{p} \quad -\infty < t < \infty.$$

Let $\{\eta_n : n \in \mathbb{N}\}$ be a sequence of independent random variables each with normal distribution, mean zero and variance one. Then since $y - x \neq 0$ the sequence $\eta_n \otimes (y - x)$ spans a subset of $L_p(X)$ isomorphic to H. Thus for any $\varepsilon > 0$, v > 0 and $\gamma \in \Gamma$ there exists $\eta \in L_p(0, 1)$ with distribution N(0, 1) so that

Hence

$$\gamma(1 \otimes (x + t(y - x)) + \varepsilon \eta \otimes (y - x))^r \ge \gamma(1 \otimes (x + t(y - x)))^r - v^r.$$

We conclude that

$$\int_{0}^{1} \phi(t + \varepsilon \eta(s)) \, ds \ge (\phi(t)^{r/p} - v^{r})^{p/r}.$$

As v > 0 is arbitrary we have

$$\int_{0}^{1} \phi(t + \varepsilon \eta(s)) \, ds \ge \phi(t),$$

Now by Lemma 3.1 ϕ is convex, for

$$|\phi(t)| \leq (||x|||^r + |t|^r |||y - x||)^{p/r}.$$

In particular $\phi(t) \leq 1$ for $0 \leq t \leq 1$ and the Theorem is proved.

We shall need an L_{∞} -version of the above theorem. This theorem can be compared with results in [1].

Theorem 3.5. Let X be any quasi-Banach space and let Y be an r-Banach space where r > 0. Suppose T: $L_{\infty}(X) \to Y$ is a compact linear operator such that $||Tf_n|| \to 0$ whenever f_n is a uniformly bounded sequence such that $||f_n(s)|| \to 0$ a.e. Then

$$||Tf|| \leq ||T|| \text{ ess. sup } ||f(s)||_c \quad f \in L_{\infty}(X).$$

Proof. The proof is very similar. This time let Γ be the collection of *r*-subadditive semi-quasi-norms γ on $L_{\infty}(X)$ so that $\gamma(f) \leq ||f||_{\infty}, \gamma(f_n) \to 0$ whenever $||f_n||_{\infty} \leq 1$ and $||f_n(s)|| \to 0$ a.e. and the identity map $I: L_{\infty}(X) \to (L_{\infty}(X), \gamma)$ is compact. Let

$$|||f||| = \sup_{\gamma \in \Gamma} \gamma(f).$$

Now by arguments analogous to the proof of Theorem 3.2 it can be shown that

$$||| f ||| = \text{ess. sup } ||| f(s) |||$$

where for $x \in X$,

$$||x|| = ||1 \otimes x||.$$

We conclude, as before, by showing that $B = \{x \in X : |||x||| \le 1\}$ is convex. Suppose $x, y \in B$ with $y \neq x$. Let $\{\sigma_n : n \in \mathbb{N}\}$ be a sequence of independent random variables with common distribution $\lambda(\sigma_n = 1) = \lambda(\sigma_n = -1) = 1/2$. Let $\gamma \in \Gamma$; then by passing to a subsequence we may suppose $\gamma(\sigma_n \otimes (y - x) - \sigma_{n+1} \otimes (y - x)) \le 2^{-n}$. It follows quickly that

$$\lim_{n\to\infty}\gamma(\sigma_n\otimes(y-x)-\frac{1}{n}\sum_{i=1}^n\sigma_i\otimes(y-x))=0.$$

However

$$\frac{1}{n}\sum_{i=1}^n \sigma_i \otimes (y-x) \to 0 \quad \text{a.e.}$$

and hence

$$\lim_{n\to\infty}\gamma(\sigma_n\otimes(y-x))=0.$$

Thus

$$\gamma(1 \otimes \frac{1}{2}(x+y) + \sigma_n \otimes \frac{1}{2}(y-x)) \rightarrow \gamma(1 \otimes \frac{1}{2}(x+y))$$

so that since $||| 1 \otimes \frac{1}{2}(x + y) + \sigma_n \otimes \frac{1}{2}(y - x)|||$ is independent of n

$$|1 \otimes \frac{1}{2}(x+y) + \sigma_n \otimes \frac{1}{2}(y-x)|| \ge ||\frac{1}{2}(x+y)||$$

or

$$\max(|||x|||, |||y|||) \ge \frac{1}{2} |||x + y|||$$

Thus B is convex and the theorem is proved. Finally we shall also note that we can deduce a similar result from Theorem 3.4 if we assume that T extends to an operator on $L_p(X)$ for $p < \infty$.

Theorem 3.6. Let X be a quasi-Banach space and let Y be an r-Banach space where r > 0. Suppose T: $L_p(X) \to Y$ is a bounded linear operator which is not an isomorphism on any subspace of $L_p(X)$ isomorphic to l_2 . Then for $f \in L_{\infty}(X)$

 $||Tf|| \leq ||T||_{\infty} \operatorname{ess. sup} ||f(s)||_{c}$

where $||T||_{\infty}$ is the norm of the operator $T: L_{\infty}(X) \to Y$.

Proof. By Theorem 3.4 if $p \leq q < \infty$, and $f \in L_q(X)$,

 $||Tf|| \leq ||T||_{a} \{ \int ||f(s)||_{c}^{q} ds \}^{1/q}$

where $||T||_q$ the norm of T: $L_q(X) \to Y$. Now if $f \in L_q(X)$, $||f||_q \leq 1$ and $\varepsilon > 0$ we can write f as a disjoint sum,

f = g + h

where $||g||_{\infty} \leq 1 + \varepsilon$ and either $||h(s)|| \geq 1 + \varepsilon$ or ||h(s)|| = 0. Thus

$$\|h(s)\|^{p} \leq (1+\varepsilon)^{p-q} \|h(s)\|^{q}$$

and

 $\|h\|_{p} \leq (1+\varepsilon)^{1-q/p}.$

Thus

$$\|Tf\|' \leq (1+\varepsilon)^{r} \|T\|_{\infty}^{r} + (1+\varepsilon)^{r-\frac{rq}{p}} \|T\|_{p}^{r}$$

so that

$$||T||_{q} \leq ((1+\varepsilon)^{r} ||T||_{\infty}^{r} + (1+\varepsilon)^{r-\frac{rq}{p}} ||T||_{\infty}^{r})^{1/r}.$$

Hence

$$\limsup_{q \to \infty} \|T\|_q \leq (1+\varepsilon) \|T\|_{\infty}$$

and then $\lim ||T||_q = ||T||_{\infty}$.

Thus if $f \in L_{\infty}(X)$

$$\|Tf\| \leq \|T\|_{\infty} \operatorname{ess. sup} \|f(s)\|_{c}.$$

4. Averaging projections. X can be naturally embedded in $L_p(X)$ as the space of constant functions. We shall say that there is an averaging projection on $L_p(X)$ if there exists a projection of $L_p(X)$ onto X. Of course if X is a Banach space and $p \ge 1$ there is an averaging projection given by

$$Pf = \int_0^1 f(s) \, ds.$$

Note also that the existence of an averaging projection on $L_p(X)$ implies the existence of an averaging projection on $L_q(X)$ where $p < q \leq \infty$.

Theorem 4.1. Let X be a quasi-Banach space and suppose $0 . Suppose there is an averaging projection on <math>L_p(X)$ and that either

(a) X embeds into a space with a basis or

(b) X contains no copy of l_2 .

Then X is locally convex, i.e. a Banach space.

Proof. (a) By [2] Theorem 2 if X is not locally convex there is a non-zero compact operator C: $X \to Z$ so that $C^{-1}(0)$ is weakly dense in X. Let P be a projection of $L_p(X)$ onto X. Then $CP: L_p(X) \to Z$ is a compact operator and hence

$$||CPf|| \leq ||CP|| \{ \{ \| f(s) \|_{c}^{p} ds \}^{1/p} \}$$

for $f \in L_p(X)$. For $f = 1 \otimes x$ we obtain

 $||Cx|| \leq ||CP|| ||x||_{c}$

so that $C^{-1}(0)$ is also weakly closed, contrary to our assumptions. Thus X is locally convex.

(b) Here we simply argue by Theorem 3.2 that

 $\|Pf\|_{p} \leq \|P\| \{ \int \|f(s)\|_{c}^{p} ds \}^{1/p}$

so that for $f = 1 \otimes x$ we have

$$||x|| \leq ||P|| ||x||_{c}$$

i.e. X is locally convex.

C on j e c t u r e. If there is an averaging projection on $L_p(X)$, where $0 , then <math>1 \le p < \infty$ and X is locally convex.

R e m a r k s. (1) This is related to the question whether $L_p(0 is prime. In [4] it is shown that if <math>L_p$ is not prime there is a complemented subspace Z of L_p , such that every complemented subspace of L_p is isomorphic either to Z or to L_p . It can also be shown that $L_p(Z)$ admits an averaging projection. However it can be shown that $L_q(L_p)$ does not admit an averaging projection if $p \le q < \infty$.

(2) If we replace [0, 1] by an arbitrary measure space then the conjecture holds. Indeed in Theorem 3.2, if we replace $[0, 1]^{\Gamma}$ for some uncountable set Γ then in condition (i) we can change l_2 to $l_2(\Gamma)$. Hence for any fixed space X we can choose $\Gamma > \operatorname{card} X$ and then the existence of an averaging projection on $L_p([0, 1]^{\Gamma}; X)$ implies that X is locally convex.

In a similar spirit we add the following result.

Theorem 4.2. Suppose X is a separable quasi-Banach space and $1 \le p < \infty$. Suppose $L_p(X)$ embeds into a quasi-Banach space Y with a basis. Then X is locally convex.

Proof. We may suppose Y is an r-Banach space. Then there exist finite-rank operators $A_n: L_p(X) \to Y$ so that $||A_n|| \leq C(n \in \mathbb{N})$ and

$$||f|| \leq \sup_{n} ||A_{n}f|| \quad f \in L_{p}(X).$$

For $x \in X$

$$\|1 \otimes x\|_{p} \leq \sup_{n} \|A_{n}(1 \otimes x)\|$$
$$\leq \sup_{n} \|A_{n}\| \|x\|_{c}$$

by Theorem 3.2. Thus

$$\|x\| \leq C \|x\|_c$$

i.e. X is locally convex.

5. Applications to function spaces. Let $h \in L_{\infty}$ with $h \ge 0$. We shall let $\Pi(h) = \{g \in L_0: g^* \le h^*\}$ and $\Sigma(h) = \{g \in L_0: g^{**} \le h^{**}\}.$

Lemma 5.1. $\Pi(h)$ is closed in L_{∞} and $\Sigma(h)$ is the closed convex hull of $\Pi(h)$.

Proof. This is essentially known (cf. [6], pp. 124–125). $\Pi(h)$ and $\Sigma(h)$ are clearly closed sets. Let $F \in L_{\infty}^*$. Then $F = F_1 + F_2$ where

$$F_1(f) = \int_0^1 fg \, dt$$

for some $g \in L_1$ and F_2 is such that given $\varepsilon > 0$ there is a Borel set B of measure $1 - \varepsilon$ such that

 $|F_2(f)| \leq \varepsilon \| f \|_{\infty}$

whenever supp $f \subset B$. It is now easy to verify that

$$\sup_{f \in \Pi(h)} |F(f)| = \int_{0}^{1} h^{*}g^{*} dt + ||F_{2}|| ||h||_{\infty}$$

Now suppose $f_0^{**} \leq h^{**}$. Then for all $t \in [0, 1]$

$$\int_{0}^{t} f_{0}^{*}(s) \, ds \leq \int_{0}^{t} h^{*}(s) \, ds$$

and hence for every monotone decreasing function u on [0, 1]

$$\int_{0}^{1} u(s) f_{0}^{*}(s) ds \leq \int_{0}^{1} u(s) h^{*}(s) ds.$$

In particular

$$\int_{0}^{1} f_{0}^{*} g^{*} dt \leq \int_{0}^{1} h^{*} g^{*} dt.$$

Thus

$$|F(f_0)| \leq \sup_{f \in \Pi(h)} |F(f)|$$

and by the Hahn-Banach theorem $f_0 \in \overline{co} \Pi(h)$ i.e. $\Sigma(h) \subset \overline{co} \Pi(h)$. However $\Sigma(h) \supset \Pi(h)$ and is closed and convex.

Theorem 5.2. Let Y be an r-Banach space and suppose $T: L_{\infty}[0, 1] \to Y$ is a compact operator such that whenever f_n is uniformly bounded and $f_n(s) \to 0$ a.e. then $||Tf_n|| \to 0$. Suppose $h \in L_{\infty}$ and $h \ge 0$. Then

$$\sup_{f\in\Sigma(h)}\|Tf\|=\sup_{f\in\Pi(h)}\|Tf\|.$$

Before proving this result we state its companion for L_p where $p < \infty$.

Theorem 5.3. Let Y be an r-Banach space and suppose T: $L_p[0, 1] \rightarrow Y$ is a bounded linear operator with the property that whenever $H \subset L_p$ is a subspace isomorphic to l_2 then T|H fails to be a isomorphism. Let $h \in L_{\infty}$ with $h \ge 0$. Then

$$\sup_{f\in\Sigma(h)}\|Tf\|=\sup_{f\in\Pi(h)}\|Tf\|.$$

Proofs of 5.2 and 5.3. Suppose $f \in \Sigma(h)$ is a simple function. We shall show in either case that

$$\|Tf\| \leq \sup_{g \in \Pi(h)} \|Tg\|$$

and the theorems will follow by a density argument. Since f is simple we can find a measure preserving Borel map $\sigma: [0,1] \rightarrow [0,1]^2$ so that if $J_{\sigma}\phi(s) = \phi(\sigma(s))$ then $J_{\sigma}(1 \otimes f) = f$. Here of course $(1 \otimes f)(s,t) = f(t)$ for $0 \leq s, t \leq 1$. Now consider the map $T_0: L_{\infty}(L_{\infty}) \rightarrow Y$ given by

$$T_0\phi = T(\phi \circ \sigma) \qquad \phi \in L_\infty(L_\infty).$$

We identify here $\phi \in L_{\infty}(L_{\infty})$ with a corresponding $\phi \in L_{\infty}[0, 1]^2$ in the normal way. Now the inclusion $L_{\infty}(L_{\infty}) \hookrightarrow L_{\infty}[0, 1]^2$ is not surjective; however $T_0(1 \otimes f) = Tf$.

For $\varepsilon > 0$ we let $\Pi(h + \varepsilon)$ the unit ball of a quasi-norm $\|\| \cdot \|\|$ on L_{∞} which is lower-semicontinuous and equivalent to the usual norm. Since $f \in \Sigma(h)$, $\|\| f \|\|_{c} \leq 1$ for this quasinorm.

In the case of 5.2, we can apply Theorem 3.5 to T_0 to deduce that for $\phi \in L_{\infty}(L_{\infty})$

 $||T_0\phi|| \leq |||T_0|||$ ess. sup $|||\phi(s)||_c$.

Now $||| T_0 ||| \leq \sup_{g \in \Pi(h+\varepsilon)} || Tg ||$. Thus letting $\phi = 1 \otimes f$,

$$\|Tf\| \leq \sup_{g \in \Pi(h+\varepsilon)} \|Tg\|.$$

Letting $\varepsilon \to 0$, we quickly obtain the result.

In the case of 5.3 we note that T_0 extends continuously to $L_p(L_\infty) \subset L_p[0, 1]^2$ and apply the same argument, using instead Theorem 3.6.

Now let X be a separable symmetric function space. If X^* is non-trivial then $X \subset L_1$. For $f \in X$ we shall define

$$|| f ||_{d} = \inf\{||g|| : g^{**} \ge f^{**}\}.$$

 $\|\cdot\|_d$ is a quasi-norm on X. In general

$$||f||_{d} \ge ||f||_{c}.$$

We say X has property (d) if $\| \|_d$ is equivalent to $\| \cdot \|$ i.e. for some constant C

$$\|f\| \leq C \|g\|$$

whenever $f^{**} \leq g^{**}$.

Theorem 5.4. Let X be a separable symmetric function space and let Y be an r-Banach space where r > 0. Let T: $X \to Y$ be an operator carrying the unit ball of L_{∞} into a compact set. Then

- (i) If $X^* = \{0\}, T = 0$.
- (ii) If X^* is non-trivial then for $f \in X$

$$||Tf|| \leq ||T|| ||f||_d.$$

Theorem 5.5. Let X be a separable symmetric function space containing L_p for some $p < \infty$, and let Y be an r-Banach space where r > 0. Then $T: X \to Y$ be an operator such that for every subspace \mathcal{H} of X isomorphic to l_2 , $T \mid H$ fails to be an isomorphism. Then

- (i) If $X^* = \{0\}, T = 0$.
- (ii) If X^* is non-trivial then for $f \in X$

 $\|Tf\| \leq \|T\| \|f\|_d.$

Proofs of 5.4 and 5.5. These results follow from 5.2 and 5.3. For example in Theorem 5.5 we deduce that $T|L_p$ fails to be an isomorphism on any Hilbertian subspace of L_p and hence if $f \in L_p$ is simple

$$\|Tf\| \leq \inf_{g^{**} \geq f^{**}} \sup_{h \in \Pi(g)} \|Th\|.$$

If $X^* = \{0\}$, then there exist simple $g_n \ge 0$ so that $||g_n|| \to 0$ but $||g_n||_1 = 1$. Hence if $||f||_{\infty} \le 1$, $||Tf|| \le ||T|| ||g_n||$ for all *n*, i.e. Tf = 0. Otherwise we obtain

$$||Tf|| \leq ||T|| ||f||_d.$$

Theorem 5.6. Let X be a separable symmetric function space. The following are equivalent.

- (i) X can be embedded into a quasi-Banach space with a basis.
- (ii) The Haar system is a basis of X.
- (iii) X has property (d).

Proof. (i) \Rightarrow (iii). If X can be embedded in a space with a basis there exist finite-rank operators $A_n: X \to Y$ (where Y is an r-Banach space) so that $\sup ||A_n|| = C < \infty$ and

$$||f|| \leq \sup_{n} ||A_{n}f|| \quad f \in X.$$

Thus since each A_n is finite-rank, by Theorem 5.4,

$$\sup_{n} \|A_{n}f\| \leq C \|f\|_{d}$$

and so X has property (d).

(iii) \Rightarrow (ii). Let h_n be the Haar system normalized in L_2 and define $P_n: L_2 \rightarrow L_2$ by

$$P_n f = \sum_{i=1}^n (h_i, f) h_i.$$

Then for $f \in L_2$

$$(P_n f)^{**} \leq f^{**}.$$

Hence if $f \in L_2 \cap X$

$$\|P_n f\| \leq C \|f\|$$

so that the operators P_n extend to an equicontinuous family $P_n: X \to X$. By a density argument it follows that (h_n) is a basis of X.

(ii) \Rightarrow (i). Trivial.

To illustrate this result we prove two further results.

Lemma 5.7. Suppose X has property (d) and $X \neq L_1$. Then

 $\lim s^{-1} \| \mathbf{1}_{[0,s]} \| = \infty.$

Proof. Suppose $h \in L_{\infty}$ with $||\dot{h}||_1 \leq 1$ and $|h| \leq M$. Then $h^{**} \leq (M \operatorname{1}_{[0, M^{-1}]})^{**}$. Hence if

$$\liminf_{s\to 0} s^{-1} \| \mathbf{1}_{[0,s]} \| = B < \infty$$

then $||h|| \leq CB$, whenever $||h||_1 \leq 1$ i.e. $X = L_1$.

Theorem 5.8. Suppose X is a separable symmetric function space for which $p_X > 1$. Then X has property (d).

Proof. In this case $||D_s|| \leq c s^{1/p} (1 \leq s < \infty)$ where c > 0 and p > 1. Now for $f \in X$

$$f^{**}(t) \leq \sum_{k=1}^{\infty} 2^{-k} f^{*}(t/2^{k}).$$

Suppose X is r-normable i.e. for some $\gamma \ge 1$,

$$||f_1 + \ldots + f_n|| \leq \gamma (||f_1||^r + \ldots + ||f_n||^r)^{1/r}$$

for any $f_1, \ldots, f_n \in X$.

Then let $g_k(t) = f^*(t/2^k)$ for $k \ge 1$. We have

$$\|g_k\| \leq \|D_{2^k}\| \|f\|$$

$$\leq c \, 2^{k/p} \|f\|.$$

Hence

$$\left\|\sum_{k=1}^{n} 2^{-k} g_{k}\right\| \leq c \gamma \|f\| \left\{\sum_{k=1}^{n} 2^{kr} \left(\frac{1}{p} - 1\right)\right\}^{1/r}.$$

As
$$\frac{1}{p} - 1 < 0$$
 we see that $\Sigma 2^{-k} g_k$ converges in X and so $f^{**} \in X$ with $\|f^{**}\| \leq \beta \|f\|$

where β is independent of *f*.

Hence if $g^{**} \leq f^{**}$ we have

$$\|g\| \le \|g^{**}\| \le \|f^{**}\| \le \beta \|f\|$$

i.e. X has property (d).

Examples. We consider the Lorentz spaces L(p,q) where $0 < p, q < \infty$. Here $f \in L(p,q)$ if and only if

$$\|f\|_{p,q} = \left\{\int_{0}^{1} t^{q/p-1} f^{*}(t)^{q} dt\right\}^{1/q} < \infty.$$

It is well-known that L(p,q) has non-trivial dual if either p > 1 or p = 1 and $q \leq 1$. L(p,q) is locally convex if either p > 1 and $q \geq 1$ or p = q = 1. We shall see that L(p,q) has a basis (equivalently has property (d)) if either p > 1 or p = q = 1.

In fact since $p_X = p$ for L(p,q) if p > 1 then X has property (d) by Theorem 5.8; if p = q = 1 then $L(p,q) = L_1$ has a basis. Conversely if L(p,q) has a basis then either p > 1 or p = 1 and $q \leq 1$ since L(p,q) must have non-trivial dual. Suppose p = 1 and q < 1. Then

$$\|1_{[0,s]}\| = \theta s$$

where $\theta = q^{-(1/q)}$. By Lemma 5.7 $L_{(p,q)}$ does not then have a basis.

References

- N. J. KALTON, Compact and strictly singular operators on Orlicz spaces. Israel J. Math. 26, 126-136 (1977).
- [2] N. J. KALTON, Quotients of F-spaces. Glasgow J. Math. 19, 103-108 (1978).
- [3] N. J. KALTON, Compact operators on symmetric function spaces. Bull. Acad. Polon. Sci. 26, 815–816 (1978).
- [4] N. J. KALTON, Isomorphisms between L_p-function spaces when p < 1. J. Funct. Anal. 42, 299– 337 (1981).
- [5] N. J. KALTON, Isomorphisms between spaces of vector-valued continuous functions. Proc. Edinburgh Math. Soc. 26, 29-48 (1983).
- [6] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces II, Function spaces. Ergeb. Math. Grenzgeb., Berlin-Heidelberg-New York 1979.

Eingegangen am 19. 9. 1983

Anschrift des Autors:

Nigel Kalton Department of Mathematics University of Missouri Columbia, MO 65211 ARCH. MATH.