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Abstract

As a consequence of the exposition of Dixmier type traces in the book of A. Connes (1994) [2], we were
led to ask how general is this class of functionals within the space of all unitarily invariant functionals on
the corresponding Marcinkiewicz ideal Mψ . In this paper we prove the surprising result that the set of all
Dixmier traces on Mψ coincides with the set of all fully symmetric functionals on this space.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

For a separable complex Hilbert space H , denote by μn(T ), n ∈ N, the singular values of
a compact operator T (the singular values are the eigenvalues of the operator |T | = (T ∗T )1/2

arranged with multiplicity in decreasing order). Let Ω denote the set of concave functions on R+
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such that limt→∞ ψ(t) = ∞ and limt→+0 ψ(t) = 0. Fixing ψ ∈ Ω , we define a Banach ideal
(Mψ,‖ · ‖ψ) of compact operators in the algebra B(H) of all bounded linear operators on H by
setting

Mψ :=
{

T : ‖T ‖ψ := sup
k

1

ψ(n)

n∑
k=0

μk(T ) < ∞
}

.

This ideal may be viewed as a noncommutative counterpart of the corresponding sequence space
Mψ(N) of all sequences x = (xk)

∞
k=1 such that

‖x‖Mψ = sup
n

1

ψ(n)

n∑
k=1

x∗
k < ∞,

where x∗ denotes the decreasing rearrangement of the sequence (|xk|)nk=1. Fixing an orthonormal
basis {δn}∞n=1 in H , we may identify the space Mψ(N) with the subspace Md

ψ of all diagonal
matrices x in Mψ .

Let ω be an arbitrary dilation-invariant state on L∞(R). Consider a subspace in L∞(R) gener-
ated by all functions taking a constant value an = a−n on the interval [n,n+1), n ∈ Z. This latter
subspace is isometrically isomorphic to �∞ = �∞(N) and we still denote by ω the restriction of ω

on this subspace. In [3], under the assumption that

lim
t→∞

ψ(2t)

ψ(t)
= 1,

J. Dixmier constructed a non-normal trace (a Dixmier trace) on Mψ using the weight

Trω(T ) := ω

({
1

ψ(n)

n∑
k=0

μk(T )

}∞

k=1

)
, 0 � T ∈ Mψ. (1)

Motivated by this construction, the concept of fully symmetric functionals was introduced and
studied in [4–6]. In the setting of the sequence space Mψ(N) a positive functional ϕ ∈ Mψ(N)∗
is called fully symmetric if and only if ϕ(x) � ϕ(y) for any 0 � x, y ∈ Mψ(N) satisfying the
inequality

n∑
k=1

x∗
k �

n∑
k=1

y∗
k , n = 1,2, . . . .

It is trivial that every Dixmier trace Trω restricted to the subspace Md
ψ defines a normalized fully

symmetric functional on Mψ(N). It is also not difficult to see (e.g. [4, Theorem 4.5]) that every
fully symmetric functional ϕ ∈ Mψ(N)∗ naturally extends to a unitarily invariant trace on Mψ .

The main result of this paper, Theorem 11, is the very surprising converse statement that
the extension of every fully symmetric functional ϕ ∈ Mψ(N)∗ to Mψ coincides with some
Dixmier trace Trω. Furthermore, we completely characterize the subclass of all ψ ∈ Ω for which
the formula (1) yields a Dixmier trace on Mψ for any dilation-invariant state ω (see Theorem 8).
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Our main results can be seen as answering a very natural question which arises from the
discussion of Dixmier traces in the book of A. Connes [2]. We refer the reader to [2] for an
explanation of the remarkable relationship between the Dixmier traces, the Wodzicki residue and
geometry, both commutative and noncommutative.

We refer to [4,8,9] for general information concerning the relationship between traces on Ba-
nach ideals of compact operators and singular functionals on corresponding symmetric sequence
spaces. Our exposition is adjusted to treat general Marcinkiewicz spaces on semifinite von Neu-
mann algebras (the ideal Mψ is a special example of a Marcinkiewicz operator space) and thus
we consider function (not sequence) spaces Mψ .

2. Preliminaries

Let L∞ := L∞(0,∞) be the space of all bounded Lebesgue measurable functions on (0,∞).
For a given ψ ∈ Ω , we define the Marcinkiewicz space Mψ of real valued measurable func-

tions x on (0,∞) by setting

‖x‖Mψ := sup
t>0

1

ψ(t)

t∫
0

x∗(s) ds < ∞.

Marcinkiewicz spaces are an important example of symmetric (function) spaces and we refer for
a detailed exposition of this theory to [10]. Applications of Marcinkiewicz sequence, function
and operator spaces in noncommutative geometry are given in [1,2].

Definition 1. A positive linear functional ϕ on Mψ is called fully symmetric if ϕ(x) � ϕ(y)

whenever 0 � x, y ∈ Mψ are such that
∫ t

0 x∗(s) ds �
∫ t

0 y∗(s) ds for all t > 0.

Fully symmetric functionals were introduced in [4], where they were termed as “symmetric
functionals”.

Let us note that if ϕ is a fully symmetric functional on the sequence space Mψ(N) it may
always be extended to a fully symmetric functional on Mψ by setting

ϕ̃(x) = ϕ

(( n∫
n−1

x∗(s) ds

)∞

n=1

)
, x � 0,

and extending by linearity (see [4, Theorem 4.5]). The following result is established in [4, The-
orem 3.4].

Theorem 2. Let ψ ∈ Ω . The Marcinkiewicz function space Mψ admits a non-trivial fully sym-
metric functional if and only if either

lim inf
t→∞

ψ(2t)

ψ(t)
= 1,

or

lim inf
ψ(2t) = 1.
t→0 ψ(t)
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For every fully symmetric ϕ ∈ M∗
ψ the following equality holds (see e.g. [4, proof of Proposi-

tion 2.3])

ϕ
(
s−1σsx

) = ϕ(x). (2)

Here, σs is the dilation operator on the space of measurable functions on (0,∞) defined by
the formula

σsx(t) := x(t/s), s > 0, t > 0.

Definition 3. A linear functional ω ∈ L∗∞ will be called a dilation-invariant state if

(i) ω � 0,
(ii) ω(1) = 1,

(iii) ω(f ) = ω(σsf ) for every f ∈ L∞ and s > 0.

The following result is very similar to [5, Lemma 3.4] and is given here only for convenience
of the reader.

Proposition 4. Let ω satisfy (i) and (ii) of Definition 3 and let f ∈ L∞ be such that ω(f ) = a

and such that either f − a � 0 or else f − a � 0. Then the following hold:

(i) ω(fg) = ω(f )ω(g), ∀g ∈ L∞;
(ii) ω(1/f ) = 1/ω(f ), if, in addition, 1/f ∈ L∞.

Proof. It is sufficient to prove only (i) since (ii) is a special case of (i). Due to assumptions we
have

∣∣ω(
(f − a)g

)∣∣ � ω
(|f − a|‖g‖∞

) = ±‖g‖∞ω(f − a) = 0. �
3. Main results

Let Dψ be the linear span of all positive non-increasing functions from Mψ . Observe that
x ∈ Dψ if and only if x = y∗ − z∗, for y, z ∈ Mψ .

Lemma 5. Let ϕ be a fully symmetric functional on Mψ . If x, y ∈ Dψ are such that
∫ t

0 x(s) ds �∫ t

0 y(s) ds, for every t > 0 then ϕ(x) � ϕ(y).

Proof. Let x = u1 − u2 and y = v1 − v2 with u1, u2, v1, v2 ∈ Mψ being positive non-increasing
functions. We have

t∫
u1(s) − u2(s) ds �

t∫
v1(s) − v2(s) ds, ∀t > 0
0 0
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and so

t∫
0

u1(s) + v2(s) ds �
t∫

0

v1(s) + u2(s) ds, ∀t > 0.

Since u1 + v2 and v1 +u2 are positive and non-increasing functions and ϕ is fully symmetric,
we have ϕ(u1 + v2) � ϕ(v1 + u2) and ϕ(x) � ϕ(y). �
Theorem 6. Let ω be a dilation-invariant state and suppose ψ ∈ Ω . Then the following condi-
tions on ω are equivalent:

(i) ω(
ψ(at)
ψ(t)

) = 1 for some a > 0 and a �= 1.

(ii) ω(
ψ(at)
ψ(t)

) = 1 for every a > 0.

(iii) ω(
tψ ′(t)
ψ(t)

) = 0.

Proof. We start with the observation that if (i) holds for some a > 0, then it also holds for 1/a.
Indeed, since f := ψ(at)/ψ(t), t > 0 satisfies the assumption of Proposition 4 we have

ω

(
ψ(t)

ψ(at)

)
= 1

and by the dilation invariance of ω we obtain (i) for a replaced with 1/a.
(i) 
⇒ (iii). We observe that for a suitable constant C = C(a) we have ψ(t) � Cψ(at) for

all t . Then by concavity of ψ

atψ ′(at)

ψ(at)
� C

atψ ′(at)

ψ(t)
� Ca

a − 1

ψ(at) − ψ(t)

ψ(t)
.

Since ω is a dilation-invariant state, we deduce that

ω

(
tψ ′(t)
ψ(t)

)
� Ca

a − 1
ω

(
ψ(at) − ψ(t)

ψ(t)

)
= 0.

(iii) 
⇒ (ii). Suppose a > 1. Then

ψ(at)

ψ(t)
� 1 + (a − 1)tψ ′(t)

ψ(t)

and so

ω

(
ψ(at)

ψ(t)

)
� 1.

Since ψ is increasing this gives

ω

(
ψ(at)

)
= 1.
ψ(t)
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Now if a < 1 we obtain the same result by the remarks at the beginning of the proof.
(ii) 
⇒ (i) is trivial. �

Definition 7. A dilation-invariant state ω ∈ L∗∞ is said to be a ψ -compatible state if and only if
the three equivalent conditions of Theorem 6 hold, i.e. if

ω

(
ψ(at)

ψ(t)

)
= 1, for all a > 0. (3)

For many ψ (e.g. if limt→0 ψ(2t)/ψ(t) = limt→∞ ψ(2t)/ψ(t) = 1) there is the case that
every dilation-invariant state is ψ -compatible. We next give a precise condition for this to happen.

Theorem 8. In order that every dilation-invariant state is ψ -compatible it is necessary and
sufficient that for every ε > 0 there exists a constant C = C(ε) so that

ψ(st) � Csεψ(t), t > 0, s > 1. (4)

Proof. Assume (4) holds. Then for fixed ε > 0 and any n we have ψ(2nt) � C2nεψ(t). Hence
for any dilation-invariant state ω,

ω

(
log

ψ(2nt)

ψ(t)

)
� logC + εn log 2.

However

log
ψ(2nt)

ψ(t)
=

n∑
k=1

log
ψ(2kt)

ψ(2k−1t)

and so by dilation-invariance we have

nω

(
log

ψ(2t)

ψ(t)

)
� logC + εn

so that, letting n → ∞ and then ε → 0,

ω

(
log

ψ(2t)

ψ(t)

)
= 0.

Next note that

1 − ψ(t)

ψ(2t)
� log

ψ(2t)

ψ(t)

and so

ω

(
ψ(t/2)

ψ(t)

)
= ω

(
ψ(t)

ψ(2t)

)
= 1.

Thus ω is ψ -compatible.
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Conversely assume every ω is ψ -compatible. If (4) fails for some ε > 0 there are sequences
(tn)

∞
n=1 and (an)

∞
n=1 with 0 < tn < ∞, 1 < an < ∞ so that

ψ(antn) � naε
nψ(tn).

Note that we must have an → ∞. Now define ω ∈ L∗∞ by

ω(f ) = lim
U

1

logan

antn∫
tn

f (s)
ds

s
,

where U is a non-principal ultrafilter on N. It is straightforward that ω is a dilation-invariant state
and

ω

(
tψ ′(t)
ψ(t)

)
� ε.

This is a contradiction. �
Suppose that the conditions of Definition 7 hold. By Theorem 2, the space Mψ admits not-

trivial singular fully symmetric functionals. Indeed, in this case

inf
t>0

ψ(2t)

ψ(t)
� ω

(
ψ(2t)

ψ(t)

)
= 1

and since ψ(2t)
ψ(t)

� 1, we have either

lim inf
t→0

ψ(2t)

ψ(t)
= 1, or lim inf

t→∞
ψ(2t)

ψ(t)
= 1.

On the other hand, the condition on ψ above implies (through Theorems 2 and 11) that the
set of ψ -compatible dilation-invariant state is non-empty.

Definition 9. Let ω be a dilation-invariant state. The functional given by

τω(x) = ω

(
1

ψ(t)

t∫
0

x∗(s) ds

)
, 0 < x ∈ Mψ

is called a Dixmier functional (trace) if τω(x + y) = τω(x) + τω(y), 0 � x, y ∈ Mψ .

It is easy to check, that if τω is linear, then it is fully symmetric and ω is ψ -compatible, by (2).
The following proposition proves the converse (linearity of τω).

Proposition 10. Let ω ∈ L∗∞ be a ψ -compatible dilation-invariant state. The functional τω ex-
tends to a fully symmetric normalized linear functional on Mψ .
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Proof. Since ω is ψ -compatible we have

ω

((
ψ(2t)

ψ(t)
− 1

))
= 0

and hence for any 0 � x ∈ Mψ we have by Proposition 4

ω

((
ψ(2t)

ψ(t)
− 1

)
1

ψ(2t)

2t∫
0

x∗(s) ds

)
= 0,

or, equivalently

ω

(
1

ψ(2t)

2t∫
0

x∗(s) ds

)
= ω

(
1

ψ(t)

2t∫
0

x∗(s) ds

)
.

Let 0 � x, y ∈ Mψ . We have

t/2∫
0

x∗(s) + y∗(s) ds �
t∫

0

(x + y)∗(s) ds �
t∫

0

x∗(s) + y∗(s) ds

for every t > 0 (see e.g. [10, Chapter 2]). Thus,

τω(x + y) � τω

(
x∗ + y∗) = τω(x) + τω(y).

On the other hand by the remarks above and since ω is dilation invariant, we have

τω(x) + τω(y) = τω

(
x∗ + y∗)

� ω

(
1

ψ(t)

2t∫
0

(x + y)∗(s) ds

)

= ω

(
1

ψ(2t)

2t∫
0

(x + y)∗(s) ds

)

= ω

(
1

ψ(t)

t∫
0

(x + y)∗(s) ds

)
.

Combining gives the fact that τω(x + y) = τω(x) + τω(y) and so τω extends to a linear func-
tional on Mψ . �

The following theorem is our main result. Recall, that if ϕ is positive, then ‖ϕ‖ = 1 if and
only if ϕ(ψ ′) = 1.
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Theorem 11. If ϕ is a normalized fully symmetric functional on Mψ then ϕ is a Dixmier func-
tional.

Proof. Define a map T : Dψ → L∞ by the formula

(T x)(t) = 1

ψ(t)

t∫
0

x(s) ds.

Since T is injection, one can define a linear functional ω0 on R := T (Dψ) by the formula
ω0(T x) = ϕ(x).

Note that

t∫
0

x(s) ds � ‖x‖Mψ

t∫
0

ψ ′(s) ds, x ∈ Dψ.

Hence, by Lemma 5,

ϕ(x) � ‖x‖Mψ , x ∈ Dψ

or

ω0(f ) � ‖f ‖L∞ , f ∈ R.

This means that ‖ω0‖L∗∞ � 1. Let ω1 ∈ L∗∞ be an extension of ω0 with ‖ω1‖L∗∞ = 1. Since
ω0(1) = 1, we have ω1 � 0.

Let R̃ be the smallest subspace of L∞ containing R which is σa-invariant for every a > 0. We
will show that ω1 is σa-invariant on R̃. For this it suffices to show that if f ∈ R and a > 0 we
have ω1(σaf ) = ω1(f ). To this end, we need only to show that ω1(σaT x) = ω1(T x) for every
x = x∗ ∈ Mψ . Then

∣∣σaT x − T
(
a−1σax

)∣∣ =
∣∣∣∣ ψ(t)

ψ(t/a)
− 1

∣∣∣∣ 1

ψ(t)

t∫
0

x(s/a) ds/a

�
∣∣∣∣ ψ(t)

ψ(t/a)
− 1

∣∣∣∣‖σa‖/a‖x‖Mψ .

Let us mention, that for x = aψ ′(at), due to (2), we have ω0(
ψ(at)
ψ(t)

) = ϕ(aψ ′(at)) = 1.

So, ω1 is ψ -compatible by Theorem 6. Since, | ψ(t)
ψ(t/a)

− 1| = sign(a − 1)(
ψ(t)

ψ(t/a)
− 1) we have

ω1(| ψ(t)
ψ(t/a)

− 1|) = 0. Hence

ω1
(
σaT x − T

(
a−1σax

)) = 0

and, consequently, ω1(σaT x) = ϕ(x) = ω1(T x), x = x∗ ∈ Mψ .
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It follows by the invariant form of the Hahn–Banach Theorem [7, p. 157] that there is a
dilation-invariant extension ω of ω1 from R̃ to L∞ such that ‖ω‖L∗∞ � 1. Since ω0(1) = 1 it
follows that ω(1) = 1 and hence ω is a dilation-invariant state. Thus τω is a Dixmier functional
and clearly ϕ = τω. �
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