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Abstract

We extend the noncommutative residue of M. Wodzicki on compactly supported classical pseudo-
differential operators of order −d and generalise A. Connes’ trace theorem, which states that the residue
can be calculated using a singular trace on compact operators. Contrary to the role of the noncommutative
residue for the classical pseudo-differential operators, a corollary is that the pseudo-differential operators of
order −d do not have a ‘unique’ trace; pseudo-differential operators can be non-measurable in Connes’
sense. Other corollaries are given clarifying the role of Dixmier traces in noncommutative geometry,
including the definitive statement of Connes’ original theorem.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A. Connes proved, [8, Theorem 1], that

Trω(P) =
1

d(2π)d
ResW (P)
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where P is a classical pseudo-differential operator of order −d on a d-dimensional closed
Riemannian manifold, Trω is a Dixmier trace (a trace on the compact operators with singular
values O(n−1) which is not an extension of the canonical trace), [13], and ResW is the
noncommutative residue of M. Wodzicki, [44].

Connes’ trace theorem, as it is known, has become the cornerstone of noncommutative
integration in noncommutative geometry, [9]. Applications of Dixmier traces as the substitute
noncommutative residue and integral in non-classical spaces range from fractals, [31,22], to
foliations [3], to spaces of noncommuting co-ordinates, [10,21], and applications in string theory
and Yang–Mills, [12,14,40,8], Einstein–Hilbert actions and particle physics’ standard model,
[11,6,30].

Connes’ trace theorem, though, is not complete. There are other traces, besides Dixmier
traces, on the ideal of compact operators whose singular values are O(n−1). Wodzicki showed
that the noncommutative residue is essentially the unique trace on classical pseudo-differential
operators of order −d , so it should be expected that every suitably normalised trace computes
the noncommutative residue. Also, all pseudo-differential operators have a notion of principal
symbol and Connes’ trace theorem opens the question of whether the principal symbol of non-
classical operators can be used to compute their Dixmier trace.

We generalise Connes’ trace theorem. We introduce an extension of the noncommutative
residue that relies only on the principal symbol of a pseudo-differential operator, and we show
that the extension calculates the Dixmier trace of the operator. The following definition and
theorem apply to a much wider class of Hilbert–Schmidt operators, called Laplacian modulated
operators, that we develop in the text. Here, in the introduction, we mention only pseudo-
differential operators.

A pseudo-differential operator P : C∞(Rd) → C∞(Rd) is compactly based if Pu has
compact support for all u ∈ C∞(Rd). Equivalently the (total) symbol of P has compact support
in the first variable.

Definition 1.1 (Extension of the Noncommutative Residue). Let P : C∞
c (Rd) → C∞

c (Rd) be a
compactly based pseudo-differential operator of order −d with symbol p. The linear map

P → Res(P) :=


d

log(1 + n)


Rd


|ξ |≤n1/d

p(x, ξ)dξ dx

∞

n=1


we call the residue of P , where [·] denotes the equivalence class in ℓ∞/c0.

Here ℓ∞ denotes the space of bounded complex-valued sequences, and c0 denotes the subspace
of vanishing at infinity convergent sequences. Alternatively, any sequence Resn(P), n ∈ N, such
that 

Rd


|ξ |≤n1/d

p(x, ξ)dξ dx =
1
d

Resn(P) log n + o(log n)

defines the residue Res(P) = [Resn(P)] ∈ ℓ∞/c0. We identify the equivalence classes of
constant sequences in ℓ∞/c0 with scalars. In the case that Res(P) is the class of a constant
sequence, then we say that Res(P) is a scalar and identify it with the limit of the constant
sequence. Note that a dilation invariant state ω ∈ ℓ∗∞ vanishes on c0. Hence

ω([cn]) := ω({cn}
∞

n=1), {cn}
∞

n=1 ∈ ℓ∞

is well-defined as a linear functional on ℓ∞/c0.
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Theorem 1.2 (Trace Theorem). Let P : C∞
c (Rd) → C∞

c (Rd) be a compactly based pseudo-
differential operator of order −d with residue Res(P). Then (the extension) P : L2(Rd) →

L2(Rd) is a compact operator with singular values O(n−1) and:

(i)

Trω(P) =
1

d(2π)d
ω(Res(P))

for a Dixmier trace Trω;
(ii)

Trω(P) =
1

d(2π)d
Res(P)

for every Dixmier trace Trω iff
Rd


|ξ |≤n1/d

p(x, ξ)dξ dx =
1
d

Res(P) log n + o(log n)

for a scalar Res(P);
(iii)

τ(P) =

τ ◦ diag


1
n

∞

n=1


d(2π)d

Res(P)

for every trace τ on the compact operators with singular values O(n−1) iff
Rd


|ξ |≤n1/d

p(x, ξ)dξ dx =
1
d

Res(P) log n + O(1)

for a scalar Res(P).

Here diag is the diagonal operator with respect to an arbitrary orthonormal basis of L2(Rd).
This theorem is Theorem 6.32 in Section 6.3 of the text. There is a version for closed manifolds,
Theorem 7.6 in Section 7.3.

The result
Rd


|ξ |≤n1/d

p(x, ξ)dxdξ =
1
d

ResW (P) log n + O(1) (1.1)

for a classical pseudo-differential operator P demonstrates that the residue in Definition 1.1 is
an extension of the noncommutative residue and, from Theorem 1.2(iii) we obtain the following.
Henceforth, we denote by L1,∞ the ideal of compact operators with singular values O(n−1).

Theorem 1.3 (Connes’ Trace Theorem). Let P : C∞
c (Rd) → C∞

c (Rd) be a classical compactly
based pseudo-differential operator of order −d with noncommutative residue ResW (P). Then
(the extension) P ∈ L1,∞ and

τ(P) =
1

d(2π)d
ResW (P)

for every trace τ on L1,∞ with τ(diag{k−1
}
∞

k=1) = 1.

This result is Corollary 6.35 in the text. We show the same result for manifolds, Corollary 7.22.
In the text we construct a pseudo-differential operator Q whose residue Res(Q) is not scalar.

Using Theorem 1.2(ii) we obtain the following.
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Theorem 1.4 (Pseudo-Differential Operators do not have Unique Trace). There exists a
compactly based pseudo-differential operator Q : C∞

c (Rd) → C∞
c (Rd) of order −d such that

the value Trω(Q) depends on the Dixmier trace Trω.

The operator Q is nothing extravagant, one needs only to interrupt the homogeneity of the
principal symbol; see Corollary 6.34 in the text. There is a similar example on closed manifolds,
Corollary 7.23. In summary the pseudo-differential operators of order −d form quite good
examples for the theory of singular traces. Some operators, including classical ones, have the
same value for every trace. Others have distinct trace even for the smaller set of Dixmier
traces. Theorem 1.4 shows that the qualifier classical cannot be omitted from the statement of
Theorem 1.3.

The Laplacian modulated operators we introduce are a wide enough class to admit the
operators M f (1 − ∆)−d/2 where f ∈ L2(Rd) (almost) has compact support, M f u(x) =

f (x)u(x), u ∈ C∞
c (Rd), and ∆ is the Laplacian on Rd . Using Theorem 6.32(iii) (the version of

Theorem 1.2(iii) for Laplacian modulated operators) we prove the next result as Corollary 6.38
in the text.

Theorem 1.5 (Integration of Square Integrable Functions). If f ∈ L2(Rd) has compact support
then M f (1 − ∆)−d/2

∈ L1,∞ such that

τ(M f (1 − ∆)−d/2) =
Vol Sd−1

d(2π)d


Rd

f (x)dx

for every trace τ on L1,∞ with τ(diag{k−1
}
∞

k=1) = 1.

The same statement can be made for closed manifolds, omitting of course the requirement for
compact support of f , and with the Laplace–Beltrami operator in place of the ordinary Laplacian,
Corollary 7.24.

Finally, through results on modulated operators, specifically Theorem 5.2, we obtain
the following spectral formula for the noncommutative residue on a closed manifold,
Corollary 7.19. The eigenvalue part of this formula was observed by T. Fack, [17], and proven
in [2, Corollary 2.14] (i.e. the log divergence of the series of eigenvalues listed with multiplicity
and ordered so that their absolute value is decreasing is equal to the noncommutative residue).

Theorem 1.6 (Spectral Formula of the Noncommutative Residue). Let P be a classical pseudo-
differential operator of order −d on a closed d-dimensional manifold (X, g). Then

d−1(2π)−d ResW (P) = lim
n

1
log n

n
j=1

(Pe j , e j ) = lim
n

1
log n

n
j=1

λ j (P)

where {λ j (P)}∞j=1 are the non-zero eigenvalues of P with multiplicity in any order so that

|λ j (P)| is decreasing, (·, ·) is the inner product on L2(X, g), and (e j )
∞

j=1 is an orthonormal basis
of eigenvectors of the Hodge-Laplacian −∆g (the negative of the Laplace–Beltrami operator)
such that −∆ge j = λ j e j , λ1 ≤ λ2 ≤ · · · are increasing.

Theorems 1.2–1.6 are the main results of the paper.
Our proof of the trace theorem, Theorem 1.2, uses commutator subspaces and it is very

different to the original proof of Connes’ theorem. We finish the Introduction by explaining
our proof of Connes’ theorem in its plainest form.

Wodzicki initiated the study of the noncommutative residue in [44]. The noncommutative
residue ResW (P) vanishes if and only if a classical pseudo-differential operator P is a finite
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sum of commutators. Paired with the study of commutator subspaces of ideals, [36], this result
initiated an extensive work characterising commutator spaces for arbitrary two sided ideals of
compact operators, [15]; see also the survey, [43]. Our colleague Nigel Kalton, whose sudden
passing was a tremendous loss to ourselves personally and to mathematics in general, contributed
fundamentally to this area, through, of course, [27,28,16,19,29].

The commutator subspace, put simply, is the kernel of all traces on a two-sided ideal of
compact linear operators of a Hilbert space H to itself. If one could show that a compact operator
T belongs to the ideal L1,∞ (operators whose singular values are O(n−1)) and that it satisfies

T − c diag


1
k

∞

k=1
∈ Com L1,∞ (1.2)

for a constant c (here Com L1,∞ denotes the commutator subspace, i.e. the linear span of
elements AB − B A, A ∈ L1,∞, B is a bounded linear operator of H to itself, and diag is
the diagonal operator in some chosen basis), then

τ(T ) = c

for a constant c for every trace τ with τ(diag{k−1
}
∞

k=1) = 1. This is the type of formula Connes’
original theorem suggests. Our first result, Theorem 3.3, concerns differences in the commutator
subspace, i.e. (1.2), and it states that

T − S ∈ Com L1,∞ ⇔

n
j=1

λ j (T )−

n
j=1

λ j (S) = O(1)

by using the fundamental results of [15,27,16]. Here {λ j (T )}∞j=1 are the non-zero eigenvalues of
T , with multiplicity, in any order so that |λ j (T )| is decreasing, with the same for S. If there are
no non-zero eigenvalues the sum is zero. Actually, all our initial results involve general ideals
but, to stay on message, we specialise to L1,∞ in the introduction. Then our goal, (1.2), has the
explicit spectral form

n
j=1

λ j (T )− c log n = O(1). (1.3)

The crucial step therefore is the following theorem on sums of eigenvalues of pseudo-differential
operators. As far as we know the theorem is new. Results about eigenvalues are known, of course,
for positive elliptic operators on closed manifolds. The following result is for all operators of
order −d.

Theorem 1.7. Let P : C∞
c (Rd) → C∞

c (Rd) be a compactly based pseudo-differential operator
of order −d and with symbol p. Then

n
j=1

λ j (P)−
1

(2π)d


Rd


|ξ |≤n1/d

p(x, ξ)dxdξ = O(1)

where {λ j (P)}∞j=1 are the non-zero eigenvalues of P, with multiplicity, in any order so that
|λ j (P)| is decreasing.

The theorem is Theorem 6.23 in the text, which is shown for the so-called Laplacian modulated
operators, and we have stated here the special case for compactly supported pseudo-differential
operators. Given Theorem 1.7 the proof of Theorem 1.2 follows, as indicated in Section 6.3.
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2. Preliminaries

Let H be a separable Hilbert space with inner product complex linear in the first variable and
let B(H) (respectively, K(H)) denote the bounded (respectively, compact) linear operators on
H. If (en)

∞

n=1 is a fixed orthonormal basis of H and {an}
∞

n=1 is a sequence of complex numbers
define the operator

diag{an}
∞

n=1 :=

∞
n=1

anene∗
n,

where e∗
n(h) := (h, en), h ∈ H, and (·, ·) denotes the inner product. The Calkin space diag(I)

associated to a two-sided ideal I of compact operators is the sequence space

diag(I) := {{an}
∞

n=1|diag{an}
∞

n=1 ∈ I}.

The Calkin space is independent of the choice of orthonormal basis and an operator T ∈ I if and
only if the sequence {sn(T )}∞n=1 of its singular values belongs to diag(I), [5], [42, Section 2].

The non-zero eigenvalues of a compact operator T form either a sequence converging to 0
or a finite set. In the former case we define an eigenvalue sequence for T as the sequence of
eigenvalues {λn(T )}∞n=1, each repeated according to algebraic multiplicity, and arranged in an
order (not necessarily unique) such that {|λn(T )|}∞n=1 is decreasing (see, [42, p. 7]). In the latter
case we construct a similar finite sequence {λn(T )}N

n=1 of non-zero eigenvalues and then set
λn(T ) = 0 for n > N . If T is quasinilpotent then we take the zero sequences as the eigenvalue
sequence of T . The appearance of eigenvalues will always imply that they are ordered as to form
an eigenvalue sequence. For a normal compact operator T , |λn(T )| = λn(|T |) = sn(T ), n ∈ N,
for any eigenvalue sequence {λn(T )}∞n=1. This implies that {λn(T )}∞n=1 ∈ diag(I) for a normal
operator T ∈ I . The following well-known lemma will be useful so we provide the proof for
completeness.

Lemma 2.1. Suppose diag(I) is a Calkin space and ν ∈ diag(I) is a positive sequence. If
a := {an}

∞

n=1 is a complex-valued sequence such that |an| ≤ νn for all n ∈ N, then a ∈ diag(I).

Proof. Set, for n ∈ N, bn :=
an
νn

if νn ≠ 0 and bn := 0 if νn = 0. Then b := {bn}
∞

n=1 ∈ ℓ∞.
Hence diag b ∈ B(H) and diag a = diag(b · ν) = diag b · diag ν ∈ I since I is an ideal. �

Corollary 2.2. Suppose T ∈ I is normal. Then {λn(T )}∞n=1 ∈ diag(I) where {λn(T )}∞n=1 is an
eigenvalue sequence of T .

Proof. Using the spectral theorem for normal operators, |λn(T )| = sn(T ), n ∈ N. Hence
|λn(T )| ≤ νn where νn := sn(T ) ∈ diag(I) is positive. By Lemma 2.1 {λn(T )}∞n=1 ∈

diag(I). �

The statement that {λn(T )}∞n=1 ∈ diag(I) for every T ∈ I is false in general. Geometrically
stable ideals were introduced by Kalton, [28]. A two-sided ideal I is called geometrically stable
if given any decreasing nonnegative sequence {sn}

∞

n=1 ∈ diag(I) we have {(s1s2 . . . sn)
1/n

}
∞

n=1 ∈

diag(I). It is a theorem of Kalton and Dykema that if I is geometrically stable then {λn(T )}∞n=1 ∈

diag(I) for all T ∈ I , [16, Theorem 1.3]. An ideal I is called Banach (respectively, quasi-
Banach) if there is a norm (respectively, quasi-norm) ∥ · ∥I on I such that (I, ∥ · ∥I) is complete
and we have ∥AT B∥I ≤ ∥A∥B(H)∥T ∥I ∥B∥B(H), A, B ∈ B(H), T ∈ I . Equivalently, diag(I)
is a Banach (respectively, quasi-Banach) symmetric sequence space; see e.g. [42,32,29]. Every
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quasi-Banach ideal is geometrically stable, [28]. An example of a non-geometrically stable ideal
is given in [16].

If I1 and I2 are ideals we denote by I1 I2 the ideal generated by all products AB, B A for
A ∈ I1 and B ∈ I2. If A, B ∈ B(H) we let [A, B] = AB − B A. We define [I1, I2] to be the
linear span of all [A, B] for A ∈ I1 and B ∈ I2. It is a theorem that [I1, I2] = [I1 I2,B(H)],
[15, Theorem 5.10]. The space Com I := [I,B(H)] ⊂ I is called the commutator subspace of
an ideal I .

3. A theorem on the commutator subspace

There is a fundamental description of the normal operators T ∈ Com I given by Dykema,
Figiel, Weiss and Wodzicki, [15]; see also [28, Theorem 3.1].

Theorem 3.1. Suppose I is a two-sided ideal in K(H) and T ∈ I is normal. Then the following
statements are equivalent:

(i) T ∈ Com I ;
(ii) for any eigenvalue sequence {λn(T )}∞n=1,

1
n

n
j=1

λ j (T )

∞

n=1

∈ diag(I); (3.1)

(iii) for any eigenvalue sequence {λn(T )}∞n=1,

1
n

 n
j=1

λ j (T )

 ≤ µn (3.2)

for a positive decreasing sequence µ = {µn}
∞

n=1 ∈ diag(I).

We would like to observe the following refinement of Theorem 3.1.

Theorem 3.2. Suppose I is a two-sided ideal in K(H) and T, S ∈ I are normal. Then the
following statements are equivalent:

(i) T − S ∈ Com I ;
(ii) for any eigenvalue sequences {λ j (T )}∞j=1 of T and {λ j (S)}∞j=1 of S,

1
n


n

j=1

λ j (T )−

n
j=1

λ j (S)

∞

n=1

∈ diag(I); (3.3)

(iii) for any eigenvalue sequences {λ j (T )}∞j=1 of T and {λ j (S)}∞j=1 of S,

1
n

 n
j=1

λ j (T )−

n
j=1

λ j (S)

 ≤ µn (3.4)

for a positive decreasing sequence µ = {µn}
∞

n=1 ∈ diag(I).

Proof. Observe that the normal operator

V =


T 0
0 −S


=


T − S 0

0 0


+


S 0
0 −S


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belongs to Com I if and only if T − S ∈ Com I. Indeed, it is straightforward to see that
the eigenvector sequence of the operator

S 0
0 −S


satisfies (3.1) and, since S ∈ I , we haveS 0

0 −S


∈ Com I by Theorem 3.1.

(iii) ⇒ (ii) Let an := n−1n
j=1(λ j (T )− λ j (S)). By Lemma 2.1 {an}

∞

n=1 ∈ diag(I).
(ii) ⇒ (i) We have

n
j=1

λ j (V ) =

r
j=1

λ j (T )−

s
j=1

λ j (S)

where r + s = n and |λr+1(T )|, |λs+1(S)| ≤ |λn+1(V )|. Hence n
j=1

λ j (V )−

n
j=1

λ j (T )+

n
j=1

λ j (S)

 ≤ n|λn(V )|. (3.5)

Since ν := {|λn(V )|}∞n=1 ∈ diag(I) is positive and decreasing

1
n

n
j=1

λ j (V )−
1
n


n

j=1

λ j (T )−

n
j=1

λ j (S)


∈ diag(I)

by Lemma 2.1. Hence 1
n

n
j=1 λ j (V ) ∈ diag(I) if 1

n (
n

j=1 λ j (T )−
n

j=1 λ j (S)) ∈ diag(I). It
follows from Theorem 3.1 that V ∈ Com I .

(i) ⇒ (iii) We note from Eq. (3.5) that

1
n

 n
j=1

λ j (T )−

n
j=1

λ j (S)

 ≤ |λn(V )| +
1
n

 n
j=1

λ j (V )

 .
The sequence ν := {|λn(V )|}∞n=1 ∈ diag(I) is positive and decreasing and, since V ∈ Com I ,

there exists a decreasing sequence ν′ such that 1
n

n
j=1 λ j (V )

 ≤ ν′
n . Now (iii) follows by

setting µ = ν + ν′. �

In [28], which used results in [15] although it appeared chronologically earlier, it was shown
that Theorem 3.1 can be extended to non-normal operators under the hypothesis that I is
geometrically stable. Theorem 3.2 can be extended similarly.

Theorem 3.3. Suppose I is a geometrically stable ideal in K(H) and T, S ∈ I . Then the
following statements are equivalent:

(i) T − S ∈ Com I ;
(ii) for any eigenvalue sequences {λ j (T )}∞j=1 of T and {λ j (S)}∞j=1 of S,

1
n


n

j=1

λ j (T )−

n
j=1

λ j (S)

∞

n=1

∈ diag(I); (3.6)

(iii) for any eigenvalue sequences {λ j (T )}∞j=1 of T and {λ j (S)}∞j=1 of S,

1
n

 n
j=1

λ j (T )−

n
j=1

λ j (S)

 ≤ µn (3.7)

for a positive decreasing sequence µ = {µn}
∞

n=1 ∈ diag(I).
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Proof. Let T ∈ I . From [16, Corollary 2.5] T = N + Q where Q ∈ I is quasinilpotent and
N ∈ I is normal with eigenvalues and multiplicities the same as T . From [28, Theorem 3.3]
we know Q ∈ Com I . Hence T = NT + QT and S = NS + QS where QS, QT ∈ Com I are
quasinilpotent and NT , NS are normal with eigenvalues and multiplicities the same as T and S,
respectively. Since T − S ∈ Com I if and only if NT − NS ∈ Com I the results follow from
Theorem 3.2. �

We recall that diag{λn(T )}∞n=1 ∈ I when I is geometrically stable. Theorem 3.3 therefore has
the following immediate corollary.

Corollary 3.4. Let I be a geometrically stable ideal in K(H) and T ∈ I . Then T −

diag{λn(T )}∞n=1 ∈ Com I .

Proof. Set S := diag{λn(T )}∞n=1 ∈ I . Then λn(S) = λn(T ), n ∈ N, and T − S ∈ Com I by
Theorem 3.3. �

4. Applications to traces

Suppose I is a two-sided ideal of compact operators. A trace τ : I → C is a linear functional
that vanishes on the commutator subspace, i.e. it satisfies the condition

τ([A, B]) = 0, A ∈ I, B ∈ B(H).

Note that we make no assumptions about continuity or positivity of the linear functional. The
value

τ(diag{an}
∞

n=1), {an}
∞

n=1 ∈ diag(I)

is independent of the choice of orthonormal basis. Therefore any trace τ : I → C induces a
linear functional τ ◦ diag (defined by the above value) on the Calkin space diag(I).

Corollary 4.1. There are non-trivial traces on I if and only if Com I ≠ I , which occurs if and
only if {

1
n

n
j=1 s j }

∞

n=1 ∉ diag(I) for some positive sequence {sn}
∞

n=1 ∈ diag(I).

The proof is evident by considering the quotient vector space I/Com I and applying
Theorem 3.1, so we omit it. The condition in Corollary 4.1 implies that traces on two-sided
ideals other than the ideal of nuclear operators exist (e.g. the quasi-Banach ideal L1,∞ such that
diag(L1,∞) = ℓ1,∞), [26]; see also [15, Section 5] for other examples of ideals that do and do
not support non-trivial traces. In [16] it was shown that every trace on a geometrically stable
ideal is determined by its associated functional applied to an eigenvalue sequence, which is an
extension of the Lidskii theorem.

Corollary 4.2 (Lidskii Theorem). Let I be a geometrically stable ideal in K(H). Suppose T ∈ I .
Then

τ(T ) = τ ◦ diag({λn(T )}
∞

n=1) (4.1)

for every trace τ : I → C and any eigenvalue sequence {λn(T )}∞n=1 of T .

The proof, given Corollary 3.4, is trivial and therefore omitted. For ideals that are not
geometrically stable ideals, it is possible that for some T ∈ I we have that {λn(T )}∞n=1 ∉ diag(I).
The Lidskii formulation as above will not be possible in this case. A general characterisation of
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traces on non-geometrically stable ideals requires an explicit formula for products T = AS ∈ I
where A and S do not commute. Such a formula is also of interest when studying linear
functionals on the bounded operators of the form A → τ(AS), A ∈ B(H), where S ∈ I
is Hermitian and τ : I → C is a trace (e.g. in A. Connes’ noncommutative geometry,
[9, Section 4]). We now characterise traces of products.

We introduce some terminology for systems of eigenvectors that are ordered to correspond
with eigenvalue sequences. If T is a compact operator of infinite rank, we define an orthonormal
sequence (en)

∞

n=1 to be an eigenvector sequence for T if T en = λn(T )en for all n ∈ N where
{λn}

∞

n=1 is an eigenvalue sequence. If T is Hermitian, an eigenvector sequence exists and there is
an eigenvector sequence which forms a complete orthonormal system.

We will also need the following lemmas (see for example [15]).

Lemma 4.3. Let I be a two-sided ideal in K(H). Suppose D = diag{αn}
∞

n=1 where {αn}
∞

n=1 is a
sequence of complex numbers such that |αn| ≤ µn where {µn}

∞

n=1 ∈ diag(I) is decreasing. Then n
j=1

α j −

n
j=1

λ j (D)

 ≤ 2nµn .

Proof. We have λ j (D) = αm j where m1,m2, . . . are distinct. Thus

n
j=1

λ j (D) =


j∈A

α j

where A = {m1, . . . ,mn}. If k ∈ A \ {1, 2, . . . , n} we have |αk | ≤ µk ≤ µn . On the other hand,
since

A =

m ∈ N : αm = λ j (D), for some j ≤ n


,

if k ∈ {1, 2, . . . , n} \ A we have |αk | ≤ |λn(D)| ≤ µn . Hence n
j=1

λ j (D)−

n
j=1

α j

 ≤ 2nµn . �

Lemma 4.4. Suppose S ∈ K(H) is Hermitian and (e j )
∞

j=1 is an eigenvector sequence for S.

Suppose A is Hermitian and H :=
1
2 (AS + S A). Then we have n

j=1

λ j (H)−

n
j=1

(ASe j , e j )

 ≤ nsn+1(H)+ nsn+1(S)


1
n

n
j=1

s j (A)


(4.2)

if A ∈ K(H) is compact, and n
j=1

λ j (H)−

n
j=1

(ASe j , e j )

 ≤ nsn+1(H)+ nsn+1(S)∥A∥ (4.3)

if A ∈ B(H) is bounded but not compact.

Proof. Let ( fn)
∞

n=1 be an eigenvector sequence for H . Let Pn and Qn be the orthogonal
projections of H on [e1, . . . , en] and [ f1, . . . , fn] respectively and let Rn be the orthogonal
projection on the linear span [e1, . . . , en, f1, . . . , fn].
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If A is compact define βn :=
1
n

n
j=1 s j (A). Otherwise set βn := ∥A∥. Since rank(Rn−Pn) ≤

n we have

|Tr(AS(Rn − Pn))| ≤ nsn+1(S)βn .

Similarly

|Tr(S A(Rn − Pn))| = |Tr(A(Rn − Pn)S)| ≤ nsn+1(S)βn,

and hence

|Tr(H(Rn − Pn))| ≤ nsn+1(S)βn .

Similarly

|Tr(H(Rn − Qn))| ≤ nsn+1(H).

Hence

|Tr(H(Pn − Qn))| ≤ |Tr(H(Pn − Rn))| + |Tr(H(Rn − Qn))|

≤ nsn+1(H)+ nsn+1(S)βn . �

Theorem 4.5. Let I1 be a two-sided ideal in B(H) such that I1 = Com I1 and I2 be a two-
sided ideal in K(H). Let I = I1 I2. Suppose S ∈ I2 is Hermitian and that (en)

∞

n=1 is an
eigenvector sequence for S. Suppose A ∈ I1 is such that, for some decreasing positive sequence
{µn}

∞

n=1 ∈ diag(I), we have |(ASen, en)| ≤ µn , n ∈ N. Then AS, diag{(ASen, en)}
∞

n=1 ∈ I ,

AS − diag{(ASen, en)}
∞

n=1 ∈ Com I

and, hence, for every trace τ : I → C we have

τ(AS) = τ ◦ diag({(ASen, en)}
∞

n=1) = τ ◦ diag({(Aen, en)λn(S)}
∞

n=1).

Proof. Our assumptions imply that AS ∈ I . Also by the assumption that |(ASen, en)| ≤ µn for
µ ∈ diag(I), it follows from Lemma 2.1 that diag{(ASen, en)}

∞

n=1 ∈ I .
First let us assume that A is Hermitian. Set D := diag{(ASen, en)}

∞

n=1 and αn := (ASen, en),
n ∈ N. By assumption |αn| ≤ µn where µ ∈ diag(I) is positive and decreasing and, by applying
Lemma 4.3 to the sequence αn := (ASen, en), we have n

j=1

λ j (D)−

n
j=1

(ASe j , e j )

 ≤ 2nµn . (4.4)

From Lemma 4.4 we have that n
j=1

λ j (H)−

n
j=1

(ASe j , e j )

 ≤ nsn+1(H)+ nsn+1(S)βn (4.5)

where H =
1
2 (AS + S A) and βn :=

1
n

n
j=1 s j (A), n ∈ N, if A is compact, or βn := ∥A∥,

n ∈ N, if A is bounded but not compact.
Suppose A ∈ I1 where I1 is an ideal of compact operators such that Com I1 = I1. Then |A| ∈

Com I1 and, from the equivalent conditions in Theorem 3.1 there exists a decreasing sequence
µ′

∈ diag(I1) such that 1
n

n
j=1 s j (A) ≤ µ′

n , n ∈ N. Set ν := {2µn +sn+1(H)+µ′
nsn+1(S)}∞n=1

which is positive and decreasing. By assumption {µn}
∞

n=1 ∈ diag(I). By the fact that I is a two-
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sided ideal of compact operators then H =
1
2 (AS + S A) ∈ I and {sn+1(H)}∞n=1 ∈ diag(I).

Finally µ′
nsn+1(S) ∈ diag(I1) · diag(I2) ⊂ diag(I). Hence ν ∈ diag(I). Then, using (4.4)

and (4.5), n
j=1

λ j (D)−

n
j=1

λ j (H)

 ≤ nνn . (4.6)

Now suppose A ∈ I1 = B(H) = Com B(H), [36,23]. Then I = I2 and, in this case, we
define the sequence ν := {2µn + sn+1(H) + ∥A∥sn+1(S)}∞n=1 ∈ diag(I) which is positive and
decreasing. Therefore, in this case, (4.6) still holds for this new choice of decreasing positive
sequence ν ∈ diag(I).

With (4.6) satisfied for the cases A compact or A bounded but not compact, D − H ∈ Com I
by an application of Theorem 3.2. Since H − AS =

1
2 [S, A] ∈ [I1, I2] = [B(H), I] = Com I

(see the preliminaries), we obtain D − AS ∈ Com I and the result of the theorem when A and S
are Hermitian.

The general case follows easily by splitting A into real and imaginary parts. �

Corollary 4.6. Let I be a two-sided ideal in K(H). Suppose S ∈ I is Hermitian and (en)
∞

n=1 is
an eigenvector sequence for S. Then

AS − diag{(ASen, en)}
∞

n=1 ∈ Com I

for every A ∈ B(H) and hence for every trace τ : I → C we have

τ(AS) = τ ◦ diag({(ASen, en)}
∞

n=1) = τ ◦ diag({(Aen, en)λn(S)}
∞

n=1).

Proof. Set I1 := B(H) = Com B(H) and I2 := I . As

|(ASen, en)| ≤ ∥A∥|λn(S)| ∈ diag(I)

and ∥A∥|λn(S)| is a positive decreasing sequence, we obtain the result from Theorem 4.5. �

We can now identify the form of every trace on any ideal of compact operators.

Corollary 4.7. Let I be a two-sided ideal in K(H). Suppose T ∈ I . Then

τ(T ) = τ ◦ diag({sn(T )( fn, en)}
∞

n=1)

for every trace τ : I → C, where

T =

∞
n=1

sn(T ) fne∗
n

is a canonical decomposition of T ({sn(T )}∞n=1 is the sequence of singular values of T , (en)
∞

n=1
an orthonormal basis such that |T |en = sn(T )en , ( fn)

∞

n=1 an orthonormal system such that
T en = sn(T ) fn , and e∗

n(·) := (·, en)).

Proof. Let T = U |T | be the polar decomposition of the compact operator T into the positive
operator |T | and the partial isometry U . The eigenvalue sequence {λn(|T |)}∞n=1 defines the
singular values {sn(T )}∞n=1 of T . Let (en)

∞

n=1 be any orthonormal system such that |T |en =

sn(T )en (an eigenvector sequence of |T |). Since U is bounded and |T | ∈ I is positive we apply
Corollary 4.6 (with A = U and S = |T |) and obtain

τ(T ) = τ(U |T |) = τ ◦ diag({(Uen, en)sn(T )}
∞

n=1).
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We set fn := Uen , n ∈ N. If (en)
∞

n=1 forms a complete system, then we have the
decomposition, [42, Theorem 1.4], |T | =


∞

n=1 sn(T )ene∗
n . It follows that T = U |T | =

∞

n=1 sn(T ) fne∗
n . �

5. Modulated operators and the weak-ℓ1 space

The traces of interest in Connes’ trace theorem (and in Connes’ noncommutative geometry in
general) are traces on the ideal L1,∞ associated to the weak-ℓ1 space ℓ1,∞, i.e. diag(L1,∞) =

ℓ1,∞. It is indicated below that the ideal L1,∞ is geometrically stable (it is a quasi-Banach ideal),
so the Lidskii formulation applies to all its traces.

We were led in our investigation, following results like Corollary 4.6, to ask to what degree
the Fredholm formulation applies to traces on L1,∞. The Fredholm formulation of the canonical
trace on trace class operators (usually taken as the definition of the canonical trace) is

Tr(T ) =


(T en, en), T ∈ L1

where the usual sum


: ℓ1 → C can be understood as the functional Tr ◦ diag. In the Fredholm
formulation (en)

∞

n=1 is any orthonormal basis and the same basis can be used for all trace class
operators T ∈ L1, which is quite distinct to the statement of Corollary 4.6. We know that the
Fredholm formulation is false for traces on L1,∞ (but we do not offer any proof of this fact
here2), i.e. if τ : L1,∞ → C is a non-zero trace there does not exist any basis (en)

∞

n=1 such that
τ(T ) = τ ◦ diag({(T en, en)}

∞

n=1) for all T ∈ L1,∞.
We considered whether there were restricted Fredholm formulations, which may hold for

some subspace of L1,∞ instead of the whole ideal. To this end we introduce new left ideals of
the Hilbert–Schmidt operators. We have used the term modulated operators, see Definition 5.1,
for the elements of the left ideals and the precise statement of a ‘restricted Fredholm formulation’
is Theorem 5.2. It is the aim of this section to prove Theorem 5.2.

Our purpose for introducing modulated operators is to study operators on manifolds
modulated by the Laplacian, where this definition is made precise in Section 6. Compactly
supported pseudo-differential operators of order −d on Rd offer examples of these so-called
Laplacian modulated operators, and this will be our avenue to proving extensions and variants of
Connes’ trace theorem.

Notation. Henceforth we use big O, theta Θ , and little o notation, meaning f (s) = O(g(s))
if | f (s)| ≤ C |g(s)| for a constant C > 0 for all s ∈ N or s ∈ R, f (s) = Θ(g(s)) if
c|g(s)| ≤ | f (s)| ≤ C |g(s)| for constants C > c > 0 for all s ∈ N or s ∈ R, and f (s) = o(g(s))
if | f (s)||g(s)|−1

→ 0 as s → ∞, respectively.

Let L2 denote the Hilbert–Schmidt operators on the Hilbert space H.

Definition 5.1. Suppose V : H → H is a positive bounded operator. An operator T : H → H
is V -modulated if

∥T (1 + tV )−1
∥L2 = O(t−1/2). (5.1)

We denote by mod(V ) the set of V -modulated operators.

It follows from the definition that mod(V ) is a subset of Hilbert–Schmidt operators L2 and
that it forms a left ideal of B(H) (see Proposition 5.4 below).

2 Private communication by D. Zanin.
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The main result of this section is the following theorem.

Theorem 5.2. Suppose T is V -modulated where 0 < V ∈ L1,∞, and (en)
∞

n=1 is an orthonormal
basis such that V en = sn(V )en , n ∈ N. Then

(i) T, diag{(T en, en)}
∞

n=1 ∈ L1,∞;
(ii) T − diag{(T en, en)}

∞

n=1 ∈ Com L1,∞;
(iii) every eigenvalue sequence {λn(T )}∞n=1 of T satisfies

n
j=1

λ j (T )−

n
j=1

(T e j , e j ) = O(1)

where O(1) denotes a bounded sequence.

Remark 5.3 (Fredholm Formula). Evidently from Theorem 5.2, if T is V -modulated then

τ(T ) = τ ◦ diag({(T en, en)}
∞

n=1)

for every trace τ : L1,∞ → C.

The proof of Theorem 5.2 is provided in a section below.

5.1. Properties of modulated operators

We establish the basic properties of V -modulated operators. This will simplify the proof of
Theorem 5.2 and results in later sections.

Notation. The symbols
.
=, ≤̇, ≥̇, may also be used to denote equality or inequality up to a

constant. Where it is necessary to indicate that the constant depends on parameters θ1, θ2, . . .

we write
.
=θ1,θ2,..., ≤̇θ1,θ2,..., ≥̇θ1,θ2,.... The constants may not be the same in successive uses of the

symbol. We introduce this notation to improve text where the value of constants has no relevance
to statements or proofs.

Proposition 5.4. Suppose V : H → H is positive and bounded. The set of V -modulated
operators, mod(V ), is a subset of L2 that forms a left ideal of B(H).

Proof. Suppose T ∈ mod(V ). Then

∥T ∥L2 = ∥T (1 + V )−1(1 + V )∥L2 ≤ ∥T (1 + V )−1
∥L2∥1 + V ∥

and T is Hilbert–Schmidt. Suppose A1, A2 ∈ B(H) and T1, T2 ∈ mod(V ). We have, for t ≥ 1,

∥(A1T1 + A2T2)(1 + tV )−1
∥L2 ≤ ∥A1∥∥T1(1 + tV )−1

∥L2 + ∥A2∥∥T2(1 + tV )−1
∥L2

so

∥(A1T1 + A2T2)(1 + tV )−1
∥L2 = O(t−1/2).

Hence mod(V ) forms a left ideal of B(H). �

Proposition 5.4 establishes mod(V ) as a left ideal of B(H). The conditions by which bounded
operators act on the right of mod(V ) are more subtle.

If X is a set, let χE denote the indicator function of a subset E ⊂ X .

Lemma 5.5. Suppose V : H → H is a positive bounded operator with ∥V ∥ ≤ 1. Then
T ∈ mod(V ) iff

∥Tχ[0,2−n ](V )∥L2 = O(2−n/2). (5.2)
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Proof. Let f, g be real-valued bounded Borel functions such that | f | ≤ |g| and T g(V ) ∈ L2.
Then

| f (V )T ∗
| =


T | f |2(V )T ∗ ≤


T |g|2(V )T ∗ = |g(V )T ∗

|.

Hence ∥T f (V )∥L2 ≤ ∥T g(V )∥L2 . Let f (x) = χ[0,2−n ](x), x ≥ 0, and g(x) = 2(1 + 2n x)−1,
x ≥ 0. Then | f | ≤ |g| and

∥Tχ[0,2−n ](V )∥L2 ≤̇ ∥T (1 + 2n V )−1
∥L2 ≤̇ 2−n/2.

Hence (5.1) implies (5.2).
Conversely, we note that

(χ[0,2−( j−1)] − χ[0,2− j ])(x)(1 + t x)−1
≤ (1 + t2− j )−1χ[0,2−( j−1)](x), x ≥ 0.

Then if (5.2) holds and 2k−1
≤ t < 2k where k ∈ N, we have

∥T (1 + tV )−1
∥L2 ≤

k
j=1

∥T (χ[0,2−( j−1)] − χ[0,2− j ])(V )(1 + tV )−1
∥L2

+ ∥Tχ[0,2−k ](V )(1 + tV )−1
∥L2

≤̇

k
j=1

(1 + t2− j )−1
∥Tχ[0,2−( j−1)](V )∥L2 + 2−k/2

≤̇ t−1
k

j=1

2 j 2−( j−1)/2
+ 2−k/2

≤̇ t−1/2,

and the condition for being modulated is satisfied. �

Proposition 5.6. Suppose V1 : H → H and V2 : H′
→ H′ are bounded positive operators. Let

B : H → H′ be a bounded operator and let A : H′
→ H be a bounded operator such that for

some a > 1/2 we have

∥V a
1 Ax∥H ≤̇ ∥V a

2 x∥H′ , x ∈ H′.

If T ∈ mod(V1) then BT A ∈ mod(V2).

Remark 5.7. In particular, if H = H′, V = V1 = V2, B = 1H, ∥V Ax∥ ≤̇ ∥V x∥ for all x ∈ H,
then T A ∈ mod(V ) if T ∈ mod(V ).

Proof. We may suppose that ∥V1∥B(H), ∥V2∥B(H′) ≤ 1. Let Pn = χ[0,2−n ](V1) and Qn =

χ[0,2−n ](V2), n = Z+. If j ≤ k we have

∥(I − Pj )AQk x∥H ≤ 2 ja
∥V a

1 AQk x∥H ≤ 2 ja
∥V a

2 Qk x∥H′ ≤ 2( j−k)a
∥x∥H′ , x ∈ H′.

Thus

∥(I − Pj )AQk∥B(H′,H) ≤ 2( j−k)a .

If T is V1-modulated then we have by Lemma 5.5 that

∥T Pj∥L2(H) ≤̇ 2− j/2, j ∈ N.
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Thus

∥BT AQk∥L2(H′) ≤ ∥B∥B(H,H′)∥T Pk AQk∥L2(H,H′)

+ ∥B∥B(H,H′)

k
j=1

∥T (Pj−1 − Pj )AQk∥L2(H,H′)

≤̇ ∥T Pk∥L2(H)∥AQk∥B(H′,H)

+

k
j=1

∥T (Pj−1 − Pj )∥L2(H)∥(Pj−1 − Pj )AQk∥B(H′,H)

≤̇ ∥T Pk∥L2(H) +

k
j=1

∥T Pj−1∥L2(H)∥(1 − Pj−1)AQk∥B(H′,H)

+

k
j=1

∥T Pj−1∥L2(H)∥(1 − Pj )AQk∥B(H′,H)

≤̇ 2−k/2
+ (1 + 2−a)21/22−k/2

k
j=1

2(a−1/2)( j−k)

≤̇ 2−k/2.

Hence BT A is V2-modulated by Lemma 5.5. �

5.2. Proof of Theorem 5.2

To prove Theorem 5.2, we will need the following lemmas.

Lemma 5.8. Let E be an n-dimensional Hilbert space and suppose A : E → E is a linear map.
Then there is an orthonormal basis ( f j )

n
j=1 of E so that

(A f j , f j ) =
1
n

Tr(A), j ∈ N.

Proof. This follows from the Hausdorff–Toeplitz theorem on the convexity of the numerical
range W (A). Suppose ( f j )

k
j=1 is an orthonormal sequence of maximal cardinality such that

(A f j , f j ) =
1
n Tr(A) for j = 1, 2 . . . , k. Assume k < n and let F be the orthogonal complement

of [ f j ]
k
j=1 (here k = 0 is permitted and then F = E). Let P be the orthogonal projection

onto F and consider P A : F → F . Then Tr(P A) = (1 − k/n)Tr(A) and by the convexity of
W (P A) we can find fk+1 ∈ F with (A fk+1, fk+1) = (n − k)−1Tr(P A) =

1
n Tr(A), giving a

contradiction. �

If a := {an}
∞

n=1 is a sequence of complex numbers let a∗ denote the sequence of absolute
values |an|, n ∈ N, arranged to be decreasing. The weak-ℓp spaces, p ≥ 1, are defined by

ℓp,∞ := {{an}
∞

n=1|a
∗

= O(n−1/p)}.

Let L p,∞, p ≥ 1, denote the two-sided ideal of compact operators T : H → H such that
sn(T ) = O(n−1/p) (i.e. diag(L p,∞) = ℓp,∞), with quasi-norm

∥T ∥L p,∞ := sup
n

n1/psn(T ).
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Here, as always, {sn(T )}∞n=1 denotes the singular values of T . The ideal L p,∞ is a quasi-Banach
(hence geometrically stable) ideal.

Lemma 5.9. If p, q ≥ 1 such that p−1
+ q−1

= 1 then L1,∞ = L p,∞Lq,∞.

Proof. Suppose A ∈ L p,∞ and B ∈ Lq,∞. Using an inequality of Fan, [18],

s2n(AB) ≤ sn+1(A)sn(B) ≤ sn(A)sn(B) = O(n−1/p)O(n−1/q) = O(n−1).

Similarly s2n(B A) = O(n−1). Hence, AB, B A ∈ L1,∞, and L p,∞Lq,∞ ⊂ L1,∞.
However diag{n−1

}
∞

n=1 = diag{n−1/p
}
∞

n=1diag{n−1/q
}
∞

n=1. So diag{n−1
}
∞

n=1 ∈ L p,∞Lq,∞.
Since L1,∞ is the smallest two-sided ideal that contains diag{n−1

}
∞

n=1 then L1,∞ ⊂ L p,∞Lq,∞.
By the two inclusions L1,∞ = L p,∞Lq,∞. �

Lemma 5.10. Suppose 0 < p < 2 and that (en)
∞

n=1 is an orthonormal basis of H. Suppose
(vn)

∞

n=1 is a sequence in H such that

∞
j=n+1

∥v j∥
2

= O(n1−
2
p ). (5.3)

Then

T x =

∞
j=1

(x, e j )v j

defines an operator T ∈ L p,∞.

Proof. Observe that


∞

n=1 ∥vn∥
2 < ∞ so that T : H → H is bounded and T ∈ L2. For n = Z+,

let

Tn x :=

∞
j=n+1

(x, e j )v j .

Each Tn is also in L2. Recalling that (see [25, Theorem 7.1])

∞
j=n+1

s2
j (T ) = min{∥T − K∥

2
L2

| rank(K ) ≤ n},

we have

ns2n(T )
2

≤

2n
j=n

s j (T )
2

≤

∞
j=1

s j (Tn)
2

= ∥Tn∥
2
L2

=

∞
j=1

∥Tne j∥
2

=

∞
j=n+1

∥v j∥
2

≤̇ n1−2/p.

Hence s2n(T ) ≤̇ n−1/p. �
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Lemma 5.11. Suppose T : H → H is a bounded operator and ( fn)
∞

n=1 is an orthonormal basis
of H such that

∞
j=n+1

∥T f j∥
2

= O(n−1)

and

|(T fn, fn)| = O(n−1).

Then T, diag{(T fn, fn)}
∞

n=1 ∈ L1,∞,

T − diag{(T fn, fn)}
∞

n=1 ∈ Com L1,∞

and
n

j=1

λ j (T )−

n
j=1

(T f j , f j ) = O(1).

Proof. Suppose 1 < p < 2 is fixed and 2 < q < ∞ is such that 1
p +

1
q = 1. Set

Sx :=

∞
j=1

j1/p−1(x, f j ) f j , x ∈ H.

Clearly S is Hermitian, S ∈ Lq,∞ (S has singular values n−1/q ) and S fn = n−1/q fn (so ( fn)
∞

n=1
is an eigenvector sequence for S). Now set

Ax :=

∞
j=1

j1−1/p(x, f j )T f j , x ∈ H.

We show that A ∈ L p,∞. Set v j = j1−1/pT f j . Notice that

∞
j=n+1

j2−2/p
∥T f j∥

2
=

∞
k=0

2k+1n
j=2k n+1

j2−2/p
∥T f j∥

2

≤̇

∞
k=0

(2k+1)2−2/pn2−2/p2−kn−1

≤̇p n1−2/p
∞

k=0

2k(1−2/p)

≤̇p n1−2/p.

Then we have

∞
j=n+1

∥v j∥
2

=

∞
j=n+1

j2−2/p
∥T f j∥

2
≤̇p n1−2/p. (5.4)

Hence, by an application of Lemma 5.10, A ∈ L p,∞.
By construction AS = T and by assumption |(AS fn, fn)| = |(T fn, fn)| = O(n−1). Thus

Theorem 4.5 can be applied to A ∈ L p,∞ = Com L p,∞ (this last equality follows easily
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from Corollary 4.1) and S ∈ Lq,∞, i.e. we use I1 = L p,∞ and I2 = Lq,∞, noting from
Lemma 5.9 that I = L1,∞ = L p,∞Lq,∞. Hence, from Theorem 4.5, T = AS ∈ L1,∞,
D := diag{(T fn, fn)}

∞

n=1 = diag{(AS fn, fn)}
∞

n=1 ∈ L1,∞, and

T − D = AS − diag{(AS f j , f j )}
∞

j=1 ∈ Com L1,∞.

By Theorem 3.3

n
j=1

λ j (T )−

n
j=1

λ j (D) = O(1).

By Lemma 4.3

n
j=1

λ j (D)−

n
j=1

(T f j , f j ) = O(1)

and the results are shown. �

Proof of Theorem 5.2. Let T ∈ mod(V ) where 0 < V ∈ L1,∞ and (en)
∞

n=1 be an orthonormal
basis of H such that V en = sn(V )en . Since sn(V ) ≤̇ n−1 we have that

∞
j=n+1

∥T e j∥
2

1/2

≤ (1 + nsn(V ))∥T (1 + nV )−1
∥L2 ≤̇ n−1/2. (5.5)

Then we have
∞

j=n+1

∥T e j∥
2

≤̇ n−1.

Let D := diag{(T en, en)}
∞

n=1 be the specific diagonalisation with respect to the basis (en)
∞

n=1,
i.e. D =


∞

n=1(T en, en)ene∗
n . Note that if D′

:= diag{(T en, en)}
∞

n=1 is the diagonalisation
according to any arbitrary orthonormal basis (hn)

∞

n=1, i.e. D′
=


∞

n=1(T en, en)hnh∗
n , then there

exists a unitary U with hn = Uen , n ∈ N, and thus D′
= U DU∗. Since ∥De j∥ ≤ ∥T e j∥ then

we also have
∞

j=n+1

∥De j∥
2

≤̇ n−1.

Thus
∞

j=n+1

∥(T − D)e j∥
2

≤̇ 2n−1.

(i) By Lemma 5.10, T, D ∈ L1,∞ (set v j = T e j and v j = De j respectively). It follows
that D′

∈ L1,∞ for any diagonalisation D′ since D′
= U DU∗ for a unitary U and L1,∞ is a

two-sided ideal.
(ii) Notice by design that (T e j , e j ) = (De j , e j ), j ∈ N. Thus T − D satisfies Lemma 5.11

(where ((T − D)e j , e j ) = 0, j ∈ N) and T − D ∈ Com L1,∞. If D′
:= diag{(T en, en)}

∞

n=1 is
an arbitrary diagonalisation then D′

= U DU∗ for a unitary U and clearly D′
− D ∈ Com L1,∞.

Hence T − D′
∈ Com L1,∞.
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(iii) Construct a new basis ( fn)
∞

n=1 of H using Lemma 5.8 such that ( f j )
2k

−1
j=2k−1 is a basis of

[e j ]
2k

−1
j=2k−1 , k = Z+. Let Pk denote the projection onto [e j ]

2k
−1

j=2k−1 . If 2k−1
≤ n ≤ 2k

− 1 then

∞
j=n+1

∥T f j∥
2

≤

∞
j=2k−1

∥T e j∥
2

≤̇ n−1. (5.6)

Similarly

∥T Pk∥
2
L2

=

2k
−1

j=2k−1

∥T e j∥
2

≤̇ 2−k .

Thus

∥Pk T Pk∥L1 ≤ ∥T Pk∥L2∥Pk∥L2 ≤̇ 2−k/22k/2
≤̇ 1.

Hence, if 2k−1
≤ n ≤ 2k

− 1, then

|(T fn, fn)| ≤ 2−k
∥Pk T Pk∥L1 ≤̇ n−1, n ∈ N. (5.7)

Using (5.6) and (5.7), from Lemma 5.11 we obtain n
j=1

λ j (T )−

n
j=1

(T f j , f j )

 ≤̇ 1, n ∈ N. (5.8)

Now, if 2k−1
≤ n ≤ 2k

− 1, then n
j=1

(T e j , e j )−

n
j=1

(T f j , f j )

 =

 n
j=2k−1

(T e j , e j )−

n
j=2k−1

(T f j , f j )


≤ 2∥Pk T Pk∥L1 ≤̇ 1. (5.9)

Hence (iii) is shown from (5.8) and (5.9). �

5.3. Corollaries of interest

Before we specialise to operators modulated by the Laplacian we note some results of interest.

Corollary 5.12. Let {Ti }
N
i=1 be a finite collection of V -modulated operators where 0 < V ∈

L1,∞. Then

n
j=1

λ j


N

i=1

Ti


−

N
i=1

n
j=1

λ j (Ti ) = O(1). (5.10)

Proof. Let T0 =
N

i=1 Ti ∈ mod(V ). Choose an eigenvector sequence (en)
∞

n=1 of V with
V en = sn(V )en , n ∈ N. Then, by Theorem 5.2, for i = 0, . . . , N , there are constants Ci
such that n

j=1

λ j (Ti )−

n
j=1

(Ti e j , e j )

 < Ci , 0 ≤ i ≤ N .
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Hence n
j=1


λ j (T0)−

N
i=1

λ j (Ti )

 < C +

 n
j=1


(T0e j , e j )−

N
i=1
(Ti e j , e j )

 = C

where C = C0 + · · · + CN . �

In the proof of Theorem 5.2 we noted that a V -modulated operator, T ∈ mod(V ), satisfied
the condition

∞
k=n+1

∥T ek∥
2

= O(n−1)

for an eigenvector sequence (en)
∞

n=1 of 0 < V ∈ L1,∞. We show a converse statement.

Proposition 5.13. Suppose 0 < V ∈ L1,∞ is such that the singular values of V satisfy
sn(V ) = Θ(n−1) and (en)

∞

n=1 is an orthonormal basis of H such that V en = sn(V )en , n ∈ N.
Then T ∈ mod(V ) iff

∞
k=n+1

∥T ek∥
2

= O(n−1). (5.11)

Proof. The only if statement is contained in the proof of Theorem 5.2. We show the if statement.
Without loss ∥V ∥ ≤ 1.

Clearly T is bounded and Hilbert–Schmidt. Let c > 0 be such that sn(V ) ≥ cn−1. Then

s⌊ck⌋(V ) >
c

⌊ck⌋
>

c

ck
= k−1.

Hence N (k−1) ≥ ⌊ck⌋ ≥̇ k where

N (λ) = max{k ∈ N|sk(V ) > λ}

and we have

N (k−1)−1
≤̇ k−1.

Now note

∥Tχ[0,k−1](V )∥
2
2 =

∞
j=N (k−1)+1

∥T e j∥
2

≤̇ N (k−1)−1
≤̇ k−1.

Thus ∥Tχ[0,2−n ](V )∥2 ≤̇ 2−n/2, n ∈ N. By Lemma 5.5, T ∈ mod(V ). �

6. Applications to pseudo-differential operators

We define in this section operators that are modulated with respect to the operator (1−∆)−d/2

where ∆ =
d

i=1
∂2

∂x2
i

is the Laplacian on Rd , termed by us Laplacian modulated operators. We

show that the Laplacian modulated operators include the class of pseudo-differential operators
of order −d, and that the Laplacian modulated operators admit a residue map which extends the
noncommutative residue. Finally we show, with the aid of the results established, that singular
traces applied to Laplacian modulated operators calculate the residue.
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Definition 6.1. Suppose d ∈ N and that T : L2(Rd) → L2(Rd) is a bounded operator. We will
say that T is Laplacian modulated if T is (1 − ∆)−d/2-modulated.

From Proposition 5.4 a Laplacian modulated operator is Hilbert–Schmidt. We recall every
Hilbert–Schmidt operator on L2(Rd) has a unique symbol in the following sense.

Lemma 6.2. A bounded operator T : L2(Rd) → L2(Rd) is Hilbert–Schmidt iff there exists a
unique function pT ∈ L2(Rd

× Rd) such that

(T f )(x) =
1

(2π)d


Rd

ei⟨x,ξ⟩ pT (x, ξ) f̂ (ξ)dξ, f ∈ L2(Rd). (6.1)

Further, ∥T ∥L2 = (2π)d/2∥pT ∥L2 and if {φn}
∞

n=1 ⊂ C∞
c (Rd) is such that φn ↗ 1 pointwise,

then

pT (x, ξ) = lim
n

e−ξ (x)(Tφneξ )(x), x, ξ a.e.,

where eξ (x) = ei⟨x,ξ⟩.

Proof. It follows from Plancherel’s theorem that T is Hilbert–Schmidt iff it can be represented
in the form (6.1) for some unique pT ∈ L2(Rd

× Rd) and that ∥T ∥L2 = (2π)d/2∥pT ∥L2 . We
have

(Tφneξ )(x) =
1

(2π)d


Rd

ei⟨x,η⟩ pT (x, η)φ̂n(η − ξ)dη, x a.e.

If φn ↗ 1 pointwise then φ̂n → (2π)dδ in the sense of distributions, where δ is the Dirac
distribution. If we set gx (η) := ei⟨x,η⟩ pT (x, η), then gx ∈ L2(Rd) is a tempered distribution.
Hence gx ⋆ δ = gx and

lim
n

e−ξ (x)(Tφneξ )(x) = e−ξ (x)(gx ⋆ δ)(ξ) = pT (x, ξ) x, ξ a.e. �

The function pT in (6.1) is called the symbol of the Hilbert–Schmidt operator T . Being
Laplacian modulated places the following condition on the symbol.

Proposition 6.3. Suppose d ∈ N and that T : L2(Rd) → L2(Rd) is a bounded operator. Then
T is Laplacian modulated iff T can be represented in the form

(T f )(x) =
1

(2π)d


Rd

ei⟨x,ξ⟩ pT (x, ξ) f̂ (ξ)dξ (6.2)

where pT ∈ L2(Rd
× Rd) is such that

Rd


|ξ |≥t

|pT (x, ξ)|
2dξ dx

1/2

= O(t−d/2), t ≥ 1. (6.3)

Proof. If T is Laplacian modulated or if it satisfies (6.2), then T is Hilbert–Schmidt. So we are
reduced to showing that a Hilbert–Schmidt operator T is Laplacian modulated iff its symbol pT
satisfies (6.3).

If Qt , t > 0, is the Fourier projection

(Qt f )(ξ) =


|η|≥t

f̂ (η)ei⟨ξ,η⟩ dη
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then the Hilbert–Schmidt operator T Qt has the form

(T Qt f )(ξ) =


|ξ |≥t

ei⟨x,ξ⟩ pT (x, ξ) f̂ (ξ)dξ.

By Lemma 6.2

∥T Qt∥L2
=


Rd


|ξ |≥t

|pT (x, ξ)|
2 dxdξ

1/2

.

Define also

(Pt f )(ξ) =


(1+|η|2)−d/2≤t

f̂ (η)ei⟨ξ,η⟩ dη,

or, via Fourier transform,

Pt = χ[0,t]


(1 − ∆)−d/2


.

Note that, for t ≥ 1,

|η| ≥ t ⇒ (1 + |η|2)−d/2
≤ t−d

and that

|η| ≥ 2−1/2t ⇐ (1 + |η|2)−d/2
≤ t−d .

Hence

Qt ≤ Pt−d ≤ Q2−1/2t .

Note also that Pt ≤ Pt1 and Qt ≤ Qt1 if t1 ≤ t . Fix t ≥ 1 and n ∈ Z such that 2n−1
≤ t < 2n .

We now prove the if statement. Suppose T is Laplacian modulated. Then, by Lemma 5.5,

∥T Qt∥L2
≤
T Pt−d


L2

≤
T P2−dn


L2

≤̇ 2−dn/2
≤̇ t−d/2.

Hence (6.3) is satisfied.
We prove the only if statement. Let T satisfy (6.3). Then

∥T P2−n ∥L2
≤
T Q2−1/22n/d


L2

≤̇ 2d/42−n/2
≤̇ 2−n/2.

By Lemma 5.5, T is Laplacian modulated. �

For p ∈ L2(Rd
× Rd) define

∥p∥mod := ∥p∥L2 + sup
t≥1

td/2


Rd


|ξ |≥t

|p(x, ξ)|2dξdx

1/2

. (6.4)

Define

Smod
:= {p ∈ L2(Rd

× Rd) | ∥p∥mod < ∞}. (6.5)

Proposition 6.3 says that each Laplacian modulated operator T is associated uniquely to pT ∈

Smod and vice-versa. We can call Smod the symbols of Laplacian modulated operators.
If φ ∈ C∞

c (Rd) define the multiplication operator (Mφ f )(x) = φ(x) f (x), f ∈ L2(Rd).
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Definition 6.4. We will say a bounded operator T : L2(Rd) → L2(Rd) is compactly based if
MφT = T for some φ ∈ C∞

c (Rd), and compactly supported if MφT Mφ = T .

We omit proving the easily verified statements that a Hilbert–Schmidt operator T is compactly
based if and only if pT (x, ξ) is (almost everywhere) compactly supported in the x-variable, and
is compactly supported if and only if the kernel of T is compactly supported.

Example 6.5 (Pseudo-Differential Operators). We recall that ⟨ξ⟩ := (1 + |ξ |2)1/2, ξ ∈ Rd ,
and a multi-index of order |β| is β = (β1, . . . , βd) ∈ (N ∪ {0})d such that |β| :=

d
i=1 βi . If

p ∈ C∞(Rd
× Rd) such that, for each multi-index α, β,

|∂αx ∂
β
ξ p(x, ξ)| ≤̇α,β ⟨ξ⟩m−|β| (6.6)

we say that p belongs to the symbol class Sm
:= Sm(Rd

× Rd), m ∈ R, (in general
terminology we have just defined the uniform symbols of Hörmander type (1,0); see e.g. [24]
and [37, Chapter 2]). If S(Rd) denotes the Schwartz functions (the smooth functions of rapid
decrease), an operator P : S(Rd) → S(Rd) associated to a symbol p ∈ Sm ,

(Pu)(x) =
1

(2π)d


Rd

ei⟨x,ξ⟩ p(x, ξ)û(ξ)dξ, u ∈ S(Rd) (6.7)

is called a pseudo-differential operator of order m.
If H s(Rd), s ∈ R, are the Sobolev–Hilbert spaces consisting of those f ∈ L2(Rd) with

∥ f ∥s := ∥(1 − ∆)s/2 f ∥L2 < ∞

and P is a pseudo-differential operator of order m, then P has an extension to a continuous linear
operator

P : H s(Rd) → H s−m(Rd), s ∈ R; (6.8)

see, e.g. [37, Theorem 2.6.11]. If P is of order 0 this implies that P has a bounded extension
P : L2(Rd) → L2(Rd).

The compactly based Laplacian modulated operators extend the compactly based pseudo-
differential operators of order −d.

Proposition 6.6. If P is a compactly based (respectively, compactly supported) pseudo-
differential operator of order −d then the bounded extension of P is a compactly based
(respectively, compactly supported) Laplacian modulated operator. Also, the symbol of P is
equal to (provides the L2-equivalence class) the symbol of the bounded extension of P as a
Laplacian modulated operator.

Proof. Let P have symbol p ∈ S−d that is compactly based in the first variable. Then
Rd


|ξ |≥t

|p(x, ξ)|2dξdx ≤̇


|ξ |≥t

⟨ξ⟩−2ddξ ≤̇ ⟨t⟩−d . (6.9)

Hence p ∈ L2(Rd
× Rd) and, if P0 is the extension of P then P0 is Hilbert–Schmidt. Let p0 be

the symbol of P0 as a Hilbert–Schmidt operator. Let φ ∈ C∞
c (Rd), and eξ (x) := ei⟨x,ξ⟩, ξ ∈ Rd .

Since

(P − P0)φeξ = 0



N. Kalton et al. / Advances in Mathematics 235 (2013) 1–55 25

we have, by Lemma 6.2,

p(x, ξ)− p0(x, ξ) = lim
n

e−ξ (x)(P − P0)φneξ (x) = 0, x, ξ a.e.

where {φn}
∞

n=1 ⊂ C∞
c (Rd) is such that φn ↗ 1 pointwise. Then (6.9) implies that the symbol of

P0 satisfies (6.3), hence P0 is Laplacian modulated. �

The Laplacian modulated operators form a bimodule for sufficiently regular operators.

Lemma 6.7. Let T be Laplacian modulated and R, S : L2(Rd) → L2(Rd) be bounded such that
S : H s(Rd) → H s(Rd) is bounded for some s < −d/2. Then RT S is Laplacian modulated.

Proof. The Laplacian modulated operators form a left ideal so RT is Laplacian modulated.
By Proposition 5.6, the result is shown if ∥(1 − ∆)−da/2Su∥L2 ≤̇ ∥(1 − ∆)−da/2u∥L2 for
all u ∈ C∞

c (Rd) where a > 1/2. However, this is the same statement as ∥Su∥s ≤̇ ∥u∥s for
s < −d/2. �

Remark 6.8. From (6.8), R, S : H s(Rd) → H s(Rd) for any s ∈ R for all zero order pseudo-
differential operators R and S. Hence the Laplacian modulated operators form a bimodule for
the pseudo-differential operators of order 0.

The next example confirms that the Laplacian modulated operators are a wider class than the
pseudo-differential operators.

Example 6.9 (Square-Integrable Functions). For f, g ∈ L2(Rd) set

M f : L∞(Rd) → L2(Rd), (M f h)(x) := f (x)h(x), x a.e.

and

Tg : L2(Rd) → L∞(Rd),

(Tgh)(x) :=
1

(2π)d


Rd

ei⟨x,ξ⟩g(ξ)ĥ(ξ)dξ = (ĝ ⋆ h)(x), x a.e.

Define a subspace Lmod(Rd) of L2(Rd) by

Lmod(Rd) :=


g ∈ L2(Rd)


|ξ |≥t

|g(ξ)|2dξ

1/2

= O(t−d/2), t ≥ 1


.

Remark 6.10. It is clear that the function ⟨ξ⟩−d
= (1+|ξ |2)−d/2, ξ ∈ Rd , belongs to Lmod(Rd).

Proposition 6.11. If f ∈ L2(Rd) and g ∈ Lmod(Rd) then M f Tg is Laplacian modulated with
symbol f ⊗ g ∈ Smod. If f has compact support then M f Tg is compactly based.

Proof. First note that ∥Tgh∥L∞
= ∥ĝ ⋆ h∥L∞

≤ ∥g∥L2∥h∥L2 by Young’s inequality. Hence
Tg : L2 → L∞ is continuous and linear. Also ∥M f h∥L2 ≤ ∥ f ∥2∥h∥L∞

, so M f : L∞ → L2
is continuous and linear. The composition M f Tg : L2 → L2 is continuous and linear (and
everywhere defined). We have that

(M f Tgh)(x) =
1

(2π)d


Rd

ei⟨x,ξ⟩ f (x)g(ξ)ĥ(ξ)dξ, x a.e.
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is an integral operator with symbol f ⊗ g ∈ Smod. Hence M f Tg is Laplacian modulated. If f
has compact support, φ f = f for some φ ∈ C∞

c (Rd), and hence MφM f Tg = M f Tg . �

6.1. Residues of Laplacian modulated operators

We define in this section the residue of a compactly based Laplacian modulated operator.
We show that it is an extension of the noncommutative residue of classical pseudo-differential
operators of order −d defined by M. Wodzicki, [44].

We make some observations about the symbol of a compactly based operator.

Lemma 6.12. Let T be a compactly based Laplacian modulated operator with symbol pT . Then:
Rd


r≤|ξ |≤2r

|pT (x, ξ)|dξ dx = O(1), r ≥ 1; (6.10)
Rd


|ξ |≤r

|pT (x, ξ)|dξ dx = O(log(1 + r)), r ≥ 1; (6.11)
Rd


Rd

|pT (x, ξ)|⟨ξ⟩
−θdξ dx < ∞, θ > 0; (6.12)

and, if A is a positive d × d-matrix with spectrum contained in [a, b], b > a > 0 are fixed
values, then

Rd


|ξ |≤r

pT (x, ξ)dξ dx −


Rd


|Aξ |≤r

pT (x, ξ)dξ dx = O(1), r ≥ 1. (6.13)

Proof. We prove (6.10). Using (6.3), if r ≥ 1,
Rd


r≤|ξ |≤2r

|pT (x, ξ)|dξdx

≤̇


r≤|ξ |≤2r

dξ

1/2 
Rd


|ξ |≥r

|pT (x, ξ)|
2dξdx

1/2

≤̇ rd/2r−d/2.

We prove (6.11). Fix n ∈ N such that 2n−1
≤ r < 2n , then

{ξ ∈ Rd
|0 ≤ |ξ | ≤ r} ⊂ [0, 1] ∪ ∪

n
k=1{ξ ∈ Rd

|2k−1 < |ξ | ≤ 2k
}.

By (6.10) the integral of |pT (x, ξ)| over each individual set in the union on the right hand side
of the previous display is controlled by some constant C . Then the integral over the initial set on
the left hand side of the display is controlled by

C(n + 2) ≤ C(3 + log2 r) ≤̇ log(1 + r).

We prove (6.12). Consider
Rd


Rd

|pT (x, ξ)|(1 + |ξ |2)−θ/2dξdx

≤̇

∞
n=1

2−nθ


Rd


2n−1≤|ξ |≤2n

|pT (x, ξ)|dξdx ≤̇

∞
n=1

2−nθ < ∞

by (6.10).
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We prove (6.13). It follows from (6.10) that
Rd


|Aξ |≤r

pT (x, ξ)dξdx −


Rd


|ξ |≤b−1r

pT (x, ξ)dξdx


≤


Rd


b−1r≤|ξ |≤a−1r

|pT (x, ξ)|dξdx .

From (6.10)
Rd


b−1r≤|ξ |≤a−1r

|pT (x, ξ)|dξdx = O(1).

Also 
Rd


|ξ |≤r

pT (x, ξ)dξdx −


Rd


|ξ |≤b−1r

pT (x, ξ)dξdx


≤


Rd


cbr≤|ξ |≤c−1

b r
|pT (x, ξ)|dξdx

where cb = b if b ≤ 1 and cb = b−1 if b > 1. From (6.10) again
Rd


cbr≤|ξ |≤c−1

b r
|pT (x, ξ)|dξdx = O(1).

Formula (6.13) follows. �

We notice from (6.11) that, n ∈ N,

d

log(1 + n)


Rd


|ξ |≤n1/d

pT (x, ξ)dξ dx = O(1)

(as log(1 + n1/d) ∼ d−1 log(1 + n)). If ℓ∞ are the bounded sequences and c0 denotes the closed
subspace of sequences convergent to zero, let ℓ∞/c0 denote the quotient space.

Definition 6.13. Let T be a compactly based Laplacian modulated operator with symbol pT .
The linear map

T → Res(T ) :=


d

log(1 + n)


Rd


|ξ |≤n1/d

pT (x, ξ)dξ dx


we call the residue of T , where [·] denotes the equivalence class in ℓ∞/c0.

Note that any sequence Resn(T ), n ∈ N, such that
Rd


|ξ |≤n1/d

pT (x, ξ)dξ dx =
1
d

Resn(T ) log n + o(log n) (6.14)

defines the residue Res(T ) = [Resn(T )] ∈ ℓ∞/c0.
We show that Res, applied to compactly based pseudo-differential operators, depends only on

the principal symbol and extends the noncommutative residue.

Example 6.14 (Noncommutative Residue). Let Sm
base be the symbols of the compactly based

pseudo-differential operators of order m. An equivalence relation is defined on symbols
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p, q ∈ Sm
base by p ∼ q if p − q ∈ Sm−1

base . The principal symbol of a compactly based
pseudo-differential operator P of order m with symbol p ∈ Sm

base is the equivalence class
[p] ∈ Sm

base/Sm−1
base .

Lemma 6.15. Let P be a compactly based pseudo-differential operator of order −d. Then
Res(P) depends only on the principal symbol of P.

Proof. By Proposition 6.6 (the extension) P is Laplacian modulated and Res(P) is well defined.
If p(x, ξ) ∈ Sm

base, m < −d, then q(x, ξ) := p(x, ξ)⟨ξ⟩θ ∈ Smod, θ = −d − m > 0. Then
Rd


|ξ |≤n1/d

p(x, ξ)dξ dx =


Rd


|ξ |≤n1/d

q(x, ξ)⟨ξ⟩−θdξ dx = O(1)

by (6.12). It follows from (6.14) that the residue depends only on the equivalence class of a
symbol p ∈ S−d

base. �

The asymptotic expansion of p ∈ Sm
base means (for our purposes) a sequence {pm− j }

∞

j=0 such

that pm− j ∈ Sm− j
base and p −

n
j=0 pm− j ∈ Sm−n−1

base , n ≥ 0. A pseudo-differential P of order
m is classical if its symbol p has an asymptotic expansion {pm− j }

∞

j=0 where each pm− j is a
homogeneous function of order m − j in ξ except in a neighbourhood of zero. The principal
symbol of P is the leading term pm ∈ Sm in the asymptotic expansion. When d > 1 let ds
denote the volume form of the d − 1-sphere

Sd−1
= {ξ ∈ Rd

||ξ | = 1},

according to radial and spherical co-ordinates of Rd , i.e. dξ = rd−1drds, ξ ∈ Rd
\ {0}, r > 0,

s ∈ Sd−1. When d = 1 let Sd−1
= {−1, 1} with counting measure ds.

We understand the scalars to be embedded in ℓ∞/c0 as the classes [an] where an ∈ c, i.e. if
λ ∈ C then [an] = limn→∞ an = λ.

Proposition 6.16 (Extension of the Noncommutative Residue). Let P be a compactly based
classical pseudo-differential operator of order −d with principal symbol p−d . Then Res(P)
is the scalar

Res(P) = ResW (P) :=


Rd


Sd−1

p−d(x, s)ds dx

where ResW denotes the noncommutative residue.

Proof. By the previous lemma we need only consider the principal symbol p−d of P , which we
assume without loss to be homogeneous for |ξ | ≥ 1. Then

Rd


|ξ |≤n1/d

p−d(x, ξ)dξ dx =


Rd


1≤|ξ |≤n1/d

|ξ |−d p−d(x, ξ/|ξ |)dξ dx + O(1)

=


Rd


Sd

p−d(x, s)ds dx
 n1/d

1
r−drd−1dr + O(1)

=


Rd


Sd

p−d(x, s)ds dx log(n1/d)+ O(1)

=
1
d


Rd


Sd

p−d(x, s)ds dx log n + O(1).

The result follows from (6.14). �
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Thus, the residue (as in Definition 6.13) of a classical compactly based pseudo-differential
operator of order −d is a scalar and coincides with the noncommutative residue. The residue of
an arbitrary pseudo-differential operator is not always a scalar.

Example 6.17 (Non-Measurable Pseudo-Differential Operators). We construct a compactly
supported pseudo-differential operator Q of order −d whose residue is not a scalar. The
following lemma will simplify the construction. The lemma is a standard result on pseudo-
differential operators, but we will use it several times.

Lemma 6.18. Suppose P is a pseudo-differential operator with symbol p ∈ Sm and ψ, φ ∈

C∞
c (Rd). The compactly supported operator Q = Mψ P Mφ has symbol q ∈ Sm

base such that
q ∼ ψpφ.

Proof. The operator Q := Mψ P Mφ is a pseudo-differential operator of order m, [41, Corollary
3.1]. Evidently it is compactly supported. Let q be the symbol of Q. From [41, Theorem 3.1]

q(x, ξ) ∼


α

(−i)α

α!
(∂αξ ∂

α
yψ(x)p(x, ξ)φ(y))|y=x

where the asymptotic sum runs over all multi-indices α. Since
|α|≥1

(−i)α

α!
(∂αξ ∂

α
yψ(x)p(x, ξ)φ(y))|y=x ∈ Sm−1

base

(see [41, p. 3]) we obtain q(x, ξ)− ψ(x)p(x, ξ)φ(x) ∈ Sm−1
base . �

Proposition 6.19. There is a compactly supported pseudo-differential operator Q of order −d
such that

Res(Q) = [sin log log n1/d
].

Remark 6.20. Obviously Res(Q) is not a scalar.

Proof. Set

p′(ξ) =
sin log log |ξ | + cos log log |ξ |

|ξ |d
, ξ ∈ Rd , |ξ | ≥ e.

One confirms by calculation that p′ satisfies

|∂αξ p′(ξ)| ≤ 2.3|α|(d + |α|)!|ξ |−d−|α|, |ξ | > e.

Let g ∈ C∞
c (Rd) be g(ξ) = g1(|ξ |) where g1 is positive and increasing such that

g1(ξ) =


0 ξ ≤ 3
1 ξ ≥ 4

, ξ ∈ Rd .

Then p := gp′
∈ S−d , and denote by P the pseudo-differential operator with symbol p.

Let φ ∈ C∞
c (Rd) be such that

Rd
|φ(x)|2dx = (Vol Sd−1)−1.
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If Q is the operator MφP Mφ of Lemma 6.18 with symbol q ∼ φ pφ then, provided n ≥ 4d ,
Rd


|ξ |≤n1/d

q(x, ξ)dξ dx =


Rd


|ξ |≤n1/d

|φ(x)|2 p(x, ξ)dξ dx + O(1)

=


Rd

|φ(x)|2dx


4≤|ξ |≤n1/d
p′(ξ)dξ + O(1)

=

 n1/d

4
(sin log log r + cos log log r)r−drd−1dr + O(1)

=
1
d
(sin log log n1/d) log n + O(1).

The result follows from (6.14). �

The operator Q will be used in Corollary 6.34 to provide an example of a non-measurable
pseudo-differential operator.

Example 6.21 (Integration of Square-Integrable Functions). The residue can be used to calculate
the integral of a compactly supported square integrable function.

Proposition 6.22. If f ∈ L2(Rd) has compact support and ∆ is the Laplacian on Rd then
Res(M f (1 − ∆)−d/2) is the scalar

Res(M f (1 − ∆)−d/2) = Vol Sd−1


Rd
f (x)dx .

Proof. Since (1 − ∆)−d/2
= Tg where g(ξ) = ⟨ξ⟩−d

∈ Lmod(Rd), M f (1 − ∆)−d/2 is a
compactly based Laplacian modulated operator by Proposition 6.11. Then

Rd


|ξ |≤n1/d

f (x)⟨ξ⟩−ddξ dx =


Rd

f (x)dx


1≤|ξ |≤n1/d
|ξ |−ddξ + O(1)

=
1
d

Vol Sd−1


Rd
f (x)dx log n + O(1).

The result follows from (6.14). �

6.2. Eigenvalues of Laplacian modulated operators

We now come to our main technical theorem. This result is at the heart of Connes’ trace
theorem.

Theorem 6.23. Suppose T : L2(Rd) → L2(Rd) is compactly supported and Laplacian
modulated with symbol pT . Then T ∈ L1,∞(L2(Rd)) and

n
j=1

λ j (T )−
1

(2π)d


Rd


|ξ |≤n1/d

pT (x, ξ)dξdx = O(1) (6.15)

where {λ j (T )}∞j=1 is any eigenvalue sequence of T .

Remark 6.24. If T is only compactly based, then (6.15) still holds but it may not be true that
T ∈ L1,∞. See the proof below.
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The following lemmas are required for the proof. Let Qz denote the unit cube on Rd centred
on z ∈ Rd .

Lemma 6.25. There exists 0 < φ ∈ C∞
c (Rd) such that:

(i) φ(x) = 1, x ∈ πQ0, φ(x) = 0, x ∉ 2πQ0;
(ii) {um}m∈Zd form an orthonormal set in L2(Rd) where

um(x) =
1

(2π)d/2
φ(x)ei⟨x,m⟩, m ∈ Zd

;

(iii) for each N ∈ N |φ̂(ξ)| ≤̇ N ⟨ξ⟩−N .

Proof. (i) Let h be a non-negative C∞-function on R such that
∞

−∞

h(t) dt = 1,

and for some δ < π/2 we have supp h = (−δ, δ). We then define g = h ⋆ χ[−π,π]. Then

ĝ(ξ) = 2π ĥ(ξ)sinc(πξ).

Hence

ĝ(0) = 2π,

ĝ(n) = 0, n ∈ Z \ {0},

supp(g) = (−π − δ, π + δ)

and

g(t) = 1, −π + δ < t < π − δ.

We also have that
√

g ∈ C∞
c (R). Let us define

φ(x) :=

d
j=1


g(x j ), x = (x1, . . . , xd) ∈ Rd .

Then


|φ|2(ξ) :=

d
j=1

ĝ(ξ j ), ξ = (ξ1, . . . ξd) ∈ Rd

and 
|φ|2(0) = (2π)d ,
|φ|2(m) = 0, m ∈ Zd

\ {0},

supp(φ) ⊂ [−2π, 2π ]
d ,

φ(x) = 1, x ∈ [−π, π]
d .

(ii) Since
Rd

um1(x)um2(x)dx =


|φ|2(m1 − m2)

(2π)d
m1,m2 ∈ Zd

the family (um)m∈Zd is orthonormal in L2(Rd).
(iii) Since φ is smooth and compactly supported the estimate now follows from standard

results; see e.g. [20, Problem 8.16, p. 113]. �
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Lemma 6.26. For n ∈ N let φn = φ(x/n). Then:

(i) φn(x) = 1, x ∈ πnQ0, φn(x) = 0, x ∉ 2πnQ0;
(ii) {um,n}m∈Zd form an orthonormal set in L2(Rd) where

um,n(x) =
1

(2πn)d/2
φn(x)e

i⟨x,m/n⟩, m ∈ Zd .

Proof. (i) Note

φ(x/n) :=

d
j=1


g(x j/n), x = (x1, . . . , xd) ∈ Rd .

Then

|φn|2(ξ) :=

d
j=1

nd ĝ(nξ j ) = nd
|φ|2(nξ)

and

|φn|2(0) = (2πn)d ,

|φn|2(m/n) = 0, m ∈ Zd
\ {0}.

(ii) Since
Rd

um1,num2,n(x)dx =

|φn|2((m1 − m2)/n)

(2πn)d
m1,m2 ∈ Zd

the family (um,n)m∈Zd is orthonormal in L2(Rd). �

For n ∈ N, let Hn denote the Hilbert space generated by (um,n)m∈Rd . Let Pn be the projection
such that Hn = Pn L2(Rd). Clearly L2(πnQ0) ⊂ Hn . Let Vn : Hn → Hn be the positive
compact operator defined by

Vnum,n = (1 + |m|
2)−d/2um,n, m ∈ Zd .

Then

Tn := PnT Pn : Hn → Hn

for any bounded operator T . We now show that if T is Laplacian modulated then Tn is Vn-
modulated. Let σl denote the bi-dilation isometry of L2(Rd ,Rd) to itself:

(σl p)(x, ξ) = p(lx, ξ/ l), l > 0.

Lemma 6.27. Let T be Laplacian modulated, with symbol pT ∈ Smod. Then
|m|≥n1/d

∥T um,l∥
2
L2

≤̇d ∥σl pT ∥
2
mod n−1, n ≥ 1.

Proof. Fix l ∈ N. Denote pT just by p and um,l by um . Note that

um(ξ) = (2πl)−d/2φ̂l(ξ − m/ l) = (2πl)−d/2ld φ̂(lξ − m).
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Then

T um(x) = (2πl)−d/2ld


Rd
ei⟨x,ξ⟩ p(x, ξ)φ̂(lξ − m)dξ

= (2πl)−d/2


Rd
ei⟨x,ξ/ l⟩ p(x, ξ/ l)φ̂(ξ − m)dξ

= (2πl)−d/2


Rd
ei⟨x/ l,ξ⟩ p(x, ξ/ l)φ̂(ξ − m)dξ

and

|T um(x)|
2

≤ (2π)−d l−d


Rd |p(x, ξ/ l)||φ̂(ξ − m)|dξ
2
.

By Lemma 6.26 |φ̂(ξ)| ≤̇ N ⟨ξ⟩−N for any integer N . Hence

∥T um∥
2
L2

≤̇ N (2π)−d l−d


Rd


Rd

|p(x, ξ/ l)|⟨ξ − m⟩
−N dξ

2

dx

≤̇ N (2π)−d


Rd


Rd

|p(lx, ξ/ l)|⟨ξ − m⟩
−N dξ

2

dx . (6.16)

Temporarily denote p(lx, ξ/ l) by pl(x, ξ).
Now let s ∈ Qm . Then

|m − s| ≤

 d
i=1

(1/2)2 = d1/2/2.

Hence

⟨m − s⟩ := 1 + |m − s| ≤ 1 + d1/2/2 ≤ 2d1/2.

Using Peetre’s inequality,

⟨x⟩
N
⟨y⟩

−N
≤̇N ⟨x − y⟩

N , x, y ∈ Rd ,

we have

⟨ξ − s⟩N
⟨ξ − m⟩

−N
≤̇N ⟨ξ − s − (ξ − m)⟩N

= ⟨m − s⟩N
≤̇N ,d 1,

ξ ∈ Rd , s ∈ Qm,m ∈ Zd .

Multiplying throughout by ⟨ξ − s⟩−N we obtain

⟨ξ − m⟩
−N

≤̇d,N ⟨ξ − s⟩−N , s ∈ Qm . (6.17)

Substituting (6.17) into (6.16) provides

∥T um∥
2
L2

≤̇d,N


Rd


Rd

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dx, s ∈ Qm,

and hence

∥T um∥
2
L2

=


Qm

∥T um∥
2
L2

ds ≤̇d,N


Qm


Rd


Rd

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dxds. (6.18)
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Now let n > dd/2. Then n1/d/2 > d1/2/2 and n1/d
− d1/2/2 < n1/d/2. Hence

|m| ≥ n1/d
H⇒ |s| ≥ n1/d/2, s ∈ Qm .

Using (6.18) we have
|m|≥n1/d

∥T um∥
2
L2

≤̇d,N


|m|≥n1/d


Qm


Rd


Rd

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dxds

≤̇d,N


|s|≥n1/d/2


Rd


Rd

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dxds. (6.19)

We split the integrand in (6.19) into two parts according to the condition |ξ − s| ≥ |s|/2,
Rd

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

≤̇


|ξ−s|≥|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

+


|ξ−s|<|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

(6.20)

where the inequality is from (a + b)2 ≤ 2(a2
+ b2), a, b > 0.

We consider the first term from (6.20). As |ξ − s| ≥ |s|/2, then ⟨ξ − s⟩−N
≤ 2N

⟨s⟩−N . Then
|ξ−s|≥|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

≤


|ξ−s|≥|s|/2

|pl(x, ξ)|
2dξ


|ξ−s|≥|s|/2

⟨ξ − s⟩−2N dξ

≤̇ ⟨s⟩−N


Rd
|pl(x, ξ)|

2dξ


|ξ−s|≥|s|/2
⟨ξ − s⟩−N dξ

≤ ⟨s⟩−N


Rd
|pl(x, ξ)|

2dξ


Rd
⟨ξ⟩−N dξ

where we used the Holder inequality (assuming N > d). We now set N = 2d and then
|s|≥n1/d/2


Rd


|ξ−s|≥|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dxds

≤̇ ∥pl∥
2
L2


|s|≥n1/d/2

⟨s⟩−2dds

≤̇ ∥p∥
2
L2

n−1.

Now we consider the second term from (6.20). We have
|ξ−s|<|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

≤


|ξ |<|s|/2

|pl(x, ξ + s)|⟨ξ⟩−N dξ

2

≤̇


|ξ |<|s|/2

|pl(x, ξ + s)|2⟨ξ⟩−N dξ


Rd
⟨ξ⟩−N dξ

≤̇


|ξ |<|s|/2

|pl(x, ξ + s)|2⟨ξ⟩−N dξ
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where we used the Holder inequality and assumed N > d. Note that
Rd


Rd


Rd

|pl(x, ξ + s)|2⟨ξ⟩−N dξdxds

=


Rd


Rd


Rd

|pl(x, s)|2⟨ξ⟩−N dξdxds

≤̇ ∥pl∥
2
L2
.

Hence we can interchange the order of integration. As |s|/2 ≥ n1/d/4 and |ξ | < |s|/2, then
|ξ + s| > |s|/2 ≥ n1/d/4. By Fubini’s Theorem

|s|≥n1/d/2


|ξ |<|s|/2

|pl(x, ξ + s)|2⟨ξ⟩−N dξds

≤


Rd


|ξ+s|≥n1/d/4

|pl(x, ξ + s)|2ds


⟨ξ⟩−N dξ

=


Rd


|s|≥n1/d/4

|pl(x, s)|2ds


⟨ξ⟩−N dξ

=


|s|≥n1/d/4

|pl(x, s)|2ds


Rd
⟨ξ⟩−N dξ.

By choosing N > d ,
|s|≥n1/d/2


Rd


|ξ−s|<|s|/2

|pl(x, ξ)|⟨ξ − s⟩−N dξ

2

dxds

≤̇


Rd


|s|≥n1/d/4

|pl(x, s)|2dsdx

≤̇


sup

n≥min{4,dd/2}

(n1/d/4)−d


Rd


|s|≥n1/d/4

|pl(x, s)|2dsdx


n−1

≤̇


sup
t≥1

td


Rd


|s|≥t

|pl(x, s)|2dsdx


n−1.

The inequality of the proposition is shown for n ≥ min{4, dd/2
}. It is trivial to adjust the

statement by a constant so that it holds also for 1 ≤ n < min{4, dd/2
}. �

Fix l ∈ N. Let {um}m∈Zd be the basis of Hl . Let mn , n ∈ N, be the Cantor enumeration of Zd .
Then Vlumn = (1 + |mn|

2)−d/2umn is ordered so that (1 + |mn|
2)−d/2 are the singular values

of Vl .

Lemma 6.28. Let T be Laplacian modulated with symbol pT and l ∈ N. Then Tl : Hl → Hl is
Vl -modulated.

Proof. Let Λk be the hypercube centred on 0 of dimensions kd . Then there exists an integer k
such that mn ∉ Λk but mn ∈ Λk+1. By the Cantor enumeration (k − 1)d < n ≤ kd . So n1/d

≤ k.
Hence, when j > n, m j is not in the ball of radius (k − 1)/2 centred on 0, which is smaller than
the ball n1/d/4 (ruling out the trivial case n = 1). In summary, when j > n, then

m j ∉ {m ∈ Zd , |m| ≤ n1/d/4}.
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Hence
j>n

∥Tlum j ∥
2
L2

≤̇


|m|>n1/d/4

∥T um∥
2
L2

≤̇ n−1

by Lemma 6.27 and Tl is Vl -modulated by Proposition 5.13 since Vl ∈ L1,∞ and sn(Vl) =

(1 + |mn|
2)−d/2

= Θ(n−1). �

Set vn = umn , n ∈ N, where mn is the Cantor enumeration.

Remark 6.29. As Tl is Vl -modulated where 0 < Vl ∈ L1,∞ we can use Theorem 5.2 to conclude
that, for fixed l ∈ N:

(i) Tl ∈ L1,∞; and
(ii)

n
j=1

λ j (Tl)−

n
j=1

(Tlv j , v j ) = O(1)

for any eigenvalue sequence {λ j (Tl)}
∞

j=1 of Tl .

We need a final lemma.

Lemma 6.30. If T is compactly based in lπQ0 with symbol pT , then
n

j=1

(T v j , v j )−
1

(2π)d


|ξ |≤n1/d


Rd

pT (x, ξ)dξ dx = O(1).

Proof. It is clear that there are constants 0 < 2a < 1 < b/2 < ∞ depending on d so that
(v j )

n
j=1 = (um)m∈An where {|m| ≤ 2an1/d

} ⊂ An ⊂ {|m| ≤ bn1/d/2}. Let

Gn(x, ξ) :=
1

(2π)d


m∈An

ei⟨x,ξ−m⟩φ̂(ξ − m).

Now

(T um, um) =
1

(2π)2d


Rd
φ(x)e−i⟨x,m⟩


Rd

ei⟨x,ξ⟩ pT (lx, ξ/ l)φ̂(ξ − m)dξ


dx .

We use the notation pl(x, ξ) = pT (lx, ξ/ l) again and note that pl has support in a compact set
K within πQ0. Here the double integral converges absolutely and we can apply Fubini’s theorem
to obtain that, since φ(x) = 1 for x ∈ K ,

n
j=1

(T v j , v j ) =


m∈An

(T um, um) =
1

(2π)d


Rd


K

Gn(x, ξ)pl(x, ξ)dx dξ. (6.21)

To obtain a bound
Rd


K

Gn(x, ξ)pl(x, ξ)dx dξ −


K


|ξ |≤n1/d

pl(x, ξ)dξ dx = O(1)

we will compare Gn(x, ξ) with the function Hn(ξ) := χ{|ξ |≤n1/d }. For fixed ξ , consider the
smooth periodic function

ψξ (x) =


m∈Zd

e−i⟨x,ξ⟩φ(x + 2πm). (6.22)
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For every x , the Fourier series,

ψξ (x) =


m∈Zd

ei⟨x,m⟩ψ̂ξ (m)

converges, where

ψ̂ξ (m) =
1

(2π)d


2πQ

e−i⟨x,m⟩ψξ (x)dx

=
1

(2π)d


Rd

e−i⟨x,m+ξ⟩φ(x)dx =
1

(2π)d
φ̂(m + ξ).

Hence

ψξ (x) =
1

(2π)d


m∈Zd

e−i⟨x,m⟩φ̂(ξ − m). (6.23)

Note from (6.22) that ei⟨x,ξ⟩ψξ (x) = 1 for all x ∈ πQ0. Using (6.23) gives the formula

1 =
1

(2π)d


m∈Zd

ei⟨x,ξ−m⟩φ̂(ξ − m) (6.24)

for x ∈ πQ0. Now suppose |ξ | < an1/d . Then, using (6.24),

|Hn(ξ)− Gn(x, ξ)| = |1 − Gn(x, ξ)| ≤
1

(2π)d


m∉An

|φ̂(ξ − m)|.

If m ∉ An then |m| > 2an1/d . Hence |ξ − m| > |ξ | and |ξ − m| ≥ |m|/2. This implies

|φ̂(ξ − m)| ≤̇N ⟨ξ − m⟩
−N

≤̇N ⟨m⟩
−N .

We choose N > d . We obtain, when |ξ | < an1/d ,

|Hn(ξ)− Gn(x, ξ)| ≤̇N


|m|≥2an1/d

⟨m⟩
−N

≤̇N n1−N/d . (6.25)

We also have an estimate |Gn(x, ξ)| ≤̇ 1 when x ∈ K . Hence, for an1/d
≤ |ξ | ≤ bn1/d ,

|Hn(ξ)− Gn(x, ξ)| ≤ 1. (6.26)

If |ξ | > bn1/d then |m − ξ | ≥ |m| when m ∈ An . Hence |ξ − m| ≥ |ξ |/2 and

|φ̂(ξ − m)| ≤̇N ⟨ξ − m⟩
1−d−N/d

≤̇N ⟨ξ⟩1−d−N/d , m ∈ An

Hence, for |ξ | > bn1/d ,

|Gn(x, ξ)| ≤̇N ⟨ξ⟩1−d−N/d


|m|≤bn1/d

1 ≤̇N ⟨ξ⟩1−d−N/dn ≤̇N ⟨ξ⟩1−N/d .

Then, for |ξ | > bn1/d ,

|Hn(ξ)− Gn(x, ξ)| ≤̇N |ξ |1−N/d . (6.27)

Combining (6.25)–(6.27) we have, when x ∈ K , that

|Hn(ξ)− Gn(x, ξ)| ≤̇N


n1−N/d

|ξ | < an1/d

1 an1/d
≤ |ξ | ≤ bn1/d

|ξ |1−N/d
|ξ | > bn1/d .
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With this result we can show
K


Rd

|Gn(x, ξ)− Hn(ξ)||pl(x, ξ)|dξ dx = O(1) (6.28)

by considering the regions |ξ | < an1/d , an1/d
≤ |ξ | ≤ bn1/d , and |ξ | > bn1/d , and a choice of

N ≥ (1 + ϵ)d , ϵ > 0. Consider
K


|ξ |<an1/d

|Gn(x, ξ)− Hn(ξ)||pl(x, ξ)|dξ dx

≤̇N n1−N/d


K


|ξ |<an1/d

|pl(x, ξ)|dξ dx

≤̇N n1−N/d log(n)

≤̇N n1+ϵ−N/d
≤̇ 1

by using (6.11). Similarly
K


|ξ |>bn1/d

|Gn(x, ξ)− Hn(ξ)||pl(x, ξ)|dξ dx

≤̇


K


|ξ |>bn1/d

|ξ |1−N/d
|pl(x, ξ)|dξ dx ≤̇ 1

by applying (6.12) since 1 − N/d < 0. Finally,
K


an1/d≤|ξ |≤bn1/d

|Gn(x, ξ)− Hn(ξ)||pl(x, ξ)|dξ dx

≤̇


K


an1/d≤|ξ |≤bn1/d

|pl(x, ξ)|dξ dx ≤̇ 1

by applying (6.10). Hence (6.28) is shown. Combining (6.21) and (6.28) shows that
n

j=1

(T v j , v j )−
1

(2π)d


Rd


|ξ |≤n1/d

pl(x, ξ)dξ dx = O(1).

Applying (6.13) shows that
Rd


|ξ |≤n1/d

pl(x, ξ)dξ dx −


Rd


|ξ |≤n1/d

p(x, ξ)dξ dx = O(1)

since 
Rd


|ξ |≤n1/d

p(lx, ξ/ l)dξ dx =


Rd


|lξ |≤n1/d

p(x, ξ)dξ dx .

The result is shown. �

Taking into account Remark 6.29 and Lemma 6.30, we are now in a position to prove
Theorem 6.23.

Proof of Theorem 6.23. Suppose T is compactly based and Laplacian modulated. Choose l ∈ N
sufficiently large so that 0 < φ ∈ C∞

c (Rd), φ(x) = 1 for x ∈ 2πl Q0, and MφT = T . Since
MφT = T then S = T Mφ = MφT Mφ is compactly supported and Laplacian modulated (see
Remark 6.8).
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From Lemma 6.28 the operator S = Sl is Vl -modulated (if T is compactly supported then,
without loss, T = S and T ∈ L1,∞, which is the first part of the theorem). By Remark 6.29

n
j=1

λ j (S)−

n
j=1

(Sv j , v j ) = O(1).

However, up to the irrelevant multiplicity of zero as an eigenvalue,

λ j (S) = λ j (T Mφ) = λ j (MφT ) = λ j (T ).

Also, since φv j = v j , then

(Sv j , v j ) = (T v j , v j ).

So
n

j=1

λ j (T )−

n
j=1

(T v j , v j ) = O(1).

The result of the theorem now follows from Lemma 6.30. �

6.3. Traces of Laplacian modulated operators

In this section we prove several versions of Connes’ trace theorem.
Let H be a separable Hilbert space. In [13], J. Dixmier constructed a trace on the Banach ideal

of compact operators

M1,∞ :=


T ∈ K(H)

 sup
n∈N

1
log(1 + n)

n
j=1

s j (T ) < ∞


by linear extension of the weight

Trω(T ) := ω

 1
log(1 + n)

n
j=1

s j (T )

∞

n=1

 , T > 0.

Here ω is a dilation invariant state on ℓ∞. By the inclusion L1,∞ ⊂ M1,∞ a Dixmier trace Trω
restricts to a trace on L1,∞. All Dixmier traces are normalised, meaning that

Trω


diag


1
n

∞

n=1


= 1.

The commutator subspace has been used previously to study spectral forms of Dixmier traces,
e.g. [17,2]. Despite the Lidskii theorem, Corollary 4.2, it is not evident that

Trω(T ) := ω

 1
log(1 + n)

n
j=1

λ j (T )

∞

n=1


for an eigenvalue sequence {λ j (T )}∞j=1 of a compact operator T . By a combination of results
from [39] and [2] the result is true for the restriction to L1,∞. A more comprehensive proof that
the result is true for all T ∈ M1,∞ can be found in the monograph [35]; see Theorem 7.3.1 in
that reference.



40 N. Kalton et al. / Advances in Mathematics 235 (2013) 1–55

Lemma 6.31. Suppose T ∈ L1,∞(H). Then

Trω(T ) = ω

 1
log(1 + n)

n
j=1

λ j (T )

∞

n=1

 (6.29)

for any eigenvalue sequence {λ j (T )}∞j=1 of T , and any dilation invariant state ω.

Proof. From [39, Remark 13] it follows that

Trω(T ) = ω

 1
log(1 + n)


{ j ||λ j |>1/n}

λ j (T )


∞

n=1

 .
A similar result was obtained in [17] and [2], but not for all dilation invariant states. The argument
of [2, Corollary 2.12] that, when T ∈ L1,∞,

{ j ||λ j |>1/n}

λ j (T )−

n
j=1

λ j (T ) = O(1)

provides the result. �

Connes’ trace theorem, [8], states that a Dixmier trace applied to a compactly supported
classical pseudo-differential operator P of order −d yields the noncommutative residue up to
a constant,

Trω(P) =
1

d(2π)d
ResW (P). (6.30)

Connes’ statement was given for closed manifolds, but it is equivalent to (6.30). We shall consider
manifolds in our final section.

The main result of our paper is the generalisation of Connes’ trace theorem below. We note
that a dilation invariant state ω is a generalised limit, i.e. it vanishes on c0. Hence

ω([cn]) := ω({cn}
∞

n=1), {cn}
∞

n=1 ∈ ℓ∞

is well-defined as a linear functional on ℓ∞/c0.

Theorem 6.32 (Trace Theorem). Suppose T is compactly based and Laplacian modulated such
that T ∈ L1,∞(L2(Rd)). Then:

(i)

Trω(T ) =
1

d(2π)d
ω(Res(T ))

where Res(T ) ∈ ℓ∞/c0 is the residue of T ;
(ii)

Trω(T ) =
1

d(2π)d
Res(T )

for every Dixmier trace Trω iff Res(T ) is scalar;
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(iii)

τ(T ) =

τ ◦ diag


1
n

∞

n=1


(2π)dd

Res(T )

for every trace τ : L1,∞(L2(Rd)) → C iff
Rd


|ξ |≤n1/d

pT (x, ξ)dξ dx =
1
d

Res(T ) log n + O(1) (6.31)

for a scalar Res(T ).

Proof. (i) By Theorem 6.23 and the formula (6.14) we have that

1
log(1 + n)

n
j=1

λ j (T ) =
1

d(2π)d
Resn(T )+ o(1) (6.32)

for any eigenvalue sequence {λ j (T )}∞j=1 and any representative Resn(T ) of the equivalence class
Res(T ). By the condition that T ∈ L1,∞ we apply Lemma 6.31 and obtain

Trω(T ) := ω

 1
log(1 + n)

n
j=1

λ j (T )

∞

n=1


= ω


1

d(2π)d
Resn(T )+ o(1)


=

1
d(2π)d

ω (Res(T ))

since ω vanishes on sequences convergent to zero.
(ii) As T ∈ L1,∞, by [38, Theorem 20] Trω(T ) is the same value for all Dixmier

traces if and only if Trω(T ) = limn→∞
1

log(1+n)

n
j=1 λ j (T ) and the limit on the right

exists. From (6.32) limn→∞
1

log(1+n)

n
j=1 λ j (T ) exists if and only if Res(T ) is scalar and

limn→∞
1

log(1+n)

n
j=1 λ j (T ) = (2π)−dd−1Res(T ).

(iii) Suppose T satisfies (6.31). Then, by Theorem 6.23,

n
k=1

λk(T )−
1

(2π)dd
Res(T )

n
k=1

1
k

= O(1).

By Theorem 3.3,

T − diag


1
(2π)dd

Res(T )
1
k

∞

k=1
∈ Com L1,∞.

Conversely, suppose the previous display is given. Then, by Theorem 3.3, for some decreasing
sequence ν ∈ ℓ1,∞, n

k=1

λk(T )−
1

(2π)dd
Res(T )

n
k=1

1
k

 ≤ nνn ≤̇ 1,

and the symbol pT of T satisfies (6.31) by Theorem 6.23. �

Theorem 6.32 allows the Dixmier trace of any compactly based pseudo-differential operator
of order −d to be computed from its symbol.
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Corollary 6.33. If P is a compactly based pseudo-differential operator of order −d, then
P ∈ L1,∞(L2(Rd)) and

Trω(P) =
1

d(2π)d
ω(Res(P))

for any dilation invariant state ω. Here Res(P) is given by Definition 6.13.

Proof. If P is compactly based, there exists 0 < φ ∈ C∞
c (Rd) with MφP = P . The operators P

and P ′
= MφP Mφ are Laplacian modulated by Proposition 6.6. Since P ′ is compactly supported

then P ′
∈ L1,∞ by Theorem 6.23. Note that P − P ′

= [Mφ, P] ∈ G−∞ is a smoothing operator
belonging to the Shubin class, see [41, IV], and the extensions of G−∞ belong to the trace class
operators L1 on Rd , [41, Section 27]; see also [1]. Hence P = P ′

+ (P − P ′) ∈ L1,∞. Now
apply Theorem 6.32. �

Not every pseudo-differential operator is measurable in Connes’ sense, [9, Section 4].

Corollary 6.34 (Non-Measurable Pseudo-Differential Operators). There is a compactly
supported pseudo-differential operator Q of order −d such that the value Trω(Q) depends on
the dilation invariant state ω.3

Proof. Let Q be the operator from Proposition 6.19. Since Res(Q) = [sin log log n1/d
] is not a

scalar, Trω(Q) depends on the state ω by Theorem 6.32(ii). �

Contrary to the case of general pseudo-differential operators of order −d, the next corollary
shows that the classical pseudo-differential operators of order −d have unique trace.

Corollary 6.35 (Connes’ Trace Theorem). Suppose P is a compactly based classical pseudo-
differential operator of order −d with noncommutative residue ResW (P). Then P ∈ L1,∞
(L2(Rd)) and

τ(P) =
1

d(2π)d
ResW (P),

for every trace τ on L1,∞ such that τ(diag{n−1
}
∞

n=1) = 1.

Proof. By Corollary 6.33, P ∈ L1,∞. Proposition 6.16 and its proof shows both that Res(P) =

ResW (P) and that (6.31) is satisfied. The result now follows from Theorem 6.32. �

Remark 6.36. Corollary 6.34 indicates that the qualifier classical cannot be omitted from the
statement of Connes’ trace theorem.

Remark 6.37. Corollary 6.35 is stronger than Connes’ original theorem. To see that the set of
Dixmier traces restricted to L1,∞ is smaller than the set of arbitrary normalised traces on L1,∞,
consider that the positive part of the common kernel of Dixmier traces is exactly the positive
part of the separable subspace (L0

1,∞)
+, [34], while the positive part of the common kernel of

arbitrary normalised traces is exactly L+

1 = (Com L1,∞)
+, easily seen from Theorem 3.1 or

see [26].

3 Such operators are called non-measurable.
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Corollary 6.38 (Integration of Square Integrable Functions). Let f ∈ L2(Rd) be compactly
supported. Then M f (1 − ∆)−d/2

∈ L1,∞(L2(Rd)), and

τ(M f (1 − ∆)−d/2) =
Vol Sd−1

d(2π)d


Rd

f (x)dx,

for every trace τ on L1,∞ such that τ(diag{n−1
}
∞

n=1) = 1.

Proof. It follows from [4, Section 5.7] that M f (1 − ∆)−d/2
∈ L1,∞. On the other hand, from

Proposition 6.11, M f (1 − ∆)−d/2 is compactly based and Laplacian modulated. From the proof
of Proposition 6.22 Res(M f (1 − ∆)−d/2) is scalar, equal to Vol Sd−1


Rd f (x)dx , and (6.31) is

satisfied. From Theorem 6.32,

τ(M f (1 − ∆)−d/2) =

τ ◦ diag


1
n

∞

n=1


Vol Sd−1

d(2π)d


Rd

f (x)dx

for every trace on L1,∞. �

We now transfer our notions and results to the setting of closed Riemannian manifolds.

7. Closed Riemannian manifolds

In this section we introduce the notion of a Hodge-Laplacian modulated operator.

Notation. Henceforth X will always denote a d-dimensional closed Riemannian manifold (X, g)
with metric g, and ∆g denotes the Laplace–Beltrami operator with respect to g, [7, p. 3].

Definition 7.1. A bounded operator T : L2(X) → L2(X) is Hodge-Laplacian modulated if it is
(1 − ∆g)

−d/2-modulated for some metric g.

This definition is independent of the choice of metric g.

Lemma 7.2. Suppose T is a bounded operator T : L2(X) → L2(X). If T is (1 − ∆g1)
−d/2-

modulated then it is (1 − ∆g2)
−d/2-modulated for any pair of metrics g1 and g2.

Proof. The operator (1 − ∆g1)
−d/2(1 − ∆g2)

d/2 is a zero-order pseudo-differential operator on
X ; see [41, Section 4] for pseudo-differential operators on manifolds. Hence it has a bounded
extension, [41, Section 6.4], and there exists a constant C such that

∥(1 − ∆g1)
−d/2 f ∥L2 ≤ C∥(1 − ∆g2)

−d/2 f ∥L2

for f ∈ L2(X). By Proposition 5.6 any (1 − ∆g1)
−d/2-modulated operator is (1 − ∆g2)

−d/2-
modulated. �

The positive bounded operator (1 − ∆g)
−d/2

: L2(X) → L2(X) is a compact operator
(alternatively ∆g has compact resolvent, [7, p. 8]).

Thus there exists an orthonormal basis (en)
∞

n=1 of eigenvectors

−∆gen = snen, n ∈ N,

ordered such that the eigenvalues s1 ≤ sn ≤ · · · are increasing.
Also, by Weyl’s asymptotic formula, [7, p. 9],

s−d/2
n ∼ ld n−1
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for a constant ld . Therefore

(1 − ∆g)
−d/2

∈ L1,∞.

Due to these spectral properties we can invoke Theorem 5.2 and arrive directly at a trace theorem
by making the following definition of the residue.

Lemma 7.3. If T is a Hodge-Laplacian modulated operator and (en)
∞

n=1 is the above
eigenvector sequence of the Laplace–Beltrami operator, then

n
j=1

(T e j , e j ) = O(log(1 + n)).

Proof. From Theorem 5.2(i) T ∈ L1,∞. Then µn(T ) ≤̇ n−1 and n
j=1

λ j (T )

 ≤

n
j=1

µ j (T ) ≤̇ log(1 + n).

By Theorem 5.2(iii)
n

j=1

(T e j , e j ) =

n
j=1

λ j (T )+ O(1)

and the result follows. �

Definition 7.4. If T is a Hodge-Laplacian modulated operator the class

Res(T ) := d(2π)d

 1
log(1 + n)

n
j=1

(T e j , e j )

∞

n=1

 (7.1)

is called the residue of T , where [·] denotes an equivalence class in ℓ∞/c0, and (en)
∞

n=1 is the
above eigenvector sequence of the Laplace–Beltrami operator.

Remark 7.5. The residue is evidently linear and vanishes on trace class Hodge-Laplacian
operators. The proof of Lemma 7.3 shows that the residue is independent of the metric, since
the eigenvalue sequence of a compact operator T ∈ K(L2(X)) does not depend on the metric.

Theorem 7.6 (Trace Theorem for Closed Manifolds). Let T be Hodge-Laplacian modulated.
Then T ∈ L1,∞(L2(X)) and:

(i)

Trω(T ) =
1

d(2π)d
ω(Res(T ))

for any Dixmier trace Trω where Res(T ) ∈ ℓ∞/c0 is the residue of T ;
(ii)

Trω(T ) =
1

d(2π)d
Res(T )

for every Dixmier trace Trω iff Res(T ) is scalar;
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(iii)

τ(T ) =

τ ◦ diag


1
n

∞

n=1


(2π)dd

Res(T )

for every trace τ : L1,∞(L2(Rd)) → C iff

n
j=1

(T e j , e j ) =
1

d(2π)d
Res(T ) log(1 + n)+ O(1) (7.2)

for a scalar Res(T ).

Proof. The proof is omitted since it is identical to the proof of Theorem 6.32 with the use of
Theorem 6.23 replaced exactly by Theorem 5.2(iii). �

To obtain the same corollaries of this trace theorem for closed manifolds as we did for
Theorem 6.32 for Rd , we identify the residue locally with the residue on Rd .

7.1. Localised Hodge-Laplacian modulated operators

We emulate the usual treatment of pseudo-differential operators (e.g. [41, Section 4]), in that
the symbol of a Hodge-Laplacian modulated operator is defined locally by the restriction to a
chart and then patched together using a partition of unity. We extend Theorem 6.23 to a statement
involving the cotangent bundle.

Without loss we let X be covered by charts {(Ui , hi )}
N
i=1 such that hi (Ui ) is bounded in Rd .

For a chart (U, h) belonging to such an atlas, define Wh : L2(h(U )) → L2(U ) by Wh f = f ◦ h
and W −1

h : L2(U ) → L2(h(U )) by W −1
h f = f ◦ h−1. Then Wh,W −1

h are bounded.
Our first step is to confirm that Hodge-Laplacian modulated operators are locally Laplacian

modulated operators. If φ ∈ C∞(X) is a smooth function we denote by Mφ the multiplication
operator (Mφ f )(x) = φ(x) f (x), f ∈ L2(X), and note that it is a pseudo-differential operator
of order 0.

Proposition 7.7. Suppose (U, h) is a chart of X with h(U ) bounded and φ,ψ ∈ C∞(X) such
that φ,ψ have support in U.

(i) If T is a Hodge-Laplacian modulated operator then

W −1
h MψT Wh Mφ◦h−1 : L2(Rd) → L2(Rd)

is a compactly supported Laplacian modulated operator.
(ii) If T ′ is a Laplacian modulated operator then

Wh Mψ◦h−1 T ′W −1
h Mφ : L2(X) → L2(X)

is a Hodge-Laplacian modulated operator.

Proof. Let H s(X) denote the Sobolev spaces, s ∈ R, on X . If V is the pseudo-differential
operator with local symbol (1 + |ξ |2)1/2 the Sobolev norms are defined by ∥ f ∥s :=

∥V s f ∥L2 , [41, Section 7]. We recall that P : H s(X) → H s(X) is continuous, [41, Theorem
7.3], for any zero-order pseudo-differential operator P and s ∈ R. Since (1 − ∆g)

−s/2V s and
V −s(1 − ∆g)

s/2, s ∈ R, are zero-order pseudo-differential operators on X they have bounded
extensions.
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(i) Let T̃ = W −1
h MψT Wh Mφ◦h−1 . Let ρ ∈ C∞

c (Rd) be such that ρ(ψ ◦ h−1) = ψ ◦ h−1 and

ρ(φ ◦ h−1) = φ ◦ h−1. Then Mρ T̃ Mρ = T̃ and T̃ is compactly supported.
Note that

∥(1 − ∆g)
−d/2Wh Mφ◦h−1 f ∥L2 = ∥(1 − ∆g)

−d/2φ f ◦ h∥L2

≤̇ ∥V −dφ f ◦ h∥L2

≤̇ ∥(1 − ∆)−d/2φ ◦ h−1 f ∥L2

≤̇ ∥(1 − ∆)−d/2 Mφ◦h−1 f ∥L2

≤̇ ∥(1 − ∆)−d/2 f ∥L2 , f ∈ L2(Rd)

since the Sobolev norms on H s(U ) and H s(h(U )) are equivalent norms and Mφ◦h−1 :

H−d(Rd) → H−d(Rd) is bounded. By Proposition 5.6, T̃ = W −1
h MψT (Wh Mφ◦h−1) is

Laplacian modulated.
(ii) We reverse the argument in (i). Note that

∥(1 − ∆)−d/2W −1
h Mφ f ∥L2 = ∥(1 − ∆)−d/2(φ f ) ◦ h−1

∥L2

≤̇ ∥V −dφ f ∥L2

≤̇ ∥V −d f ∥L2

≤̇ ∥(1 − ∆g)
−d/2 f ∥L2 , f ∈ L2(X)

since the Sobolev norms on H s(h(U )) and H s(U ) are equivalent and Mφ : H s(X) → H s(X) is
bounded. By Proposition 5.6, Wh Mψ◦h−1 T ′(W −1

h Mφ) is Hodge-Laplacian modulated. �

Lemma 7.8. If T is a Hodge-Laplacian modulated operator and P1, P2 are zero-order pseudo-
differential operators on X, then P1T P2 is a Hodge-Laplacian modulated operator.

Proof. Since P1, P2 : L2(X) → L2(X) are bounded, P2 : H s(X) → H s(X), s ∈ R, is bounded,
and

∥(1 − ∆g)
−d/2 P2 f ∥L2 ≤̇ ∥(1 − ∆g)

−d/2 f ∥L2 , f ∈ L2(X),

it follows that P1T P2 is Hodge-Laplacian modulated by Proposition 5.6. �

We can now define the coordinate dependent symbol of a Hodge-Laplacian modulated
operator.

If (U, h) is a chart of X , let
d

j,k=1 g jk(x)dx j dxk denote the local co-ordinates of the metric

for x ∈ U and G(x) = [g jk(x)]d
j,k=1. The d × d matrix G(x), x ∈ U , is positive and the

determinant |G(x)| is a smooth function on X .
Let {(Ui , hi )}

N
i=1 be an atlas of X where hi (Ui ) ⊂ Rd . Let Ψ := {ψ j }

M
j=1 be a smooth

partition of unity so that if K j := supp(ψ j ) then K j ∩ K j ′ ≠ ∅ implies that there exists an
i ∈ {1, . . . , N } with K j ∪ K j ′ ⊂ Ui . We will always assume such a partition of unity.

Let T be a Hodge-Laplacian modulated operator. Set

T j j ′ := Mψ j T Mψ j ′
.

When K j ∩ K j ′ ≠ ∅,

T h
j j ′ := W −1

hi
Mψ j T Whi M

ψ j ′◦h−1
i
,
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where some i ∈ {1, . . . , N } is chosen such that K j ∪ K j ′ ⊂ Ui , is compactly supported and
Laplacian modulated by Proposition 7.7(ii). Let ph

j j ′ ∈ L2(Rd
× Rd) be the symbol of T h

j j ′ .
Define

p j j ′(x, ξ) := ph
j j ′(hi (x),G−1/2(x)ξ)

for each (x, ξ) ∈ T ∗Ui ∼= Ui × Rd . If K j ∩ K j ′ = ∅ set p j j ′ ≡ 0.
We thus define a chart dependent function on the cotangent bundle T ∗(X, g), which we call

the coordinate dependent symbol of T , by

p(Ψ ,g)
T :=

M
j, j ′=1

p j j ′ .

Definition 7.9. If T j j ′ ∈ Com L1,∞(L2(X)) when K j ∩ K j ′ = ∅, then we say T is Ψ -localised.

A codisc bundle D∗(r)(X, g) of radius r > 0 is the subbundle of the cotangent bundle
T ∗(X, g) with fibre over x ∈ X given by

D∗
x (r)(X, g) ∼= {ξ ∈ Rd

||G−1/2(x)ξ | ≤ r}.

Let dv be the density on T ∗(X, g) which corresponds locally to dG−1/2(x)ξdx .

Theorem 7.10. If (X, g) is a closed d-dimensional Riemannian manifold, T is Hodge-Laplacian
modulated, and T is Ψ -localised with respect to an atlas and partition of unity Ψ as above, then

n
k=1

λk(T )−
1

(2π)d


D∗(n1/d )(X,g)

p(Ψ ,g)
T (v)dv = O(1). (7.3)

Proof. Let Ψ = {ψ j }
M
j=1 and set T j j ′ := Mψ j T Mψ j ′

. By Lemma 7.8 T j j ′ is Hodge-Laplacian

modulated such that T =
M

j, j ′=1 T j j ′ . We recall from Corollary 5.12 that

n
k=1

λk(T )−

M
j, j ′=1

n
k=1

λk(T j j ′) = O(1). (7.4)

By the assumption that T is Ψ -localised then T j j ′ ∈ Com L1,∞ when K j ∩ K j ′ = ∅. Hence

n
k=1

λk(T j j ′) = O(1)

by Theorem 3.3 when K j ∩ K j ′ = ∅. Thus (7.4) is valid when removing those T j j ′ such that
K j ∩ K j ′ = ∅.

When K j ∩ K j ′ ≠ ∅,

T j j ′ : L2(Ui ) → L2(Ui )

and so

T h
j j ′ : L2(hi (Ui )) → L2(hi (Ui )),
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for the chosen i ∈ {1 . . . , N } such that K j ∩ K j ′ ⊂ Ui , is compactly supported and Laplacian
modulated by Proposition 7.7(i). Since the Hilbert spaces L2(Ui ) and L2(hi (Ui )) are equivalent
it is an easy result that

λk(T j j ′) = λk(T
h
j j ′) (7.5)

with the same multiplicity and the same ordering.
Note that,

D∗(n1/d )(X,g)
(χK j p j j ′χK j ′

)(v)dv

=


hi (Ui )


|G−1/2(x)ξ |≤n1/d

ph
j j ′(x,G−1/2(x)ξ)dG−1/2(x)ξdx

=


Rd


|ξ |≤n1/d

ph
j j ′(x, ξ)dξdx .

Therefore
D∗(n1/d )(X,g)

p(Ψ ,g)
T (v)dv =


j, j


Rd


|ξ |≤n1/d

ph
j j ′(x, ξ)dξdx (7.6)

where the sum is over those j, j ′ with K j ∩ K j ′ ≠ ∅.
Finally, using (7.5) and (7.6), and where the sums are over those j, j ′ with K j ∩ K j ′ ≠ ∅,

n
k=1

λk(T )−
1

(2π)d


D∗(n1/d )(X,g)

p(Ψ ,g)
T (v)dv

=


n

k=1

λk(T )−


j, j

n
k=1

λk(T j j ′)



+


j, j


n

k=1

λk(T
h
j j ′)−

1
(2π)d


Rd


|ξ |≤n1/d

ph
j j ′(x, ξ)dxdξ


= O(1)+ O(1)

by (7.4) and by Theorem 6.23. �

Suppose T and U are Hodge-Laplacian modulated operators. If p(Ψ ,g1)
T represents a

coordinate dependent symbol of T with respect to a metric g1 and some atlas and partition of
unity Ψ as above, and p(Ω ,g2)

U a coordinate dependent symbol of U with respect to a metric g2

and some atlas and partition of unity Ω as above, then we write p(Ψ ,g1)
T ∼ p(Ω ,g2)

U if
D∗(n1/d )(X,g1)

p(Ψ ,g1)
T (v)dv −


D∗(n1/d )(X,g2)

p(Ω ,g2)
U (v)dv = O(1).

The relation ∼ is easily checked to be an equivalence relation on coordinate dependent symbols.

Definition 7.11. A Hodge-Laplacian modulated operator T is called localised if φTψ ∈

Com L1,∞(L2(X)) for every pair of functions φ,ψ ∈ C∞(X) with φψ = 0.

The next result says that every localised Hodge-Laplacian modulated operator can be assigned
a coordinate and metric independent “principal” symbol.
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Corollary 7.12. Let T be a localised Hodge-Laplacian modulated operator. Then p(Ψ ,g1)
T ∼

p(Ω ,g2)
T for every coordinate dependent symbol of T .

Proof. If T is localised then T is Ψ -localised and Ω -localised. The eigenvalues of T are
coordinate and metric independent, therefore

1
(2π)d


D∗(n1/d )(X,g1)

p(Ψ ,g1)
T (v)dv −


D∗(n1/d )(X,g2)

p(Ω ,g2)
T (v)dv


≤

 n
k=1

λk(T )−
1

(2π)d


D∗(n1/d )(X,g1)

p(Ψ ,g1)
T (v)dv


+

 n
k=1

λk(T )−
1

(2π)d


D∗(n1/d )(X,g2)

p(Ω ,g2)
T (v)dv

 .
The result follows by Theorem 7.10. �

Due to the result of Theorem 7.10 we will only be concerned with coordinate dependent
symbols up to the equivalence ∼. As a result of Lemma 7.2 and Corollary 7.12 we may fix a
metric g and we may take any coordinate dependent symbol to act as a representative for the
symbol when discussing localised Hodge-Laplacian modulated operators. To this end we let pT

denote a coordinate dependent symbol p(Ψ ,g)
T , dropping explicit reference to the coordinates and

the metric.
We can now prove the desired result that links the residue for Hodge-Laplacian operators to a

formula involving the “principal” symbol.

Theorem 7.13. If (X, g) is a closed d-dimensional Riemannian manifold and T is localised and
Hodge-Laplacian modulated with symbol pT , then

Res(T ) =


d

log(1 + n)


D∗(n1/d )(X,g)

pT (v)dv


where [·] denotes an equivalence class in ℓ∞/c0, or, more specifically,

n
j=1

(T e j , e j ) =
1

(2π)d


D∗(n1/d )(X,g)

pT (v)dv + O(1). (7.7)

Proof. The first display clearly follows from the second display. By Theorem 7.10

n
k=1

λk(T )−
1

(2π)d


D∗(n1/d )(X,g)

pT (v)dv = O(1)

and by Theorem 5.2(iii)

n
k=1

λk(T )−

n
j=1

(T e j , e j ) = O(1).

The result is shown. �
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7.2. Residues of Hodge-Laplacian modulated operators

We give examples of Hodge-Laplacian modulated operators and compute their residue using
Theorem 7.13.

Example 7.14 (Pseudo-Differential Operators). To show a pseudo-differential operator P :

C∞(X) → C∞(X) of order −d is Hodge-Laplacian modulated we use the following lemma.

Lemma 7.15. The operator (1 − ∆g)
−d/2 is Hodge-Laplacian modulated.

Proof. For brevity, set V := (1 − ∆g)
−d/2. Let {sn}

∞

n=1 be the singular values of V , where
sn ≤ Cn−1 by Weyl’s formula for a constant C > 0, as explained. Then

∥V (1 + tV )−1
∥

2
L2

=

∞
n=1

s2
n(1 + tsn)

−2
≤

∞
n=1

(C−1n + t)−2
≤̇ t−1, t ≥ 1.

Hence V is V -modulated. �

Proposition 7.16. Let P : C∞(X) → C∞(X) be a pseudo-differential operator of order −d.
Then the extension P : L2(X) → L2(X) is localised and Hodge-Laplacian modulated.

Proof. For brevity set V := (1 − ∆g)
−d/2. Then V is Hodge-Laplacian modulated. Thus

P0V is Hodge-Laplacian modulated for every zero-order pseudo-differential operator P0 by
Lemma 7.8. By the pseudo-differential calculus PV −1 is zero order, [41, Sections 3 and 6],
hence P = (PV −1)V is Hodge-Laplacian modulated.

The operator P is localised since, Mψ P Mφ ∈ L1 ⊂ Com L1,∞ when ψ, φ ∈ C∞(X)
and ψφ = 0 by the definition of pseudo-differential operators on a manifold, [41, Sections 4
and 27]. �

It follows from Theorem 7.13 that the residue of a pseudo-differential operator of order −d
can be calculated from its principal symbol.

Example 7.17 (Noncommutative Residue). The cosphere bundle S∗ X of (X, g) is the subbundle
of T ∗(X, g) with fibre over x ∈ X given by

S∗
x X ∼= {ξ ∈ Rd

||G−1/2(x)ξ | = 1}.

The cosphere bundle has a density ds equating locally to dxdsx where dsx is the volume element
of the fibre.

Proposition 7.18. Let P : C∞(X) → C∞(X) be a classical pseudo-differential of order −d
and with principal symbol p−d . Then P is localised and Hodge-Laplacian modulated and the
residue of P is the scalar value

Res(P) = ResW (P) :=


S∗ X

p−d(s)ds

where ResW denotes the noncommutative residue.

Proof. By Proposition 7.16 P is localised and Hodge-Laplacian modulated. Both Res and ResW
evidently depend only on the principal symbol and hence we can work locally. The result
then follows immediately from Proposition 6.16. Note also that this implies, from the proof



N. Kalton et al. / Advances in Mathematics 235 (2013) 1–55 51

of Theorem 7.13 and Proposition 6.16, that
n

j=1

(Pe j , e j ) =
1

d(2π)d


S∗ X

p−d(s)ds log n + O(1). �

An immediate corollary (the proof is omitted) is the following spectral formulation of
the noncommutative residue of classical pseudo-differential operators. The first equality was
observed by Fack, [17, p. 359], and proven in [2, Corollary 2.14].

Corollary 7.19 (Spectral Formula for the Noncommutative Residue). Let P : C∞(X) →

C∞(X) be a classical pseudo-differential operator of order −d, {λn(P)}∞n=1 denote the non-zero
eigenvalues of P ordered so that |λn(P)| is decreasing, and (en)

∞

n=1 an orthonormal basis of
eigenvectors of the Hodge-Laplacian, −∆gen = snen , n ∈ N, ordered such that the eigenvalues
s1 ≤ sn ≤ · · · are increasing. Then, if ResW is the noncommutative residue,

d−1(2π)−dResW (P) = lim
n→∞

1
log(1 + n)

n
j=1

λ j (P) = lim
n→∞

1
log(1 + n)

n
j=1

(Pe j , e j ).

Example 7.20 (Integration of Square Integrable Functions). If f ∈ L2(X) let M f : L∞(X) →

L2(X) be defined by (M f h)(x) = f (x)h(x), h ∈ L∞(X).

Proposition 7.21. If f ∈ L2(X) then there is a localised Hodge-Laplacian modulated operator
T f such that M f (1 − ∆g)

−d/2
− T f ∈ L1 and

Res(T f ) = Vol Sd−1


X,g
f (x) dx .

Proof. Let {ψ j }
M
j=1 be a partition of unity as in the previous section. For brevity, let V :=

(1 −∆g)
−d/2. Set V j j ′ := Mψ j V Mψ j ′

and V h
j j ′ = W −1

hi
Mψ j V Whi Mψ j ′◦h−1 . Set T j j ′ := M f V j j ′

and T h
j j ′ = M f ◦h−1 V h

j j ′ .

If K j ∩ K j ′ ≠ ∅ we can find a chart (Ui , hi ) so that K j ∪ K j ′ ⊂ Ui . Note that V h
j j ′ is a

pseudo-differential operator of order −d on Rd compactly supported in hi (Ui ). Then

T h
j j ′ = M f ◦h−1(1 − ∆)−d/2 P0

where P0 = (1 − ∆)d/2V h
j j ′ is zero-order. By Proposition 6.11 M f ◦h−1(1 − ∆)−d/2 is Laplacian

modulated and by Remark 6.8 M f ◦h−1(1 − ∆)−d/2 P0 is Laplacian modulated. Hence T h
j j ′ is

Laplacian modulated and compactly supported in h(Ui ). It follows from Proposition 7.7(ii) that
T j j ′ is Hodge-Laplacian modulated.

If K j ∩ K j ′ = ∅ the operator Mψ j ′
V Mψ j

: L1(X) → C∞(X) ⊂ L2(X) has a smooth kernel

and is hence nuclear. Since M f : L2 → L1 is bounded we obtain Mψ j ′
V Mψ j

M f ∈ L1. By

taking the adjoint T j j ′ ∈ L1.
Let T f = T :=


j j ′ T j j ′ where K j ∩ K j ′ ≠ ∅. Then T is Hodge-Laplacian modulated

and obviously localised. Set S :=


j j ′ T j j ′ where K j ∩ K j ′ = ∅. Then S ∈ L1. We have that

M f (1 − ∆g)
−d/2

= T + S so the first statement is shown.
Since T is localised we need only work locally to determine the residue. If K j ∩ K j ′ ≠ ∅

so that K j ∪ K j ′ ⊂ Ui we examine the compactly supported Laplacian modulated operator
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T h
j j ′ : L2(Rd) → L2(Rd). The symbol ph

j j ′ of T h
j j ′ is given by ph

j j ′(x, ξ) = f ◦ h−1(x)q j j ′(x, ξ)
where q j j ′(x, ξ) is the symbol of the pseudo-differential operator Mψ j V Mψ j ′

in local co-
ordinates. We recall that

q j j ′(x, ξ)− (ψ jψ j ′)(h
−1(x))|G1/2(x)ξ |−d

∈ S−d−1
base

by Lemma 6.18. Since f ∈ L2(X) ⊂ L1(X), we have
Rd


|ξ |≤n1/d

ph
j j ′(x, ξ)− ( fψ jψ j ′)(h

−1(x))|G1/2(x)ξ |−d
 dx dξ

≤̇


Rd


|ξ |≤n1/d

| f (x)|⟨ξ⟩−d−1dx dξ ≤̇ ∥ f ∥L1 .

Thus 
Rd


|ξ |≤n1/d

ph
j j ′(x, ξ)dx dξ

=


Rd


|ξ |≤n1/d

( fψ jψ
′)(h−1(x))|G(x)−1/2ξ |−ddξdx + O(1)

=


Rd


|G(x)1/2ξ |≤n1/d

( fψ jψ
′)(h−1(x))|G(x)|1/2|ξ |−ddxdξ + O(1)

=


Rd


|ξ |≤n1/d

( fψ jψ
′)(h−1(x))|G(x)|1/2|ξ |−ddxdξ + O(1)

=
Vol Sd−1

d


X,g

f (x)ψ j (x)ψ j ′(x)dx log n + O(1)

where, in the second last equality, we used (6.13). Hence

Res(T ) =


j, j ′

Res(T j j ′)

= Vol Sd−1


X,g
f (x)


j, j

ψ j (x)ψ j ′(x)


dx = Vol Sd−1


X,g

f (x)dx . �

7.3. Traces of localised Hodge-Laplacian modulated operators

In this section we obtain Connes’ trace theorem and other results for closed Riemannian
manifolds as corollaries of Theorem 7.6.

Corollary 7.22 (Connes’ Trace Theorem). Let (X, g) be a closed d-dimensional Riemannian
manifold. Suppose P : C∞(X) → C∞(X) is a classical pseudo-differential operator of order
−d with noncommutative residue ResW (P). Then (the extension) P ∈ L1,∞(L2(X)) and

τ(P) =
1

d(2π)d
ResW (P),

for every trace τ on L1,∞ such that τ(diag{n−1
}
∞

n=1) = 1.

Proof. That P is localised and Hodge-Laplacian, and satisfies (7.2) for the scalar ResW (P), is
given by Proposition 7.18. The results follow from Theorem 7.6. �

As before, the qualifier classical cannot be omitted from Connes’ trace theorem.
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Corollary 7.23 (Non-Measurable Pseudo-Differential Operators). Let (X, g) be a closed d-
dimensional Riemannian manifold. There exists a pseudo-differential operator Q′

: C∞(X) →

C∞(X) of order −d such that the value Trω(Q′) depends on the dilation invariant state ω.

Proof. Let Q′ be such that Q′ vanishes outside a chart (U, h), and in local coordinates Q′

is the operator Q (suitably scaled) of Corollary 6.34. Then the value Trω(Q′) depends on the
state ω. �

The final result is a stronger variant of one of our results in [33]. In the cited paper we showed
the following result for Dixmier traces associated to zeta function residues. The proof employing
the methods of this paper is completely different.

Corollary 7.24 (See [33], Theorem 2.5). Let (X, g) be a closed d-dimensional Riemannian
manifold. Let f ∈ L2(X) and M f : L∞(X) → L2(X) be defined by (M f h)(x) = f (x)h(x),
h ∈ L∞(X). Then M f (1 − ∆g)

−d/2
∈ L1,∞(L2(X)) and

τ(M f (1 − ∆g)
−d/2) =

Vol Sd−1

d(2π)d


X,g

f (x)dx,

for any trace τ on L1,∞ such that τ(diag{n−1
}
∞

n=1) = 1.

Proof. Proposition 7.21 provides the result that M f (1−∆g)
−d/2

= T f +S where T f ∈ L1,∞ (by
Theorem 7.6 since T f is Hodge-Laplacian modulated) and S ∈ L1. Hence M f (1 − ∆g)

−d/2
∈

L1,∞. Also

τ(M f (1 − ∆g)
−d/2) = τ(T f )

for every trace τ on L1,∞. Note that, for the operator T f , Eq. (7.2) is satisfied for the scalar
Vol Sd−1


X,g f (x)dx by the proof of Proposition 7.21. By Theorem 7.6

τ(T f ) =
Vol Sd−1

d(2π)d


X,g

f (x)dx

for every τ . �

Remark 7.25. Our final remark is that the residue of Hodge-Laplacian modulated operators,
Definition 7.4, is an extensive generalisation of Wodzicki’s noncommutative residue.
Definition 7.1 is a global definition requiring no reference to local behaviour. Therefore “non-
local” Hodge-Laplacian modulated operators can exist and they admit a residue and, in theory,
calculable trace. Whether there are any interesting possibilities behind this observation we do not
know yet.
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