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Compact and strictly singular operators on certain function spaces

By
N. J. KALTON *)

1. Intreduction. This paper improves and completes results proved about Orlicz func-
tion spaces in [1]. It was shown in [1], for example, that if ¢ is an Oslicz function satisfying
the 4,-condition then for any non-zero operator T: L, — Y, either T factors through the
containing Banach space of L, or there is a Hilbertian subspace H of L, so that T|H is
an isomorphism; if L, has trivial dual, the first alternative is impossible. Other results
were obtained on the existence of non-zero compact operators. Part of the motivation of
this paper is to replace Orlicz function spaces by general symmetric function spaces (e.g.
Lorentz spaces); such an extension was obtained in the trivial dual case for compact
operators in [3], by a very simple argument. For convenience of exposition we only
consider the locally bounded case, i.c. quasi-Banach spaces.

As we shown in Section 3, the methods of [1] can be adapted to give a very general
theorem concerning operators on spaces L,(X) where 0 < p < oo and X is an arbitrary
quasi-Banach space. We apply this result in two ways.

In Section 4 we deduce the non-existence of “averaging projections” on L,(X) for a
wide class of space X. We conjecture that if X is a non-locally convex quasi-Banach space
then for p < oo there cannot be a projection of L,(X) onto its subspace of constants. This
is related to the problem of whether L,(0 < p < 1) is prime.

In Section 5 we apply our results to symmetric function spaces. If X is a separable
symmetric function space with trivial dual and X > L, for some p < oo then any non-
zero operator T: X — Y preserves a copy of [,, as for Orlicz spaces. If X has non-trivial
dual the statement of the theorem must be modified somewhat and the containing
Banach space of X does not in general play the same role.

In [1] it is shown that an Orlicz function space with a basis is locally convex. We
conclude by establishing a necessary and sufficient condition for a separable symmetric
function space to have a basis. We show in fact that if X has a basis (or even embeds in
a space with a basis) then the Haar system in a basis. We show that X can be non-locally
convex and have a basis; in fact the Lorentz spaces L(p,q) where p > 1 and g < 1 are
examples. We also show that the spaces L(1,¢) for ¢ < 1 do not have a basis.

2. Preliminaries. We recall that a quasi-Banach space X is a complete metrizable
topological vector space whose topology may be given by a quasi-norm, i.e. a map
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x = [ x| (X —R) so that

M x>0 x+0
(i) Jox| = laf |x] xecR, xeX

(@) [x+yl=Clx|+yl) xyeX

where C is independent of x and y. We shall always suppose that the quasi-norm is

lower-semi-continuous (or that {x: || x| £ 1} is closed). X is called an r-Banach space
(0 < r £1)1if in addition we have

) Ix+yl"=lIxI"+lyl" xyeX.

Every quasi-Banach can be equivalently re-normed as an r-Banach space for some
r<1.
On any quasi-Banach space X we define | |, to be the greatest semi-norm so that

Ixl. = xlf xeX.

Alternatively [ x ||, < 1 if and only if x lies in the closed convex hull of the unit ball of X.
The containing Banach space X of X is the Banach space obtained by completing the
Hausdorff quotient of (X, || ||,

For 0 < p £ oo we define L,(X) to be the space of all Borel measurable, separably
valued, functions f: [0, 1] — X so that

1 1/p
1 fl,= {g IIf(t)II”dt} <
(for p < o) or
| flle=ess.sup || f ()] < 0.

If pe L, and x € X we write ¢ ® x for the function f(s) = ¢(s) x.
We denote Lebesgue measure on (0,1) by 4. For f € Ly(0,1) we define its decreasing
rearrangement f* by

f*@ = inf  sup | f(s)].
MA)=t se(0, INA

A symmetric function space X is a quasi-Banach space of measurable functions on (0, 1)
(where functions equal almost everywhere are identified) so that

() Iff*<g*andgeX then feX and |fIl =gl
(i) Ifo=sf,<1landf,—0ae then | f,|—0.

If X is symmetric function space then X ([0, 1]?) denote the space of all f € L, ([0, 1]?) so
that f*e X where f/* is defined in the obvious way.
We define, for 0 < s < oo the dilation operators D;: X — X by

D, f()=f(ts™Y) 0<t<min(l,s)
=0 s<t<1

5%
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and define the Boyd indices of X by

. logs
py=lim ———
¥ ow log | D
. logs
gx = lim
50 log || D, |

(see [6]).
We also introduce for f € L the function

I *ff*(s

The dyadic intervals D(n, k) denote the intervals (k — 1)27", k- 27") < [0, 1].

3. Operators on L,(X) spaces. We shall need a lemma which is probably well-known.
Essentially the same lemma is proved in [1}.

Lemma 3.1. Let ¢: R — R be a continuous function satisfying the growth condition
l[g(x)| £ A+ Blx|F xeR

where A, B > 0. Let (2, P} be a probability measure space and suppose n: Q — R is normally
distributed with mean zero and variance one. Suppose further that every ¢ > 0 and x e R
we have

E(p(x +&n) 2 ¢(x).
Then ¢ is convex.
Proof. We need only show that ¢ is midpoint convex i.e. for x,y e R
glx+y) + dx —y) 2 24(x).
Fix y e R, and define ¥: R - R by

Y(x) = i(y — )b+ 0+ bx — 1) dt.

From the hypotheses we deduce that
EWx+en)zyx) >0, xeR
However ¥ is twice-differentiable and indeed
Y(x)=¢(x +y) + d(x —y) — 26 (x).
Now from Taylor’s theorem we have
Yx+ 0+ —1)—2¢x) =220 (x + 01) + Y (x — 61)
where 0 < 0 < 1. Hence

(e + 1) + Y (x — 1) = 24 ()| < 4[A + B(x| + |y] + [t %
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Thusif 0 <e < 1,

e Y (x +en) +(x —en) — 20 (x)| < 4[4 + B(x| + |yl + 7)1 7
and

[(A+ B(x|+ 1yl + In)y)n* dP < 0.

Hence by the Dominated Convergence Theorem of Lebesgue,

P = tim [ LE D Vo) =296

g0 £

1
= lifg S REWE+en) — Y

=0,

i.e. ¢ is midpoint convex as required.

Theorem 3.2. Let X be any quasi-Banach space and let Y be an r-Banach space where
¥ > 0. Suppose 0 < p < oo and T: L,(X)— Y is a bounded linear operator. Then either:

(i) There is a subspace H of L,(X) isomorphic to 1, so that T|H is an isomorphism or

@ [T/ =TI {1/ @IEds}™  fe LX),

Corollary 3.3. If X has trivial dual and T: L,(X)— Y is a non-zero bounded linear
operator then there is a subspace # of L,(X) with H = I, so that T|H is an isomorphism.

Corollary 3.4. If 1 < p < co the containing Banach space of L,(X) can be naturally
identified with L,(X).
Corollaries 3.3 and 3.4 are automatic from Theorem 3.2, which we now prove.

Proof of Theorem 3.2. Clearly we may suppose 0 < r < p. Now let I' be the
collection of all r-subadditive semi-quasi-norms y on L,(X) so that y(f) = | f|, for
feL,(X) and, whenever H < L ,(X) is isomorphic to [, then

inf y(f)y=0.

Iflip=1.feH

The latter condition here is equivalent to insisting that the identity map i: H — (H,7) is
strictly singular for every infinite-dimensional Hilbertian subspace H of L,(X).
Now let

A= sup y(f).

Clearly ||| - |ll is an r-subadditive semi-quasi-norm on L,(X), and for the particular opera-
tor T in the statement of the theorem, if T fails condition (i) then

ITAIZHTINAN  fe LX)
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We now deduce two properties of || - ||. First note that if E: L,(X)— L,(X) is any
non-zero endomorphism then if y € I' then | E|| ™! y(Ef) is also in I Hence

NESMM<IEINSM feLy(X)
For x € X let us set
fxll =M1 & x|

Using the above property twice we see that if B is a Borel subset of [0, 1] of positive

measure
1@ xll = 2(B)"? |1 ® x|

= L(B)'" |Ix[l.

The other property we shall need is that if y,6 € I' then if A and B are disjoint Borel
subsets of [0,1], B e I where

BUf) =y f)P + 615 f)7)'7.
WPz MLy S0P+ (- S P

Conversely using the case y = § we deduce

AP = WL S0P+ g - S

Now, combining these two properties we see that if f is simple

Thus

WAe = g WS ds

and by continuity this extends to all f e L,(X).
Let B = {x € X: [|x|f < 1}. We shall show that B is convex and hence it will follow that
lixlt < {lx|., since [|x[| < | x||. Let x,y € B with x & y and define ¢: R —IR by

) =1lx+t(y —x)lF —oo<t<oo.

Let {n,: n € N} be a sequence of independent random variables each with normal distri-
bution, mean zero and variance one. Then since y — x = 0 the sequence #,® (y — x)
spans a subset of L,(X) isomorphic to H. Thus for any ¢ > 0, v > O and y € I' there exists
y € L,(0, 1) with distribution N (0, 1) so that

PEn®@(y —x) = v.

Hence
AR +tHy—-x)+en@(y —x) 271 @ (x + £(y — x) — V"

We conclude that

£¢(t +en(s) ds Z (O — V).

As v > 0 is arbitrary we have

iqb(t T en(s)ds z ¢0)
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Now by Lemma 3.1 ¢ is convex, for

¢ < lxl” + 1e7lly — x>

In particular ¢(t) < 1 for 0 < ¢t < 1 and the Theorem is proved.
We shall need an L -version of the above theorem. This theorem can be compared
with results in [1]. ‘

Theorem 3.5. Let X be any quasi-Banach space and let Y be an r-Banach space where
r > 0. Suppose T: L (X) — Y is a compact linear operator such that || Tf, || — 0 whenever
1. is a uniformly bounded sequence such that || f,(s)| — 0 a.e. Then

ITfI <[ T| ess.sup [ f(s)l. feLy(X)

Proof. The proof is very similar. This time let I" be the collection of r-subadditive
semi-quasi-norms y on L_(X) so that y(f) < | f ||, (/) = 0 whenever || £, ||, < 1 and
[ f,(s)| = O ae. and the identity map I: L (X) — (L, (X),y) is compact. Let

A= supy(f).

yel

Now by arguments analogous to the proof of Theorem 3.2 it can be shown that

Al = ess. sup |I.f ()l

where for xe X,

lixih =M1 & x|I.

We conclude, as before, by showing that B = {x € X: ||x{] < 1} is convex. Suppose
x,y € Bwith y & x. Let {g,: n € N} be a sequence of independent random variables with
common distribution A(g, = 1) = A(g,= — 1) =1/2. Let yeI'; then by passing to a
subsequence we may suppose (o, ® (y — x) — 6,11 ® (y — x)) £ 27" It follows quickly
that

lim 7(0,® (v = %)=, £ @@ (y—x) =0

However
1
n

M=

0;®(y—x)»0 ae.
i=1

and hence

lim (s, ® (y — x)) = 0.

n— o

Thus
T1®3(x + ) +0,®5(y —x) > 71 @ 1(x + y)

so that since ||1 ® %(x + ¥ + 0, ®+(y — x)|| is independent of n

@30+ 3) + 0, @ 3(y — ) 2 ll5(x +
or

max ([l x[l, Il yll) = zHx + yll.
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Thus B is convex and the theorem is proved. Finally we shall also note that we can
deduce a similar result from Theorem 3.4 if we assume that T" extends to an operator on
L,(X) for p < oo. ’

Theorem 3.6. Let X be a quasi-Banach space and let Y be an r-Banach space wherer > 0.
Suppose T: L,(X) — Y is a bounded linear operator which is not an isomorphism on any
subspace of L,(X) isomorphic to 1,. Then for f e L (X)

ITfI =T ess.sup | f(s)]

where | T |, is the norm of the operator T: L (X)— Y.
Proof. By Theorem 3.4 if p < g < oo, and f € L (X),

ITAI < ITH, J1f )12 dst

where || T ||, thenorm of T: L (X) — Y. Nowiff e L(X), | f ||, < 1and ¢ > 0 we can write
f as a disjoint sum,

f=g+h
where || g/, = 1 + ¢ and either |h(s)| = 1 + ¢ or |[h(s)|| = 0. Thus

[R)IIF = (L + &7 [ h(s) |
and
fhl, = (1 +e)tm4r
Thus ,_rd

ITAIFSA+e)f [Tl +A+e 2T,
so that ,_rd
ITI,S@+ey [T+ 1+ PIT)"
Hence

limsup [T, 21 +&)|IT|»

g

and then lim | T, = | T| .

g o

Thus if fe L (X)

ITF I = [ Tl ess. sup || f(s)]].-

4. Averaging projections. X can be naturally embedded in L,(X) as the space of
constant functions. We shall say that there is an averaging projection on L,(X) if there
exists a projection of L,(X) onto X. Of course if X is a Banach space and p = 1 there is
an averaging projection given by

1

Pf=(f(s)ds.

0

Note also that the existence of an averaging projection on L,(X) implies the existence of
an averaging projection on L (X) where p < g £ co.
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Theorem 4.1. Let X be a quasi-Banach space and suppose 0 < p < c0. Suppose there is
an averaging projection on L,(X) and that either

(a) X embeds into a space with a basis or
(b) X contains no copy of 1,.

Then X is locally convex, i.e. a Banach space.

Proof. (a) By [2] Theorem 2 if X is not locally convex there is a non-zero compact
operator C: X — Z so that C~*(0) is weakly dense in X. Let P be a projection of L,(X)
onto X. Then CP: L,(X)— Z is a compact operator and hence

ICPfI<|CP|{JIf)IEds3r
for fe L,(X). For f = 1® x we obtain
ICxll = [CP[ x|,

so that C™1(0) is also weakly closed, contrary to our assumptions. Thus X is locally
CONvex.
(b) Here we simply argue by Theorem 3.2 that

IPfI, < IPI{f IS (SN2 ds}iiP
so that for f = 1 ® x we have
lxll = 1P llx1l,

ie. X is locally convex.

Conjecture.If there is an averaging projection on L,(X), where 0 < p < o, then
1 =p < w and X is locally convex.

Remarks. (1) This is related to the question whether L,(0 < p < 1) is prime. In [4]
it is shown that if L, is not prime there is a complemented subspace Z of L,, such that
every complemented subspace of L, is isomorphic either to Z or to L,. It can also be
shown that L,(Z) admits an averaging projection. However it can be shown that L,(L,)
does not admit an averaging projection if p < g < oo.

(2) If we replace [0, 1] by an arbitrary measure space then the conjecture holds. Indeed
in Theorem 3.2, if we replace [0, 1]" for some uncountable set I" then in condition (i) we
can change I, to I,(I'). Hence for any fixed space X we can choose I > card X and then
the existence of an averaging projection on L, ([0, 11"; X) implies that X is locally convex.

In a similar spirit we add the following result.

Theorem 4.2. Suppose X is a separable quasi-Banach space and 1 < p < c0. Suppose
L,(X) embeds into a quasi-Banach space Y with a basis. Then X is locally convex.

Proof. We may suppose Y is an r-Banach space. Then there exist finite-rank opera-
tors A,: L,(X)— Y so that |4, < C(neN) and

[fI Ssup A, fl  feLy(X).
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For xe X

nexl,= = sup 4,0 & x)|

Ssup A4, x|,
by Theorem 3.2. Thus
xll = Clxll

ie. X is locally convex.

5. Applications to function spaces. Let he L, with h = 0. We shall let II(h) =
{geLo: g* = h*} and Z(h) = {g € Ly: g** < h**}.
Lemma 5.1, I1(h) is closed in L and Z(h) is the closed convex hull of I (h).

Proof. This is essentially known (cf. [6], pp. 124—125). II(h) and X (h) are clearly
closed sets. Let F e I* . Then F = F, + F, where

=(j)fgdt

for some g € L, and F, is such that given ¢ > 0 there is a Borel set B of measure 1 — ¢ such
that

1B =ellfly

whenever suppf < B. It is now easy to verify that

-

sup |[F(f)l = [h*g*dt+ | K| [kl

fell(h) 0

Now suppose ff* < h**. Then for all 7 € [0, 1]
t t
[f5(s)ds < [h*(s) ds
0 0

and hence for every monotone decreasing function u on [0, 1]

1
ju( fof(s)ds = g u(s) h*(s)d
In particular
1 1
{f&rg*dt < [ h*g* dt.
0 0

Thus
[F(fo)l = fs11111(3h)|F(f)|

and by the Hahn-Banach theorem f, € ¢o II (h)i.e. Z(h) = o II (h). However X (k) o I1(h)
and is closed and convex.
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Theorem 5.2. Let Y be an r-Banach space and suppose T: L_[0,1] - Y is a compact
operator such that whenever f, is uniformly bounded and f,(s)— 0 a.e. then | Tf,| — 0.
Suppose he L, and h = 0. Then

sup | Tf| = sup |Tf[.
ez e

Before proving this result we state its companion for L, where p < co.

Theorem 5.3. Let Y be an r-Banach space and suppose T: L,[0,11— Y is a bounded
linear operator with the property that whenever H < L, is a subspace isomorphic to 1, then
T|H fails to be a isomorphism. Let he L with h = 0. Then

sup | Tf | = sup | TS\
JeX(h) Selh)
Proofs of 52 and 5.3. Suppose fe Z(h) is a simple function. We shall show in
either case that

IT/I < sup || Tgll
gellh)

and the theorems will follow by a density argument. Since f is simple we can find a
measure preserving Borel map o:[0,1] - [0,1]*> so that if J_¢(s) = ¢(c(s) then
J,(1® f) = f Here of course (1 ® f) (s,t) = f(¢) for 0 < 5,t < 1. Now consider the map
To: L (L) — Y given by

Top=T(¢co) ¢eLy(Ly)

We identify here ¢ € L (L,,) with a corresponding ¢ € L [0, 1]* in the normal way. Now
the inclusion L_(L,) < L_[0,1]? is not surjective; however T,(1 ® f) = Tf.

For ¢ > O welet I1(h + &) the unit ball of a quasi-norm ||| « ||| on L, which is lower-semi-
continuous and equivalent to the usual norm. Since fe X(h), || f]ll. = 1 for this quasi-
norm.

In the case of 5.2, we can apply Theorem 3.5 to T, to deduce that for ¢ € L (L)

[Tod | = Tl ess. sup [ (s)I.-

Now [Tl £ sup | Tg|- Thus letting ¢ = 1 ® f,

gell(h+e)

ITfI = sup [ Tgl.
gelh+e)
Letting ¢ — 0, we quickly obtain the result.
In the case of 5.3 we note that T, extends continuously to L,(L,) = L,[0, 1]* and apply
the same argument, using instead Theorem 3.6.
Now let X be a separable symmetric function space. If X * is non-trivial then X < L,.
For fe X we shall define

1fllg=inf{llg|l: g** = f**}.
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Il -, 1s a quasi-norm on X. In general

fllaz 1S -

We say X has property (d) if || |, is equivalent to || || i.e. for some constant C

Ifl=Clyll

whenever f** < g**,

Theorem 5.4. Let X be a separable symmetric function space and let Y be an r-Banach
space wherer > 0. Let T: X — Y be an operator carrying the unit ball of L., into a compact
set. Then

) fFx*={0}, T=0.
() If X* is non-trivial then for fe X

ITAI=HTH NS -

Theorem 5.5. Let X be a separable symmetric function space containing L, for some
p < 0, and let Y be an r-Banach space where r > 0. Then T: X — Y be an operator such
that for every subspace # of X isomorphic to l,, T|H fails to be an isomorphism. Then

(i) IfX*={0}, T=0.
(i) If X* is non-trivial then for fe X

= 0TS N

Proofs of 54 and 5.5. These results follow from 5.2 and 5.3. For example in
Theorem 5.5 we deduce that T'| L, fails to be an isomorphism on any Hilbertian subspace
of L, and hence if f € L, is simple

[TfII < inf sup | Th.

g** = f** hell(g)

If X* = {0}, then there exist simple g, = 0 so that |/ g, =0 but [ g,|; = 1. Hence if

e EL T =T g, for all n,ie. Tf = 0. Otherwise we obtain
ITAE =TS Y

Theorem 5.6. Let X be a separable symmetric function space. The following are equiva-
lent.

(i) X can be embedded into a quasi-Banach space with a basis.
(ii) The Haar system is a basis of X.
(i) X has property (d).

Proof.(i)= (iii). If X can be embedded in a space with a basis there exist finite-rank
operators A,: X — Y (where Y is an r-Banach space) so that sup |4, = C < oo and

IS =suplld, [l feX.
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Thus since each A, is finite-rank, by Theorem 5.4,
sup [ A4, S SC [ fllg

and so X has property (d).
(iii) = (ii). Let h, be the Haar system normalized in L, and define P,: L, — L, by

Rf= 3 (huf)h.
Then for fe L,
(B S)* = f*
Hence if fe L,n X

IBfI=Clf

so that the operators E, extend to an equicontinuous family B: X — X. By a density
argument it follows that (h,) is a basis of X.

(i) = (i). Trivial.

To illustrate this result we prove two further results.

Lemma 5.7. Suppose X has property (d) and X + L,. Then

lims ™' |10, g/l = .

Proof. Suppose he L, with |hll; £1 and |h| £ M. Then h** < (M Lo, ar- ™%
Hence if

lim %)nfs'1 1. gl = B <

5

then | h|| < CB, whenever |h|, < 1ie X =L,.
Theorem 5.8. Suppose X is a separable symmetric function space for which py > 1. Then
X has property (d).

Proof. In this case || D, || < ¢s*?(1 <5 < o) where ¢ > 0 and p > 1. Now for fe X
[ = 3 27 f*(t/29).
k=1

Suppose X is r-normable i.e. for some y = 1,

I+ ALl =vU AN+ o+ 1 AIDY

for any f,....f,€ X.
Then let g,(t) = f*(t/2%) for k = 1. We have

gl < 1Dyt 11 f ]
<297 [



78 N. J. KALTON ARCH. MATH.

Hence

> Z-kgk
k=1

<cylf] {z 2"'(%‘1)}w.

k=1

As [1) — 1 < 0 we see that X2 *g, converges in X and so f**ec X with

L= 8uri

where f is independent of f.
Hence if g** < f** we have

lgl s lg** I < 1 f**I<BISfI
i.e. X has property (d).
Examples. We consider the Lorentz spaces L(p,q) where 0 < p,q < c0. Here

feL(p,q) if and only if

1 1/q
1f llp,e= {j Pt fE () dt} < 0.
0

It is well-known that L(p, g) has non-trivial dual if either p > 1 orp = land g < 1. L(p, q)
is locally convex if either p > 1 and g 2 1 or p = g = 1. We shall see that L(p, q) has a
basis (equivalently has property (d)) if either p > lorp=q = 1.

In fact since py = p for L(p,q) if p > 1 then X has property (d) by Theorem 5.8; if
p =q = 1then L(p,q) = L, has a basis. Conversely if L(p, ) has a basis then either p > 1
or p=1and q £ 1 since L(p,q) must have non-trivial dual. Suppose p = 1 and ¢ < 1.
Then

[ 10,9l =0Os

where § = ¢~ /2. By Lemma 5.7 L, ,, does not then have a basis.
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