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Abstract

As a consequence of the exposition of Dixmier type traces in the book of A. Connes (1994) [2], we were
led to ask how general is this class of functionals within the space of all unitarily invariant functionals on
the corresponding Marcinkiewicz ideal M. In this paper we prove the surprising result that the set of all
Dixmier traces on M, coincides with the set of all fully symmetric functionals on this space.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

For a separable complex Hilbert space H, denote by w,(T), n € N, the singular values of
a compact operator 7 (the singular values are the eigenvalues of the operator |T'| = (T*T)/2
arranged with multiplicity in decreasing order). Let £2 denote the set of concave functions on R
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such that lim;_, . ¥ (t) = oo and lim,_, 4o ¥ (¢) = 0. Fixing v € £2, we define a Banach ideal
(My, |l - Ily) of compact operators in the algebra B(H) of all bounded linear operators on H by
setting

=1T: Ty := — T .
My 171y supw( )Zm ) <00

This ideal may be viewed as a noncommutative counterpart of the corresponding sequence space
My (N) of all sequences x = (x);2; such that

1 .,
Ix a1, =sgpm;xk < o0,

where x* denotes the decreasing rearrangement of the sequence (|x|);_, . Fixing an orthonormal
basis {3,}°>, in H, we may identify the space My (N) with the subspace Md of all diagonal
matrices x in My,

Let w be an arbitrary dilation-invariant state on L, (R). Consider a subspace in L (R) gener-
ated by all functions taking a constant value a,, = a_,, on the interval [n, n + 1), n € Z. This latter
subspace is isometrically isomorphic to £,, = £~ (N) and we still denote by w the restriction of w
on this subspace. In [3], under the assumption that

im v (21)
t—00 w([)

=1,

J. Dixmier constructed a non-normal trace (a Dixmier trace) on M., using the weight

Tro(T) = w Z“k() , 0<TeMy. (1)
w ) £ )

Motivated by this construction, the concept of fully symmetric functionals was introduced and
studied in [4-6]. In the setting of the sequence space My, (N) a positive functional ¢ € My, (N)*
is called fully symmetric if and only if ¢(x) < ¢(y) for any 0 < x, y € My (N) satisfying the
inequality

It is trivial that every Dixmier trace Tr,, restricted to the subspace M‘f// defines a normalized fully
symmetric functional on My, (N). It is also not difficult to see (e.g. [4, Theorem 4.5]) that every
fully symmetric functional ¢ € My (N)* naturally extends to a unitarily invariant trace on M.
The main result of this paper, Theorem 11, is the very surprising converse statement that
the extension of every fully symmetric functional ¢ € M, (N)* to M., coincides with some
Dixmier trace Tr,,. Furthermore, we completely characterize the subclass of all v+ € £2 for which
the formula (1) yields a Dixmier trace on M., for any dilation-invariant state « (see Theorem 8).
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Our main results can be seen as answering a very natural question which arises from the
discussion of Dixmier traces in the book of A. Connes [2]. We refer the reader to [2] for an
explanation of the remarkable relationship between the Dixmier traces, the Wodzicki residue and
geometry, both commutative and noncommutative.

We refer to [4,8,9] for general information concerning the relationship between traces on Ba-
nach ideals of compact operators and singular functionals on corresponding symmetric sequence
spaces. Our exposition is adjusted to treat general Marcinkiewicz spaces on semifinite von Neu-
mann algebras (the ideal M, is a special example of a Marcinkiewicz operator space) and thus
we consider function (not sequence) spaces My .

2. Preliminaries

Let Loo := L~ (0, 00) be the space of all bounded Lebesgue measurable functions on (0, co).
For a given ¥ € £2, we define the Marcinkiewicz space My, of real valued measurable func-
tions x on (0, co) by setting

t
flx]] sup ! / *(s)d
x||m, = — | x"(s)ds < o0.
e Y@
0

Marcinkiewicz spaces are an important example of symmetric (function) spaces and we refer for
a detailed exposition of this theory to [10]. Applications of Marcinkiewicz sequence, function
and operator spaces in noncommutative geometry are given in [1,2].

Definition 1. A positive linear functional ¢ on My is called fully symmetric if p(x) < ¢(y)
whenever 0 < x, y € My, are such that [; x*(s)ds < [y y*(s)ds forall t > 0.

Fully symmetric functionals were introduced in [4], where they were termed as “symmetric
functionals”.

Let us note that if ¢ is a fully symmetric functional on the sequence space My (N) it may
always be extended to a fully symmetric functional on My, by setting

@(x)=<p(< /x*(s)ds) ) ¥ >0,
1 n=1

n

and extending by linearity (see [4, Theorem 4.5]). The following result is established in [4, The-
orem 3.4].

Theorem 2. Let € £2. The Marcinkiewicz function space My, admits a non-trivial fully sym-
metric functional if and only if either

or

—0 y(t)
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For every fully symmetric ¢ € M;/‘j the following equality holds (see e.g. [4, proof of Proposi-
tion 2.3])

(s Losx) = p(x). @)

Here, o; is the dilation operator on the space of measurable functions on (0, co) defined by
the formula

osx(t):=x(t/s), s>0,1t>0.
Definition 3. A linear functional o € L% will be called a dilation-invariant state if
(i) >0,
(i) o) =1,

(iii) o(f) =w(osf) forevery f € Lo and s > 0.

The following result is very similar to [5, Lemma 3.4] and is given here only for convenience
of the reader.

Proposition 4. Let w satisfy (i) and (ii) of Definition 3 and let f € L, be such that w(f) =a
and such that either f —a <0 orelse f —a > 0. Then the following hold:

(i) o(fg) =w(flw(g), Vg € Loo;
(i) w(1/f) =1/w(f), if, in addition, 1/f € Leo.

Proof. It is sufficient to prove only (i) since (ii) is a special case of (i). Due to assumptions we
have

lo((f —a)g)| <o(lf —alliglles) = Elglloww(f —a)=0. O
3. Main results

Let Dy, be the linear span of all positive non-increasing functions from M, . Observe that
x € Dy ifandonly if x = y* — z*, for y, z € My,.

Lemma 5. Let ¢ be a fully symmetric functional on My. If x, y € Dy, are such that [ x(s) ds <
fé y(s)ds, for every t > 0 then o (x) < ().

Proof. Letx =u1 —up and y = vy — vp With ug, up, v1, v2 € My, being positive non-increasing
functions. We have

t t

ful(s)—uz(s)ds</v1(s)—vz(s)ds, vVt >0
0 0



3544 N.J. Kalton et al. / Advances in Mathematics 226 (2011) 3540-3549

and so
t '
/ul(s) + va(s)ds < / vi(s) +ux(s)ds, Vt=>0.
0 0

Since u1 4+ vz and vy + up are positive and non-increasing functions and ¢ is fully symmetric,
we have ¢ (u1 +v2) < @(v1 +uz) and p(x) < @(y). O

Theorem 6. Let w be a dilation-invariant state and suppose ¢ € £2. Then the following condi-
tions on w are equivalent:

(i) w(‘fp(gt))) =1forsomea > 0anda # 1.

(i) w ‘/]’p((“f))) =1foreverya > 0.

g’ (f)
(i) w( W(t)

Proof. We start with the observation that if (i) holds for some a > 0, then it also holds for 1/a.
Indeed, since f := v (at)/v¥(¢), t > 0 satisfies the assumption of Proposition 4 we have

( Y (@) )
¥ (ar)
and by the dilation invariance of w we obtain (i) for a replaced with 1/a.

(i) = (iii). We observe that for a suitable constant C = C(a) we have ¢ (¢) < C(at) for
all . Then by concavity of

at’(at) o Catw/(at) o Ca vY(at) — ()
Y@t Y@ a-1 Y@

Since w is a dilation-invariant state, we deduce that

(W (l)) Ca <¢f(at)—1/f(t)>_
w w =
v () a—1 v (1)

(iii) = (ii). Suppose a > 1. Then

Y (ar) <1 (a — Dy’ (1)
¥ (1) V()

(Vf(at))
Y1)

(w(at))
Y ()

and so

Since v is increasing this gives
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Now if @ < 1 we obtain the same result by the remarks at the beginning of the proof.
(i) = (i) is trivial. O

Definition 7. A dilation-invariant state w € LY is said to be a v-compatible state if and only if
the three equivalent conditions of Theorem 6 hold, i.e. if

w<¢(‘”))=1, forall a > 0. 3)
Y(t)

For many ¢ (e.g. if lim;_o v (2t)/v (t) = lim,_ o ¥ (2¢) /v (t) = 1) there is the case that
every dilation-invariant state is y-compatible. We next give a precise condition for this to happen.

Theorem 8. In order that every dilation-invariant state is vy -compatible it is necessary and
sufficient that for every € > 0 there exists a constant C = C(¢) so that

Yist) <Csy (), t>0,s>1. (4)

Proof. Assume (4) holds. Then for fixed ¢ > 0 and any n we have ¥ (2"r) < C2"¢y(¢). Hence
for any dilation-invariant state w,

a)(log wﬁ:)”) <logC +enlog2.

However
(') ¢ ¥ (251)
%9 =219 o

k=1

and so by dilation-invariance we have

na)(log 1{/[((2;))> <logC +en

so that, letting n — oo and then € — 0,
w(log WZt)) =0.
V(1)

L VO v @)
V@) V()

(zﬂ(r/a) B ( V() ) ~
w =w =1.
() Y (21)

Next note that

and so

Thus w is ¥ -compatible.
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Conversely assume every w is yr-compatible. If (4) fails for some € > 0 there are sequences
(tn)o2 4 and (a2 With 0 <#, < 00, 1 < a, < oo so that

Yanty) = na;"ﬂ(tn)
Note that we must have a, — oo. Now define w € L% by

anly
d
/ f&Z,
N

In

w(f) =lim

U logay,

where U/ is a non-principal ultrafilter on N. It is straightforward that w is a dilation-invariant state
and
(¢
w( v( )) S e
40)

Suppose that the conditions of Definition 7 hold. By Theorem 2, the space My admits not-
trivial singular fully symmetric functionals. Indeed, in this case

ing V(2t) < w(w(Zt)> _1
>0 Y (1) Y (1)

This is a contradiction. O

and since ‘f//((zf)) > 1, we have either

Iiminfw(ZI)zl, or liminf =
=0 Y(t) 100 (1)

On the other hand, the condition on 1 above implies (through Theorems 2 and 11) that the
set of y-compatible dilation-invariant state is non-empty.

Definition 9. Let w be a dilation-invariant state. The functional given by

t
r&x):w(ﬁ!x*(s)ds), O<xeMy

is called a Dixmier functional (trace) if 7, (x +y) = 7o (x) + 70 (), 0 < x, y € My.

Itis easy to check, that if z,, is linear, then it is fully symmetric and w is y-compatible, by (2).
The following proposition proves the converse (linearity of z,,).

Proposition 10. Let w € LY be a y-compatible dilation-invariant state. The functional z, ex-
tends to a fully symmetric normalized linear functional on My,.
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Proof. Since w is y-compatible we have

(-9

and hence for any 0 < x € My, we have by Proposition 4

2t
yen 1 . B
<< V) )w(zn Ik m‘“) -
0

or, equivalently

1 2t 1 2t
w(m!x (s)ds) =w<W0/x (s)ds).

Let0 < x,ye My. We have

t/2 t t
fx*<s>+y*<s>ds </<x+y>*(s>ds </x*<s>+y*(s>ds
0 0 0

for every ¢t > 0 (see e.g. [10, Chapter 2]). Thus,
To(x + ) < To(x* + y*) = 1 (x) + T ().

On the other hand by the remarks above and since w is dilation invariant, we have

To(X) + 7u(y) = Ta)(X* + y*

(W(f) /(x—i—y) (s)ds)
L d
w ) /(x—i—y) (s)ds

Combining gives the fact that 7, (x + y) = 7, (x) + 7, (y) and so t,, extends to a linear func-
tional on My. O

N

w

The following theorem is our main result. Recall, that if ¢ is positive, then |¢|| =1 if and
only if (') =1.
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Theorem 11. If ¢ is a normalized fully symmetric functional on My, then ¢ is a Dixmier func-
tional.

Proof. Defineamap T : Dy — Lo by the formula

'
(Tx)(t) = % O/x(s) ds.

Since T is injection, one can define a linear functional wg on R := T (Dy) by the formula

wo(Tx) = @(x).
Note that

t t
/x(s)ds < ||x||Mw/W'(s)ds, x € Dy,.
0 0

Hence, by Lemma 5,
)< lxllm,, x€Dy
or

wo(f) <N fllLw: fER.

This means that [lwollLx, < 1. Let w1 € LY, be an extension of wp with [|w1.x = 1. Since
wo(1) =1, we have w1 > 0.

Let R be the smallest subspace of L, containing R which is o,-invariant for every a > 0. We
will show that w1 is og-invariant on R. For this it suffices to show that if feRanda>0we
have w1 (o, f) = w1(f). To this end, we need only to show that w1(c,Tx) = w1 (T x) for every
x=x%e€ My. Then

1
_ w(t) 1
|aaTx—T(a 1aa)c)|= —1)—/x(s/a)ds/a
v(t/a) V() J

_|yw

< -1
Y (t/a)

loall/allxls, -

Let us mention, that for x = ay’'(ar), due to (2), we have wo(‘f;f’t’))) = @(ay/’(at)) = 1.

S0, w1 is y-compatible by Theorem 6. Since, |-2%. — 1| = sign(a — 1)(-2%- — 1) we have

Y(t/a) Y (t/a)
w1(| wlft(;c)l) —1]) = 0. Hence

a)l(craTx — T(a_loax)) =0

and, consequently, w1 (o, Tx) = ¢(x) = w1(Tx), x =x* € My.
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It follows by the invariant form of the Hahn—-Banach Theorem [7, p. 157] that there is a
dilation-invariant extension w of w1 from R to L., such that lollLx, <1.Since wo(l) =1 it
follows that w (1) = 1 and hence w is a dilation-invariant state. Thus z,, is a Dixmier functional
and clearly g =1,. O
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