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1. INTRODUCTION. The aim of this note is to give a simple characterization of
real Banach algebras that are isometrically isomorphic to (real) spaces C(K ) of con-
tinuous functions on compact Hausdorff spaces K . The development of this criterion
was influenced by the problem of introducing students to C(K )-spaces in a course on
Banach space theory that emphasizes real scalars over complex scalars (see [1]). One
needs to know that certain spaces such as �∞ and L∞(0, 1) are C(K )-spaces in dis-
guise. The standard derivation of such facts requires the Gelfand-Naimark theorem for
commutative C∗-algebras. Our approach allows us to avoid complex analysis and the
general methods of Banach algebras that depend heavily on the use of complex scalars.
Although we invoke a few ideas from Banach algebra theory, the proof is sufficiently
direct that it is accessible to the student of functional analysis who knows only the
definition of a real Banach algebra. We show, in fact, that a real Banach algebra A
with identity is a C(K )-space if it satisfies one additional condition:

Theorem 1.1. Let A be a commutative real Banach algebra with an identity e such
that ‖e‖ = 1. Then A is isometrically isomorphic to the algebra C(K ) for some com-
pact Hausdorff space K if and only if

‖a2 − b2‖ ≤ ‖a2 + b2‖ (a, b ∈ A). (1.1)

Inequality (1.1) thus gives a very simple and easily verified criterion for checking
whether a real Banach algebra is a C(K )-space. We refer to [3] for a study of charac-
terizations of the Banach algebra C(K ). The following theorem is due to Arens [2];
however, the proof given by Arens is rather different and involves complexification of
the algebra:

Theorem 1.2 (Arens). Let A be a commutative real Banach algebra with an identity
e such that ‖e‖ = 1. Then A is isometrically isomorphic to the algebra C(K ) for some
compact Hausdorff space K if and only if

‖a‖2 ≤ ‖a2 + b2‖ (a, b ∈ A). (1.2)

It is easy to verify that every C(K )-space satisfies (1.1) and (1.2), and therefore we
only need to worry about the other direction of both theorems.

We note that Theorem 1.2 follows directly from Theorem 1.1. Indeed, if we assume
(1.2) and if a and b belong to A, then

‖a2 − b2‖2 ≤ ‖(a2 − b2)2 + 4a2b2‖
= ‖(a2 + b2)2‖
≤ ‖a2 + b2‖2.

Thus (1.1) is an immediate consequence of (1.2).
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2. PRELIMINARIES. Unless otherwise specified, all Banach spaces are real. We
use C(K ) to denote the space of continuous real-valued functions on a compact Haus-
dorff space K equipped with the norm ‖ f ‖C(K ) = maxs∈K | f (s)|. For reference we
state the Stone-Weierstrass theorem.

Theorem 2.1 (Stone-Weierstrass). Suppose that K is a compact Hausdorff topologi-
cal space and that A is a closed subalgebra of C(K ) containing the constant functions.
If A separates the points of K (i.e., for any s and t in K with s �= t there exists f in
A such that f (s) �= f (t)), then A = C(K ).

Suppose that A is a commutative real Banach algebra with identity e such that
‖e‖ = 1. The state space of A is the set

S = {ϕ ∈ A∗ : ‖ϕ‖ = ϕ(e) = 1},

where A∗ denotes the dual space of A. An element of S is called a state. The set of
states is nonempty by the Hahn-Banach theorem.

We recall that the weak∗ topology on A∗ is the topology of pointwise convergence.
Then S is compact in the weak∗ topology. This follows easily since, by Alaoglu’s
theorem, the closed unit ball BA∗ of A∗ is weak∗ compact, and the relations in the
definition of S define a weak∗ closed subset of BA∗ . Now we just take into account
the fact that the weak∗ topology is Hausdorff, so a weak∗ closed subset of a weak∗
compact set is also weak∗ compact.

We use A+ to denote the norm-closure of the set of squares in A, that is, A+ =
{a2 : a ∈ A}. If A = C(K ), then A+ is simply the positive cone, { f : f ≥ 0}; how-
ever, for a general Banach algebra, A+ may not even be closed under addition.

The following lemma is quite trivial:

Lemma 2.2. The following statements are true for a commutative real Banach alge-
bra A:

(i) If x, y ∈ A+, then xy ∈ A+.

(ii) If x ∈ A+ and λ ≥ 0, then λx ∈ A+.

Part (i) of the next proposition is the well-known “Square Root Lemma” from Ba-
nach algebra theory (see, for example, [6, Theorem 3.4.5, p. 361]).

Proposition 2.3. A commutative real Banach algebra A with an identity e of norm 1
has the following properties:

(i) If x ∈ A is such that ‖x‖ ≤ 1, then e + x ∈ A+.

(ii) A = A+ − A+.

Proof. Let x in A have ‖x‖ < 1. By writing (1 + t)1/2 in its binomial series, valid
for scalars t with |t | < 1, we see that the series

∑∞
n=0

(1/2
n

)
xn is absolutely convergent,

therefore convergent to some y in A. By expanding (1 + t)1/2(1 + t)1/2 for a real
variable t when |t | < 1 it becomes clear that

∑
m+n=k

(
1/2

m

)(
1/2

n

)
=

{
1 if k = 0 or 1,

0 if k ≥ 2.
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We deduce that y2 = e + x . Since A+ is closed, we see that e + x ∈ A+ if ‖x‖ ≤ 1.

This establishes (i).
When ‖x‖ ≤ 1 we can write

x = 1
2 (e + x) − 1

2(e − x).

Part (ii) now follows (with the use of Lemma 2.2).

3. PROOF OF THE MAIN THEOREM. We now turn to the proof of Theorem 1.1.
Let us first note two simple deductions from (1.1). The hypothesis gives

‖x − y‖ ≤ ‖x + y‖ (x, y ∈ A+). (3.1)

So, if x and y belong to A+ we also have

‖x‖ ≤ 1
2

(‖x − y‖ + ‖x + y‖) ≤ ‖x + y‖. (3.2)

Before completing the proof, we prove two preparatory lemmas.

Lemma 3.1. Suppose that A satisfies (1.1). Then ϕ(x) ≥ 0 whenever ϕ ∈ S and
x ∈ A+.

Proof. Take x ∈ A+ with ‖x‖ = 1. By Proposition 2.3, e − x ∈ A+ and, by (3.2),

‖e − x‖ ≤ ‖(e − x) + x‖ = 1.

Hence for ϕ in S we have

1 = ‖ϕ‖ ≥ ϕ(e − x) = 1 − ϕ(x),

whence ϕ(x) ≥ 0.

We recall that a point x in a nonempty convex subset S of a vector space is an
extreme point of S if whenever x = λx1 + (1 − λ)x2 with x1, x2 in S and 0 < λ < 1,
then x = x1 = x2. We use ∂eS to denote the set of extreme points of S. We will use
the Krein-Milman theorem, which in our context states that if S is a weak∗ compact
convex subset of the dual of a Banach space, then ∂eS is nonempty and S is the weak∗
closure of the convex hull of ∂eS.

Lemma 3.2. Suppose that A satisfies (1.1). Let K be the set of all multiplicative states
of A (i.e., K = {ϕ ∈ S : ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A}). Then K is a compact
Hausdorff space in the weak∗ topology of A∗ which contains the set ∂eS of extreme
points of S (and, in particular, K is nonempty).

Proof. It is trivial to show that K is a closed subset of the closed unit ball of A∗. This
ensures that K is compact for the weak∗ topology.

Since S is convex and compact in the weak∗ topology of A∗, the Krein-Milman
theorem guarantees that ∂eS is nonempty. Suppose that ϕ lies in ∂eS . We claim that
ϕ is in K . Since A = A+ − A+, it suffices to show that ϕ(xy) = ϕ(x)ϕ(y) whenever
x ∈ A+ and y ∈ A.

Consider x in A+ with ‖x‖ ≤ 1 and y in A with ‖y‖ ≤ 1. By Proposition 2.3,
e ± y ∈ A+. Therefore, by Lemma 3.1 and Lemma 2.2 (i),

ϕ(x(e ± y)) ≥ 0,
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which implies that

|ϕ(xy)| ≤ ϕ(x). (3.3)

Similarly, e − x ∈ A+ by Proposition 2.3, so

|ϕ((e − x)y)| ≤ 1 − ϕ(x). (3.4)

Notice that both inequalities (3.3) and (3.4) hold, in fact, for arbitrary y in A.
If ϕ(x) = 0, inequality (3.3) yields ϕ(xy) = ϕ(x)ϕ(y). Similarly, if ϕ(x) = 1, us-

ing (3.4) it is immediate that ϕ(xy) = ϕ(x)ϕ(y).
If 0 < ϕ(x) < 1, we define ψ1 and ψ2 on A by

ψ1(y) = ϕ(x)−1ϕ(xy)

and

ψ2(y) = (1 − ϕ(x))−1ϕ((e − x)y).

Using (3.3) and (3.4) we see that ψ1 and ψ2 are states. Now we can write

ϕ = ϕ(x)ψ1 + (1 − ϕ(x))ψ2.

By the fact that ϕ is an extreme point of S we must have ψ1 = ϕ and, therefore,

ϕ(xy) = ϕ(x)ϕ(y) (x ∈ A+, y ∈ A).

Conclusion of the Proof of Theorem 1.1. Suppose that A satisfies condition (1.1). Let
J : A → C(K ) be the natural map given by

J x(ϕ) = ϕ(x).

Clearly, J is an algebra homomorphism, J (e) = 1, and ‖J‖ = 1. In order to prove
that J is an isometry we need to establish the following:

Claim. Suppose that x in A is such that ‖J x‖C(K ) ≤ 1. Then for each ε > 0 there
exists a tε > 0 for which

‖e − tε(1 + ε)e − tεx‖ < 1.

If the claim fails to be true, there is an x in A with ‖J x‖C(K ) ≤ 1 so that for some
ε > 0 we have

‖e − t (1 + ε)e − t x‖ ≥ 1 (t ≥ 0).

By the Hahn-Banach theorem (invoked to separate {e − t (1 + ε)e − t x : t ≥ 0} from
the open unit ball) we can find a linear functional ϕ with ‖ϕ‖ = 1 and

ϕ(e − t (1 + ε)e − t x) ≥ 1 (t ≥ 0).

In particular, ϕ lies in S and ϕ((1 + ε)e + x) ≤ 0. Hence |ϕ(x)| ≥ 1 + ε. But now,
using the the Krein-Milman theorem and Lemma 3.2, we deduce that there exists ϕ′
in K with |ϕ′(x)| ≥ 1 + ε. Thus ‖J x‖C(K ) > 1, a contradiction.
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Combining the claim with Proposition 2.3 (i) we see that ‖J x‖C(K ) ≤ 1 implies that
(1 + ε)e + x ∈ A+ for all ε > 0, so e + x ∈ A+. Applying the same reasoning to −x
we have e − x ∈ A+. Hence, by (3.1), we obtain

‖x‖ = 1
2‖(e + x) − (e − x)‖ ≤ 1

2‖(e + x) + (e − x)‖ = 1.

Thus J is an isometry. Finally, J maps A onto C(K ) by the Stone-Weierstrass theorem.

4. CONCLUDING REMARKS. Condition (1.1) may appear to be innocuous to the
reader, but there are well-known commutative real algebras with identity where (1.1)
fails. We illustrate this with a few examples suggested by the referee:

(a) Any complex Banach space CC(K ) of continuous functions on a compact Haus-
dorff space K is in particular a commutative real Banach algebra. One readily
sees that condition (1.1) fails by taking, for instance, a to be the constant func-
tion 1 and b the constant function i .

(b) The real algebra C(1)[0, 1] of continuously differentiable real-valued functions
on [0, 1] with the norm

‖ f ‖ = max
0≤t≤1

| f (t)| + max
0≤t≤1

| f ′(t)|

is a commutative Banach algebra with unit that seems similar to C[0, 1] but fails
to obey (1.1). Take, for instance, a = ex and b = e−x .

(c) Let �1(Z+) be the space of all formal power series
∑∞

n=0 antn (with real coeffi-
cients) with (an)

∞
n=0 ∈ �1 and with the norm

∥∥∥ ∞∑
n=0

antn
∥∥∥ =

∞∑
n=0

|an|.

To see that condition (1.1) fails in �1(Z+) take, for instance, a = 1 − 2t2 and
b = 2t + t2.

We now observe that our proof of Theorem 1.1 required the full force of hypothesis
(1.1) only at the very last step. Prior to that we used only the weaker hypothesis

‖a2‖ ≤ ‖a2 + b2‖ (a, b ∈ A). (4.1)

Condition (4.1) implies (3.2), which was used in Lemmas 3.1 and 3.2. However, this
hypothesis allows us to deduce only that A is 2-isomorphic to C(K ), i.e.,

1

2
‖x‖ ≤ ‖J x‖C(K ) ≤ ‖x‖ (x ∈ A),

so that ‖J‖ = 1 and ‖J −1‖ ≤ 2. That this is best possible is clear from the norm on
C(K ) given by

||| f ||| = ‖ f+‖C(K ) + ‖ f−‖C(K ),

where f+ = max( f, 0) and f− = max(− f, 0). Under this norm C(K ) is a commuta-
tive real Banach algebra satisfying inequality (4.1) but not inequality (1.1).
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We also note that the Gelfand-Naimark representation of (complex) commutative
C∗-algebras (see [5] and [4, p. 242]) can be obtained from Theorem 1.1. To this end,
we recall that a map a �→ a∗ is called an involution on the complex algebra A if it
enjoys the following properties:

(i) (a∗)∗ = a,
(ii) (αa + βb)∗ = αa∗ + βb∗ (α, β ∈ C),
(iii) (ab)∗ = b∗a∗.

In the Banach algebra CC(K ) of complex-valued continuous functions on a com-
pact Hausdorff space K we have a natural involution, namely, complex conjugation:
f ∗(s) = f (s) for s in K .

If a∗ = a, then a is called self-adjoint. Every x in A can be written in a unique way
as x = a + ib, where a and b are self-adjoint (a = (x + x∗)/2, b = (x − x∗)/2i).

Theorem 4.1 (Gelfand-Naimark). If A is a commutative complex Banach algebra
with an identity e such that ‖e‖ = 1 and an involution ∗ such that

‖a∗a‖ = ‖a‖2 (a ∈ A), (4.2)

then A is isometrically ∗-algebra isomorphic to CC(K ) for some compact Hausdorff
space K .

Proof. Note first that (4.2) implies that the involution is isometric on A:

‖a∗‖2 = ‖(a∗∗)a∗‖ = ‖aa∗‖ = ‖a‖2.

Let AR be the closed subalgebra of A comprising all self-adjoint elements of A. Then
AR is a real Banach algebra. We show that it satisfies condition (1.1). Hence for a and
b in AR we have ‖(a + ib)2‖ = ‖(a − ib)2‖, from which it follows that

‖a2 − b2‖ = 1
2‖(a + ib)2 + (a − ib)2‖

≤ ‖(a + ib)2‖ ≤ ‖(a + ib)‖2

= ‖(a + ib)(a − ib)‖ = ‖a2 + b2‖.
Accordingly, we can invoke Theorem 1.1 to produce an isometric isomorphism of real
Banach algebras J : AR → C(K ) = CR(K ) for some compact Hausdorff space K .

The map J trivially extends to a ∗-algebra isomorphism J̃ : A → CC(K ). Finally, if
x = a + ib with a and b in AR we have

‖x‖2 = ‖a2 + b2‖ = ‖ J̃ (a2 + b2)‖ = ‖ J̃ x‖2,

so J̃ is an isometry.
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Oral Exam Solution

p q

Let C1 be the dashed contour and C2 the solid contour. Then C1 and C2 are
null-homotopic in C \ {p, q}, so by the Cauchy integral theorem,∫

C
f (z) dz =

∫
C1

f (z) dz +
∫

C2

f (z) dz = 0 + 0 = 0.

The problem can also be solved by observing that the original contour C is
homologous to zero in C \ {p, q} and then applying the homology version of
Cauchy’s theorem; see B. Palka, An Introduction to Complex Function Theory,
Springer-Verlag, New York, 1991, Theorem 5.1, p. 188. The purpose of my ques-
tion is to test if the candidate knows the homology version of Cauchy’s theorem
and, if not, to show them how to reduce the homology version to the homotopy
version.

—Submitted by Peter Lax,
Courant Institute of Mathematical Sciences, New York
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