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Abstract

We answer a question of Alex Koldobsky. We show that for each −∞ < p < 2 and each n � 3 − p there
is a normed space X of dimension n which embeds in Ls if and only if −n < s � p.
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1. Introduction

Let ‖ · ‖ be a norm on R
n. A well-known fact, proved by Koldobsky, is that if p > 0 and not

an even integer then X = (Rn,‖ · ‖) embeds isometrically into Lp if and only if �(−p/2)‖ · ‖p is
a positive definite distribution outside of the origin (see [10, Theorem 6.10]). In [8] this idea was
extended to the case when p < 0. Let S(Rn) denote the Schwartz class of the rapidly decreasing
functions on R

n. If p < 0 and n + p > 0 then the function ‖x‖p is locally integrable and we say
that X embeds (isometrically) into Lp if the distribution ‖ · ‖p is positive definite, i.e. for every
non-negative even test function φ ∈ S(Rn),

〈(‖ · ‖p
)∧

, φ
〉
� 0.
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This can be expressed in the following form: We say that X = (Rn,‖ · ‖) embeds into Lp , where
p < 0 < p + n, if there exists a finite Borel measure μ on Sn−1 so that for every even test
function φ ∈ S(Rn)

∫
Rn

‖x‖pφ(x) dx =
∫

Sn−1

( ∞∫
0

t−p−1φ̂(tξ ) dt

)
dμ(ξ). (1.1)

Later in [4] the appropriate definition for p = 0 was explored: a normed space X embeds into L0
if and only if − ln‖x‖ is positive definite outside of the origin of R

n.
Part of the motivation for this definition is its connection to intersection bodies. The class of

intersection bodies was defined by Lutwak [12] and played an important role to the solution of
the Busemann–Petty problem. Let K and L be two origin symmetric star bodies in R

n. We say
that K is the intersection body of L if the radius of K in every direction is equal to the volume
of the central hyperplane section of L perpendicular to this direction, i.e. for every ξ ∈ Sn−1,

‖ξ‖−1
K = Voln−1

(
L ∩ ξ⊥)

,

where ‖x‖K = min{a � 0: x ∈ aK} is the Minkowski functional of K . Note that if K is convex
then ‖ · ‖K is a norm. The class of intersection bodies is defined as the closure, in the radial
metric, of the set of intersection bodies of all star bodies. This class was extended in [7] and [9],
to the class of k-intersection bodies, where k ∈ N: Let 1 � k < n. We say that an origin symmetric
star body K in R

n is a k-intersection body if there exists a finite Borel measure μ on Sn−1 so
that for every even test function ϕ in R

n,

∫
Rn

‖x‖−k
K φ(x) dx =

∫
Sn−1

( ∞∫
0

tk−1φ̂(tξ ) dt

)
dμ(ξ).

Koldobsky in [9] showed that X embeds into L−k if and only if its unit ball is a k-intersection
body. For more on k-intersection bodies see [10, Chapters 4 and 6], or [11, Chapters 6 and 7].

If n > −p, we denote by Ip(n) the collection of the finite-dimensional Banach spaces X

of dimension n which embed into Lp where −∞ < p < ∞; we will adopt the convention
that Ip(n) = Bn, the collection of all spaces of dimension n when n � −p. It was shown by
Koldobsky [8] that if p � 3 − n then Ip(n) = Bn. Let Ip = ⋃

n∈N
Ip(n). A classical result of

Bretagnolle, Dacunha-Castelle and Krivine [1] shows that if 0 < p � q � 2 then Iq ⊂ Ip. Com-
bining results of [4] and [8] gives that Iq ⊂ Ip where q ∈ [0,2] and p � q. It is, however, an
open problem whether the same is true when q < 0. E. Milman [13] showed that if m ∈ N and
p < 0 then Ip ⊂ Imp.

A second problem in this area is to establish whether the classes Ip(n) for −∞ < p � 1 are
really distinct (see for example [11, p. 99]). In this article we give a complete answer to this
question. Previously only some partial results have been established. For the case 0 < p � 1, it
is shown in [2] that if 0 < p < s � 1 then Ip 
= Is . However the methods of [2] are infinite-
dimensional and only show that for given 0 < p < q � 1 we have Ip(n) 
= Iq(n) for some
n = n(p,q). It was noted in [4] that the space R ⊕2 �n

1 belongs to I0 for all n but for each
p > 0 there is an n ∈ N so that R ⊕2 �n

1 /∈ Ip. In the case where p,q < 0 it is clear that if
p � 3 − n < q then Iq(n) is strictly contained in Ip(n) = Bn. In fact �n

s /∈ Iq(n) if 2 < s � ∞
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(see [10, Theorem 4.13] or [6]). For other values of n, there are some recent partial results.
In [15] it was shown that I−4(n) \ I−2(n) 
= ∅ for all n � 7 (and hence for n � 5) and that
I−1/3(n)\ I−1/6(n) 
= ∅ for all n � 4. More recently Yaskin [16] showed that if l < k are integers
and k > 3 − n then Il (n) \ Ik(n) 
= ∅.

Our main example is that if X = �m
2 ⊕r �n

q where 1 � q < r � 2 and n � 2 then X ∈ Ip if and
only if p � q −m. Thus it follows immediately that if p ∈ (3 −n,0) there exists a normed space
X so that X ∈ Ip(n) but for every q > p, X /∈ Iq(n). Note that even in the case when 0 < p < 1
this improves considerably the results in [2] and the examples are much more natural.

This article is organized as follows: In Section 2 we give some basic definitions on isometric
embeddings. Our approach is probabilistic rather than the usual distributional approach from [10]
or [11]. We prove the equivalence between the two approaches.

Sections 3 and 4 are devoted to some preparatory work on stable random variables and the
Mellin transform of a general absolute norm, respectively. We consider the absolute direct sum
of normed spaces. Let X and Y denote two finite-dimensional Banach spaces. Let N be any
absolute norm on R

2, i.e. N(x,y) = N(|x|, |y|), satisfying the normalization property N(1,0) =
N(0,1) = 1. We consider the absolute N -direct sum of X and Y , denoted X ⊕N Y that is defined
as the space of pairs {(x, y), x ∈ X, y ∈ Y } equipped with the norm N :

∥∥(x, y)
∥∥ = N

(‖x‖X,‖y‖Y

)
, x ∈ X, y ∈ Y.

In the special case where N(x,y) = (|x|r + |y|r )1/r , we write X ⊕N Y = X ⊕r Y.

In Section 5 we examine the situation when X⊕N Y ∈ Ip. There is an earlier result of Koldob-
sky of this type; see [10, Theorem 4.21] or [5]. Koldobsky shows that if p < 0 < 2 < q and
X ⊕q Y ∈ Ip with dimY � 1 then dimX � 2 − p. In fact these results hold under the more
general hypothesis if p < 2 < q .

A typical result we prove is that if r � 2 and X ⊕r Y ∈ Ip where p � 2 then X ∈ Iq as long
as p � q � m + p where m = dimY. We consider a more general absolute norm N and use
functional analytic and probabilistic methods as well as the theory of Gaussian processes.

The remainder of the paper is devoted to showing that the examples X = �m
2 ⊕r �n

q where
1 � q < r � 2 and n � 2 belong to Ip if p � q −m. This requires a probabilistic approach using
stable random variables.

2. Gaussian embeddings

Throughout this paper, (Ω,μ) will be a Polish space with a σ -finite Borel measure and
M(Ω,μ) will be the space of all real-valued measurable functions on Ω. In the special
case when μ(Ω) = 1 we say that μ is a probability measure and the members of M(Ω,μ)

are then called random variables. Let X be a finite-dimensional normed space and suppose
T :X → M(Ω,μ) is a linear map. Suppose 0 < p < ∞. We shall say that T is a c-standard
embedding of X into Lp(Ω,μ), where c > 0, if

‖x‖p = 1

cp

∫
|T x|p dμ, x ∈ X.
Ω
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Let (Ω ′,P) be some probability space. A measurable map ξ :Ω ′ → X is called an X-valued
Gaussian process if it takes the form

ξ =
m∑

j=1

γjxj

where x1, . . . , xm ∈ X and {γ1, . . . , γm} is a sequence of independent normalized Gaussians. The
rank of ξ is defined to be the dimension of the space spanned by {x1, . . . , xm}; we say that ξ has
full rank if its rank is equal to the dimension of X.

Suppose −∞ < p < ∞ and X has dimension n > −p. A linear map T :X → M(Ω,μ) is
called a c-Gaussian embedding of X into Lp(Ω,μ) if

E‖ξ‖p = 1

cp

∫
Ω

(
n∑

j=1

(T xj )
2

)p/2

dμ (2.1)

whenever ξ is an X-valued Gaussian random variable of full rank. In fact it can be shown quite
easily that (2.1) holds for all ξ of rank greater than −p. It should be noted that if p � −1 it is
not generally true that

∫ |T x|p < ∞ for each x ∈ X.

It will be important for us that the existence of a Gaussian embedding in Lp in the case when
p < 0 is equivalent to the fact that X ∈ Ip according to the definition in [8] via positive definite
functions (see (1.1)). One direction of this equivalence appears implicitly in [3] but the converse
direction has not apparently appeared before, although it has been known for a number of years.

We first need a preparatory lemma. Let ga denote the density function

ga(x) = (2π)−n/2a−ne−|x|2/2a2
, x ∈ R

n.

For y ∈ Y we define hy(x) = (x, y). If f ∈ S(Rn) we denote by τyf the function τyf (x) =
f (x − y).

Lemma 2.1. Suppose n ∈ N and ρ ∈ S ′(Rn) is such that 〈e−(Ax,x), ρ〉 = 0 for every positive
definite matrix A. Then for a > 0 and fixed y ∈ R

n, we have

〈τyga + τ−yga, ρ〉 = 0, y ∈ R
n.

Proof. We start with two observations about the case n = 1. First we observe that the map
{z: Re z > 0} → S(R) defined by z �→ e−zx2/2 is analytic into the locally convex Fréchet space
S(R). Similarly so is the map C → S(R) defined by z �→ e−a2(x2+2xz)/2. From this it is easy
to deduce that if u ∈ R

n is a unit vector and a > 0 then the map Ea(z)(x) = ga(x)e−za2(x,u)2
is

analytic for Re z > −a2. Similarly Da,u(z)(x) = ga(x)e−za2(x,u) is analytic on C.

By assumption 〈Ea(z), ρ〉 = 0 if z > −a2 is real. Hence 〈Ea(z), ρ〉 = 0 for all z with Re z >

−a2. In particular 〈E(k)
a (0), ρ〉 = 0 for k = 0,1, . . . . This implies that 〈h(2k)

u ga, ρ〉 = 0 for all k.

Now D
(k)
a,u(0)(x) = hk

uga. Hence it follows that all the derivatives of ρ ◦Da,u(z)+ρ ◦Da,−u(z)

vanish at 0 and thus 〈Da,u(z) + Da,−u(z), ρ〉 = 0 for all z ∈ C. In particular

et2 〈
Da,u(z) + Da,−u(z), ρ

〉 = 0, t � 0,
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which implies

〈τtuga + τ−tuga, ρ〉 = 0, 0 � t < ∞.

Thus

〈τyga + τ−yga, ρ〉 = 0, y ∈ R
n. �

Proposition 2.2. Suppose p < 0. Let X be a normed space of dimension n > −p. Then X ∈ Ip

if and only if there is a Polish space Ω , a σ -finite Borel measure μ on Ω and a linear map
T :X → M(Ω,μ) which is a c-Gaussian embedding into Lp(Ω,μ) for some c > 0.

Proof. First we assume that X ∈ Ip. Identify X with R
n and suppose μ is the finite Borel

measure on Sn−1 given by (1.1). Then Lemma 3.2 of [3] gives that the canonical map T x(u) =
(x,u) defines a c-Gaussian embedding of X into Lp(Sn−1,μ).

Let us prove the converse. Assume T :X → M(Ω,μ) is a c-Gaussian embedding of X into
Lp(Ω,μ). As usual we identify X with R

n and denote by | · | the usual Euclidean norm. Let
{e1, . . . , en} be the canonical basis. Define Φ :Ω → R

n by Φ(ω) = (T ej (ω))nj=1. Note that
|Φ(ω)| > 0 μ-almost everywhere. Let dμ′ = |Φ(ω)|p dμ; then μ′ is a finite Borel measure on Ω.

Let π be the canonical retraction of R
n \ {0} onto Sn−1 defined by π(x) = x/|x|. We define a

finite positive Borel measure ν on Sn−1 by ν = c−p2
p
2 +1(�(−p/2))−1μ′ ◦ Φ−1 ◦ π−1.

Suppose x1, . . . , xn are linearly independent in X and let ξ = ∑n
j=1 γjxj be an X-valued

Gaussian process. Let ψ be the probability density function associated to this process. Then

∫
Rn

‖x‖pψ(x)dx = E

∥∥∥∥∥
n∑

j=1

γjxj

∥∥∥∥∥
p

= 1

cp

∫
Ω

(
n∑

j=1

|T xj |2
)p/2

dμ.

Use the definition of the measure μ′ and then of ν. So the latter is equal to

= 1

cp

∫
Ω

(
n∑

j=1

(
xj ,πΦ(ω)

)2

)p/2

dμ′(ω)

= 2− p
2 −1�(p/2)

∫
Sn−1

(
n∑

j=1

(xj , u)2

)p/2

dν(u). (2.2)

Now, by the definition of the Gamma function (2.2) becomes

=
∫

Sn−1

∞∫
0

t−p−1e
−t2 ∑n

j=1(xj ,u)2/2
dt dν(u)

=
∫

Sn−1

∞∫
0

t−p−1ψ̂(tu) dt dν(u),

where ψ̂ is the characteristic function of the process.
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Thus if P is a positive definite matrix and ψ(x) = e−(Px,x) then

∫
Rn

‖x‖pψ(x)dx =
∞∫

0

t−p−1
∫

Sn−1

ψ̂(tu) dν(u)dt.

Let us define a distribution ρ ∈ S ′ by

〈ρ,ψ〉 =
∫
Rn

‖x‖pψ(x)dx −
∞∫

0

t−p−1
∫

Sn−1

ψ̂(tu) dν(u)dt.

Then ρ satisfies the conditions of the preceding lemma, and so we have:

∫
Rn

‖x‖p
(
ga(x + y) + ga(x − y)

)
dx = 2

∞∫
0

t−p−1
∫

Sn−1

cos(y, tu)ĝa(tu) dν(u)dt. (2.3)

Now let φ be an even test function on R
n. Then

φ ∗ ga(x) =
∫
Rn

ga(x − y)φ(y)dy = 1

2

∫
Rn

φ(y)
(
ga(x − y) + ga(x + y)

)
dy.

Thus, using the above equality, Eq. (2.3) and since ĝa(x) = e−a2|x|2/2, we have

∫
Rn

‖x‖p φ ∗ ga(x) dx = 1

2

∫
Rn

φ(y)

∫
Rn

‖x‖p
(
ga(x − y) + ga(x + y)

)
dx dy

=
∫
Rn

φ(y)

∞∫
0

t−p−1
∫

Sn−1

cos(y, tu)e−t2a2/2 dν(u)dt dy.

We apply Fubini’s theorem to get

=
∞∫

0

t−p−1
∫

Sn−1

e−t2a2/2
∫
Rn

cos(y, tu)φ(y) dy dν(u)dt

=
∞∫

0

t−p−1
∫

Sn−1

e−t2a2/2φ̂(tu) dν(u)dt,

since φ is even. Letting a → 0 we get (1.1). �
Let us remark that in the above proposition the space X need not be a Banach space. In

other words, the existence of a Gaussian embedding of X into some Lp for p < 0, requires no
convexity for its unit ball.
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We will not need to consider the case p = 0 separately; this can always be handled by reducing
to the case p < 0. We refer the reader to [4] for a discussion of this case.

The following fact is very elementary but will be used repeatedly.

Proposition 2.3. Let X be a finite-dimensional normed space. Then the set of p so that X ∈ Ip

is closed.

Proof. Suppose q is a limit point of the set P = {p: X ∈ Ip}. If q � −dimX then the result
holds trivially by the definition of Ip. Suppose −dimX < q < 0; then q ∈ Ip by Lemma 1
of [6]. For q = 0 a modification of Theorem 6.4 of [4] gives the result. If q > 0 then the fact that
q ∈ Ip is well known (and follows from considerations of positive definite functions). �
3. Moment functions

In this section we will discuss moment functions of positive measurable functions on a mea-
sure space (Ω,μ) and of random variables.

We first record for future use:

Proposition 3.1. Let (Ω,μ) be a σ -finite measure space and suppose U is an open subset
of C

n. Let φ :Ω × C
n → C be a function such that for each (z1, . . . , zn) ∈ U the map ω �→

φ(ω, z1, . . . , zn) is measurable, and for each ω ∈ Ω the map (z1, . . . , zn) �→ φ(ω, z1, . . . , zn) is
holomorphic on U . Let

Φ(z1, . . . , zn) =
∫
Ω

∣∣φ(ω, z1, . . . , zn)
∣∣dμ(ω), (z1, . . . , zn) ∈ U .

Assume that for every compact subset K of U we have

sup
{
Φ(z1, . . . , zn): (z1, . . . , zn) ∈ K

}
< ∞.

Then

F(z1, . . . , zn) =
∫
Ω

φ(ω, z1, . . . , zn) dμ(ω)

defines a holomorphic function on U .

Let us assume for the moment, merely that μ is σ -finite. The distribution of f ∈ M(Ω,μ) is
the positive Borel measure νf on R defined by νf (B) = μ{ω: f (ω) ∈ B}. If f ∈ M(Ω,μ) and
f ′ ∈ M(Ω ′,μ′) we write f ≈ f ′ if f and f ′ have the same distribution, i.e. νf = νf ′ . We also
write f ⊗ f ′ for the function f ⊗ f ′(ω,ω′) = f (ω)f ′(ω′) in M(Ω × Ω ′,μ × μ′).

We say that f ∈ M(Ω,μ) is positive if μ{f � 0} = 0. In this case νf restricts to a Borel
measure on (0,∞), and we write f ∈ M+(Ω,μ).

Proposition 3.2. Let f ∈ M+(Ω,μ), and suppose f p is integrable for a < p < b. Define

F(z) =
∫

f z dμ, a < Re z < b.
Ω



N.J. Kalton, M. Zymonopoulou / Advances in Mathematics 227 (2011) 986–1018 993
Then, F is analytic on the strip a < Re z < b and

(i) if lim infp→b F (p) < ∞ then

lim
p→b

F (p) =
∫

f b dμ < ∞;

(ii) if lim infp→a F (p) < ∞ then

lim
p→a

F (p) =
∫

f a dμ < ∞;

(iii) if F can be extended to an analytic function on (α,β) where α � a < b � β then f p is
integrable for α < p < β and

F(z) =
∫
Ω

f z dμ, α < Re z < β.

Proof. The fact that F is analytic follows from Proposition 3.1. (i) and (ii) follow easily from
Fatou’s Lemma.

We now prove (iii). Let c be the supremum of all a < ξ < b such that f z is integrable on
(a, ξ) and

F(z) =
∫
Ω

f z dμ, a < Re z < ξ.

We will show that c = β. Then a similar argument for the left-hand side of the interval will
complete the proof.

Assume that c < β. The function f zχ{f �1} is integrable for a < Re z < β. Let

F0(z) =
∫

{f �1}
f z dμ, α < Re z < β.

Let F1(z) = F(z) − F0(z). Then

∫
{f >1}

f z(logf )m dμ = F
(m)
1 (z), α < Re z < c, m = 0,1,2, . . . .

Using Fatou’s Lemma, as z → c, we see that

∫
f c(logf )m dμ � lim inf

∫
f z(logf )m dμ = F

(m)
1 (c)
{f >1} {f >1}
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and hence there exists 0 < τ < β − c so that

∫
{f >1}

f c+t dμ =
∞∑

m=0

1

m!
∫

{f >1}
f c(logf )mtm dμ < ∞, 0 < t < τ.

It follows that

F1(z) =
∫

{f >1}
f z dμ, a < Re z < c + τ,

which implies that

F(z) =
∫
Ω

f z dμ, a < Re z < c + τ.

The latter contradicts the choice of c. �
We now recall the definitions and properties of some elementary random variables. Let γ be

a normalized Gaussian random variable. Then γ has the distribution of the function f (t) = t on
R with the measure (2π)−1/2e−x2/2. We will use (γk)

∞
k=1 to denote a sequence of independent

normalized Gaussians defined on some probability space.
It is known that if γ is a normalized Gaussian r.v. then for −1 < p < ∞, E(|γ |p) < ∞. We

define

G(z) = E
(|γ |z), −1 < Re z < ∞. (3.1)

It is in fact easy to give formulae for G,

G(z) = 1√
π

2z/2�
(
(z + 1)/2

) = 2−z/2 2�(z)

�(z/2)
, −1 < Re z < ∞. (3.2)

This uses the following important formula (see [14, p. 45])

�(z) = 2z−1

√
π

�(z/2)�
(
(z + 1)/2

)
, z 
= 0,−1,−2, . . . . (3.3)

It will be convenient to use G in later calculations.
We denote by ϕp a normalized positive p-stable random variable where 0 < p < 1, which is

characterized by

E
(
e−tϕp

) = e−tp , 0 < t < ∞.

From the formula

xz�(−z) =
∞∫

tz−1e−xt dt
0
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and analytic continuation it is easy to deduce that

Φp(z) := E
(
ϕz

p

) = �(−z/p)

p�(−z)
, −∞ < Re z < p. (3.4)

Finally, for 0 < p < 2 we use ψp to denote a normalized symmetric p-stable random variable
which is characterized by

E
(
eitψp

) = e−|t |p , −∞ < t < ∞.

It may be shown that ψp ≈ √
2ϕp/2 ⊗ γ so that

Ψp(z) = E
(|ψp|z) = 2z/2Φp/2(z/2)G(z), −1 < Re z < p.

Let us remark at this point that the functions G, Φp and Ψp are superfluous in that they can
each be expressed fairly easily in terms of the Gamma function. However it seems to us useful
to keep them separate in order to follow some of the calculations later in the paper.

We will need the following lemma later:

Lemma 3.3. Let γ1, . . . , γm be independent normalized Gaussian random variables, then if
Rew > −1,Re(w + z) > −m

E|γ1|w
(
γ 2

1 + · · · + γ 2
m

)z/2 = G(w)G(w + z + m − 1)

G(w + m − 1)
.

Proof. It is easy to calculate

E
(
γ 2

1 + · · · + γ 2
m

)z/2 = G(z + m − 1)

G(m − 1)
, Re z > −m.

Note that γ1(γ
2
1 + · · · + γ 2

m)−1/2 and (γ 2
1 + · · · + γ 2

m)1/2 are independent. Hence for Rew > −1

G(w) = E
(|γ1|w

) = E
(|γ1|w

(
γ 2

1 + · · · + γ 2
m

)−w/2)G(w + m − 1)

G(m − 1)
.

Thus

E
(|γ1|w

(
γ 2

1 + · · · + γ 2
m

)−w/2) = G(w)G(m − 1)

G(w + m − 1)
.

Finally, again using independence

E
(|γ1|w

(
γ 2

1 + · · · + γ 2
m

)z/2) = G(w)G(w + z + m − 1)

G(w + m − 1)
. �
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4. Mellin transforms and absolute norms

Let f be a complex-valued Borel function on (0,∞). Let Jf be the set of a ∈ R such that

∞∫
0

t−a
∣∣f (t)

∣∣dt

t
< ∞.

It is known that Jf is an interval (possibly unbounded) which may be degenerate (a single point)
or empty. If Jf 
= ∅ we define the Mellin transform of f by

Mf (z) =
∞∫

0

t−1−zf (t) dt, z ∈ Jf .

Then by Proposition 3.1, Mf is analytic on the interior of Jf (if this is nonempty). For the
general theory of the Mellin transform we refer to [17].

The following are some basic facts about the Mellin transform that will be used throughout
this article. The first part of the proposition is a Uniqueness theorem of the transformation.

Proposition 4.1.

(i) Suppose f , g are two Borel functions defined on (0,∞) and a ∈ Jf ∩ Jg. If Mf (a + it) =
Mg(a + it) for −∞ < t < ∞ then f (t) = g(t) almost everywhere.

(ii) Suppose f is a Borel function on (0,∞). Suppose E is an analytic function on the strip
a < Re z < b and that there exist a � c < d � b so that (c, d) ⊂ Jf and Mf (z) = E(z) for
c < Re z < d. Then (a, b) ⊂ Jf and Mf (z) = E(z) for a < Re z < b.

Proof. For (i) see [17, Theorem 4.3-4], while (ii) is a restatement of Lemma 4.5 for the measure
f (t) dt/t. �

Let N be a normalized absolute norm on R
2. Thus N is a norm satisfying N(0,1) =

N(1,0) = 1 and N(u,v) � N(s, t) whenever |u| � |s| and |v| � |t |. We define an analytic func-
tion of two variables by

FN(w, z) =
∞∫

0

t−z−1N(1, t)w+z dt, Re z < 0, Rew < 0.

For p < 0 the Mellin transform of N(1, t)p is given by

Mp,N(z) = FN(p − z, z), Re z < 0.

Notice that if N ′(s, t) = N(t, s) then FN ′(w, z) = FN(z,w). Thus Mp,N ′(z) = Mp,N(p − z) for
Re z < 0.
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For the special case of the �∞-norm we define

F∞(w, z) =
∞∫

0

t−z−1 max{1, t}w+z dt = −1

z
− 1

w
, Re z < 0, Rew < 0. (4.1)

We write

Mp,∞(z) = p

z(z − p)
, Re z < 0. (4.2)

The following lemma is an immediate deduction from the Mean Value Theorem:

Lemma 4.2. Suppose w ∈ C. Then:∣∣(1 + t)w − 1
∣∣ � |w|2Rew−1t � 22|w|t, 0 � t � 1, (4.3)

and ∣∣∣∣1

2

(
(1 + t)w + (1 − t)w

) − 1

∣∣∣∣ � |w|(|w| + 1
)
2Rew−2t2 � 23|w|t2, 0 � t � 1/2. (4.4)

In view of Lemma 4.2 we define

F̃N (w, z) =
∞∫

0

t−z−1(N(1, t)w+z − max{1, t}w+z
)
dt

on the region {(w, z): Rew < 1, Re z < 1}. Then applying analytic continuation we have

F̃N (w, z) = FN(w, z) + 1

w
+ 1

z
.

The following lemma is immediate, using Proposition 3.1 and Eqs. (4.3), (4.4):

Lemma 4.3. Suppose 1 � r, s < ∞ and N is a normalized absolute norm satisfying the estimates

N(1, t)r � 1 + Ctr , 0 � t � 1,

and

N(t,1)s � 1 + Cts, 0 � t � 1.

Then F̃N extends to an analytic function of (w, z) on the region S = {(w, z): Rew < s,

Re z < r}.

This lemma allows us to define FN(w, z) when Rew < s, Rew < r and w,z 
= 0. We may
then extend the definition of Mp,N(z) to the case p < r and 0 < Re z < p; then Mp,N is an
analytic function on this strip.

The following proposition explains our interest in the function FN.



998 N.J. Kalton, M. Zymonopoulou / Advances in Mathematics 227 (2011) 986–1018
Proposition 4.4. Let X and Y be two normed spaces and let Z = X ⊕N Y . If x ∈ X ⊂ Z and
y ∈ Y ⊂ Z with ‖x‖,‖y‖ 
= 0 then

∞∫
0

t−z−1‖x + ty‖w+z dt = FN(w, z)‖x‖w‖y‖z, Rew,Re z < 0. (4.5)

Proof. Assuming ‖x‖,‖y‖ 
= 0, we observe that

∞∫
0

t−z−1‖x + ty‖w+z dt = ‖x‖w+z

∞∫
0

t−1−zN
(
1, t‖y‖/‖x‖)w+z

dt

= ‖x‖w‖y‖z

∞∫
0

t−1−zN(1, t)w+z dt. �

Let us recall the Euler Beta function:

B(w,z) =
1∫

0

xw−1(1 − x)z−1 dx = �(w)�(z)

�(w + z)
, Rew,Re z > 0.

Making the substitution x = (1 + t)−1 we get the alternative formula:

B(−w,−z) =
∞∫

0

t−z−1(1 + t)w+z dt, Rew,Re z < 0. (4.6)

Hence if u,v > 0 and Rew,Re z < 0, we have

∞∫
0

t−z−1(αp + βptp
)(w+z)/p

dt = 1

p
αwβzB(−w/p,−z/p). (4.7)

In particular if N(s, t) = (|s|q +|t |q)1/q is the �q -norm we have an explicit formula for Fq = FN

Fq(w, z) = 1

q
B(−w/q,−z/q), Rew,Re z < 0. (4.8)

As before we regard (4.8) as the definition of Fq when Rew < q , Re z < q and w,z 
= 0. Then
for p < 0 we can define

Mp,q(z) = 1

q
B

(
(z − p)/q,−z/q

)
, Re z < 0. (4.9)

If 0 < p < q the same definition gives an analytic function on 0 < Re z < p.
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Lemma 4.5. Suppose 1 � r, s < ∞ and N is a normalized absolute norm satisfying the estimates

N(1, t)r � 1 + Ctr , 0 � t � 1,

and

N(t,1)s � 1 + C′t s , 0 � t � 1.

Then the function (w, z) �→ FN(w, z)/F2(w, z) extends to a holomorphic function on the region
{(w, z): Rew < min{s,2}, Re z < min{r,2}}.

Thus for p < 0, z �→ Mp,N(z)/Mp,2(z) extends to an analytic function on the strip {z: p −
min{s,2} < Re z < min{r,2}}.

Proof. This follows directly from the definition of F2 and Lemma 4.2. �
Lemma 4.6. For Re z,Rew < 0 and Re(w + z) > −1 we have

1

2

∞∫
0

t−z−1(|1 + t |w+z + |1 − t |w+z
)
dt = G(w + z)F2(w, z)

G(w)G(z)
.

Proof. Let

Q(w,z) = 1

2

∞∫
0

t−z−1(|1 + t |w+z + |1 − t |w+z
)
dt.

Let γ1, γ2 be two normalized independent Gaussian random variables on some probability space.
Then by (3.1)

E
(|γ1 + tγ2|w+z

) = (
1 + t2) (w+z)

2 G(w + z), Re(w + z) > −1.

Hence using (4.6) and (4.8) we have

∞∫
0

t−z−1
E

(|γ1 + tγ2|w+z
)
dt = G(w + z)F2(w, z).

Note that the function t−z−1|γ1 + tγ2|w+z is integrable on the product space as long as
Re z,Rew < 0 and Re(w + z) > −1. Thus we can apply Fubini’s theorem and a change of
variables t |γ2| = s|γ1| to obtain

G(w + z)F2(w, z) = E

( ∞∫
t−z−1|γ1 + tγ2|w+z dt

)

0
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= 1

2
E

( ∞∫
0

t−z−1(∣∣|γ1| + t |γ2|
∣∣w+z + ∣∣|γ1| − t |γ2|

∣∣w+z)
dt

)

= E
(
Q(w,z)|γ1|w|γ2|z

)
.

Then using (3.1) the lemma follows. �
Lemma 4.7. Let (Ω,μ) be a σ -finite measure space and suppose f,g ∈ M(Ω,μ). Then if
w,z ∈ C are such that Rew,Re z < 0 and∫

Ω

|f |Rew|g|Re z dμ < ∞

we have

∞∫
0

t−z−1
∫
Ω

(
f 2 + t2g2)w+z

dμ = F2(w, z)

∫
Ω

|f |w|g|z dμ. (4.10)

Further, if Re(w + z) > −1 we have

∞∫
0

t−z−1
∫
Ω

(|f + tg|w+z + |f − g|w+z
)
dμdt

= G(w + z)

G(w)G(z)
F2(w, z)

∫
Ω

|f |w|g|z dμ. (4.11)

Proof. We first use Tonelli’s theorem for u = Rew and v = Re z. Then by (4.7) and (4.8) we
have

∞∫
0

t−1−v

∫
Ω

(
f 2 + t2g2)u+v

dμ = F2(u, v)

∫
Ω

|f |u|g|v dμ,

where both integrals converge. Then applying Fubini’s theorem we get (4.10). The proof of (4.11)
is precisely similar using Lemma 4.6. �

Suppose (Ω,μ) is a probability space and h is a symmetric function in Lp(Ω,μ) where
p > 0. In the following lemmas we show how to compute the Mellin transform of the function
t �→ ‖1 + th‖p − max{1, t}p.

Lemma 4.8. Let (Ω,μ) be a probability space and suppose h ∈ M(Ω,μ). Suppose −1 < a <

0 < b < 2 and that ∫ (|h|a + |h|b)dμ < ∞.
Ω
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Let

H(z) =
∫
Ω

|h|z dμ, a < Re z < b.

Then

E(w,z) =
∞∫

0

t−z−1
∫
Ω

1

2

(|1 + th|w+z + |1 − th|w+z − 2 max
{
1, t |h|}w+z)

dμdt

defines a holomorphic function on the region U = {(w, z): a < Re(w + z), −1 < Rew < 2,

a < Re z < b} and

E(w,z) =
(

G(w + z)F2(w, z)

G(w)G(z)
+ 1

w
+ 1

z

)
H(z), (4.12)

when (w, z) ∈ U , Rew > −1, w,z 
= 0.

Proof. For t > 0 and w,z ∈ C, we consider

ϕ(t,w, z) = t−z−1(|1 + t |w+z + |1 − t |w+z − 2 max{1, t}w+z
)
.

Let u = Rew, v = Re z. Then by Lemma 4.2 we have∣∣ϕ(t,w, z)
∣∣ � 23|w+z|t1−v, 0 � t � 1/2,

and ∣∣ϕ(t,w, z)
∣∣ � 23|w+z|tu−3, 2 � t < ∞.

For 1/2 � t � 2 we have the estimates∣∣ϕ(t,w, z)
∣∣ � 21+|v|2u+v+2, u + v � 0,

and ∣∣ϕ(t,w, z)
∣∣ � 23+|v||1 − t |u+v, u + v < 0.

Thus if v < 2, u < 2, u + v > −1 we have a very crude estimate:

∞∫
0

∣∣ϕ(t,w, z)
∣∣dt � 23|w+z|

(
1

2 − u
+ 1

2 − v

)
+ 24+|v| 1

u + v + 1
.

Now

t−z−1(|1 + th|w+z + |1 − th|w+z − 2 max
{
1, t |h|}w+z) = |h|1+zϕ

(
t |h|,w, z

)
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and so

∞∫
0

∫
Ω

∣∣t−z−1(|1 + th|w+z + |1 − th|w+z − 2 max
{
1, t |h|}w+z)∣∣dμdt

= H(v)

∞∫
0

∣∣ϕ(t,w, z)
∣∣dt.

Combining these estimates shows that we have the conditions of Proposition 3.1 for the region
U and so E defines a holomorphic function on U .

For (w, z) ∈ U and Rew,Re z < 0 we can use Lemma 4.6 to show that

∞∫
0

t−z−1
∫
Ω

1

2

(|1 + th|w+z + |1 − th|w+z
)
dμdt = G(w + z)F2(w, z)

G(w)G(z)

∫
Ω

|h|z dμ

and

∞∫
0

t−z−1
∫
Ω

max
{
1, t |h|}w+z

t =
(

− 1

w
− 1

z

)∫
Ω

|h|z dμ.

Since the right-hand side of (4.12) extends to an analytic function in U , (4.12) holds for all
(w, z) ∈ U with w,z 
= 0. �
Lemma 4.9. Let (Ω,μ) be a probability space and suppose h ∈ M(Ω,μ). Suppose −1 < a <

0 < b < 2 and that

∫
Ω

(|h|a + |h|b)dμ < ∞.

Then

E0(w, z) =
∞∫

0

t−z−1
∫
Ω

(
max{1, th}w+z − max{1, t}w+z

)
dμdt

defines an analytic function on the region U0 = {(w, z): a < Re(w + z), Rew < 0, Re z < b}.
Furthermore

E0(w, z) =
(

1

w
+ 1

z

)(
1 − H(z)

)
, (w, z) ∈ U0. (4.13)
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Proof. Let u = Rew and v = Re z. Then if s > 0 we have

∞∫
0

t−1−v
∣∣max{1, st}w+z − max{1, t}w+z

∣∣dt �
∞∫

1/s

su+vt−1+u dt +
∞∫

1

t−1+u dt

� sv + 1

|u| .

Hence

∞∫
0

t−1−v

∫
Ω

∣∣max{1, th}w+z − max{1, t}w+z
∣∣dμdt � 1

|u|
(
H(v) + 1

)
.

Again Proposition 3.1 gives that E0 defines a holomorphic function on U0.

If in addition Re z < 0 we can compute

∞∫
0

t−z−1
∫
Ω

max{1, th}w+z dμdt = −H(z)

(
1

w
+ 1

z

)

and

∞∫
0

t−z−1
∫
Ω

max{1, t}w+z dμdt = −
(

1

w
+ 1

z

)
.

As before analytic continuation gives (4.13) throughout U0. �
Combining the preceding lemmas we have the following:

Proposition 4.10. Let (Ω,μ) be a probability space and suppose h ∈ M(Ω,μ) is a symmetric
random variable. Suppose −1 < a < 0 < b < 2 and that

∫
Ω

(|h|a + |h|b)dμ < ∞.

Let

H(z) =
∫
Ω

|h|z dμ, a < Re z < b.

Suppose 0 < p < b is such that H(p) = 1. Then the Mellin transform of t �→ ∫
Ω

(|1 + th|p −
max{1, t}p) dμ is given by
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∞∫
0

t−z−1
∫
Ω

(|1 + th|p − max{1, t}p)
dμdt = G(p)Mp,2(z)H(z)

G(p − z)G(z)
+ p

z(p − z)
, (4.14)

for a < Re z < min{b,p + 1}.

Let us remark that, since H(0) = H(p) = 1, the right-hand side of (4.14) has removable
singularities at z = 0 and z = p.

Proof of Proposition 4.10. Since the right-hand side is analytic in the strip a < Re z <

min{b,p +1} it follows from Proposition 4.1 that it is necessary only to establish equality for the
strip p < Re z < min{b,p + 1}. In this case −1 < Re(p − z) < 0 and so (p − z, z) ∈ U ∩ U0 as
these sets are defined in Lemmas 4.8 and 4.9. Since h is symmetric we can rewrite the left-hand
side of (4.14) in the form

∞∫
0

t−z−1
∫
Ω

1

2

(|1 + th|p + |1 − th|p − 2 max{1, t}p)
dμdt.

Then combining Lemmas 4.8 and 4.9 we get the conclusion. �
This proposition can be extended by an approximation argument to the case when a = 0 and

b = p; we will not need this so we simply state the result:

Proposition 4.11. Let (Ω,μ) be a probability space and suppose h ∈ Lp(Ω,μ), with ‖h‖p = 1,

where 0 < p < 2. Let

H(z) =
∫
Ω

|h|z dμ, a < Re z < b.

Suppose 0 < p < b is such that H(p) = 1. Then the Mellin transform of t → ∫
Ω

|1 + th|p −
max{1, t}p dμ is given by

∞∫
0

t−z−1
∫
Ω

(|1 + th|p − max{1, t}p)
dμdt = G(p)Mp,2(z)H(z)

G(p − z)G(z)
+ p

z(p − z)
,

for 0 < Re z < p.

5. Embedding X ⊕N Y into Lp

Proposition 5.1. Let X, Y be two non-trivial normed spaces, with dimX = m and dimY = n,
and suppose N is a normalized absolute norm on R

2. Suppose T :X ⊕N Y → M(Ω,μ) is
a 1-Gaussian embedding into Lp(Ω,μ) where −(n + m) < p < 0. Suppose x1, . . . , xm ∈ X

and y1, . . . , yn ∈ Y are linearly independent, and suppose ξ = ∑m
γjxj and η = ∑n

γ ′yj
j=1 j=1 j
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are independent Gaussian processes of full rank with values in X and Y respectively. Then for
max{−n,p} < Re z < min{0,p + m} we have:

∫
Ω

(
m∑

j=1

(T xj )
2

) p−z
2

(
n∑

j=1

(T yj )
2

) z
2

dμ = Mp,N(z)

Mp,2(z)
E‖ξ‖p−z

E‖η‖z. (5.1)

Proof. By assumption we have

E‖ξ + tη‖p =
∫
Ω

(
m∑

j=1

(T xj )
2 + t2

n∑
j=1

(T yj )
2

)p/2

dμ, t > 0.

Hence if max{−n,p} < Re z < min{0,p + m} we have

∞∫
0

t−z−1
E‖ξ + tη‖p dt =

∫
Ω

∞∫
0

t−z−1

(
m∑

j=1

(T xj )
2 + t2

n∑
j=1

(T yj )
2

)p/2

dμ

and both sides are integrable. Notice that, in particular, it follows that
∑m

j=1(T xj )
2 > 0 and∑n

j=1(T yj )
2 > 0, μ-almost everywhere.

Now for real max{n,−p} < u < min{0,p + m}, using Tonelli’s theorem and (4.5),

∞∫
0

t−u−1
E‖ξ + tη‖p dt = E

∞∫
0

t−u−1N(ξ, tη)p dt

= FN(p − u,u)E‖ξ‖p−u‖η‖u

= FN(p − u,u)E‖ξ‖p−u
E‖η‖u,

since ξ and η are independent. We repeat the calculation replacing u by complex z and apply
Fubini’s theorem. Then

∞∫
0

t−z−1
E‖ξ + tη‖p dt = Mp,N(z)E‖ξ‖p−z

E‖η‖z,

for max{−n,p} < Re z < min{0,p+m}. Hence (first for real z, using Tonelli’s theorem and then
for the general case), by Lemma 4.7 we get

Mp,N(z)E‖ξ‖p−z
E‖η‖z = Mp,2(z)

∫
Ω

(
m∑

j=1

(T xj )
2

) p−z
2

(
n∑

j=1

(T yj )
2

) z
2

dμ,

which proves (5.1). �
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We shall say that an embedding T :X → M(Ω,μ) is isotropic if T x ≈ T x′ whenever ‖x‖ =
‖x′‖ = 1. We will say that it is f -isotropic if f is a Borel function on some σ -finite Polish
measure space (K, ν) and T x ≈ f for every x ∈ X with ‖x‖ = 1. For 0 < p < 2, T is a p-
stable embedding if T x ≈ ψp whenever ‖x‖ = 1. If X embeds into Lp then there is a p-stable
embedding of X into M(Ω,μ), where μ is a probability measure.

Proposition 5.2. Let X,Y be two normed spaces, with dimX = m and dimY = n, and sup-
pose N is a normalized absolute norm on R

2. Suppose T :X ⊕N Y → M(Ω,μ) is a p-stable
embedding where p > 0. Then for any non-zero x ∈ X and y ∈ Y and −1 < Re(w + z) <

Rew,Re z < 0, we have∫
Ω

|T x|w|Ty|z dμ = FN(w, z)G(w)G(z)Φp/2((w + z)/2)

F2(w, z)
‖x‖w‖y‖z. (5.2)

Proof. If f ∈ X ⊕N Y we have∫
Ω

|Tf |z dμ = Ψp(z)‖f ‖z, Re z > −1.

Now consider ξ = γ1x and η = γ2y where γ1, γ2 are normalized independent Gaussian random
variables. Then

E

∫
Ω

|T ξ + tT η|z dμ = Ψp(z)E‖ξ + tη‖z.

If −1 < Re(w + z) < Rew, Re z < 0, then by Fubini’s theorem, Proposition 4.4 and (3.2) (first
for real w,z using Tonelli’s theorem as in Proposition 5.1), we have that

∞∫
0

t−z−1
E‖ξ + tη‖w+z dt =

∞∫
0

t−z−1
EN(ξ, tη)w+z dt

= FN(w, z)E‖ξ‖w
E‖η‖z

= FN(w, z)G(w)G(z)‖x‖w‖y‖z. (5.3)

On the other hand, γ1, γ2 are Gaussian r.v.

∞∫
0

t−z−1
E

∫
Ω

|T ξ + tT η|w+z dμdt = G(w + z)

∫
Ω

∞∫
0

t−z−1((T x)2 + t2(T y)2)z/2
dt dμ

and by Lemma 4.7 the latter is equal to

= G(w + z)F2(w, z)

∫
Ω

|T x|w|Ty|z dμ. (5.4)

Then Eq. (5.2) follows from (5.3), (5.4) and the fact that Ψp(z) = Φp/2(z/2)G(z). �
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Theorem 5.3. Let X, Y be two non-trivial finite-dimensional normed spaces with dimensions
m and n respectively. Suppose that −(n + m) < p � 1 � r, s � 2 and that N is a normalized
absolute norm on R2 satisfying estimates of the type

N(1, t)r � 1 + Ctr , t > 0, (5.5)

and

N(t,1)s � 1 + C′t s , t > 0. (5.6)

If X ⊕N Y ∈ Ip then X ∈ Iq whenever p − r � q � min{s,p +n} and Y ∈ Iq whenever p − s �
q � min{r,p + m}.

Proof. It suffices to consider the case of Y and to prove the result if p − s < q < min{r,p + m}.
Then the limiting case follows by Proposition 2.3. We will treat the cases p < 0, p = 0 and
0 < p � 1 separately.

Case 1: Let p < 0. The space X ⊕N Y embeds into Lp so we can consider a 1-Gaussian
embedding T :X ⊕N Y → Lp(Ω,μ). By Proposition 5.1, for any linearly independent sets
x1, . . . , xm ∈ X and y1, . . . , yn ∈ Y Eq. (5.1) holds in the strip max{−n,p} < Re z < min{p +
m,0}. However by Lemma 4.5 the function Mp,N(z)/Mp,2(z) can be analytically continued to
the strip p − s < Re z < r. Thus the right-hand side of (5.1) can be analytically continued to
the strip max{p − s,−n} < Re z < min{r,p + m}. By Proposition 3.2 this implies that (5.1)
holds (and both sides are integrable) in the strip max{p − s,−n} < Re z < min{r,p + m}. If
max{p − s,−n} < q < min{r,p + m} and q 
= 0, we fix some ξ so that E‖ξ‖p−q = 1. Let
f = (

∑m
j=1(T xj )

2)1/2. Then

M2,N (q)

M2,p(q)
E‖η‖q =

∫
Ω

(
n∑

j=1

(T yj )
2

)q/2

f p−q dμ.

In particular M2,N (q) cannot vanish and T is a Gaussian embedding of Y into Lq(f p−q dμ).

If q = 0 we note that our proof yields Y ∈ Iε for sufficiently small ε > 0 and so Y ∈ I0.

It follows that Y ∈ Iq for p − s � q � min(r,p + m). (Our convention implies Y ∈ Iq if
q � −n.)

Case 2: Let p = 0. In this case X ⊕N Y ∈ Ip for all p < 0 and the result follows from Case 1.

Case 3: Now we assume that 0 < p � 1. Again we prove the result for Y . If m � 2 then
X ⊕N Y ∈ I0 ([4] and [8]) and by Case 2 we have that Y ∈ Ir . Thus we only consider the case
m = 1. Suppose that X ⊕N Y embeds into M(Ω,μ) via a p-stable embedding T . We fix x ∈ X

with ‖x‖ = 1 and p < q < min{p + 1, r}; let f = |T x|. Fix a > 0 so that q + a < p + 1. Then
0 < a < 1 and so by (5.2) we have∫

Ω

|Ty|zf a−1 dμ = FN(a − 1, z)G(a − 1)G(z)Φp/2((z + a − 1)/2)

F2(a − 1, z)
‖y‖z, (5.7)

where y ∈ Y, as long as −a < Re z < 0. However FN(a − 1, z)/F2(a − 1, z) can be analytically
continued to the half-plane Re z < r (by Lemma 4.5). We also have that Φ((z + a − 1)/2) can
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be analytically continued to the half-plane Re z < p + 1 − a. Hence the right-hand side can be
analytically continued to the strip −1 < Re z < min(r,p + 1 − a). By Proposition 3.2 this means
that the left-hand side of (5.7) is integrable and equality holds for −1 < Re z < min{r,p+1−a}.
In particular ∫

Ω

|Ty|qf a−1 dμ = c‖y‖q, y ∈ Y,

where c is a positive constant. This implies the result, since Y ∈ Iq whenever p � q. �
The next result is known; it follows from Koldobsky’s Second Derivative test (Theorem 4.19

of [10]; see also [5]).

Theorem 5.4. Let N be a normalized absolute norm on R
2 such that

lim
t→0

N(1, t) − 1

t2
= 0.

Then if −∞ < p < 0 and X ⊕N R embeds into Lp we have dimX � 2 − p.

Note that the result of Theorem 5.4 can be extended for p ∈ (−∞,2). Here, we present only
the proof for p < 0.

Proof of Theorem 5.4. First we observe that Mp,N(z)/Mp,2(z) extends to an analytic function
on −p − 1 < Re z < 2 and that

lim
r→2

Mp,N(r)

Mp,2(r)
= 0. (5.8)

To see (5.8) we note that by definition, for 0 < r < 2 we have

MN,p(r) = −1

r
− 1

p − r
+

∞∫
0

t−1−r
(
N(1, t)p − max{1, t}p)

dt.

Fix any 0 < ε < 1 and let

δ = δ(ε) = sup
t�ε

N(1, t)p − 1

t2
.

Then ∣∣∣∣∣MN,p(r) + p

r(p − r)
−

∞∫
ε

t−1−r
(
N(1, t)p − 1

)
dt

∣∣∣∣∣ � δ

2 − r
.

It follows that

lim sup
r→2

(2 − r)Mp,N(r) � δ. (5.9)

Since limε→0 δ(ε) = 0 we obtain (5.8).
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Now suppose m = dimX > 2 − p and assume T :X ⊕N Y → M(Ω,μ) is a 1-Gaussian
embedding into Lp(Ω,μ), where dimY = 1. Let us fix ξ = ∑m

j=1 γjxj , an X-valued Gaussian
process of full rank and η = γ ′y where y ∈ Y has norm one and γ ′ is a Gaussian r.v. Then, if
f = (

∑m
j=1(T xj )

2)1/2 and g = |Ty|, by Proposition 5.1 we have

∫
Ω

f p−zgz dμ = Mp,N(z)

Mp,2(z)
G(z)E‖ξ‖p−z

for max{−1,p} < Re z < 0. The right-hand side can be analytically continued to max{−1,p} <

Re z < 2. By Eq. (5.9) we have

lim
r→2

∫
Ω

(g/f )rf p dμ = 0

which by Proposition 3.2 implies

∫
Ω

g2f p−2 dμ = 0

and this gives a contradiction. �
6. Examples

We begin this section with some technical results which will be needed later.

Lemma 6.1. Let X be a finite-dimensional normed space and suppose ξ = ∑m
j=1 γjxj is an

X-valued Gaussian process, where {γ1, . . . , γn} are independent normalized Gaussian random
variables and each xj 
= 0. Then given −n < u < 0 there is a constant C = C(ξ,u) so that

E‖x + ξ‖u � C, x ∈ X.

Proof. We consider the case when ξ is normalized so that E‖ξ‖u = 1. Let E be the linear span
of {x1, . . . , xn} and let P be a projection of X onto E. Then

E‖x + ξ‖u � ‖P‖−u
E‖Px + ξ‖u.

On E the distribution μξ is dominated by C0λ, where C0 is a constant depending on ξ and λ is
the Lebesgue measure on E. Hence

E‖Px + ξ‖u � C0

∫
‖e−Px‖�1

‖e − Px‖u dλ(e) + 1

and this is uniformly bounded. �
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Lemma 6.2. Let Z = X ⊕ Y be a finite-dimensional normed space with dimX = m and
dimY = n. Suppose ξ is a Z-valued Gaussian process of full rank. Let ξX , ξY be the projec-
tions of ξ onto X and Y respectively. Then

E‖ξX‖u‖ξY ‖v < ∞, −m < u, −n < v. (6.1)

Proof. Note that ξX and ξY are not necessarily independent. However ξX and ξY are of full rank
in X and Y respectively.

If either u = 0 or v = 0 the lemma holds trivially. If either u > 0 or v > 0 we may use Hölder’s
inequality. Suppose v > 0. Pick a > 1 so that au > −m and then suppose 1/a + 1/b = 1. Then

E‖ξX‖u‖ξY ‖v �
(
E‖ξX‖au

)1/a(
E‖ξY ‖bv

)1/b
< ∞.

Now suppose u,v < 0. We can write ξ in the form

ξ =
m+n∑
j=1

(xj + yj )γj

where yj = 0 for n+1 � j � m+n. Let E0 be the conditional expectation onto the σ -algebra Σ

generated by {γ1, . . . , γn}. Then ξY is Σ -measurable. Then, by Lemma 6.1, since ξX has rank m,
there is a constant C such that

E0‖ξX‖u‖ξY ‖v = ‖ξY ‖v
E0‖ξX‖u � C‖ξY ‖v

and so (6.1) holds. �
Lemma 6.3. Suppose 1 � p < 2. There exists a positive random variable h with

E
(
hz

) = p

2�(p/2)

�((p − z)/2)�(−z/2)

�(−z/p)
, Re z < 2,

or

E
(
hz

) = 2z/2G(p − 1 − z)

G(p − 1)Φp/2(z/2)
, Re z < 2.

Proof. Consider f ≈ ϕ
1

2p

1/p. Then by (3.4)

E
(
f z

) = p�(−z/2)

�(−z/2p)
, Re z < 2.

If f is defined on some probability space (Ω,P) then we can consider f as a random variable
with respect to a new probability measure

dP
′ = �(1/2) |f |−p dP.
p�(p/2)
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If we denote by g this random variable we have

E
(
gz

) = �(1/2)

�(p/2)

�((p − z)/2)

�((p − z)/2p)
, Re z < p + 2.

Let h ≈ 21/pf ⊗ g. Then for Re z < 2 and by using (3.3) we have

E
(
hz

) = p�(1/2)

2�(p/2)

�(−z/2)�((p − z)/2)

2−1−z/p�(−z/2p)�((p − z)/2p)

= p

2�(p/2)

�(−z/2)�((p − z)/2)

�(−z/p)
.

The second equation follows immediately from (3.2) and (3.4). �
Lemma 6.4. Suppose m ∈ N, and {p,q, r} are such that q > 0 and p + m < q < r � 2. There
exists a positive random variable g = g(m,p,q, r) such that

E
(
gz

) = 2z/2G(p + m − 1 − z)Φr/2(z/2)Φr/2((p − z)/2)

G(p + m − 1)Φr/2(p/2)Φq/2(z/2)
, p − r < Re z < p.

Here we adopt the convention that Φ1(z) ≡ 1.

Proof. We first use Lemma 6.3 to find a positive random variable f1 such that

E
(
f z

1

) = 2z/2G(q − 1 − z)

G(q − 1)Φq/2(z/2)
, Re z < q.

Now, if p + m < q we let f2 to be distributed as t−1/2 with respect to the Beta distribution

dμ = t (p+m)/2−1(1 − t)(q−p−m)/2−1

B((p + m)/2, (q − p − m)/2)
dt

on [0,1]. Then

E
(
f z

2

) = �((p + m − z)/2)�(q/2)

�((q − z)/2)�((p + m)/2)
, Re z < p + m,

and using (3.2) the latter can be rewritten as

E
(
f z

2

) = G(p + m − 1 − z)G(q − 1)

G(q − 1 − z)G(p + m − 1)
, Re z < p + m.

We write f2 ≡ 1 if p + m = q. If r < 2 we define f3 ≈ ϕ
1/2
r/2 so that

E
(
f z

) = Φr/2(z/2), Re z < r.
3
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If r = 2 we set f3 ≡ 1. If f3 is defined on some probability space (K,P) we define f4 as the
random variable f −1

3 with respect to the measure f
p

3 dP/E(f
p

3 ) so that f4 ≡ 1 if r = 2. If r < 2
we have

E
(
f z

4

) = Φr/2((p − z)/2)

Φr/2(p/2)
, p − r < Re z.

We let g ≈ f1 ⊗ f2 ⊗ f3 ⊗ f4. �
Lemma 6.5. Suppose m ∈ N, and {p,q, r} are such that q > 0 and p+m < q < r � 2. Suppose
Y ∈ Iq . Then there is an h-isotropic embedding of Y into M(Ω,μ) where (Ω,μ) is a probability
space where h is symmetric and

E
(|h|z) = 2z/2G(p + m − 1 − z)G(z)Φr/2(z/2)Φr/2((p − z)/2)

G(p + m − 1)Φr/2(p/2)

for −1 < Re z < p + m.

Proof. Since Y ∈ Iq there is a ψq -isotropic embedding S of Y into some M(Ω1,μ1) (where
(Ω1,μ1) is a probability measure space). Let Ty = 2−1/2gSy where g is independent of S(Y )

and distributed as in Lemma 6.4. Then T is an h-isotropic embedding where h is symmetric and

E
(|h|z) = 2−z/2Ψq(z)E

(
gz

) = Φq/2(z/2)G(z)E
(
gz

)
, −1 < Re z < p + m. �

Let us remark that the case p = 0, m = 1 and r = 2 gives E(|h|z) = 2z/2G(z)G(−z) which
means that h is symmetric 1-stable, i.e. has the Cauchy distribution.

Theorem 6.6. Suppose 1 � q, r � 2. Suppose X = �m
2 and Y ∈ Iq . If p � q − m then

X ⊕r Y ∈ Ip.

Proof. It is enough to consider the case p + m > 0. Also, the result holds trivially if r � q since
then X ⊕r Y ∈ Ir ⊂ Ip. So we may also assume that r > q. Hence p − r < q − 1 − r < −1.

We treat three separate cases as p > 0, p < 0 or p = 0.

Case 1: Let p > 0. In this case we have m = 1 and identify X with R. In view to Lemma 6.5
we construct an h-isotropic embedding S :Y → M(Ω,μ) where h is symmetric and

H(z) := E
(|h|z) = G(p − z)G(z)Φr/2(z/2)Φr/2((p − z)/2)

G(p)Φr/2(p/2)
(6.2)

for −1 < Re z < p + 1. It is important to observe that H(p) = 1 and

H(z) = G(p − z)G(z)Mp,r (z)

G(p)Mp,2(z)
(6.3)

for −1 < Re z < p + 1.
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We define T : R ⊕r Y → M(Ω,μ) by T (α, y) = α + Sy. To verify that T is a standard
isometry we only need to show (considering h as a function on (Ω,μ)):∫

Ω

|1 + th|p dμ = (
1 + t r

)p/r
, 0 < t < ∞. (6.4)

To establish (6.4) we call Proposition 4.10. By (4.14) and (6.3) we have

∞∫
0

t−z−1
∫
Ω

(|1 + th|p − min{1, t}p)
dμdt = Mp,r(z) + p

(p − z)z

for −1 < Re z < p + 1.

On the other hand, by (4.7), (4.8) and (4.9)

∞∫
0

t−z−1((1 + t r
)(w+z)/r − max{1, t}w+z

)
dt = Fr(w, z) − F∞(w, z),

for Rew,Re z < 0 and by analytic continuation this holds (and the right-hand side is holomor-
phic) for Rew,Re z < r. Thus using (4.2)

∞∫
0

t−z−1((1 + t r
) p

r − max{1, t}p)
dt = Mp,r(z) + p

z(p − z)
, 0 < Re z < p,

and by the uniqueness property of the Mellin transform, Proposition 4.1, we conclude that∫
|1 + th|p dμ = (

1 + t r
)p/r

, 0 < t < ∞,

which proves the theorem for p > 0.

Case 2: Let p < 0 and let dimY = n. This is quite similar but now we deal with Gaussian em-
beddings rather than standard embeddings. First we note that there is an f -isotropic embedding
of �m

2 into M(Ω,μ), where (Ω,μ) is a probability measure space and f is symmetric with

∫
|f |z dμ = G(z)G(m − 1)

G(z + m − 1)
, −m < Re z < ∞.

Indeed let {γ1, . . . , γm} be independent normalized Gaussian random variables and let

R(a1, . . . , am) = a1γ1 + · · · + amγm

(γ 2
1 + · · · + γ 2

m)1/2
.

We now use Lemma 3.3. We consider h = h(m,p,q, r) as in Lemma 6.5. Then

H(z) := E
(|h|z) = G(p + m − 1 − z)G(z)Φr/2(z/2)Φr/2((p − z)/2)
G(p + m − 1)Φr/2(p/2)
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for −1 < Re z < p + m. Note that by (3.4) and (4.8)

H(z) = G(p + m − 1 − z)G(z)Fr(p − z, z)

G(p + m − 1)F2(p − z, z)
. (6.5)

We may then suppose that S :Y → M(Ω,μ) is an h-isotropic embedding such that R(X) and
S(Y ) are independent. Finally we define T :X ⊕r Y → M(Ω,μ) by

T (x + y) = θ(Rx + Sy)

where θ > 0 is chosen so that

θp = G(p + m − 1)

G(m − 1)
.

We will show that T is a 1-Gaussian embedding. To do this we suppose that ξ is an X⊕r Y -valued
Gaussian process of full rank. Let P :X⊕r Y → X and Q :X⊕r Y → Y be the natural projections
onto X and Y respectively. Let ξX = Pξ and ξY = Qξ. Then ξX has full rank on X and ξY on Y.

In particular we can write ξ = ∑m+n
j=1 (xj + yj )γj where yj = 0 for n + 1 � j � m + n, by

choosing an appropriate basis of Gaussian random variables.
For 0 < s < t we have

E‖ξX + tξY ‖p � E‖ξX + sξY ‖p � (s/t)pE‖ξX + tξY ‖p.

So, the function t �→ E‖ξX + tξY ‖p is continuous on (0,∞).

Similarly since ξX has full rank, {xn+1, . . . , xm+n} form a basis of X. This implies

m+n∑
j=n+1

|Rxj |2 � c2 > 0 a.e.

and thus, since p < 0

(
m+n∑
j=1

∣∣T (xj + tyj )
∣∣2

)p/2

� cp a.e.

We now may conclude, by the Lebesgue Dominated Convergence Theorem, that the map

t �→
∫
Ω

(
m+n∑
j=1

∣∣T (xj + tyj )
∣∣2

)p/2

dμ

is also continuous on (0,∞). We will show that

∫
Ω

(
m+n∑
j=1

∣∣T (xj + tyj )
∣∣2

)p/2

dμ = E‖ξX + tξY ‖p, 0 < t < ∞, (6.6)

by computing the Mellin transform of the left and the right side of the equality.
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By Lemma 6.2 we have

E‖ξX‖u‖ξY ‖v < ∞, −m < u, −n < v. (6.7)

Suppose x ∈ X and y ∈ Y are non-zero. Then for −1/2 < u,v < 0 we use Lemma 4.7 to
compute:

∞∫
0

∫
Ω

t−1−v
∣∣T (x + ty)

∣∣u+v
dμdt

= 1

2

∫
Ω

∞∫
0

t−1−v
(|T x + tT y|u+v + |T x − tT y|u+v

)
dt dμ

= G(u + v)F2(u, v)

G(u)G(v)

∫
Ω

|T x|u|Ty|v dμ.

Then by the definition of T , Eq. (6.5) and Lemma 3.3, the latter is equal to

G(m − 1)
θu+vG(u + v)F2(u, v)H(v)

G(u + m − 1)G(v)
‖x‖u‖y‖v < ∞.

The calculation can then be repeated for −1/2 < Rew,Re z < 0 to give

∞∫
0

∫
Ω

t−z−1
∣∣T (x + ty)

∣∣w+z
dμdt = G(m − 1)

θw+zG(w + z)F2(w, z)H(z)

G(w + m − 1)G(z)
‖x‖w‖y‖z.

Again calculating first with real u, v, using Tonelli’s theorem and since {γi} are Gaussian r.v.
we may compute the following integral for −1/2 < Re z, Rew < 0,

∞∫
0

t−z−1
∫
Ω

(
m+n∑
j=1

(
T (xj + tyj )

)2

)(w+z)/2

dμdt

= 1

G(w + z)
E

( ∞∫
0

t−z−1

( ∫
Ω

∣∣∣∣∣
m+n∑
j=1

γjT xj + tγjT yj

∣∣∣∣∣
w+z

dμ

)
dt

)
.

Then by Lemma 4.6, using (6.7) we have

= G(m − 1)
θw+zF2(w, z)H(z)

G(w + m − 1)G(z)
E

(∥∥∥∥∥
m+n∑
j=1

γ ′
j xj

∥∥∥∥∥
w∥∥∥∥∥

m+n∑
j=1

γ ′
j yj

∥∥∥∥∥
z)

= G(m − 1)
θw+zF2(w, z)H(z)

E
(‖ξX‖w‖ξY ‖z

)
. (6.8)
G(w + m − 1)G(z)
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Now the right-hand side of (6.8) extends to be holomorphic when −n < Re z < 0 and −m <

Rew < 0. Using Lemma 4.5 (twice) one obtains that

∞∫
0

∫
Ω

t−1−v

(
m+n∑
j=1

(
T (xj + tyj )

)2

)(u+v)/2

dμdt < ∞

when −m < u < 0 and −n < v < 0. This in turn means that the function

(w, z) �→
∞∫

0

∫
Ω

t−z−1

(
m+n∑
j=1

(
T (xj + tyj )

)2

)(w+z)/2

dμdt

is holomorphic for −m < Rew < 0 and −n < Re z < 0. Thus we have

∞∫
0

∫
Ω

t−z−1

(
m+n∑
j=1

(
T (xj + tyj )

)2

)(w+z)/2

dμdt

= G(m − 1)
θw+zF2(w, z)H(z)

G(z)G(w + m − 1)
E‖ξX‖w‖ξY ‖z

whenever −m < Rew < 0 and −n < Re z < 0. In particular by (6.5) we have that for
max{−n,p} < Re z < 0

∞∫
0

t−z−1
∫
Ω

(
m+n∑
j=1

(
T (xj + tyj )

)2

)p/2

dμdt = Mp,r(z)E‖ξX‖p−z‖ξY ‖z. (6.9)

On the other hand, for −1/2 < Rew, Re z < 0, using (4.8) we get that

∞∫
0

t−1−zE‖ξX + tξY ‖w+z dt = E

∞∫
0

t−z−1(‖ξX‖r + t‖ξY ‖r
)(w+z)/r

dt

= Fr(w, z)E‖ξX‖w‖ξY ‖z.

As before these calculations should be done first for real w,z to justify the use of Fubini’s theo-
rem. Since the right-hand side is holomorphic for −m < Rew < 0 and −n < Re z < 0, we again
use Lemma 4.5 to derive equality for (w, z) in the larger region. Hence the Mellin transform of
the right side of (6.6) is

∞∫
t−1−zE‖ξX + tξY ‖p dt = Mp,r(z)E‖ξX‖p−z‖ξY ‖z, (6.10)
0
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for max{−n,p} < Re z < 0. Comparing (6.9) and (6.10) we get (6.6). In particular

E‖ξ‖p =
∫
Ω

(
m+n∑
j=1

∣∣T (xj + yj )
∣∣2

)p/2

dμ,

which implies that T is a 1-Gaussian embedding.

Case 3: When p = 0 the result follows by showing that each space embeds into Lp for every
p < 0. �

The particular case p = 0 with r = 2 also follows if we consider Proposition 6.6 of [4].

Theorem 6.7. For any −∞ < p < 2 and any n � 3 − p there exists a normed space X of
dimension n such that X ∈ Is whenever s � p and X /∈ Is whenever s > p. We may take X =
�

1−[p]
2 ⊕r �

n−1+[p]
q where q = 1 + p − [p] and q < r � 2.

Proof. If 1 � p < 2 then q = p and X = �n
p. Then by [8] we have that X ∈ Is only if s � p (see

also the Introduction).
Let p < 1. Then by Theorem 6.6 if s � p then X ∈ Is , since q = m + p. Conversely, we

suppose that X ∈ Is . If n = 1 there is nothing to prove, so we may assume that n � 2. Then
n − 1 + [p] � 2 − p + [p] > 1. By Theorem 5.3, �

n−1+[p]
q ∈ Iα, where α � min{r, s + 1 − [p]}.

But q < r so �
n−1+[p]
q ∈ Is+1−[p]. Consequently, s + 1 − [p] � 1 + p − [p] which implies that

s � p. �
7. Note added in proof

We are sad to report that Nigel J. Kalton passed away on August 31, 2010. He is greatly missed
by his co-author, who wishes to acknowledge how much she benefited from her collaboration
with Nigel.
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