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A general family of interpolation methods is introduced which includes, as special

cases, the real and complex methods and also the so-called � or G1 and G2 methods
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the boundedness of the commutators ½T ;O� and ½T ;R� for operators T which are

bounded on the spaces of the pair to which the interpolation method is applied. This

extends and unifies results previously known for derivation and translation operators

in the contexts of the real and complex methods. Other results deal with higher order

commutators and also include an ‘‘equivalence theorem,’’ i.e. it is shown that, as

previously known only for real interpolation spaces, all these interpolation spaces

have two different equivalent definitions in the style of the ‘‘J method’’ and ‘‘K

method.’’ Auxiliary results which may also be of independent interest include the

equivalence of Lions–Schechter complex interpolation spaces defined using an

annulus with the same spaces defined in the usual way, using a strip. # 2002 Elsevier

Science (USA)

Key Words: derivation operator; commutator estimate; pseudolattice; real

interpolation; complex interpolation; plus–minus interpolation method; Lions–
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1. INTRODUCTION

The purpose of interpolation theory is to study the properties of
interpolation functors and their applications in analysis. In particular the
well-known real and complex methods of interpolation play a central role in
the theory. However, the study of these concrete interpolation methods has
traditionally emphasized their differences, which in turn has often led to the
development of disjoint sets of techniques to attack essentially similar
problems. While some of these differences are unavoidable, and indeed part
of the richness of the subject, it seems to us that a good deal of the basic
underlying theory behind the real and complex method can and should be
given a unified treatment. Indeed this has already been done in the
impressive work of Janson [29] where the real, complex and most other
known interpolation functors are revealed to be special cases of either the
minimal or the maximal functors of Aronszajn–Gagliardo. Another general
construction of interpolation spaces, which includes the real and complex
methods as special cases, has been presented by Williams [61].
The purpose of this paper is to introduce and study a different approach

to a unified treatment of some of the basic theoretical properties of the real
and complex methods of interpolation. This approach, initially suggested by
some definitions and remarks of Jaak Peetre ([48, pp. 174–177]), is
motivated here by the wish to better understand the so-called theory of
‘‘commutators,’’ and we emphasize that theory here. We hope to treat other
aspects of our general approach elsewhere.
To be more specific, in this paper we introduce new interpolation functors

which provide a general method for constructing scales of interpolation
spaces. We then define certain (possibly nonlinear) ‘‘derivation’’ mappings O
and ‘‘translation’’ mappings R with respect to each such scale and prove
that their commutators with bounded linear operators on the interpolation
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scale are bounded operators. Our general method includes the real and
complex and other interpolation methods as special cases. Thus our results
unify, simplify and generalize known commutator theorems for the real and
complex methods in [32, 54], cf. also [27, 42] and also give new analogous
results for other methods such as the � methods of Peetre and Gustavsson–
Peetre.
Ours is not the first paper to present commutator theorems in a general

abstract setting. This has been done in a different way by Carro, Cerd"aa and
Soria, using the framework of [61] as their point of departure. See e.g.
[8–10], and, in particular, [11] for a summary and general survey of their
work on this topic. Their initial paper [8] also includes answers to some
questions raised in [20]. At various stages in this paper we shall make a
number of comparisons between this material, particularly in [8, 9], and our
own approach.
Our scale of interpolation spaces is indexed by a parameter y 2 ð0; 1Þ (or

by ey or by eyþit). We are not aware of any way in which we could extend
our approach, including the construction of the mappings O and R; to the
case of ‘‘function parameters,’’ i.e. positive concave functions r : ð0;1Þ !
ð0;1Þ which generalize the role of the numerical parameter y (which
corresponds to the function rðtÞ ¼ ty). By contrast, Janson’s approach is
well adapted to function parameters, but to date there is apparently no
known way of obtaining a version of the theory of commutators in his
setting. In this direction we mention that generalized commutator estimates
for the real method have been considered in [2]. There are also a number of
other approaches to interpolation which do not fit into the format we
present here (or, at least, we do not see how they do). These include methods
based on convexity and envelopes [16, 52, 57], based on differential
equations and geometric considerations [56] (see also [31, Section 4]), and
based on harmonic functions of several variables [31]. Yet another approach
[49] extends the ideas in Marcel Riesz’s original proof of the Riesz(-Thorin)
theorem. Cf. also the method of quadratic means referred to in [49] for still
other methods see [45]. We feel that the problem of bringing more unity to
these diverse viewpoints is an interesting one.
In their study of Hp spaces on Rn; Coifman et al. (cf. [15]) proved, among

many other things, that if b 2 BMOðRnÞ and T is a Calder !oon–Zygmund
operator, then the commutator defined by

½T ; b�ðf Þ ¼ Tðbf Þ � bTðf Þ

is bounded on LpðRnÞ for 1opo1: Note that both of the operators f/
Tðbf Þ and f/bTðf Þ which appear in the definition of ½T ; b� are not
bounded on LpðRnÞ: The remarkable feature here is the subtle cancellation
that occurs when we subtract these two unbounded operators and make
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their difference ½T ; b� bounded. From our point of view here, the second
proof of this Lp boundedness, given on [15, p. 621], is particularly
interesting. It can be seen as the forerunner of various arguments which
appear later in [54] and several other papers including this one.
Commutator theorems have a long history in harmonic analysis (cf. [14]

and the references therein to the fundamental work of Calder !oon and
Zygmund and others). Motivated by the classical theorems on commutators
of singular integral operators, Rochberg and Weiss, in the early 1980 [54],
initiated the study of commutator estimates in interpolation theory. Since
then the theory has developed in various directions and applications have
been found to pde’s, harmonic analysis, and functional analysis. For some
of these developments we refer the reader to [23, 25, 26, 28, 34, 35, 44, 50, 51],
where more references and further applications and examples can be found.
For a survey of the earlier work we refer also to [20].

Remark 1.1. Let us briefly recall two, by now rather standard examples
of commutator theorems in the context of Lp spaces: For the first example,
we choose some fixed p 2 ð1;1Þ and consider the couple ðLpðw0Þ;Lpðw1ÞÞ of
weighted Lp spaces on some underlying measure space ðX ;S; mÞ: If the linear
operator T maps LpðwjÞ boundedly onto itself for j ¼ 0; 1; then of course T

is also bounded on the space LpðwyÞ where wy ¼ w1�y
0 wy

1 and y 2 ð0; 1Þ: But
it is also known (see, e.g. [54, pp. 335–337; 32, p. 203]) that the commutator
½T ;O� ¼ TO� OT is a bounded map on LpðwyÞ where the map O is defined
by Of ¼ f log ðw1=w0Þ: As explained in [54, pp. 335–336], this result is very
closely related to the result from [15] mentioned just above.
For the second example we consider a linear operator T which is bounded

on L1 and L1: Then it is of course bounded on Lp for every p 2 ð1;1Þ: But
it is also known (see [54, pp. 315–318]) that ½T ;O� is bounded on Lp; where
this time O is a nonlinear operator and is defined by Of ¼ f log jf j:
The theory that has evolved around commutator estimates has largely

followed the pattern referred to above, i.e. it was essentially developed
separately for the real and complex methods. But it was also asked long ago,
e.g. in [20], whether a general method could be given to unify the approaches
to the real and complex methods, and of course the above-mentioned work
[8] subsequently showed one way in which this is possible.
One notable feature of our approach is the systematic use of analytic

functions and holomorphic structure for our general method and thus by
implication for the real and � methods, not just the complex one. The idea
of using analytic functions in the framework of the real method may seem a
little exotic, but it is certainly not new. For example, it can be seen in a
setting closely related to this paper in [63, Sect. 2; 20, pp. 180–181], and it
also plays a limited role in [8, p. 209]). Perhaps its first at least implicit
appearance was in [41, Sect. 1.4, pp. 29–31]. There the analytic functions
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serve to show (cf. also [47, pp. 22–23; 17, p. 1008]), that the real and complex
methods are in some sense ‘‘Fourier transforms’’ of each other.
‘‘Traditionally,’’ since the work of Thorin [60], the analytic functions in

interpolation theory are defined on a strip, and we could have developed our
theory here using functions on Thorin’s strip. However, we have chosen to
replace the strip by an annulus. This simplifies certain steps and corresponds
to ‘‘discretising’’ (as in the real method). It is also more convenient for
observing the connection with the � method. The price we pay for this
convenience is that we have to show later that, in the case of the real and
complex methods, our constructions using the annulus are equivalent to
previously used constructions using the strip. Intuitively this seems obvious,
in the light of the well known and easily proved equivalences between the
‘‘discrete/annular’’ and ‘‘continuous/strip’’ versions of the real method and
the complex method, respectively. But our proofs have turned out to be
longer than might have been expected.
While the earlier work on commutators emphasized the specific role of

certain ‘‘derivation’’ mappings, more recently the emphasis has been on
trying to understand the role that cancellations play in the theory (cf.
[7, 44]). This has been particularly fruitful in obtaining ‘‘higher order’’
commutator estimates and has led to some simplification of the theory. The
method which we develop here enables us now to express the cancellation
conditions for the real, complex, � and other methods in the same unified
way: certain derivatives of the analytic functions representing elements of
the interpolation space have to vanish at the point corresponding to the
parameter of the interpolation space. This approach leads efficiently to
higher order estimates and characterization of domain spaces unifying and
generalizing methods developed in [7, 44].
The paper is organized as follows: In Section 2, we define a general

method to construct interpolation spaces using analytic functions on an
annulus, and observe that the real and complex and also the � interpolation
methods all arise as particular cases of this method. In Section 3, we
construct the derivation and translation mappings and prove a general
commutator theorem.
Section 4 provides the above-mentioned proofs, in the case of the real and

complex methods, that the modification of our constructions with the
annulus replaced by a strip, gives essentially the same derivation and
translation operators. This shows that our general commutator theorem
contains the commutator theorems obtained in earlier papers as special
cases.
In Section 5, we indicate some connections and some differences between

our approach and that of Carro, Cerd"aa and Soria.
In Section 6, we extend the results of Section 3 emphasizing the role of

cancellations in the computation of the norms in interpolation spaces and
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use these observations to prove higher order commutator theorems. In
Section 7, we obtain a general characterization of the domain spaces
associated with derivation operators. Finally, in Section 8 we obtain an
‘‘equivalence theorem’’ for our interpolation spaces, i.e. a result which
generalizes the equivalence of the two ‘‘standard’’ ways (i.e. the J and K

methods) for defining real interpolation spaces.
There are many natural questions which can be asked concerning the new

interpolation spaces introduced in this paper. To give just one example: do
these space satisfy some version of Wolff’s Theorem [62]? Can this be proved
using the methods of [62] and/or [33] and/or [30]?

2. INTERPOLATION SPACES DEFINED VIA ANALYTIC
FUNCTIONS ON AN ANNULUS

In this section we introduce a class of interpolation methods defined using
analytic functions on an annulus. As we shall see, these methods include as
special examples the complex and real methods of interpolation as well as
the � methods of Peetre and Gustavsson–Peetre. The idea of looking at
these particular methods in a unified way goes back to Peetre, and our
construction here has its origins in his definitions and remarks on pp. 174–
177 of [48].
We start with some general definitions.

Definition 2.1. Let Ban be the class of all Banach spaces over the
complex numbers. A mapping X : Ban ! Ban will be called a pseudolattice,
or a pseudo-Z-lattice, if

(i) for each B 2 Ban the space XðBÞ consists of B valued sequences
fbngn2Z and if

(ii) whenever A is a closed subspace of B it follows that XðAÞ is a
closed subspace of XðBÞ and if

(iii) there exists a positive constant C ¼ CðXÞ such that, for all A;B 2
Ban and all bounded linear operators T :A ! B and every sequence
fangn2Z 2 XðAÞ; the sequence fTangn2Z 2 XðBÞ and satisfies the estimate

kfTangn2ZkXðBÞ4CðXÞkTkA!BkfangkXðAÞ:

Let us now present a number of examples of pseudolattices. For each of
them we have CðXÞ ¼ 1:

Example 2.2. Let X be a Banach lattice of real valued functions defined
on Z: We will use the notation X ¼ X to mean that, for each B 2 Ban;
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XðBÞ is the space, usually denoted by XðBÞ; consisting of all B valued
sequences fbng such that fkbnkBgn2Z 2 X . It is normed by kfbngn2ZkXðBÞ ¼
kfkbnkBgn2ZkX :

Example 2.3. For each B 2 Ban let FCðBÞ be the space of all B valued
sequences fbngn2Z such that bn ¼ 1

2p

R 2p
0 e�intf ðeitÞ dt for all n and some

continuous function f :T ! B: FCðBÞ is normed by kfbngkFCðBÞ ¼
supt2T kf ðtÞkB: The notation X ¼ FC will mean that XðBÞ ¼ FCðBÞ for
each B: Where necessary, we may use the more explicit notations FCT and
FCTðBÞ:
(‘‘FC’’ indicates that here we are dealing with the Fourier transform FC

ðT;BÞ of the space C ¼ CðT;BÞ of continuous (B-valued) functions on T:
Cf. [29] where analogous sequence spaces FL1 and FL1 also appear and
play important roles. There are of course obvious possible variants of this
example where the space of continuous B valued functions on T is replaced
by some other suitable space of B valued functions on T:)

Example 2.4. We shall use the notation X ¼ UC; when XðBÞ ¼ UCðBÞ
for all B 2 Ban; where UCðBÞ denotes the Banach space of all B valued
sequences fbngn2Z such that the series

P
n2Z bn is unconditionally

convergent in B: As norm we take kfbngkXðBÞ ¼ supk
P

n2F enbnkB where
the supremum is taken over all finite subsets F � Z and all sequences en

taking only the values �1:

Example 2.5. We shall also consider a variant of the preceding example
where bn is required only to be weakly unconditionally convergent in B: The
norm is as above, and we shall use the notation WUCðBÞ for the
corresponding Banach space and X ¼ WUC for the pseudolattice.

Remark 2.6. Each of the pseudolattices X in the preceding Examples
2.3–2.5 has the property that

kbmkB4kfbngkXðBÞ ð2:1Þ

for all m 2 Z; all fbngn2Z 2 XðBÞ and all Banach spaces B: The same also
holds for Example 2.2 provided the lattice X has the property that

kfdm;ngn2ZkX41 for each m 2 Z ð2:2Þ

(Here dm;n denotes the usual Kronecker delta.)

We shall use the usual notation ~BB ¼ ðB0;B1Þ for Banach pairs (also often
referred to as ‘‘Banach couples’’ in the literature) of Banach spaces B0 and
B1 (cf. [4, Chap. 2] or [5, p. 91]). Also the notation T : ~AA ! ~BB will have
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the usual meaning, that T is a linear operator T :A0 þ A1 ! B0 þ B1 such
that T maps Aj to Bj continuously for j ¼ 0; 1: We set kTk~AA!~BB ¼
maxfkTkA0!B0

; kTkA1!B1
g:

Let X0 and X1 be any two pseudolattices. We consider them as a pair,
which we denote by X ¼ fX0;X1g: (Note that a pseudolattice pair is an
essentially different object from a Banach pair.)

Definition 2.7. For each Banach pair ~BB and pseudolattice pair X we
define JðX; ~BBÞ to be the space of all B0 \ B1 valued sequences fbngn2Z for
which the sequence fejnbngn2Z is inXjðBjÞ for j ¼ 0; 1: This space is normed by

kfbngn2ZkJðX;~BBÞ ¼ max
j¼0;1

kfejnbngn2ZkXjðBjÞ:

It will be convenient to exclude some ‘‘pathological’’ phenomena by
requiring the spaceJðX; ~BBÞ to be ‘‘not too small.’’ One way of doing this is to
impose the following condition. As we shall see later, it is also equivalent to
various other seemingly stronger conditions.

Definition 2.8. Let A be the open annulus fz 2 C : 1ojzjoeg: We shall
say that the pseudolattice pair X is nontrivial if, for the special one-
dimensional Banach pair ~BB ¼ ðC;CÞ and each s 2 A; there exists fbngn2Z 2
JðX; ~BBÞ such that the series

P
n2Z snbn converges to a nonzero number.

In all concrete examples to be considered in this paper it will be
immediately evident that this condition is fulfilled because the sequence
fbngn2Z defined by b0 ¼ 1 and bn ¼ 0 for all na0 will be an element of
JðX; ðC;CÞÞ:

Definition 2.9. We shall say that the pseudolattice pair X is Laurent

compatible if it is nontrivial and if for every Banach pair ~BB; every vector
valued sequence fbngn2Z in JðX; ~BBÞ and every fixed z in the open annulus
A the Laurent series

P
n2Z znbn converges in B0 þ B1 and k

P
n2Z znbnkB0þB1

4Ckfbngn2ZkJðX;~BBÞ for some constant C ¼ CðzÞ independent of the choice
of fbngn2Z:

Remark 2.10. This convergence of
P

n2Z znbn implies of course that

lim
n!�1

rnkbnkB0þB1
¼ 0 for all r 2 ð1; eÞ: ð2:3Þ

It follows from (2.3) that
P

n2Z znbn converges absolutely (with respect to
the norm of B0 þ B1Þ and uniformly on every compact subset of A:
Consequently the sum of this series is an analytic function of z in A and
can be differentiated term-by-term. The series for its derivative f 0ðzÞ ¼P

n2Z nznbn must also converge absolutely in B0 þ B1:
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It is easy to check that any pair X ¼ fX0;X1g of pseudolattices both of
which satisfy (2.1) must be Laurent compatible. Thus, from Remark 2.6 we
have several examples of such pairs. It is also clear that considerably weaker
conditions on each of the pseudolattices Xj would suffice to give Laurent
compatibility, for example

kbmkB4Cð1þ jmjÞlkfbngkXjðBÞ for all m 2 Z and j ¼ 0; 1; ð2:4Þ

where l is any positive constant.

Definition 2.11. For each Banach pair ~BB; each Laurent compatible
pair X and each fixed s 2 A we define the space ~BBX;s to consist of all elements
of the form b ¼

P
n2Z snbn where fbngn2Z 2 JðX; ~BBÞ; with the natural

quotient norm

kbk~BBX;s
¼ inf kfbngn2ZkJðX;~BBÞ : b ¼

X
n2Z

snbn

( )
: ð2:5Þ

The Laurent compatibility of X and the completeness of JðX; ~BBÞ imply,
respectively, that k � k~BBX;s

is indeed a norm, rather than merely a seminorm
and that ~BBX;s is a Banach space. The nontriviality of X implies that
ðC;CÞX;s ¼ C for all s 2 A: In fact these two conditions are equivalent.

Under additional conditions on X we can replace (2.5) by a useful
‘‘convexity’’ estimate. (Cf. [41, Lemme (3.1), p. 12]). These conditions are
conveniently formulated in terms of shift operators, which we will also need
for some other purposes later.

Definition 2.12. Let S denote the left-shift operator on two-sided
(vector valued) sequences defined by Sðfbngn2ZÞ ¼ fbnþ1gn2Z: Then of
course S�1 is the right-shift operator S�1ðfbngn2ZÞ ¼ fbn�1gn2Z:

Lemma 2.13. Suppose that S maps XjðBjÞ isometrically onto itself for

j ¼ 0; 1: Then, for each s 2 A and each b 2 ~BBX;s;

kbk~BBX;s
4 e inf

�
kfbngn2Zk

1�y
X0ðB0Þkfenbngn2Zk

y
X1ðB1Þ : fbngn2Z 2 JðX; ~BBÞ;

b ¼
X
n2Z

snbn

�
; ð2:6Þ

where y ¼ log jsj:
Proof. This is very similar to the argument on [41, p. 13]. Given any

fbngn2Z 2 JðX; ~BBÞ with b ¼
P

n2Z snbn we see that, for each k 2 Z; we
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have that fbnþkgn2Z 2 JðX; ~BBÞ: More specifically, by the isometry of S;
we have kfbnþkgn2ZkX0ðB0Þ ¼ kfbngn2ZkX0ðB0Þ and kfenbnþkgn2ZkX1ðB1Þ ¼
e�kkfenþkbnþkgn2ZkX1ðB1Þ ¼ e�kkfenbngn2ZkX1ðB1Þ: So

kfbnþkgn2ZkJðX;~BBÞ ¼ maxfkfbngn2ZkX0ðB0Þ; e�kkfenbngn2ZkX1ðB1Þg:

Let us now choose k so that

kfbngn2ZkX0ðB0Þ4e�kkfenbngn2ZkX1ðB1Þ4ekfbngn2ZkX0ðB0Þ:

Then
P

n2Z snbnþk ¼
P

n2Z sn�kbn ¼ s�kb with

ks�kbk~BBX;s
4ekfbngn2ZkX0ðB0Þ: ð2:7Þ

Note that

jskj ¼ eyk4
kfenbngn2ZkX1ðB1Þ
kfbngn2ZkX0ðB0Þ

 !y

so that, after multiplying (2.7) by eyk; we obtain

kbk~BBX;s
4ekfbngn2Zk

1�y
X0ðB0Þkfenbngn2Zk

y
X1ðB1Þ:

To complete the proof we simply take the infimum over all fbngn2Z 2
JðX; ~BBÞ with b ¼

P
n2Z snbn: ]

Theorem 2.14. Let ~BB ¼ ðB0;B1Þ be a Banach pair, let X be a Laurent

compatible pair and let s be any point in A: Then

(i) the space ~BBX;s is intermediate; i.e. it satisfies the continuous inclusions

B0 \ B1 � ~BBX;s and ~BBX;s � B0 þ B1:

(ii) Let ~AA ¼ ðA0;A1Þ be another Banach pair and suppose that T :
A0 þ A1 ! B0 þ B1 is a linear operator which maps Aj boundedly to Bj with

norm Mj for j ¼ 0; 1: Then T maps ~AAX;s boundedly to ~BBX;s for each s 2 A; with

norm

kTk~AAX;s!~BBX;s
4max

j¼0;1
MjCðXjÞ:

ðii0Þ If, furthermore, S maps XjðBjÞ isometrically onto itself for j ¼ 0; 1
then the norm kTk~AAX;s!~BBX;s

also satisfies

kTk~AAX;s!~BBX;s
4eðCðX0ÞM0Þ1�yðCðX1ÞM1Þy;

where y ¼ log jsj:



UNIFIED THEORY OF COMMUTATOR ESTIMATES 251
Proof. We start with (ii) which has an obvious proof which can be left to
the reader. A small modification of that proof using Lemma 2.13 gives ðii0Þ:
The second inclusion in (i) is an immediate consequence of the Laurent
compatibility of X: It remains to prove the first inclusion of (i). We choose
A0 ¼ A1 ¼ C and use the nontriviality of X to ensure that ~AAX;s ¼ C:
Then we apply (ii) to the operator T : ~AA ! ~BB defined by Tz ¼ zb for all
z 2 C; where b is an arbitrary fixed element of B0 \ B1: This gives
that b ¼ T1 2 ~BBX;s with kbk~BBX;s

4maxj¼0;1MjCðXjÞk1k~AAX;s
4kbkB0\B1

�maxj¼0;1 CðXjÞk1k~AAX;s
: ]

The conclusions of Theorem 2.14 can be re-expressed more formally by
stating that, for each X and s; the map ~BB/~BBX;s is an interpolation functor

(cf. [4, p. 28] or [5, p. 140]). It is easy to check (cf. also [48, pp. 174–177]) that
this new general interpolation functor coincides with various ‘‘classical’’
interpolation methods for suitable choices of X: More specifically, let us set
s ¼ ey for some y 2 ð0; 1Þ: Then, if X0 ¼ X1 ¼ ‘p; the space ~BBX;s coincides
with the Lions–Peetre real method space ~BBy;p ¼ ðB0;B1Þy;p using the
equivalent ‘‘discrete definition.’’ (See e.g. [41, p. 17] where this space is
denoted by sðp; y;B0; p; y� 1;B1Þ or [4, Chap. 3].) If X0 ¼ X1 ¼ FC; then
~BBX;s coincides, to within equivalence of norm, with the Calder !oon complex
method space ~BB½y� ¼ ½B0;B1�y ¼ ½~BB�y: (See [17]. This is also discussed below
in more detail in the course of the proof of Theorem 4.2.) If X0 ¼ X1 ¼ UC;
then ~BBX;s is the Peetre � method space ~BBhyi ¼ hB0;B1iy; [48, p. 176]. If we
replace UC by WUC; we obtain the Gustavsson–Peetre variant of hB0;B1iy
which is denoted by h~BB; ryi: (See [24, p. 45; 29].)

Remark 2.15. The previous identifications of the space ~BBX;s also hold for
any other s 2 A on the circle jsj ¼ ey since each of the pseudolattices X used
to define them has the property that the ‘‘rotation map’’ fbngn2Z/
feintbngn2Z is an isometry of XðBÞ onto itself for every real t and every
Banach space B:

One can of course obtain many other (often more exotic) interpolation
spaces by making other choices of fX0;X1g: We need not, as we have done
so far, always require that X0 ¼ X1: For example, in [48], Peetre also briefly
considers the space hB0;B1iy;p0;p1 : This is a generalized version of hB0;B1iy
which corresponds to defining Xj in terms of ‘‘pj-unconditionally summable
sequences’’ for j ¼ 0; 1: Certain spaces corresponding to the case where X0

and X1 are both (possibly different) lattices have been studied by some
authors. See e.g. the work of Dmitriev [22]. We should mention one case
with X0aX1 for which the description of ~BBX;s is well known. If we take
X0 ¼ ‘p0 and X1 ¼ ‘p1 ; then it is clear that ~BBX;s is exactly the space denoted
by sðp0; y;B0; p1; y� 1;B1Þ in [41, p. 17] which is the same, to within
equivalence of norm, as the space Sð~BB; p0; p1; yÞ in [4, Sect. 3.12] and the
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space ðB0;B1Þy;p0;p1 in [46]. But then, by Th!eeor"eeme 1 of [46, p. 252] (cf. also
[4, pp. 70–72; pp. 85–86]) this space coincides, to within equivalence of
norms, with ðB0;B1Þy;p where 1=p ¼ ð1� yÞ=p0 þ y=p1: As a contrasting
example, it is tantalizing to wonder what ‘‘hybrid’’ choices like X ¼ f‘1;FCg
might give. It is easy to give concrete descriptions of ðL1;L1Þf‘p0 ;‘p1g;s and
ðL1;L1ÞfFC;FCg;s; but what can be said about the space ðL1;L1Þf‘1;FCg;s?

3. DERIVATION MAPS, TRANSLATION MAPS, AND
COMMUTATOR THEOREMS

We are now ready to define the ‘‘derivation’’ mappings O and
‘‘translation’’ mappings R associated with the interpolation spaces ~BBX;s:
Both O and R map ~BBX;s into B0 þ B1: In general they are nonlinear, and
may also be taken to be multiple valued. As one particular case of our
derivation mappings we shall obtain mappings which are equivalent (in view
of the results to be presented in Section 4) to the derivation mappings which
are defined and studied in [32] explicitly for the real method (in [19] they are
referred to as ‘‘quasilogarithmic operators’’). In another particular case our
mappings will be equivalent (cf. Section 4) to the derivation mappings
defined in [54] explicitly for the complex method. We shall establish a
‘‘commutator’’ theorem for our derivation mappings, which includes as
special cases the commutator theorems developed in the preceding
references and thus also the two results mentioned in Remark 1.1. We
recall once more that an alternative method of putting these kinds of results
into a more general abstract framework has been developed in [8].
Our translation mappings essentially generalize previously studied maps

which are used in several contexts. For example, in the case of the real
method, such mappings appear explicitly or implicitly in [32, Sect. 5; 63,
Sect. 2; 20, pp. 179–182]. Let us also mention various versions of such maps
which are known in the case of the complex method. For example in [12, pp.
276–277; 13, pp. 142–146] a related (one-valued) map is introduced and used
in the context of finite dimensional spaces, (infinite families rather than just
pairs). Daher [21] and Kalton (unpublished) have (independently) used one-
valued versions of (complex method) translation mappings to provide
homeomorphisms between unit balls of certain uniformly convex Banach
spaces. Another treatment of this material, including further details
concerning the moduli of continuity of such homeomorphisms, is given in
[3, pp. 204–206]. In these preceding examples the ‘‘optimality constant’’ (as
defined below) is chosen to equal 1 (cf. Remark 3.3). Translation maps also
appear, at least implicitly, in the work of Shneiberg [58] (cf. also [59]).
Translation maps are also considered from the point of view of Banach
space theory in [37].



UNIFIED THEORY OF COMMUTATOR ESTIMATES 253
We obtain a commutator theorem for our general translation mappings
which can be considered as a sort of generalization of results first obtained
in [27] (for Lp spaces using the complex method) and later in [43] (for the
real method).
Although in previous papers it has usually been customary to work with a

derivation mapping O which is single valued, it is perhaps a little more
convenient and natural to instead consider a certain set-valued mapping *OO:
The mapping O can then be taken to be any single valued ‘‘selection’’ of *OO:
(There is of course a great deal of arbitrariness in the definition of O:)
Similarly, we can consider set-valued and single-valued versions of the
translation mappings, analogously denoted by *RR and R:
Let us now explicitly describe these various mappings:

Definition 3.1. Let us fix a positive constant Copt (an ‘‘optimality’’
constant) usually satisfying Copt > 1; a Laurent compatible pair of
pseudolattices X; and a point s 2 A: For each Banach pair ~BB and each
element b 2 ~BBX;s let EðbÞ denote the set of all sequences fbngn2Z in JðX; ~BBÞ
such that

P
n2Z snbn ¼ b and kfbngn2ZkJðX;~BBÞ4Coptkbk~BBX;s

:

(i) Let *OOðbÞ denote the set of all elements b0 2 B0 þ B1 of the form
b0 ¼

P
n2Z nsn�1bn for all choices of the sequence fbngn2Z in EðbÞ:

(ii) For each element b 2 ~BBX;s we choose some element OðbÞ 2 *OOðbÞ:
(Assume Copt > 1:)

(iii) Fix a second point s0 2 A and for each ~BB and each element b 2 ~BBX;s

as above, let *RRðbÞ denote the set of all elements b0 2 B0 þ B1 of the form
b0 ¼

P
n2Z ðs0Þn

bn for all choices of the sequence fbngn2Z in EðbÞ:
(iv) For each element b 2 ~BBX;s we choose some element RðbÞ 2 *RRðbÞ:

(Assume Copt > 1:)

Where necessary we shall use the notation *OO~BB and O~BB or *RR~BB and R~BB or
E~BB to indicate the underlying pair

~BB with respect to which these mappings or
sets are defined. (Later, in Section 4, we shall use still more elaborate
notation indicating the dependence on other parameters also.)

Remark 3.2. The convergence in B0 þ B1 of the series
P

n2Z nsn�1bn is a
consequence of our hypotheses on fbng (cf. Remark 2.10) and its sum is of
course f 0ðsÞ where f ðzÞ ¼

P
n2Z znbn:

Remark 3.3. It may be interesting in some cases, e.g. when ~BB is a Banach
pair of finite dimensional spaces, to choose Copt to equal 1 in the above
definition. This corresponds to what is done in certain papers mentioned
above ([3, 12,13, 21]). But, for general Banach pairs, such a choice could
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cause the set EðbÞ and therefore also *OOðbÞ and *RRðbÞ to be empty for some
elements b: Of course if Copt > 1; as will usually be assumed, then these sets
are always nonempty. and so OðbÞ and RðbÞ are also defined. On the other
hand, if Copto1 then these sets will be empty for each ba0:

The preceding definitions of O and R are rather abstract, so perhaps it is
useful to briefly recall a simple and relatively concrete example. It arises in
the framework of the complex interpolation method. Here the relevant
complex variables will range over a strip rather than the annulus A: (But, as
already mentioned, we will see in Section 4 that the strip and annulus give
essentially the same operators.)
We will be quite informal, both with precise definitions and specific

hypotheses. Suppose W is a (possibly unbounded) positive linear operator
on a Banach space X and that W admits enough of a functional calculus so
that we can make good sense of the semigroup W s; s50: In this case the
family of spaces Xs defined by kxkXs

¼ kW sxkX ; 04s41 will be a (complex)
interpolation scale. For this family the operator O will be the infinitesimal
generator of the semigroup and the translation operators R will be given by
the powers of W ; in particular W s1�s0 is the translation operator which
maps Xs1 boundedly (in this case, in fact, isometrically) to Xs0 : This pair
of viewpoints, one case focusing on W sx as a varying family of vectors
residing in the fixed space X or, alternatively, focusing on x as a fixed vector
seen as living in a family of spaces, the Xs; is reminiscent of the duality in
quantum mechanics between the Schr .oodinger picture and the Heisenberg
picture.
In the case where X ¼ Lp and W is given by pointwise multiplication by a

positive, possibly unbounded, function w; then O is multiplication by log w;
i.e. we recapture the first example mentioned in Remark 1.1. (We have to
choose w0 ¼ w�y and w1 ¼ w0w ¼ w1�y for some y 2 ð0; 1Þ:)
In the context of such semigroup considerations it is interesting

to compare the results here with some of the basic facts about semigroups
of operators such as the Hille–Yosida–Phillips theorem. In general,
as we noted, the operators O and R are not linear. The previous
discussion suggests that in this case there may be some relation with
nonlinear semigroup theory or, more generally, nonlinear evolution
equations. In fact it was already noted in [12, 13] that the translation
operators, there called Aðz; z0; �Þ satisfy the propagator equation ((2.13)
on [12, p. 276] or (4.7) on [13, p. 143]) which characterizes evolution
equations.

Definition 3.4. Let X ¼ fX0:X1g be a pair of pseudolattices. We shall
say that X admits differentiation if it is Laurent compatible and, for each
complex Banach space B;
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(i) for every r 2 ð0; 1Þ each element fbngn2Z 2 X0ðBÞ satisfies
limk!�1 r�kkbkkB ¼ 0 and each element fbngn2Z 2 X1ðBÞ satisfies
limk!1 rkkbkkB ¼ 0; and

(ii) for every complex number r satisfying 0ojrjo1; for j ¼ 0; 1 and
for every sequence fbngn2Z 2 XjðBÞ; the new sequence fbj

ngn2Z is also in
XjðBÞ; where fb0ngn2Z and fb1ngn2Z are defined by setting

b0n ¼
X
ko0

r�kbnþkþ1 and b1n ¼
X
k50

rkbnþkþ1;

(where the convergence of all these sums is of course guaranteed by (i) and is
in fact equivalent to (i),) and if also

(iii) for j ¼ 0; 1 and each r as above, the linear map Dj;r defined on
XjðBÞ by setting Dj;rðfbngn2ZÞ ¼ fbj

ngn2Z maps XjðBÞ boundedly into itself.
(iv) If, furthermore, for j ¼ 0; 1; both the norms kDj;rkXjðBÞ!XjðBÞ are

bounded functions of r on each compact subset of the punctured open unit
disk, then we shall say that X admits differentiation uniformly.

Remark 3.5. It can be shown that conditions (i)–(iii) in the preceding
definition in fact imply an apparently stronger condition, namely that there
exists a (finite) constant CnðX; rÞ; depending only on X and r; such that
kDj;rkXjðBÞ!XjðBÞ4 CnðX; rÞ for all complex Banach spaces B and j ¼ 0; 1:
We defer the proof of this to an appendix: See Subsection A.1 (Corollary
A.3(i)). Analogously, condition (iv) turns out to be equivalent to a stronger
condition, where the upper bound for kDj;rkXjðBÞ!XjðBÞ as r ranges over any
give compact set is independent of the particular choice of B: For the proof
we refer again to Subsection A.1 (Corollary A.3(ii)).

The following lemma gives a simple sufficient condition in terms of the
shift operator S (Definition 2.12) for a pair X to admit differentiation
uniformly:

Lemma 3.6. Let X ¼ fX0;X1g be a Laurent compatible pair and suppose

that for each B 2 Ban; S is bounded on X1ðBÞ and S�1 is bounded on X0ðBÞ
and furthermore thatX

k>0

rkkS�kkX0ðBÞ!X0ðBÞo1 and
X
k>0

rkkSkkX1ðBÞ!X1ðBÞo1 ð3:1Þ

for each r 2 ð0; 1Þ: Then the pair X ¼ fX0;X1g admits differentiation

uniformly.

Proof. Obvious. ]
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Remark 3.7. Conditions (3.1) are in fact equivalent to stronger
conditions which hold uniformly for all Banach spaces, i.e. with each term
kSmkXjðBÞ!XjðBÞ replaced by supB2BankSmkXjðBÞ!XjðBÞ: For a proof, see
Subsection A.1, Corollary A.4.

It is clear from the preceding lemma that the pair X ¼ fX0;X1g admits
differentiation uniformly whenever X0 and X1 are each chosen to be any of
‘p; FC; UC or WUC because for all of these XjðBÞ is isometrically invariant
under shifts for every B 2 Ban: Furthermore, pairs of pseudolattices
satisfying a rather weaker form of shift invariance also admit differentiation
uniformly. For example one could take both Xj’s to be weighted ‘p spaces X

of scalar sequences, where the weight varies comparatively slowly,
such as

kfangn2ZkX ¼
X
n2Z

janjpð1þ jnjÞl
 !1=p

;

where l is any positive constant.
We can now present a generalized version of the ‘‘commutator theorem’’

for derivation mappings and also for translation mappings:

Theorem 3.8. Let X be a pair of pseudolattices which admits differentia-

tion. Let ~AA and ~BB be arbitrary Banach pairs. Fix a point s 2 A and a constant

Copt > 1:

(i) Let *OO~AA ; O~AA ;
*OO~BB and O~BB denote derivation mappings corresponding to

these choices of s, Copt and X for the pairs ~AA and ~BB; respectively. Let T : ~AA !
~BB be a bounded linear operator. Then the commutator ½T ;O� maps ~AAX;s

boundedly into ~BBX;s: More explicitly, TðO~AAðaÞÞ � O~BBðTaÞ 2 ~BBX;s for each

a 2 ~AAX;s and

kTðO~AAðaÞÞ � O~BBðTaÞk~BBX;s
4 *CCkTk~AA!~BBkak~AAX;s

ð3:2Þ

for some constant *CC not depending on a. (See Remark 3.10 for various

estimates for *CC:)

(ii) Fix a second point s0 2 A and let *RR~AA ; R~AA ;
*RR~BB and R~BB denote

translation mappings corresponding to s0; s; Copt and X for the pairs ~AA and ~BB;
respectively. Then, for T as above, the commutator ½T ;R� maps ~AAX;s

boundedly into ~BBX;s0 and satisfies the estimate

kTðR~AAðaÞÞ �R~BBðTaÞk~BBX;s0
4js � s0j *CCkTk~AA!~BBkak~AAX;s

ð3:3Þ

for the same constant *CC:
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Remark 3.9. An equivalent and perhaps slightly better formulation of
(3.2) (cf. the preamble to Definition 3.1) would be that for each a0 2 *OO~AAðaÞ
and each b0 2 *OO~BBðTaÞ; the element Ta0 � b0 2 ~BBX;s with the same norm
estimate. Analogously one could reformulate (3.3) as the condition
Ta0 � b0 2 ~BBX;s0 with a corresponding norm estimate, for each a0 2 *RR~AAðaÞ
and each b0 2 *RR~BBðTaÞ:

Remark 3.10. The constant *CC can be taken to be

*CC ¼ 2Copt � CðXÞmax kD0;1=skX0ðB0Þ!X0ðB0Þ;
1

e
kD1;s=ekX1ðB1Þ!X1ðB1Þ

� �
; ð3:4Þ

where Copt is the optimality constant chosen in the definition of the
derivation mappings and CðXÞ ¼ maxj¼0;1 CðXjÞ: Furthermore, (cf. Remark
3.5 and Corollary A.3) the last factor in (3.4) is bounded above by a
constant which is independent of the particular Banach spaces B0 and B1:
In the case where the shift operator S is an isometry of XjðBÞ onto itself

for j ¼ 0; 1 and each B 2 Ban; then we can use Lemma 2.13 and part ðii0Þ of
Theorem 2.14 in a slightly modified version of the proof of Theorem 3.8.
This gives alternative versions of estimates (3.2) and (3.3) where *CCkTk~AA!~BB

is replaced by an expression depending more explicitly on each of the
norms Mj ¼ kTkAj!Bj

and on y ¼ log jsj and y0 ¼ log js0j: By analogy with
part ðii0Þ of Theorem 2.14 one might initially expect the expression
eðCðX0ÞM0Þ1�yðCðX1ÞM1Þy to appear as a multiplicative factor in such
estimates. But we obtain more complicated expressions. In (3.2) *CCkTk~AA!~BB

can be replaced by

CoptðkD0;1=skX0ðB0Þ!X0ðB0ÞðCðX0ÞM0 þ eðCðX0ÞM0Þ1�yðCðX1ÞM1ÞyÞÞ1�y

� ðe�1kD1;s=ekX1ðB1Þ!X1ðB1ÞðCðX1ÞM1 þ eðCðX0ÞM0Þ1�yðCðX1ÞM1ÞyÞÞy

and in (3.3) *CCkTk~AA!~BB can be replaced by

CoptðkD0;1=skX0ðB0Þ!X0ðB0ÞðCðX0ÞM0 þ eðCðX0ÞM0Þ1�yðCðX1ÞM1ÞyÞÞ1�y0

� ðe�1kD1;s=ekX1ðB1Þ!X1ðB1ÞðCðX1ÞM1 þ eðCðX0ÞM0Þ1�yðCðX1ÞM1ÞyÞÞy
0
:

We leave the details to the reader.

Proof. When dealing with various sequences in JðX; ~AAÞ or JðX; ~BBÞ we
shall (cf. earlier proofs for the complex method) tend to work more with the
corresponding vector valued analytic functions on A which have those
sequences as their Laurent coefficients.
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It will be convenient to present part of the proof in the format of a
preliminary lemma which we will also refer to later in the paper for other
purposes:

Lemma 3.11. Let X be a pair of pseudolattices which admits differentia-

tion and let ~BB be a Banach pair. Let the sequence ffngn2Z be an element of

JðX; ~BBÞ and let f :A ! B0 þ B1 be the analytic function defined by f ðzÞ ¼P
n2Z znfn: Suppose that f ðsÞ ¼ 0 for some point s 2 A and let g :A !

B0 þ B1 be the analytic function obtained by setting gðsÞ ¼ f 0ðsÞ and gðzÞ ¼
f ðzÞ=ðz � sÞ for all z 2 A=fsg: Let fgngn2Z be the sequence of coefficients in

the Laurent expansion gðzÞ ¼
P

n2Z zngn of g in A: Then fgngn2Z is also an

element of JðX; ~BBÞ: More specifically,

kfgngn2ZkJðX;~BBÞ4Ckffngn2ZkJðX;~BBÞ ð3:5Þ

for some constant C which can be bounded above by

maxfkD0;1=skX0ðB0Þ!X0ðB0Þ; e�1kD1;s=ekX1ðB1Þ!X1ðB1Þg:

To prove this lemma we first note that for each z 2 A with jzj > jsj we
have

gðzÞ ¼ 1

z � s

X
n2Z

znfn ¼ 1

z

X
k50

s

z


 �k X
n2Z

znfn

¼
X
k50

X
n2Z

zn�k�1skfn ¼
X
k50

X
m2Z

zmskfmþkþ1:

Because of absolute convergence we can interchange the order of
summation to obtain that the preceding expression equalsP

m2Z zm
P

k50 skfmþkþ1: Since the Laurent expansion of g is unique
we must have gn ¼

P
k50 skfnþkþ1: We shall need to deduce a second

formula for gn:

gn ¼ s�n�1
X
k50

snþkþ1fnþkþ1 ¼ �s�n�1
X
ko0

snþkþ1fnþkþ1 ðsince f ðsÞ ¼ 0Þ

¼ �
X
ko0

skfnþkþ1;

i.e.

fgngn2Z ¼ �D0;1=sðffngn2ZÞ: ð3:7Þ
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Also engn ¼ e�1
P

k50 ðs=eÞkðenþkþ1fnþkþ1Þ; i.e.

fengngn2Z ¼ e�1D1;s=eðfenfngn2ZÞ: ð3:8Þ

Since X admits differentiation we obtain that fejngngn2Z 2 XjðBjÞ for
j ¼ 0; 1; and furthermore

fgngn2Z 2 JðX; ~BBÞ ð3:9Þ

with norm not exceeding

max fkD0;1=skX0ðB0Þ!X0ðB0Þ; e�1kD1;s=ekX1ðB1Þ!X1ðB1Þgkffngn2ZkJðX;~BBÞ:

This completes the proof of the lemma.
We can now complete the proof of Theorem 3.8. We may suppose,

without loss of generality, that kTk~AA!~BB ¼ 1: Fix a 2 ~AAX;s; which we may
also take to have norm 1. Then (cf. Theorem 2.14) the element b ¼ Ta is in
~BBX;s with norm not exceeding CðXÞ ¼ maxj¼0;1 CðXjÞ: Let fangn2Z be any
sequence in E~AAðaÞ and let fbngn2Z be any sequence in E~BBðTaÞ: Since,
by definition, kfejnangn2ZkXjðAjÞ4Copt for j ¼ 0; 1; we deduce that
kfejnTangn2ZkXjðBjÞ4CoptCðXÞ for j ¼ 0; 1: We also have by definition that
kfejnbngn2ZkXjðBjÞ4CoptCðXÞ: Consequently, the sequence ffngn2Z :¼
fTan � bngn2Z is in JðX; ~BBÞ; with norm not exceeding 2CoptCðXÞ:
Our hypotheses (cf. Remark 2.10) ensure that

X
n2Z

snfn ¼ Ta � Ta ¼ 0: ð3:10Þ

Thus we can apply Lemma 3.11 to the sequence ffngn2Z: For f and g and
fgngn2Z defined as in the statement of the lemma, this gives that fgngn2Z 2
JðX; ~BBÞ with norm not exceeding

C1 ¼ 2CoptCðXÞmaxfkD0;1=skX0ðB0Þ!X0ðB0Þ; e�1kD1;s=ekX1ðB1Þ!X1ðB1Þg:

Consequently, f 0ðsÞ ¼ gðsÞ ¼
P

n2Z sngn is in ~BBX;s also with norm not
exceeding C1: Also gðs0Þ must be in ~BBX;s0 ; again with norm not exceeding C1:
So if we choose the above sequences fangn2Z and fbngn2Z so that a0 ¼
O~AAðaÞ ¼

P
n2Z nsn�1an and b0 ¼ O~BBðTaÞ ¼

P
n2Z nsn�1bn; then we shall

have the required estimate for TO~AAðaÞ � O~BBðTaÞ ¼ f 0ðsÞ: Alternatively, if
we choose fangn2Z and fbngn2Z so that a0 ¼ R~AAðaÞ ¼

P
n2Zðs0Þ

n
an and b0 ¼

R~BBðTaÞ ¼
P

n2Z ðs0Þn
bn; then we shall have the required estimate for

TR~AAðaÞ �R~BBðTaÞ ¼ f ðs0Þ ¼ ðs0 � sÞgðs0Þ: ]
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4. COMPARISONS WITH EARLIER RESULTS

The purpose of this section is to show that, in the special cases of the
complex and real interpolation methods, the operators O and R; which we
introduced and studied in Section 3, essentially coincide with analogous
operators which appear in [27, 32, 34, 35, 42, 54] and elsewhere. This means,
among other things, that a number of theorems in these papers, which are in
the style of our Theorem 3.8, can be viewed as consequences of Theorem 3.8
(modulo possible changes in the constants appearing in the norm estimates).
Conversely, the special cases of Theorem 3.8 for the real and complex
methods could also be easily deduced from those theorems.
The essential difference between our definitions of O and R and those in

the previous papers is that we have found it convenient to use interpolation
spaces defined using a ‘‘discrete’’ definition (i.e. functions defined on an
annulus) whereas previous papers used a ‘‘continuous’’ method (i.e.
functions defined on a strip in the complex plane). Thus our proofs here
amount to obtaining more elaborate versions of known results (see [17] for
the complex method, and [41] or [4] for the real method) which show that
‘‘discrete’’ and ‘‘continuous’’ definitions give the same interpolation spaces,
in each of these cases.
Let us first deal with the complex method. Let S be the ‘‘unit strip’’

S ¼ fz 2 C : 0oRe zo1g: For any Banach pair ~BB we letF1ð~BBÞ denote the
space of bounded continuous functions f : %SS ! B0 þ B1 which are analytic
in S and such that, for j ¼ 0; 1; the function t/f ðj þ itÞ is continuous
and bounded from R into Bj: We let Fð~BBÞ be the space introduced in [6]
which is the subspace of F1ð~BBÞ consisting of those functions for
which limjtj!1 kf ðj þ itÞkBj

¼ 0 for j ¼ 0; 1: Both F1ð~BBÞ and Fð~BBÞ are
normed by

kf kFð~BBÞ ¼ sup
j¼0;1;t2R

kf ðj þ itÞkBj
:

For each y 2 ½0; 1�; Calder !oon’s complex interpolation space ½~BB�y is defined
by

½~BB�y ¼ ff ðyÞ: f 2 Fð~BBÞg

with norm

kbk½~BB�y
¼ inffkf kFð~BBÞ: f 2 Fð~BBÞ; f ðyÞ ¼ bg:

It is well known and easy to show (e.g. with the help of scalar analytic
functions edz2 for small d > 0) that replacing F by F1 in the preceding
definition gives the same interpolation space and the same norm.
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Let us fix a point s ¼ yþ it 2 S and some constant Copt > 1: Then, for
each b 2 ½~BB�y; let F1ðb;Copt; s; ~BBÞ be the subset of F1ð~BBÞ consisting of
those functions f which satisfy f ðsÞ ¼ b and kf kFð~BBÞ4Coptkbk½~BB�y

: We also
set Fðb;Copt; s; ~BBÞ ¼ F1ðb;Copt; s; ~BBÞ \Fð~BBÞ:
The versions of the operators O and R which are encountered in previous

papers dealing with the complex method correspond to (particular values of)
the multivalued operators acting on ½~BB�y defined by

*OOnðb;Copt; s; ~BBÞ ¼ ff 0ðsÞ : f 2 Fðb;Copt; s; ~BBÞg ð4:1Þ

and, for some fixed s0 ¼ y0 þ it0 2 S;

*RRnðb;Copt; s; s0; ~BBÞ ¼ ff ðs0Þ : f 2 Fðb;Copt; s; ~BBÞg: ð4:2Þ

It will be a little more convenient to work with variants of these operators,
which are obtained by replacing F by F1 in these last two definitions, i.e.

*OO
* ;1ðb;Copt; s; ~BBÞ ¼ ff 0ðsÞ : f 2 F1ðb;Copt; s; ~BBÞg ð4:3Þ

and

*RR
* ;1ðb;Copt; s; s0; ~BBÞ ¼ ff ðs0Þ : f 2 F1ðb;Copt; s; ~BBÞg: ð4:4Þ

Let us now observe that these variants are in fact almost the same as the
original operators:

Theorem 4.1. For each e > 0;

*OOnðb;Copt; s; ~BBÞ � *OO
* ;1ðb;Copt; s; ~BBÞ � *OOnðb; ð1þ eÞCopt; s; ~BBÞ ð4:5Þ

and

*RRnðb;Copt; s; s0; ~BBÞ � *RR
* ;1ðb;Copt; s; s0; ~BBÞ

� *RRnðb; ð1þ eÞCopt; s; s0; ~BBÞ ð4:6Þ

Proof. Suppose that a 2 *OO
* ;1ðb;Copt; s; ~BBÞ so that a ¼ f 0ðsÞ for some

f 2 F1ðb;Copt; s; ~BBÞ: For each d > 0 let fdðzÞ ¼ edðz�sÞ2 f ðzÞ for all z 2 %SS:
Then fd 2 Fðb; ð1þ eÞCopt; s; ~BBÞ for all sufficiently small d and f 0

dðsÞ ¼
f 0ðsÞ ¼ a: This establishes the second inclusion in (4.5), and the first
inclusion is obvious. The proof of (4.6) is almost the same, except that this
time we define fdðzÞ ¼ edððz�sÞ2þðz�s0Þ2�ðs0�sÞ2Þf ðzÞ: ]

In this section it will be convenient to use more detailed notation for the
various sets or multivalued operators which we introduced in Definition 3.1:
We shall use Eðb;Copt; s;X; ~BBÞ to denote the set of sequences EðbÞ:
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Correspondingly, *OOðb;Copt; s;X; ~BBÞ will denote the set *OOðbÞ and *RRðb;Copt;
s; s0;X; ~BBÞ will denote *RRðbÞ: Since we are currently dealing with the complex
method we now consider the case where the pair of pseudolattices
X ¼ fX0;X1g is FC ¼ fFC;FCg:
We are now ready to compare *OO

* ;1ðb;Copt; s; ~BBÞ and *RR
* ;1ðb;Copt; s;

s0; ~BBÞ with the operators *OOðb;Copt; s;FC; ~BBÞ and *RRðb;Copt; s; s0;FC; ~BBÞ
defined in Section 3, Definition 3.1.

Theorem 4.2. There exist absolute positive constants C# and C1; and,
for each pair of points s and s0 in S; there exists a positive constant

Cs;s0 ; depending only on those points, such that, for each Banach pair ~BB;
each b 2 ½~BB�Re s and each Copt > 1;

*OOðb;C�1
# Copt; es;FC; ~BBÞ � e�s *OO

* ;1ðb;Copt; s; ~BBÞ

� *OOðb;C1Copt; es;FC; ~BBÞ: ð4:7Þ

Furthermore, provided esaes
0
;

*RRðb;C�1
# Copt; es; es

0
;FC; ~BBÞ � *RR

* ;1ðb;Copt; s; s0; ~BBÞ

� *RRðb;Cs;s0Copt; es; es
0
;FC; ~BBÞ: ð4:8Þ

For each d 2 ð0; 2pÞ; the constants Cs;s0 satisfy

supfCs;s0 : s; s0 2 S; js� s0j4dgo1: ð4:9Þ

Remark 4.3. We cannot in general dispense with the condition esaes
0
in

(4.8). In the trivial case where s ¼ s0; all three sets in (4.8) are either the
singleton fbg or the empty set and (4.8) in fact does hold. But if es ¼ es

0
with

sas0; then *RRðb;Copt; e
s; es

0
;FC; ~BBÞ ¼ fbg for all choices of Copt > 1: Then

(4.8) does not hold because, again for all choices of Copt > 1; the set
*RR
* ;1ðb;Copt;s; s0; ~BBÞ will contain all elements of the form b þ a where

kakB0\B1
is smaller than some positive number depending on Copt; s and s0:

An additional argument, which we defer to an appendix (Subsection A.3),
shows that, in general, Cs;s0 cannot remain bounded as es

0
becomes

arbitrarily close to es:

Remark 4.4. The boundedness condition (4.9) is needed if one wishes to
show that results in the style of (3.3) in the settings of earlier papers imply
(3.3) in the case of the complex method. We defer further discussion of the
behaviour of Cs;s0 to Remark 4.6.
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Proof. Let F2pð~BBÞ be the subspace of Fð~BBÞ consisting of those
functions f which satisfy f ðz þ 2piÞ ¼ f ðzÞ for all z 2 %SS: The absolute
constant C# in the statement of the theorem will be the same as appears in
the result in [17] that the space ½~BB�2py ¼ ff ðyÞ: f 2 F2pð~BBÞg coincides with
½~BB�y for each y 2 ð0; 1Þ and the norm kbk½~BB�2py

¼ inffkf kFð~BBÞ: f 2 F2pð~BBÞ;
f ðyÞ ¼ bg satisfies

kbk½~BB�y
4kbk½~BB�2py

4C#kbk½~BB�y
for each b 2 ½~BB�y: ð4:10Þ

Our proof here will in fact include and extend that result (cf. Remark 4.5).
We observe that each f 2 F2pð~BBÞ corresponds to a unique function Gf :

%AA ! B0 þ B1 which is analytic in A and satisfies f ðzÞ ¼ Gf ðezÞ for all z 2 %SS:
We consider the sequence of Fourier coefficients f #ff ngn2Z of f ; or
equivalently, Laurent coefficients of Gf ; defined, for each l 2 ½0; 1�; by

#ff n ¼ 1

2p

Z 2p

0

e�ðlþitÞnf ðlþ itÞ dt ¼ 1

2pi

I
jzj¼el

Gf ðzÞ
znþ1 dz: ð4:11Þ

Of course, by Cauchy’s theorem, their values are independent of l:
Furthermore, f #ff ngn2Z 2 JðFC; ~BBÞ with

kf #ff ngn2ZkJðFC;~BBÞ ¼ kf kFð~BBÞ: ð4:12Þ

Conversely, given any sequence fbngn2Z 2 JðFC; ~BBÞ; let GðzÞ ¼
P

n2Z znbn:
Clearly the (C; 1) means of the partial sums of this series converge uniformly
in Bj on fjzj ¼ ejg for j ¼ 0; 1 and therefore uniformly in B0 þ B1 on %AA:
Thus the function hðzÞ ¼ GðezÞ is an element of F2pð~BBÞ with khkFð~BBÞ ¼
kfbngn2ZkJðFC;~BBÞ:
The preceding remarks show that, for any s 2 S; we have ~BBFC;s ¼ ½~BB�2py ¼

½~BB�y; where s ¼ es and y ¼ lnjsj ¼ Re s and

kbk½~BB�y
4kbk½~BB�2py

¼ kbk~BBFC;s
4C#kbk½~BB�y

for each b 2 ½~BB�y: ð4:13Þ

We can now easily obtain the first inclusions in (4.47) and (4.48). Each
b0 2 *OOðb;C�1

# Copt; es;FC; ~BBÞ and each b00 2 *RRðb;C�1
# Copt; es; es

0
;FC; ~BBÞ are

of the forms b0 ¼
P

n2Z nðesÞn�1
bn and b00 ¼

P
n2Z ðes0 Þn

bn respectively, for
some choices of sequences fbngn2Z 2 Eðb;C�1

# Copt; es;FC; ~BBÞ: For each such
sequence fbngn2Z; the function f ðzÞ ¼

P
n2Z enzbn is an element of F2pð~BBÞ

with kf kFð~BBÞ ¼ kfbngn2ZkJðFC;~BBÞ4C�1
# Coptkbk~BBFC;es

4Coptkbk½~BB�y
: Thus

b0 ¼
P

n2Z nðesÞn�1
bn ¼ e�sf 0ðsÞ 2 e�s *OO

* ;1ðb;Copt; s; ~BBÞ and f ðs0Þ ¼P
n2Z ens0bn 2 *RR

* ;1ðb;Copt; s; s0; ~BBÞ; which proves these inclusions. Of
course in the preceding argument we assumed that the set Eðb;C�1

# Copt;
es;FC; ~BBÞ is nonempty. But if it is empty, as happens for example if ba0
and CoptoC#; then there is nothing to prove.
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The proofs of the second inclusions in (4.47) and(4.48) are where we
elaborate upon the methods of [17]. We shall need to use some scalar valued
analytic functions with some special properties. Let H0 be the set of all entire
functions c :C ! C which satisfy

cð0Þ ¼ 1 ð4:14Þ

and

cð2pniÞ ¼ 0 for all n 2 Z with na0 ð4:15Þ

and, for each r > 0; there exists a constant Cðc; rÞ depending only on c and
r such that

jcðs þ itÞj4Cðc; rÞe�t2 for all s 2 ½�r; r� and all t 2 R: ð4:16Þ

For example, the function c0 :C ! C defined by

c0ð0Þ ¼ 1 and c0ðzÞ ¼ ez2 ez � 1

z
for all za0 ð4:17Þ

is an element of H0: For our purposes we shall need several more functions
in H0: The first of these, c1; is defined by

c1ð0Þ ¼ 1 and c1ðzÞ ¼ ez2 ez=2 � e�z=2

z
for all za0: ð4:18Þ

Apart from being in H0; c1 is an even function and so also satisfies
c0
1ð0Þ ¼ 0: Our next function c2; defined by c2ðzÞ ¼ ðc1ðzÞÞ

2 is also in
H0 and satisfies

c0
2ð2pniÞ ¼ 0 for all n 2 Z: ð4:19Þ

Now, given any b0 2 e�s *OO
* ;1ðb;Copt; s; ~BBÞ; let f be an element of

F1ðb;Copt; s; ~BBÞ such that b0 ¼ e�sf 0ðsÞ: We define a new function
F : %SS ! B0 þ B1

FðzÞ ¼
X
n2Z

c2ðz � sþ 2pniÞf ðz þ 2pniÞ: ð4:20Þ

We introduce the finite constants

g ¼ sup
t2R

X
n2Z

e�ð2pn�tÞ2 ¼ sup
t2½0;2p]

X
n2Z

e�ð2pn�tÞ2 and

C1 ¼ gCðc2; 1Þ: ð4:21Þ
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Since c2 satisfies condition (4.16), it follows that series (4.20) converges
uniformly in B0 þ B1 norm on every compact subset of %SS and satisfies
supz2 %SS kFðzÞkB0þB1

4C1 supz2 %SS kf ðzÞkB0þB1
: For similar reasons, the same

series also converges uniformly in Bj norm on every compact subset of the
line fj þ it: t 2 Rg and satisfies supt2R kFðj þ itÞkBj

4C1 supt2R kf ðj þ itÞkBj
;

for j ¼ 0; 1: This means that F 2 F1ð~BBÞ:We also see that F 2 F2pð~BBÞ and
FðsÞ ¼ f ðsÞ ¼ b: Furthermore, since series (4.20) can be differentiated term-
by-term for all z 2 S; we have, using (4.19) and the fact that c2ð0Þ ¼ 1; that
F 0ðsÞ ¼ f 0ðsÞ ¼ esb0: Let GF : %AA ! B0 þ B1 be the continuous function
which is analytic on A such that FðzÞ ¼ GF ðezÞ and let fbngn2Z be the
sequence of Fourier coefficients of F ; i.e., Laurent coefficients of GF defined
as in (4.11). The arguments given above (cf. (4.11), (4.12), etc.) show that
fbngn2Z 2 JðFC; ~BBÞ with kfbngn2ZkJðFC;~BBÞ ¼ kFkFð~BBÞ4C1kf kFð~BBÞ4
C1Coptkbk½~BB�Re s

4C1Coptkbk~BBFC;es
: This implies that the series

P
n2Z znbn

and
P

n2Z nzn�1bn both converge in B0 þ B1 for all z 2 A and their sums are

necessarily GF ðzÞ; and its derivative G0
F ðzÞ; respectively. In particular, when

z ¼ es we get GF ðesÞ ¼ FðsÞ ¼ b and esG0
F ðesÞ ¼ F 0ðsÞ ¼ esb0: This shows

that b0 2 *OOðb;C1Copt; es;FC; ~BBÞ and so we have established the second

inclusion of (4.7).
The proof of the second inclusion of (4.8) is similar. We will need to use

yet another entire function c3: Let us first note that the imposed condition
esaes

0
; i.e. s�s0

2pi
=2 Z ensures that c1ðs� s0Þa0: So we can define

c3ðzÞ ¼
c1ðz � sÞc1ðz � s0Þ

c1ðs� s0Þ for all z 2 C: ð4:22Þ

Then c3ðsÞ ¼ c3ðs0Þ ¼ 1 and c3ðsþ 2pniÞ ¼ c3ðs0 þ 2pniÞ ¼ 0 for every
nonzero integer n: We also have jc3ðs þ itÞj4Cðs; s0Þe�ðt�Re sÞ2 for all
s 2 ½�1; 1� and t 2 R; where

Cðs; s0Þ ¼ Cðc1; 1Þ
2=jcðs� s0Þj: ð4:23Þ

This gives, for g as in (4.21), that

sup
z2S

X
n2Z

jc3ðz þ 2pniÞj4gCðs; s0Þ: ð4:24Þ

Now, given any b00 2 *OO
* ;1ðb;Copt; s; s0; ~BBÞ; let f be an element of

F1ðb;Copt; s; ~BBÞ such that b00 ¼ f ðs0Þ: This time we define a new function
F : %SS ! B0 þ B1 by

FðzÞ ¼
X
n2Z

c3ðz þ 2pniÞf ðz þ 2pniÞ: ð4:25Þ
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Analogous to the previous step, we obtain from (4.24) and the other
properties of c3 that F 2 F2pð~BBÞ with kFkFð~BBÞ4Cs;s0 kf kFð~BBÞ4
Cs;s0Coptkbk½~BB�Re s

4Cs;s0Coptkbk~BBFC;es
where Cs;s0 ¼ gCðs; s0Þ depends only

on s and s0: We also have FðsÞ ¼ f ðsÞ ¼ b and Fðs0Þ ¼ f ðs0Þ ¼ b00:
We obtain the function GF and the sequence fbngn2Z from F exactly
as in the previous step. Thus we have GF ðesÞ ¼ b and GF ðes

0 Þ ¼ b00 and
so b00 2 *RRðb;Cs;s0Copt; es; es

0
;FC; ~BBÞ: This completes the proof of (4.8).

Finally we deduce (4.9) from the fact that inffjc1ðs� s0Þj : s; s0 2 S;
js� s0j4dg > 0: ]

Remark 4.5. We have not sought to find the optimal value of C# and
this problem is not addressed in [17] either. To obtain a crude estimate, we
can observe that the proof in [17] of (4.10) uses a formula just like (4.20) but
there c2 can also be replaced, for example, by c0: Since sups2½0;1� jc0ðs þ
itÞj4e1�t2max fe þ 1; supjzj je

z�1
z
jg we obtain, for g as in (4.21), that

14C#4gemax e þ 1; sup
jzj41

ez � 1

z

����
����

( )
:

Remark 4.6. It seems that the most interesting aspects of the behaviour
of the operators *RR are when s and s0 are close to each other. But we can also
describe the behaviour of the constant Cs;s0 appearing in (4.8) when js� s0j
is large. The upper bound which we obtained in the proof of Theorem 4.2
for Cs;s0 becomes arbitrarily large as js� s0j tends to 1; even if we restrict
ourselves to a subset of s and s0 where jes � es

0 j is bounded from below by
some positive number. However, there is an alternative approach which
gives a uniform estimate for Cs;s0 : More precisely, for each d > 0; we can
show that

supfCs;s0 : s; s0 2 S; jes � es
0 j5dgo1: ð4:26Þ

We defer the proof of this to an appendix (Subsection A.2).

We now turn our attention to analogous results for the real method. This
means that we must now take the pair of pseudolattices X to be f‘p; ‘pg; for
which we will use the abbreviated notation lp: We shall consider p in the
‘‘usual’’ range 14p41 (although of course there is a great deal that can be
done in other contexts of real interpolation for p beyond this range).
For any Banach pair ~BB we define Jrð~BB; pÞ to be the space of strongly

measurable functions v :R ! B0 \ B1 such that

kvkJrð~BB;pÞ ¼ max
j¼0;1

Z 1

�1
kejxvðxÞkp

Bj
dx

� �1=p

o1:
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As usual, if p ¼ 1; the integrals are replaced by essential suprema. For
each y 2 ð0; 1Þ it is clear (cf. [4, 41] and some remarks below) that the real
method interpolation space ~BBy;p is the set of all elements of the form
b ¼

R1
�1 eyxvðxÞ dx for some v 2 Jrð~BB; pÞ; and that any norm for ~BBy;p

is equivalent to

kbkR~BBy;p
¼ inf kvkJrð~BB;pÞ : v 2 Jrð~BB; pÞ; b ¼

Z 1

�1
eyxvðxÞ dx

� �
:

In particular, the norms k � kR~BBy;p
and k � kZ~BBy;p

are equivalent, where (cf.

Definition 2.11 with s ¼ ey and X ¼ lp)

kbkZ~BBy;p
¼ kbk~BB

lp ;ey
¼ inf kfbngn2ZkJðlp;~BBÞ: b ¼

X
n2Z

eynbn

( )
:

We remark that if y is replaced by an arbitrary point s 2 S; then all the
above definitions still make sense, and the various norms obtained are equal
to those that would be obtained with Re s in place of s:
Given any s ¼ yþ it 2 S; and any b 2 ~BBy;p and some positive constant

Copt; let Jrðb;Copt; s; ~BB; pÞ be the subset of Jrð~BB; pÞ consisting of those
functions v which satisfy

R1
�1 esxvðxÞdx ¼ b and kvkJrð~BB;pÞ4CoptkbkR~BBy;p

: The
operators O and R encountered in previous papers dealing with the real
method correspond to (particular values of) the multivalued operators
acting on ~BBy;p defined by

*OOrðb;Copt; s; ~BB; pÞ ¼
Z 1

�1
xesxvðxÞ dx: v 2 Jrðb;Copt; s; ~BB; pÞ

� �
ð4:27Þ

and, for some fixed s0 ¼ y0 þ it0 2 S;

*RRrðb;Copt; s; s0; ~BB; pÞ ¼
Z 1

�1
es

0xvðxÞ dx: v 2 Jrðb;Copt; s; ~BB; pÞ
� �

: ð4:28Þ

We have obtained the preceding definitions from corresponding ones
appearing variously in [4, 20, 32] and implicitly in [63] by two trivial
transformations. In ‘‘standard’’ definitions, the space ~BBy;p is defined to be
the set of all elements of the form b ¼

R1
0 uðtÞdt

t
for a suitable class of

functions u : ð0;1Þ ! B0 \ B1: Here we have replaced each such function u

by a function v :R ! B0 \ B1 which satisfies uðtÞ ¼ tsvðln tÞ; and then we
have used the change of variables x ¼ ln t to move from integrals on ðð0;
1Þ; dt

t
Þ to integrals on ðR; dxÞ:We have thus returned to a notation which is

closer to that appearing in the seminal Lions–Peetre paper [41] and also
more convenient for our purposes here. Definition (4.27) corresponds to
the J-functional definition of an operator O given in [32]. We recall that the
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K-functional variant of this definition given in that paper was shown in [19,
Theorem 2.8 (p. 602)] to give the essentially the same operator.

Theorem 4.7. There exists an absolute positive constant Cn and, for each

pair of points s and s0 in S; there exist positive constants C#
s;s0 and Cn

s;s0 ;
depending only on those points, such that, for each Banach pair ~BB; each

p 2 ½1;1�; each b 2 ~BBRe s;p and each Copt > 1;

*OOðb; e�1=2Copt; es; lp; ~BBÞ � *OOrðb;Copt; s; ~BB; pÞ � *OOðb;CnCopt; es; lp; ~BBÞ ð4:29Þ

and, provided esaes
0
;

*RRðb; ðC#
s;s0 Þ

�1
Copt; es; es

0
; lp; ~BBÞ � *RRrðb;Copt; s; s0; ~BB; pÞ

� *RRðb;Cn

s;s0Copt; es; es
0
; lp; ~BBÞ: ð4:30Þ

For each d 2 ð0; 2pÞ the constants C#
s;s0 and Cn

s;s0 satisfy

supfC
#
s;s0 : s; s

0 2 S; js� s0j4dgo1 ð4:31Þ

and

supfCn

s;s0 : s; s
0 2 S; js� s0j4dgo1: ð4:32Þ

Remark 4.8. For similar reasons to those given in Remark 4.3, we
cannot dispense in general with the condition esaes

0
:We have not sought to

find the sharpest estimates for the constants appearing in (4.29) and (4.30).
We have preferred instead to find constants which do not depend on some of
the parameters, even if this means they are larger. Although we shall not
pursue this here, it seems likely that the argument in Subsection A.2 can be
adapted to show that, when js� s0j is not too small, the set *RRrðb;Copt; s;
s0; ~BB; pÞ is uniformly comparable with the ball CoptkbkR~BBRe s;p

B~BBRe s0 ;p
: This in

turn should make it possible to show that the constants Cn
s;s0 and C#

s;s0 are
bounded above on the set fðs; s0Þ 2 S� S : jes � es

0 j5dg for each d > 0;
and also (cf. Subsection A.3) that Cn

s;s0 is unbounded as jes � es
0 j tends to

zero.

Proof. Let a and b be any two complex numbers. Given any fbngn2Z 2
Jðlp; ~BBÞ we define a strongly measurable function va :R ! B0 \ B1 by
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setting

vaðxÞ ¼
X
n2Z

eaðn�xÞwðn�1=2;nþ1=2�ðxÞbn: ð4:33Þ

Then

Z 1

�1
ebxvaðxÞ dx ¼

X
n2Z

ean

Z nþ1=2

n�1=2
eðb�aÞx dx

 !
bn

¼ eðb�aÞ=2 � eða�bÞ=2

b� a

� �X
n2Z

ebnbn; ð4:34Þ

where of course the last expression in parentheses is replaced by 1 if a ¼ b:
If a 2 S then, for j ¼ 0; 1 and each p 2 ½1;1Þ;

Z nþ1=2

n�1=2
kejxvaðxÞkp

Bj
dx

 !1=p

¼ eRe ankbnkBj

Z nþ=2

n�1=2
epðj�Re aÞx dx

 !1=p

4 eRe ankbnkBj
sup

x2½n�1=2;nþ1=2�
eðj�Re aÞx

¼ eRe ankbnkBj
eðj�Re aÞnþjj�Re aj=2

¼ ejnkbnkBj
ejj�Re aj=24ejnkbnkBj

ffiffiffi
e

p
;

and the same estimate holds for p ¼ 1: Consequently,

Z 1

�1
kejxvaðxÞkp

Bj
dx

� �1=p

4
ffiffiffi
e

p
kfejnbngn2Zk‘pðBjÞ ð4:35Þ

for j ¼ 0; 1 and p 2 ½1;1�:
We can now prove the first inclusion of (4.29). Given any b0 2 *OOðb; e�1=2

Copt; es; lp; ~BBÞ we choose a sequence fbngn2Z 2 Eðb; e�1=2Copt; es; lp; ~BBÞ
satisfying b0 ¼

P
n2Z nesnbn: We set a ¼ s in (4.33) and let v ¼ vs: Then

(cf. (4.34)) we have
R1
�1 esxvðxÞ ¼

P
n2Z esnbn ¼ b and alsoZ 1

�1
xesxvðxÞ dx ¼

X
n2Z

nesnbn ¼ b0: ð4:36Þ

Also, it follows from (4.35) that v 2 Jrðb;Copt; s; ~BB; pÞ: We deduce that
b0 2 *OOrðb;Copt; s; ~BB; pÞ; establishing the required inclusion. We remark that
this step also shows that

kbkR~BBy;p
4

ffiffiffi
e

p
kbkZ~BBy;p

; ð4:37Þ
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where y ¼ Re s; and is adapted from the proof in Lemma 3.2.3 of [41,
pp. 18–19] or [4, p. 43] that the norms k � kZ~BBy;p

and k � kR~BBy;p
satisfy kbkR~BBy;p

4
const: kbkZ~BBy;p

: In fact a stronger version of (4.37) holds, namely

kbkR~BBy;p
4eyð1�yÞkbkZ~BBy;p

ð4:38Þ

as is shown in [41] essentially by taking vðxÞ to be estvsðx þ tÞ instead of
vsðxÞ for t ¼ 1

2
� y: (But this v does not satisfy (4.36).)

We next give an analogous argument to prove the first inclusion of (4.30).
First, note that the condition esaes

0
implies (and is in fact equivalent to)

sinhðs�s0
2
Þa0: Given any b0 2 *RRðb; ðC#

s;s0 Þ
�1

Copt; es; es
0
; lp; ~BBÞ and an asso-

ciated sequence fbngn2Z 2 Eðb;C�1
ss0;pCopt; es; lp; ~BBÞ we choose a ¼ ðsþ s0Þ=2

in (4.33) and let v ¼ ðs�s0Þ=2
sinhððs�s0Þ=2Þva: These choices are made because then, for

b ¼ s and also for b ¼ s0; the expression in parentheses in (4.34) has the
same value

sinhððs�s0Þ=2Þ
ðs�s0Þ=2 : So (4.34) givesZ 1

�1
esxvðxÞ dx ¼

X
n2Z

esnbn ¼ b

and also Z 1

�1
es

0xvðxÞ dx ¼
X
n2Z

es
0nbn ¼ b0:

By (4.35) we have

kvkJrð~BB;pÞ4
ffiffiffi
e

p ðs� s0Þ=2
sinhððs� s0Þ=2Þ

����
����kfbngn2ZkJðlp;~BBÞ

4
ffiffiffi
e

p ðs� s0Þ=2
sinhððs� s0Þ=2Þ

����
����ðC#

s;s0 Þ
�1

Coptkbk~BB lp ;es
:

If we choose C
#
s;s0 ¼

ffiffiffi
e

p
j ðs�s0Þ=2
sinhððs�s0Þ=2Þj then the preceding estimate proves the

first inclusion of (4.30) and we also obtain (4.31).
We now turn to proving the second inclusions in (4.29) and (4.30). We are

given either an element b0 2 *OOrðb;Copt; s; ~BB; pÞ or an element b00 2 *RRrðb;
Copt; s; s0; ~BB; pÞ: In both cases we have to deal with a function v 2 Jrðb;
Copt; s; ~BB; pÞ for which either

R1
�1 xesxvðxÞ dx ¼ b0 or

R1
�1 es

0xvðxÞ dx ¼ b00:

We want to use this function to construct a sequence fbngn2Z in Eðb;
CnCopt; es; lp; ~BBÞ or in Eðb;Cn

s;s0Copt; es; lp; ~BBÞ such that
P

n2Z nesnbn ¼ b0 orP
n2Z es

0nbn ¼ b00: It would seem at first that the natural thing to do is to

define bn ¼ e�sn
R nþ1=2

n�1=2 esxvðxÞ dx for each n 2 Z: (This corresponds to what

works in the analogous stage of the simpler proof in [41, p. 18] or [4, p. 44]
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that the norms k � kZ~BBy;p
and k � kR~BBy;p

satisfy kbkZ~BBy;p
4const:kbkR~BBy;p

:) This will
certainly give

P
n2Z esnbn ¼ b and kfbngn2ZkJðlp;~BBÞ4

ffiffiffi
e

p
kvkJrð~BB;pÞ so that

fbngn2Z 2 Eðb;
ffiffiffi
e

p
Copt; es; lp; ~BBÞ: But it will not give that

P
n2Z nesnbn ¼ b0:

Instead, we will only be able to show that
P

n2Z nesnbn � b0 2 ~BBy;p and that

k
P

n2Z nesnbn � b0kR~BBy;p
41

2
kvkJrð~BB;pÞ4

1
2
CoptkbkR~BBy;p

: This would be sufficient

for some purposes, such as exhibiting a result like (3.2) in Theorem 3.8 in the
case of the real method, as a consequence of similar results in [32]. To get the
stronger result of (4.29) we shall need an alternative more elaborate way of
defining fbngn2Z; which comes, perhaps surprisingly, from the complex
method (cf. also [41, pp. 29–31]). It corresponds to what we did at the
analogous step in the proof of Theorem 4.2.
Since v 2 Jrð~BB; pÞ; we have by H .oolder’s inequality, thatR 0

�1 kexxvðxÞkB0
dxo1 for all x > 0 and

R1
0 kexxvðxÞkB1

dxo1 for
all xo1: ThusZ 1

�1
kexxvðxÞkB0þB1

dxo1 for all x 2 ð0; 1Þ ð4:39Þ

and so we can define an analytic function f :S ! B0 þ B1 by setting

f ðzÞ ¼
Z 1

�1
ezxvðxÞ dx: ð4:40Þ

Note that, for each compact subinterval ½a; b� � ð0; 1Þ we have

supfkf ðzÞkB0þB1
: Re z 2 ½a; b�go1: ð4:41Þ

Furthermore f ðsÞ ¼ b and f 0ðsÞ ¼
R1
�1 xesxvðxÞ dx ¼ b0:

We now use the function c1ðzÞ ¼ ez2 ez=2�e�z=2

z
and c2ðzÞ ¼ ðc1ðzÞÞ

2 which

appeared in the proof of Theorem 4.2 and, as in that proof, we obtain a new
function F :S ! B0 þ B1 from our f by formula (4.20). It follows from
(4.41) and arguments similar to those of the proof of Theorem 4.2 that F is
analytic. It also satisfies FðsÞ ¼ b and F 0ðsÞ ¼ b0 and Fðzþ 2piÞ ¼ FðzÞ for
all z 2 S:We now define the sequence fbngn2Z to be the Fourier coefficients
of F (or the Laurent coefficients of GF :A ! B0 þ B1 defined as before by
GF ðezÞ ¼ FðzÞ). By standard properties of Laurent expansions we have that
FðsÞ ¼

P
n2Z esnbn and F 0ðsÞ ¼

P
n2Z nesnbn; where both of these series

converge in B0 þ B1: So, to establish the second inclusion of (4.29)
it remains to show that bn 2 B0 \ B1 and fbngn2Z 2 Jðlp; ~BBÞ with
kfbngn2ZkJðlp;~BBÞ4CnCoptkbk~BB lp ;es

:
The coefficients bn are given by

bn ¼ 1

2p

Z 2p

0

e�nðlþitÞFðlþ itÞ dt;
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where, by Cauchy’s theorem, the value of the integral is the same for all
choices of l 2 ð0; 1Þ: Since the B0 þ B1 valued series in (4.20) converges
uniformly on each compact subset of S we have, for each l 2 ð0; 1Þ; that

bn ¼ 1

2p

Z 2p

0

e�nðlþitÞ
X
k2Z

c2ðlþ it � sþ 2pkiÞf ðlþ it þ 2pkiÞ
 !

dt

¼ 1

2p

X
k2Z

Z 2p

0

e�nðlþitÞc2ðl� sþ iðt þ 2pkÞÞf ðlþ iðt þ 2pkÞÞ dt

¼ 1

2p

X
k2Z

Z 2p

0

e�nðlþitÞc2ðl� sþ iðt þ 2pkÞÞ
Z 1

�1
eðlþiðtþ2pkÞÞxvðxÞ dx

� �
dt:

In view of (4.39) we can apply an obvious generalization of Fubini’s
theorem for Bochner integrable B0 þ B1 valued functions to each term of the
preceding series, so that

bn ¼ 1

2p

X
k2Z

Z 1

�1

Z 2p

0

c2ðl� sþ iðt þ 2pkÞÞeðlþitÞðx�nÞþ2pikx dt

� �
vðxÞ dx

¼ 1

2p

X
k2Z

Z 1

�1

Z 2p

0

c2ðlþ iðt þ 2pkÞ � sÞeðlþiðtþ2pkÞðx�nÞ dt

� �
vðxÞ dx

¼ 1

2p

X
k2Z

Z 1

�1

Z 2pðkþ1Þ

2pk

c2ðlþ it � sÞeðlþitÞðx�nÞ dt

 !
vðxÞ dx:

Since c2 satisfies an estimate of the form (4.16), the series

X
k2Z

Z 2pðkþ1Þ

2pk

c2ðlþ it � sÞeðlþitÞðx�nÞ dt

converges absolutely and its sum
R1
�1 c2ðlþ it � sÞeðlþitÞðx�nÞ dt has

absolute value bounded by a constant multiple of elx: So using (4.39) and
an obvious generalization of the dominated convergence theorem, we can
interchange the order of summation and integration with respect to x in the
preceding formula for bn and obtain that

bn ¼ 1

2p

Z 1

�1

Z 1

�1
c2ðlþ it � sÞeðlþitÞðx�nÞ dt

� �
vðxÞ dx:

We rewrite this as

bn ¼
Z 1

�1
Xsðn � xÞvðxÞ dx;
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where Xs :R ! C is the function

XsðxÞ ¼
1

2p

Z 1

�1
c2ðlþ it � sÞe�ðlþitÞx dt:

Since c2 is in the class H0 of entire functions defined above in the proof of
Theorem 4.2 it is clear, using condition (4.16) and Cauchy’s theorem, that
the above formula for Xs is valid and independent of l for all choices of l;
not just in the restricted range l 2 ð0; 1Þ: In particular, a simple calculation
shows that

XsðxÞ ¼ X0ðxÞe�sx for each s 2 C: ð4:42Þ

For each m 2 N; the mth derivative dm

dzmc1ðzÞ is a finite sum of functions of
the form cðzÞ ¼ PðzÞez2ðez=2 þ ee�z=2Þz�k where PðzÞ is a polynomial in z; e
is either 1 or �1; and k is a nonnegative integer. For each constant a 2 C;
each such function c satisfies supfjyjnjcðaþ iyÞj: y 2 R; jyj51go1 for
every positive integer n: This means that the function t/c1ðaþ itÞ is in the
Schwartz class SðRÞ: The square of this function, namely t/c2ðaþ itÞ
must also be in SðRÞ; and therefore the same is true of its Fourier
transform. In particular, for every constant l; the function x/elxXsðxÞ is in
SðRÞ: Since e�ljxjvðxÞ is an integrable B0 \ B1 valued function for all l > 1
we deduce that bn 2 B0 \ B1:
For j ¼ 0 or 1 and p 2 ½1;1Þ we have

X
n2Z

kejnbnkp
Bj

 !1=p

¼
X
n2Z

ejn

Z 1

�1
Xsðn � xÞvðxÞ dx

����
����

����
����
p

Bj

 !1=p

¼
X
n2Z

Z 1

�1
ejðn�xÞXsðn � xÞejxvðxÞ dx

����
����

����
����
p

Bj

 !1=p

4
X
n2Z

Z 1

�1
ejðn�xÞjXsðn � xÞjkejxvðxÞkBj

dx

� �p
 !1=p

¼
X
n2Z

Z nþ1=2

n�1=2

Z 1

�1
ejðn�xÞjXsðn � xÞj

� 

� kejxvðxÞkBj
dx

�p

dt

!1=p

: ð4:43Þ

Let us define the function Yj :R ! R by YjðtÞ ¼ supfejyjXsðyÞj :
t � 1

2
4y4t þ 1

2
g: Then, for each n 2 Z and all t 2 ½n � 1

2
; n þ 1

2
Þ; we have

ejðn�xÞjXsðn � xÞj4Yjðt � xÞ: Substituting this in each term of (4.43),
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we obtain that

X
n2Z

kejnbnkp
Bj

 !1=p

4
X
n2Z

Z nþ1=2

n�1=2

Z 1

�1
Yjðt � xÞkejxvðxÞkBj

dx

� �p

dt

 !1=p

¼
Z 1

�1

Z 1

�1
YjðxÞkejðt�xÞvðt � xÞkBj

dx

� �p

dt

� �1=p

: ð4:44Þ

By the integral form of Minkowski’s inequality, this last expression is
dominated by

Z 1

�1
YjðxÞ

Z 1

�1
kejðt�xÞvðt � xÞkp

Bj
dt

� �1=p

dx

4 max
j¼0;1

Z 1

�1
YjðxÞ dx

� �
kvkJrð~BB;pÞ: ð4:45Þ

Since y/ejyXsðyÞ is in SðRÞ it follows readily that
R1
�1 YjðtÞ dto1 for

j ¼ 0 and 1: Combining (4.44) and (4.45) and (4.38) gives that

kfbngn2ZkJðlp;~BBÞ4 max
j¼0;1

Z 1

�1
YjðxÞ dx

� �
Copte

yð1�yÞkbkZ~BBy;p
; ð4:46Þ

where y ¼ Re s: As the reader can easily check, easier variants of the same
arguments establish this same inequality also when p ¼ 1:
If we choose Cn ¼ eyð1�yÞðmaxj¼0;1

R1
�1 YjðxÞ dxÞ then (4.46) completes

the proof of the second inclusion of (4.29). However this choice of Cn

depends on s: To obtain the same inclusion for a constant independent of s
we simply observe, using (4.42), that for all s 2 S the functions Yj in the
above proof are dominated by Yþ

j ðtÞ ¼ supfejyjX0ðyÞjejyj : t � 1
2
4y4t þ 1

2
g:

Since e2yX0ðyÞ and e�2yX0ðyÞ are both in SðRÞ the functions Yþ
j are

obviously also integrable. Also yð1� yÞ41
4
: So we obtain (4.29) for the

absolute constant Cn ¼ 4
ffiffiffi
e

p
ðmaxj¼0;1

R1
�1 Yþ

j ðxÞ dxÞ:
We still have to prove the second inclusion of (4.30). Most of the steps for

this are rather obvious variants of steps in the preceding argument (again
motivated by the analogous part of the proof of Theorem 4.2). We are given,
as mentioned earlier, an element b00 2 *RRrðb;Copt; s; s0; ~BB; pÞ and some
function v 2 Jrðb;Copt; s; ~BB; pÞ for which

R1
�1 es

0xvðxÞ dx ¼ b00: We define
the analytic function f :S ! B0 þ B1 exactly as in (4.40). As would be
expected, we then replace c2 by the function c3 as defined in (4.22) so that
this time the function F :S ! B0 þ B1 is given by (4.25). It satisfies FðsÞ ¼
f ðsÞ ¼ b; Fðs0Þ ¼ f ðs0Þ ¼ b00 and Fðzþ 2piÞ ¼ FðzÞ for all z 2 S: Its Fourier
coefficients bn satisfy

P
n2Z esbn ¼ b and

P
n2Z es

0
bn ¼ b00: They are given by
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the formula

bn ¼
Z 1

�1
Xs;s0 ðn � xÞvðxÞ dx;

where Xs;s0 :R ! C is the function

Xs;s0 ðxÞ ¼
1

2p

Z 1

�1
c3ðlþ itÞe�ðlþitÞx dt: ð4:47Þ

As before, the value of the integral here is independent of the choice of the
constant l: For all constants a; b 2 C; the function t/c1ðaþ itÞc1ðbþ itÞ
is a product of functions in SðRÞ and so is itself in SðRÞ: Since c3 is a
function of this form, divided by the constant c1ðs� s0Þ; we obtain that, for
each constant l; the function x/elxXs;s0 ðxÞ is inSðRÞ: This means that the
rest of the proof of (4.30) can proceed exactly as in the proof of (4.29),
except that Xs has to be replaced throughout by Xs;s0 : Thus the constant
Cn

s;s0 can be chosen to be

Cn

s;s0 ¼ 4
ffiffiffi
e

p
max
j¼0;1

Z 1

�1
YjðxÞ dx

� �
; ð4:48Þ

where now, however, the functions Yj must be defined by

YjðtÞ ¼ supfejyjXs;s0 ðyÞj : t � 1
2
4y4t þ 1

2
g: ð4:49Þ

Finally, to show that Cn
s;s0 satisfies estimates (4.32), we have to estimate

our new functions Yj from above by other integrable functions which
depend on s and s0 in a suitable way. To start this calculation, we choose
l ¼ 0 in (4.47) and substitute from (4.22) to get

Xs;s0 ðxÞ ¼
1

2pc1ðs� s0Þ

Z 1

�1
c1ðit � sÞc1ðit � s0Þe�itx dt: ð4:50Þ

We use auxiliary functions defined by Fðx; aÞ ¼
R1
�1 e�itxc1ðaþ itÞ dt

for each constant a 2 C: By the same reasoning as before, we see that
x/elxFðx; aÞ is in SðRÞ for each constant l and a: Also c1ðaþ itÞ ¼
1
2p

R1
�1 eitxFðx; aÞ dx and so

1

2p

Z 1

�1
eitx

Z 1

�1
Fðx � y;�sÞFðy;�s0Þ dy

� �
dx

¼ 2pc1ð�sþ itÞc1ð�s0 þ itÞ:
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This shows that

2p
Z 1

�1
c1ð�sþ itÞc1ð�s0 þ itÞe�itx dt

¼
Z 1

�1
Fðx � y;�sÞFðy;�s0Þ dy

and (4.50) becomes

Xs;s0 ðxÞ ¼
1

4p2c1ðs� s0Þ

Z 1

�1
Fðx � y;�sÞFðy;�s0Þ dy: ð4:51Þ

We observe that Fðx; aÞ ¼ eax
R1
�1 e�ðaþitÞxc1ðaþ itÞ dt ¼ eaxFðx; 0Þ: So

jFðx;�sÞj4ejxjjFðx; 0Þj for all x 2 R:

Since e3xFðx; 0Þ and e�3xFðx; 0Þ are both in SðRÞ; this shows that for some
absolute constant C we have

jFðx;�sÞj4Ce�2jxj for all x 2 R

and of course jFðx;�s0Þj satisfies the same estimate. SoZ 1

�1
Fðx � y;�sÞFðy;�s0Þ dy

����
����4C2

Z 1

�1
e�2jx�yj�2jyj dy

¼C2e�2jxj
1

2
þ jxj

� �
:

Substituting this in (4.51) and then, in turn, in (4.49) gives that

YjðtÞ4
C2

ffiffiffi
e

p

4p2jc1ðs� s0Þj e�jtjð1þ jtjÞ for all t 2 R and j ¼ 0; 1:

This enables us to obtain (4.32) from (4.48) and so completes the proof of
the theorem. ]

5. A COMPARISON WITH THE APPROACH OF CARRO, CERD "AA,
AND SORIA

Let us here try to clarify the similarities and differences between our
approach to commutator theorems and the one presented in [8].
As we shall see, the approach in [8] is more abstract, and it is more general

than ours, when it comes to constructing and studying ‘‘derivation’’
mappings O:
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On the other hand, our construction has more ‘‘built in structure.’’ This is
helpful when it comes to constructing particular examples associated with
specific interpolation functors. It also means that the verifications that
required hypotheses are met can be simpler and more systematic. Our
construction also enables the construction and study of ‘‘translation’’
mappings R which apparently cannot be treated at this stage by the method
of [8].

Definition 5.1. Given an arbitrary Laurent compatible pair X ¼
fX0;X1g of pseudolattices and a point s 2 A; let us define a functor H

and an interpolator F over H in the sense of Definition 2.1 of [8, p. 200]
as follows:

(i) For each Banach pair ~AA; let Hð~AAÞ be JðX; ~AAÞ and then let F~AA :
Hð~AAÞ ! A0 þ A1 be the map F~AAðfangn2ZÞ ¼

P
n2Z snan:

(ii) For every other Banach pair ~BB and each bounded linear
operator T : ~AA ! ~BB; the operator HðTÞ : Hð~AAÞ ! Hð~BBÞ is defined by
HðTÞðfangn2ZÞ ¼ fTangn2Z:

In this case we have that Hð~AAÞ is a Banach space, and condition (1) of
[8, p. 200] is clearly satisfied. Furthermore the space ~AAF; as defined
in [8], coincides with ~AAX;s with equality of norms.
In order to ensure that A0 \ A1 is continuously embedded in ~AAF; Carro,

Cerd"aa and Soria require the following condition to hold:

(*) For each interpolator F and associated functor H and each Banach pair
~AA; there exists an operator j : A0 \ A1 ! Hð~AAÞ such that F~AA 8j is the

identity map on A0 \ A1:

In all concrete examples of pseudolattice pairs X which we have
considered in this paper, such a map does indeed exist for each F and H

arising as above from X and s 2 A; and it can be defined by setting jðaÞ ¼
fangn2Z where a0 ¼ a and an ¼ 0 for all na0: It is difficult to think of a
‘‘natural’’ example of X for which the above particular choice for the map j
would not have the required properties. But, conceivably, in some exotic
examples one might need to replace it, e.g. by setting jðaÞ ¼ ffnag for some
suitable sequence of scalars fn satisfying

P
n2Z snfn ¼ 1:

In any case, it turns out that our requirement that X is nontrivial
(Definition 2.8) is equivalent to condition (*). As observed above,
nontriviality is equivalent to the condition ðC;CÞX;s ¼ C; i.e.

ðC;CÞF ¼ C ð5:1Þ



CWIKEL ET AL.278
and, even in the more general context of any interpolator F and functor H

in the sense of [8], this is equivalent to (*). It is obvious that (*) implies (5.1).
Conversely, if (5.1) holds, then there exists h 2 HðC;CÞ such that
FðC;CÞðhÞ ¼ 1: Now, for an arbitrary Banach pair ~AA and each a 2 A0 \ A1;
let Ta : ðC;CÞ ! ~AA be the operator given by Taz ¼ za for all z 2 C: Then
the map j defined by jðaÞ ¼ HðTaÞh has the properties required to
establish (*).
Having defined our particular H and F; we next define a second

interpolator C on the same spaces Hð~AAÞ: Here we are motivated by
Definition 3.1 on [8, p. 203]. The natural choice is to set

C~AAðfangn2ZÞ ¼
X
n2Z

nsn�1an ð5:2Þ

for each Banach pair ~AA and each fangn2Z 2 Hð~AAÞ: This will ensure that the
definition of the mapping O given in Definition 3.3 on [8, p. 204] will
coincide with ours (Definition 3.1). We know from part (i) of our Theorem
3.8 that the conclusions of Theorem 3.4 and Corollary 3.5 of [8] must hold
for these particular choices of F and C whenever X admits differentiation.
To obtain these same conclusions by the methods of [8] we would need to
know that the pair ðF;CÞ is almost compatible, i.e. that it satisfies condition
(3a) of Definition 3.1 of [8]. (Note that this condition in fact already implies
the inclusion c~AAðKerF~AAÞ � ImF~AA mentioned in Remark 3.2 of [8].) In fact
the proof of Theorem 3.8 contains exactly what is needed for showing this,
namely the step presented separately as Lemma 3.11. Thus, the latter part of
the proof of part (i) of Theorem 3.8 can be seen as a special case of the proof
of Theorem 3.4 of [8].
On the other hand, it is not at all clear to us at this stage how one could

obtain a result like part (ii) of Theorem 3.8 in the abstract setting of [8].
We mention that, if our pseudolattice pair X has the additional property

that the left-shift operator S�1 maps JðX; ~BBÞ boundedly into itself, then the
second part of Lemma 6.2 (cf. also Remark 6.3) is exactly what is needed to
show that the above pair of interpolators ðF;CÞ also satisfies condition (3b)
of Definition 3.1 of [8] i.e., it is compatible rather than merely almost
compatible.
In [8] separate and different proofs are given of the compatibility of the

pair ðF;CÞ in the cases of the real (K and J) and complex methods. But we
can now see that these kinds of results, i.e. compatibility for the J method,
the complex method and also for both � methods are all consequences of
the same arguments in the proof of Lemmas 3.11 and 6.2. Furthermore we
can prove compatibility or almost compatibility for any other method
generated by a pair of pseudolattices which admits differentiation. We do
not deal directly with the K method in this approach, but the results of [19]
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indicate that it can be related to the J method. (The results of Section 8 may
perhaps lead the way to an alternative approach to commutator results for
the K method and for the newly revealed analogues of the K method in the
context of pseudolattice pairs other than lp:)
We shall indicate further connections between our approach and the

approach of [8] and its subsequent development in [9] in later sections of this
paper.

6. HIGHER ORDER RESULTS

In this section, we present two higher order commutator theorems for our
general method of interpolation. Our first theorem, involving derivation
operators On (higher order analogues of O), is closely related to a result of
[9] and to previously known results for the real and complex methods
first obtained in [43, 53] (cf. also [7, 44]) Analogously to the first order
case (cf. Section 5), the verification that a number of different interpolation
methods satisfy the conditions required to use the arguments of [9]
can be done simultaneously, by working in terms of general pseudolattice
pairs.
Our second theorem is a variant of the first, dealing with higher order

commutators which are defined in terms of translation operators R as well
as the operators On: Here (again as in the first order case) it is not clear how
to involve the approach developed in [8, 9].
In order to formulate and prove these results we start by recalling and

elaborating upon the main step (Lemma 3.11) of the proof of Theorem 3.8.
Let ~AA be a Banach pair. As we have seen above, there is a natural

correspondence between elements in the space JðX; ~AAÞ and certain
analytic functions defined on A with values on A0 þ A1; and it will be
convenient to express this more explicitly with the help of the following
notation:

Definition 6.1. For each sequence b ¼ fbngn2Z 2 JðX; ~AAÞ we let fb

denote the analytic function given by fbðzÞ ¼
P

n2Z znbn:

The values of these analytic functions at a given s 2 A are precisely the
elements of the space ~AAX;s:

Lemma 6.2. Let X be a pair of pseudolattices which admits differentiation.

Let ~AA be a Banach pair, and let s 2 A: For each x 2 A0 þ A1 define

NsðxÞ ¼ inffkbkJðX;~AAÞ : x ¼ f 0
bðsÞ with fbðsÞ ¼ 0g:
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Then,

(i) there exists a constant c ¼ cðsÞ > 0 such that for each x 2 A0 þ A1

satisfying NsðxÞo1 we have x 2 ~AAX;s and

kxk~AAX;s
4cNsðxÞ: ð6:1Þ

(ii) Moreover, if the right-shift operator S�1 is bounded on JðX; ~AAÞ; then

there exists a constant c ¼ cðs; kS�1kÞ > 0 such that, for all x 2 ~AAX;s; we have

kxk~AAX;s
5cNsðxÞ: ð6:2Þ

Proof. Let x be as in (i). Then, for each e > 0 there exists b 2 JðX; ~AAÞ
such that x ¼ f 0

bðsÞ; with fbðsÞ ¼ 0; and moreover

NsðxÞ þ e5kbkJðX;~AAÞ:

The proof of Lemma 3.11 shows that the function g : A ! A0 þ A1 defined
by gðzÞ ¼ fbðzÞ=ðz � sÞ if zas; and gðsÞ ¼ f 0

bðsÞ ¼ x; is of the form

gðzÞ ¼ ff�D0;1=sðbÞgn2Z
ðzÞ

with (cf. (3.9))

kf�D0;1=sðbÞgn2ZkJðX;~AAÞ4ckbkJðX;~AAÞ:

Consequently, x 2 ~AAX;s and

kxk~AAX;s
4kf�D0;1=sðbÞgn2ZkJðX;~AAÞ4ckbkJðX;~AAÞ4cðNsðxÞ þ eÞ:

We obtain (6.1) by letting e ! 0: Now, to establish (ii), suppose that
x 2 ~AAX;s: Then, given e > 0; there exists b 2 JðX; ~AAÞ such that x ¼ fbðsÞ and
kxk~AAX;s

þ e5kbkJðX;~AAÞ: Let FðzÞ ¼ ðz � sÞfbðzÞ ¼ zfbðzÞ � sfbðzÞ: Then
FðsÞ ¼ 0 and F 0ðsÞ ¼ fbðsÞ ¼ x: Moreover, since

FðzÞ ¼ fS�1ðbÞðzÞ � sfbðzÞ ¼ fS�1ðbÞ�sbðzÞ;

it follows from our assumptions that

kS�1ðbÞ � sbkJðX;~AAÞ4ðkS�1k þ jsjÞkbkJðX;~AAÞ:
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Consequently, setting c ¼ 1=ðkS�1k þ jsjÞ; we have

kxk~AAX;s
þ e5 ckS�1ðbÞ � sbkJðX;~AAÞ

5 cNsðxÞ:

We conclude by letting e ! 0: ]

Remark 6.3. It follows from Lemma 6.2 that if X admits differentiation,
and X is such that S�1 is bounded on JðX; ~AAÞ for each Banach pair ~AA; then
for each s 2 A we have

~AAX;s ¼ fx 2 A0 þ A1: x ¼ f 0
bðsÞ with b 2 JðX; ~AAÞ and fbðsÞ ¼ 0g

with

kxk~AAX;s
� NsðxÞ:

We shall now extend the previous lemma in an obvious fashion in order to
take higher order cancellations (i.e. vanishing of higher order derivatives)
into account.

Lemma 6.4. Suppose that the pseudolattice pair X admits differentia-

tion. Let ~AA be a Banach pair, let s 2 A and n 2 N: For x 2 A0 þ A1 define

N1
s ðxÞ ¼ NsðxÞ; and for n > 1 let

Nn
s ðxÞ ¼ inffkbkJðX;~AAÞ : x ¼ f

ðnÞ
b ðsÞ with

fbðsÞ ¼ f 0
bðsÞ ¼ � � � ¼ f

ðn�1Þ
b ðsÞ ¼ 0g:

Then,

(i) there exists a constant c ¼ cðs; nÞ > 0 such that for all x 2 A0 þ A1

with Nn
s ðxÞo1; we have x 2 ~AAX;s and

kxk~AAX;s
4cNn

s ðxÞ: ð6:3Þ

(ii) Moreover, if the shift operator S�1 is bounded on JðX; ~AAÞ; then

there exists a constant c ¼ cðs; kS�1k; nÞ > 0 such that for all x 2 ~AAX;s we

have

kxk~AAX;s
5cNn

s ðxÞ: ð6:4Þ

Proof. We shall first prove part (i) by successive applications of part (i)
of Lemma 6.2. Let x be an arbitrary element of A0 þ A1 with Nn

s ðxÞo1:
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There exists an element b in JðX; ~AAÞ such that

f
ðnÞ

b ðsÞ ¼ x ð6:5Þ

and

f
ðkÞ

b ðsÞ ¼ 0 for k ¼ 0; 1; . . . ; n � 1: ð6:6Þ

We shall define elements hðjÞ of JðX; ~AAÞ for j ¼ 0; 1; . . . ; n: We first set
hð0Þ ¼ b: Then, using (6.6) for k ¼ 0 we can apply Lemma 3.11 to obtain
that the sequence bð1Þ ¼ �D0;1=sðhð0ÞÞ is in JðX; ~AAÞ with khð1ÞkJðX;~AAÞ4
cðsÞkhð0ÞkJðX;~AAÞ and the corresponding analytic function fhð1Þ satisfies
fhð1ÞðsÞ ¼ f 0

hð0ÞðsÞ and fhð1ÞðzÞ ¼ fhð0ÞðzÞ=ðz � sÞ for all z 2 A=fsg: Using
standard properties of analytic functions (in this case A0 þ A1 valued ones)
we see, furthermore, that f

ðkÞ
hð1ÞðsÞ ¼ k!

ðkþ1Þ!f
ðkþ1Þ

hð0Þ ðsÞ for all nonnegative integers
k: In particular, we have

f
ðkÞ

hð1ÞðsÞ ¼ 0 for k ¼ 0; 1; . . . ; n � 2:

We can now iterate this procedure: At the jth step, provided fhðj�1ÞðsÞ ¼ 0;
we obtain hðjÞ from hðj � 1Þ by setting hðjÞ ¼ �D0;1=sðhðj � 1ÞÞ: This gives
hðjÞ 2 JðX; ~AAÞ and

khðjÞkJðX;~AAÞ4cðsÞkhðj � 1ÞkJðX;~AAÞ ð6:7Þ

and an analytic function fhðjÞ : A ! A0 þ A1 which satisfies f
ðkÞ

hðjÞðsÞ ¼
k!

ðkþ1Þ!f
ðkþ1Þ

hðj�1ÞðsÞ for all k50 and fhðjÞðzÞ ¼ fhðj�1ÞðzÞ=ðz � sÞ for all z 2 A=fsg:
This means that

f
ðkÞ

hðjÞðsÞ ¼ 0 for k ¼ 0; 1; n � j � 1:

The final iteration occurs for j ¼ n: Here we can use the fact that
fhðn�1ÞðsÞ ¼ 0: It follows from (6.7) that hðnÞ 2 JðX; ~AAÞ with

khðnÞkJðX;~AAÞ4cðsÞnkbkJðX;~AAÞ: ð6:8Þ

We also have

fhðnÞðsÞ ¼ f 0
hðn�1ÞðsÞ ¼

1

2
f 00
hðn�2ÞðsÞ ¼

1

3!
f 000
hðn�3ÞðsÞ ¼ � � � ¼ 1

n!
f
ðnÞ

hð0ÞðsÞ ¼
1

n!
x:

This shows that x 2 ~AAX;s; and, after taking the infimum for all choices of b

satisfying (6.5) and (6.6), we also have kxk~AAX;s
4n!cðsÞn

Nn
s ðxÞ: This completes

the proof of part (i). At this point it will also be convenient to make an
additional observation for later purposes, namely that for all z 2 A=fsg the
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function fhðnÞ satisfies

fhðnÞðzÞ ¼
fhðn�1ÞðzÞ
ðz � sÞ ¼

fhðn�2ÞðzÞ
ðz � sÞ2

¼ � � � ¼
fhð0ÞðzÞ
ðz � sÞn: ð6:9Þ

We now turn to showing (ii). Let x be an arbitrary element of ~AAX;s: For
arbitrary e > 0 pick b ¼ fbkgk2Z 2 JðX; ~AAÞ such that fbðsÞ ¼ x and
kbkJðX;~AAÞ4ð1þ eÞkxk~AAX;s

: Now define another analytic function F :
A ! A0 þ A1 by setting FðzÞ ¼ ðz � sÞn

fbðzÞ: Then F ¼ fu for another
sequence u ¼ fukgk2Z which is a linear combination of powers of the
shift operator S�1 applied to b: More specifically, FðzÞ ¼

Pn
k¼0 ðn

k
Þð�sÞk

�zn�kfbðzÞ and, correspondingly, u ¼
Pn

k¼0ðn
k
Þð�sÞk

Sk�nb: This gives that
u 2 JðX; ~AAÞ with

kukJðX;~AAÞ4
�Xn

k¼0
ðn

k
ÞjsjkkS�1kn�k

JðX;~AAÞ!JðX;~AAÞ

�
kbkJðX;~AAÞ:

Since F ðnÞðsÞ ¼ n!fbðsÞ ¼ n!x and F ðjÞðsÞ ¼ 0 for j ¼ 0; 1; . . . ; n � 1; we
obtain that

Nn
s ðxÞ41

n!kukJðX;~AAÞ4cðn; s; kS�1kÞð1þ eÞkxk~AAX;s

for all choices of e > 0 and the proof is complete. ]

Remark 6.5. As indicated in the statement of Lemma 6.2 and, as is clear
from its proof, the constants appearing in (6.1) and (6.2) depend on s and on
the norm of S�1 on JðX; ~AAÞ: But they also depend on our choice of the
pseudolattice pair X; as will other constants appearing in the other results of
this section. Furthermore the norm kS�1kJðX;~AAÞ could, in principle, also
depend on the choice of Banach pair ~AA: Throughout this section we will
adopt the convention of not explicitly denoting this dependence on X and ~AA:
We remark that the methods of Subsection A.1 can probably be used to
enable these constants to be taken independent of the particular Banach
pairs being used if the conditions which we impose are assumed to hold for
all Banach pairs. This can certainly be done if, instead of requiring S�1 to be
bounded on JðX; ~AAÞ for all Banach pairs ~AA; we impose the slightly stronger
condition that S�1 : XjðBÞ ! XjðBÞ is bounded for j ¼ 0; 1 and each
B 2 Ban: This can be shown using a simpler version of the proof of
Corollary A.4.

Remark 6.6. Lemma 6.4 establishes that, in the terminology of
Definition 2.1 of [9, p. 304], a certain system of interpolators is compatible.
This is the system ðF0;F1;F2; . . . ;FnÞ which is defined, for any fixed
pseudolattice couple X satisfying the hypotheses of Lemma 6.4 and any
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fixed s 2 A; by first choosing the functor H and the interpolator F0 ¼ F to
be as in Definition 5.1. Then the interpolator F1 ¼ C is defined as in (5.2),
and; generalizing this, Fk is defined for all k ¼ 0; 1; 2; . . . ; by setting

Fk
~AA
ðfangn2ZÞ ¼

1

k!

dk

dzk

X
n2Z

znan

 !�����
z¼s

for each Banach pair ~AA and each fangn2Z 2 Hð~AAÞ ¼ JðX; ~AAÞ:
We can also see that this same system satisfies the condition (2) of [9, p.

307]. After interchanging the roles of the indices j � 1 and n; this
corresponds exactly to the fact that the element hðnÞ generated in part (i)
of the proof of Lemma 6.4 satisfies

f
ðnþpÞ

b ðsÞ
ðn þ pÞ! ¼

f
ðpÞ

hðnÞðsÞ
p!

for p ¼ 0; 1; 2; . . . :

In order to state and prove our higher order commutator theorem we first
give an extension of Definition 3.1 and introduce higher order derivation
maps O:

Definition 6.7. Let Copt > 1 be a fixed constant, let X be a
Laurent compatible pair of pseudolattices X; and let s 2 A: For a given
Banach pair ~BB and for each element x 2 ~BBX;s; we define the set EðxÞ as
before by

EðxÞ ¼
�

b ¼ fbngn2Z 2 JðX; ~BBÞ :
X
n2Z

snbn ¼ x

and kfbngn2ZkJðX;~BBÞ4Coptkxk~BBX;s

�

and select a fixed element b 2 EðxÞ: We then define Onx for each n 2 N by

Onx ¼ 1

n!
f
ðnÞ

b ðsÞ:

In particular, for n ¼ 1; we have

O1x ¼ Ox ¼
X
n2Z

nsn�1bn ¼ f 0
bðsÞ:

Where necessary we shall use the notation On;~BB to indicate the underlying
pair ~BB with respect to which these mappings are defined.

Remark 6.8. It should be stressed in the above definition that the same

choice of b 2 EðxÞ is used for all n 2 N: Furthermore, for each s0as in A; for
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later purposes, we can also define the translation operator R consistently

with a given definition of the On’s by setting Rx ¼ fbðs0Þ for each x 2 ~BBX;s

making the same choice as above of b 2 EðxÞ:
The first theorem in this section can be considered as a higher order

version of part (i) of Theorem 3.8. It is thus also essentially an extension of
the higher order commutator theorems of [43, 53]. (To make a precise
connection with these latter results would require versions of the results of
Section 4 for higher order derivatives.) In view of Remark 6.6, it is in fact
also a special case of Theorem 2.6 of [9, p. 308].

Theorem 6.9. Suppose that X admits differentiation. Let ~AA and ~BB be

arbitrary Banach pairs and fix a point s 2 A and a constant Copt > 1: Suppose

that the shift operator S�1 is bounded on JðX; ~BBÞ:
(i) For each n 2 N; let On;~AA and On;~BB denote derivation mappings

corresponding to the above choices of s; Copt and X; for the pairs ~AA and ~BB;
respectively. Let T : ~AA ! ~BB be a bounded linear operator, and, for each n; let

½T ;On� ¼ TOn;~AA � On;~BBT : Let CO
n ðTÞ be defined inductively by

CO
1 ðTÞ ¼ ½T ;O1�;

CO
2 ðTÞ ¼ ½T ;O2� � O1C

O
1 ðTÞ;

...................................

CO
n ðTÞ ¼ ½T ;On� �

Xn�1
k¼1

On�kCO
k ðTÞ:

Then CO
n ðTÞ maps ~AAX;s boundedly into ~BBX;s: More precisely, there exists a

constant c > 0 depending only on s and n; such that, whenever a 2 ~AAX;s; it

follows that CO
n ðTÞa 2 ~BBX;s; and moreover

kCO
n ðTÞak~BBX;s

4ckTk~AA!~BBkak~AAX;s
:

Remark 6.10. Naively it might at first seem more natural to seek such a
result for the simpler commutator operator ½T ;On� rather than CO

n ðTÞ: As
we shall see, the ‘‘correcting terms’’

Pn�1
k¼1 On�kCO

k ðTÞ which appear in the
definition of CO

n ðTÞ are needed to guarantee that the derivatives of all orders
less than n of an associated analytic function vanish at the point z ¼ s: The
definition of CO

n ðTÞ is in some sense ‘‘dictated’’ by a rather naturally defined
sequence of functions fFkg which appears in the course of the proof, and in
particular by formula (6.20) which these functions satisfy.
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Proof. One way of proving this theorem is to invoke the arguments of [9,
pp. 307–310], combined with Remark 6.6. However here we shall provide a
more self-contained argument, which we also need because it provides
most of the ingredients which will be used later for the proof of our second
result.
Fix a 2 ~AAX;s and let u ¼ fukgk2Z 2 EðaÞ and v ¼ fvkgk2Z 2 EðTaÞ be the

elements chosen in the course of defining On;~AA ; and On;~BB for all n 2 N: Thus
u 2 JðX; ~AAÞ and v 2 JðX; ~BBÞ and their norms in these spaces are bounded
by Coptkak~AAX;s

and CoptkTak~BBX;s
4CoptCðXÞkTk~AA!~BBkak~AAX;s

; respectively.
Furthermore the associated functions fu and fv (in the notation of Definition
6.1) satisfy fuðsÞ ¼ a; fvðsÞ ¼ Ta and On;~AAa ¼ 1

n!f
ðnÞ

u ðsÞ and On;~BBðTaÞ ¼
1
n!f

ðnÞ
v ðsÞ for each n 2 N: Let w ¼ Tu � v; i.e. w ¼ fwkgk2Z ¼ fTuk � vkgk2Z

and let F1 ¼ fw ¼ Tfu � fv: We note for later use that

1
k!F

ðkÞ
1 ðsÞ ¼ TOk;~AAa � Ok;~BBðTaÞ ¼ ½T ;Ok�a for each k 2 N: ð6:10Þ

The preceding estimates show that

kwkJðX;~BBÞ42CoptCðXÞkTk~AA!~BBkak~AAX;s
: ð6:11Þ

We also have

F1ðsÞ ¼ Ta � Ta ¼ 0

and, setting k ¼ 1 in (6.10),

F 0
1ðsÞ ¼ ½T ;O1�a ¼ CO

1 ðTÞa: ð6:12Þ

If we now apply Lemma 6.2 we simply recover part (i) of Theorem 3.8 which
is also of course the case n ¼ 1 for the present theorem. But the preceding
steps are also the introduction to an argument which will provide a proof for
all n51: The above function F1 is the first in a sequence of analytic functions
Fk : A ! B0 þ B1 which we will now construct. They will all have the
following properties:

(i) Fk ¼ fbðkÞ for some element bðkÞ 2 JðX; ~BBÞ and
(ii) F

ðjÞ
k ðsÞ ¼ 0 for j ¼ 0; 1; . . . ; k � 1; which in turn will imply, by

Lemma 6.4, that

(iii) F
ðkÞ
k ðsÞ 2 ~BBX;s and

kF
ðkÞ
k ðsÞk~BBX;s

4cðk; sÞkbðkÞkJðX;~BBÞ ð6:13Þ

for some constant cðk; sÞ:
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These conditions certainly hold for k ¼ 1 with bð1Þ ¼ w:We proceed and
obtain Fk recursively for each k52 by setting

FkðzÞ ¼
1

k
Fk�1ðzÞ �

ðz � sÞk�1

ðk � 1Þ! HkðzÞ
 !

: ð6:14Þ

Here Hk ¼ fbnðkÞ; where bnðkÞ is an element of EðF ðk�1Þ
k�1 ðsÞÞ; which ensures

that F
ðk�1Þ
k ðsÞ ¼ 0 and

kbnðkÞkJðX;~BBÞ4CoptkF
ðk�1Þ
k�1 ðsÞk~BBX;s

: ð6:15Þ

But, more specifically, bnðkÞ is selected to be the particular element of
EðF ðk�1Þ

k�1 ðsÞÞ for which

On;~BBðF
ðk�1Þ
k�1 ðsÞÞ ¼ 1

n!
f
ðnÞ

bnðkÞðsÞ ¼
1

n!
H

ðnÞ
k ðsÞ for each n 2 N: ð6:16Þ

It follows from (6.14) that the sequence bðkÞ is obtained from the
sequences bðk � 1Þ and bnðkÞ by applying a fixed linear combination of
powers of the right shift S�1 and the identity operator I : More precisely we
have,

bðkÞ ¼ 1

k
bðk � 1Þ � ðS�1 � sIÞ

ðk � 1Þ!

k�1
bnðkÞ

 !
;

and consequently, if bnðkÞ and bðk � 1Þ are both in JðX; ~BBÞ then we can
deduce that bðkÞ 2 JðX; ~BBÞ and

kbðkÞkJðX;~BBÞ4C0ðk; s; kS�1kÞðkbnðkÞkJðX;~BBÞ þ kbðk � 1ÞkJðX;~BBÞÞ ð6:17Þ

for some constant C0ðk; s; kS�1kÞ: It follows easily from the defining
formula (6.14) and these arguments that, if Fk has properties (i) and (ii) for
all k ¼ 1; 2; . . . ; j; then the same is true for k ¼ j þ 1 and so these properties
hold for all k 2 N: Also, combining (6.13), (6.15) and (6.17) we see that, for
all k52;

kbðkÞkJðX;~BBÞ4C1ðk; s;Copt; kS�1kÞkbðk � 1ÞkJðX;~BBÞ

for some constant C1ðk; s;Copt; kS�1kÞ depending on k; s; Copt and
kS�1kJðX;~BBÞ!JðX;~BBÞ: Iterating this last estimate k � 1 times gives that,
for some other constant C2ðk; s;Copt; kS�1kÞ depending on these same
quantities,

kbðkÞkJðX;~BBÞ4C2ðk; s;Copt; kS�1kÞkbð1ÞkJðX;~BBÞ: ð6:18Þ
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Since bð1Þ ¼ w we can combine this with (6.11) and (6.13) to give that

kF
ðkÞ
k ðsÞk~BBX;s

4C3ðk; s;Copt;CðXÞ; kS�1kÞkTk~AA!~BBkak~AAX;s

for all k52 and for yet another constant C3ðk; s;Copt;CðXÞ; kS�1kÞ
depending on the listed arguments. This estimate also holds of course for
k ¼ 1 (cf. (6.12) and part (i) of Theorem 3.8).
To complete the proof it remains to show that

F
ðkÞ
k ðsÞ ¼ CO

k ðTÞa for all k 2 N: ð6:19Þ

The case k ¼ 1 is already known (see (6.12)). To treat the cases where k52
we shall use the formula

FkðzÞ ¼
1

k!
F1ðzÞ �

Xk�1
m¼1

ðz � sÞm
Hmþ1ðzÞ

 !

which is obvious for k ¼ 2 and extends immediately to all k52 by
induction. Differentiating k times at the point z ¼ s gives

F
ðkÞ
k ðsÞ ¼ 1

k!
F

ðkÞ
1 ðsÞ �

Xk�1
m¼1

k

k � m

 !
m!H

ðk�mÞ
mþ1 ðsÞ

 !

¼ 1

k!
F

ðkÞ
1 ðsÞ �

Xk�1
m¼1

1

ðk � mÞ!H
ðk�mÞ
mþ1 ðsÞ;

and, after substituting using (6.10) and (6.16), this in turn gives that

F
ðkÞ
k ðsÞ ¼ ½T ;Ok�a �

Xk�1
m¼1

Ok�m;~BBðF
ðmÞ
m ðsÞÞ: ð6:20Þ

If we know that F
ðmÞ
m ðsÞ ¼ CO

mðTÞa for each m ¼ 1; 2; . . . ; k � 1 then we

can deduce from (6.20) that F
ðkÞ
k ðsÞ ¼ CO

k ðTÞa: Thus we have established
(6.19) by induction and the proof is complete. ]

Our second and last theorem in this section is a higher order translation
result extending Theorem 3.8(ii), i.e. estimate (3.3):

kTðR~AAaÞ �R~BBðTaÞk~BBX;s0
4 *CCjs � s0jkTk~AA!~BBkak~AAX;s

;

where R is a ‘‘translation’’ operator defined in terms of a second point s0

chosen in A: The idea is to replace the commutator ½T ;R�a appearing in
(3.3) by a more elaborate related expression which tends to zero more
quickly as s0 ! s; i.e. its norm is bounded by js � s0jn instead of merely
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js � s0j: Our proof of Theorem 6.9 suggests an appropriate definition of an
analogue of the commutator CO

n ðTÞ; which we shall denote by CR
n ðTÞ: It

involves operators Ok as well as R and these must all be chosen consistently
(cf. Remark 6.8). The proof of Theorem 6.9 also essentially provides the
proof of the following theorem:

Theorem 6.11. Suppose that X; ~AA; ~BB; s; Copt; S�1 and CO
n ðTÞ; for each

n 2 N; are defined as in the statement of Theorem 6.9 and satisfy the

hypotheses of that theorem. For some s0as in A; let R~AA and R~BB be the

translation operators defined as in Definition 3.1(iv), consistently using

the same representatives in JðX; ~AAÞ and JðX; ~BBÞ; respectively, as are used

for defining O~AA;n and O~BB;n: Let ½T ;R� ¼ TR~AA �R~BBT : Let the commutators

CR
n ðTÞ be defined by

CR
1 ðTÞ ¼ ½T ;R�;

CR
2 ðTÞ ¼ 1

2
½T ;R� � ðs0 � sÞR~BBðC

O
1 ðTÞÞ;

and, in general,

CR
n ðTÞ ¼ 1

n!
½T ;R� �

Xn�1
m¼1

ðs0 � sÞmR~BBðC
O
mðTÞÞ

 !
:

Then CR
n ðTÞa 2 ~BBX;s0 for all a 2 ~AAX:s and

kCR
n ðTÞak~BBX;s0

4C0js � s0jnkTk~AA!~BBkak~AAX;s
ð6:21Þ

for some constant C0 which depends on X; s; n; Copt and kS�1kJðX;~BBÞ!JðX;~BBÞ
but not on T, a or s0:

Proof. We use the functions Fk introduced in the proof of Theorem 6.9.
We note that, for each k 2 N; the value of the function FkðzÞ at z ¼ s0 is
precisely CR

k ðTÞa: We have Fn ¼ fbðnÞ where bðnÞ 2 JðX; ~BBÞ: This ensures
that CR

k ðTÞa ¼ Fnðs0Þ 2 ~BBX;s0 : We next observe that, since F
ðkÞ
n ðsÞ ¼ 0 for

k ¼ 0; 1; . . . ; n � 1; we can apply the arguments of the proof of part (i) of
Lemma 6.4 with b chosen to be bðnÞ: Thus we obtain an element hðnÞ 2
JðX; ~BBÞ such that (cf. (6.9)) FnðzÞ ¼ fbðzÞ ¼ ðz � sÞn

fhðnÞðzÞ for all z 2 A: It
follows that

kCR
n ðTÞak~BBX;s0

¼ kðs0 � sÞn
fhðnÞðs0Þk~BBX;s0

4js0 � sjnkhðnÞkJðX;~BBÞ:
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Using (6.8) followed by (6.18) and (6.11), we see that this last expression is
bounded above by

js0 � sjncðsÞnkbðnÞkJðX;~BBÞ

4js0 � sjnC4ðn; s;Copt; kS�1kÞkwkJðX;~BBÞ

4js0 � sjnC5ðn; s;Copt; kS�1k;XÞkTk~AA!~BBkak~AAX;s

for suitable constants depending on the indicated parameters. This
establishes (6.21). ]

The results in this section lead naturally to the study of analogues of
interpolation spaces of Lions–Schechter type in the context of our more
general method. These spaces can be defined as follows:

Definition 6.12. Let ~BB be a Banach pair, and suppose that the
pseudolattice pair X admits differentiation. Then, for each nonnegative
integer n; we define the space ~BB

ðnÞ
X;s as the set of all elements of the form

x ¼ f
ðnÞ

b ðsÞ; with fbngn2Z 2 JðX; ~BBÞ; endowed with the natural quotient
norm

kxk~BBðnÞ
X;s

¼ inffkbkJðX;~BBÞ : x ¼ f
ðnÞ

b ðsÞg:

If the shift operator S�1 is bounded on JðX; ~BBÞ then the spaces ~BBðnÞ
X;s are

naturally nested, i.e.

~BB
ðn�1Þ
X;s � ~BB

ðnÞ
X;s for each n 2 N: ð6:22Þ

(This is easy to show since ðz � sÞf ðzÞ 2 JðX; ~BBÞ whenever f 2 JðX; ~BBÞ:)
It is clear from the definitions that

On : ~BBX;s ! ~BB
ðnÞ
X;s: ð6:23Þ

In fact the spaces ~BB
ðnÞ
X;s are closely related to the range spaces associated with

derivation operators O: Under suitable mild conditions they can be
identified with these range spaces, as we shall see, at least for n ¼ 1; in the
next section. Analogously to (6.23), for any bounded operator T : ~AA ! ~BB;
each term in the formula which defines CO

n ðTÞ is clearly a bounded map
from ~AAX;s into ~BB

ðnÞ
X;s: This immediately implies also that

CO
n ðTÞ : ~AAX;s ! ~BB

ðnÞ
X;s:
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The cancellation properties of CO
n ðTÞ allow us to prove the much sharper

commutator Theorem 6.9.
Let us also remark that, when specialized to the complex method, the ~BB

ðnÞ
X;s

spaces defined above coincide with spaces (defined using the annulus A) of
Lions–Schechter type (cf. [7] and the references therein). The methods of
Section 4 can be used to show that these spaces coincide with the usual
Lions–Schechter spaces which are defined using the strip S instead of the
annulus. For details see Subsection A.4 in Appendix A.

7. CHARACTERIZATION OF DOMAIN AND RANGE SPACES OF
DERIVATION OPERATORS

Although the operators O are in general not bounded on the interpolation
scales ~AAX;s we have shown in previous sections that they commute boundedly
with bounded operators in the scale due to the cancellations that develop
from the operation of taking commutators. A natural question in the theory
is to describe the domain spaces associated with the operators O: The
domain spaces turn out to be interpolation spaces themselves which are
independent of any particular choice of O: They have been characterized for
both the real and complex methods (cf. [19, 54]) and also in the more
abstract context of [8]. In this section, we formulate some analogues of these
previous results in the context of our construction. This amounts to giving
new results in the case, for example, of the � methods. We shall also
consider the corresponding characterizations for range spaces of the
operators O:
Although we shall occasionally use some results from Section 6, we shall

deal here exclusively with first-order derivation operators, i.e. O will always
be as defined in Definition 3.1(ii).
Let ~AA be a Banach pair and let X be a pseudolattice pair which admits

differentiation. For each s 2 A and each mapping O obtained as in
Definition 3.1(ii) we define

DomX;s O~AA ¼ fa 2 ~AAX;s : Oa 2 ~AAX;sg ð7:1Þ

and let

kakDomX;s O~AA
¼ kak~AAX;s

þ kOak~AAX;s
: ð7:2Þ

For our analysis in this section we need to make a specific choice of
operators O which are homogeneous and so to ensure that klakDomX;s O~AA

¼
jljkakDomX;s O~AA

for every scalar l: That such a selection is possible in our
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context follows from the fact that (in the notation of Definition 3.1) we have
EðlbÞ ¼ lEðbÞ for each nonzero b 2 ~AAX;s and each nonzero l 2 C:
If we define the interpolators F and C over H in terms of X and s as in

Section 5, then the domain space DomðO~AAÞ associated with operators O
introduced in [8, Definition 3.6, p. 205] coincides with the space DomX;sðO~AAÞ
and their ‘‘norms’’ are equal. This enables us to deduce some properties of
the spaces DomX;sðO~AAÞ and related spaces from results in [8].
Since the fact that X admits differentiation implies that the corresponding

interpolators ðF;CÞ are almost compatible, Theorem 3.8 of [8, p. 205] shows
that DomX;s O~AA is a linear space and the expression in (7.2) defines a quasi-
norm. Furthermore, this space coincides to within equivalence of (quasi-)
norms with the normed space F~AAðC

�1
~AA
ð~AAX;sÞÞ which is independent of any

particular choice of the operator O: This space consists of all a 2 A0 þ A1

such that, for some b 2 JðX; ~AAÞ;

a ¼ fbðsÞ and f 0
bðsÞ 2 ~AAX;s: ð7:3Þ

The norm kakF~AA ðC
�1
~AA
ð~AAX;sÞÞ can be taken to be the infimum of the quantities

kbkJðX;~AAÞ þ kf 0
bðsÞk~AAX;s

as b ranges over all elements having the above two properties (7.3). It is easy
to check that the constants of equivalence between k � kF~AA ðC

�1
~AA
ð~AAX;sÞÞ and

k � kDomX;s
ðO~AAÞ depend only on Copt and on the constant which appears

in Lemma 3.11, i.e. on Copt; X and s:
Our assumption that X is nontrivial ensures that, for the special couple

~AA ¼ ðC;CÞ; we have

FðC;CÞðC�1
ðC;CÞððC;CÞX;sÞÞ ¼ C: ð7:4Þ

It is also clear (cf. also [8, Theorem 3.8]) that, for any Banach pairs ~AA and ~BB;
any linear operator T : ~AA ! ~BB maps F~AAðC

�1
~AA
ð~AAX;sÞÞ to F~BBðC

�1
~BB
ð~BBX;sÞÞ with

bound not exceeding kTk~AA!~BB maxfCðX0Þ;CðX1Þg: Exactly as in the proof
of Theorem 2.14, this, together with (7.4), establishes the continuous
embedding

A0 \ A1 � F~AAðC
�1
~AA
ð~AAX;sÞÞ for each Banach pair ~AA ð7:5Þ

and completes the proof that ~AA/F~AAðC
�1
~AA
ð~AAX;sÞÞ is an interpolation

functor.
Under additional conditions on X we can give another description of the

space DomX;sðO~AAÞ:
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Definition 7.1. Let ~AA be a Banach pair, and let X be a pair of
pseudolattices which admits differentiation. Then for each s 2 A we
define

~AA
ð�1Þ
X;s ¼ fx : 9b 2 JðX; ~AAÞ s:t: fbðsÞ ¼ x; f 0

bðsÞ ¼ 0g

with

kxk~AA
ð�1Þ
X;s

¼ inffkbkJðX;~AAÞ : fbðsÞ ¼ x; f 0
bðsÞ ¼ 0g:

Theorem 7.2. Let ~AA be a Banach pair, and let X be a pair of

pseudolattices which admits differentiation and such that the shift operator

S�1 is bounded on JðX; ~AAÞ: Then, for each s 2 A and for any corresponding

choice of Copt and O we have

DomX;s O~AA ¼ ~AA
ð�1Þ
X;s

in the sense that these two spaces coincide as sets, and moreover

kxkð�1Þ~AAX;s
� kxkDomX;s

O~AA for all x 2 DomX;s O~AA ;

with constants of equivalence independent of x.

Proof. The boundedness of S�1 : JðX; ~AAÞ ! JðX; ~AAÞ implies, by part
(ii) of Lemma 6.2 (cf. also Remark 6.3) that ðF;CÞ is compatible. So the
result follows from part (b) of Theorem 3.8 of [8]. ]

In the case of the complex method, i.e. when X ¼ fFC;FCg; the operator
O was studied in [54] with the help of a sort of ‘‘linked product space’’ of
Calder !oon and Lions–Schechter complex interpolation spaces. The following
definition of a version of that space for general X has an apparent
connection with the spaces ~AA

ð�1Þ
X;s and F~AAðC

�1
~AA
ð~AAX;sÞÞ:

Definition 7.3. Let ~AA be a Banach pair and let X be a pair of
pseudolattices which admits differentiation. For each s 2 A we define

~AA
ð0Þ�ð1Þ
X;s ¼ fðx; yÞ : 9b 2 JðX; ~AAÞ s:t: fbðsÞ ¼ x; f 0

bðsÞ ¼ yg
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with

kðx; yÞk~AA
ð0Þ�ð1Þ
X;s

¼ inffkbkJðX;~AAÞ : fbðsÞ ¼ x; f 0
bðsÞ ¼ yg:

If X admits differentiation and S�1 : JðX; ~AAÞ ! JðX; ~AAÞ is bounded, so
that the corresponding pair of interpolators ðF;CÞ is compatible, then
Proposition 7.2 of [8] (which generalizes Lemmas (2.5) and (2.9) on [54, pp.
324–325], shows that ~AA

ð0Þ�ð1Þ
X;s coincides with the twisted sum ~AAX;s �O ~AAX;s

which is defined to be the set of all ðx; yÞ 2 ~AAX;s � ðA0 þ A1Þ such that
y � Ox 2 ~AAX;s for some homogeneously defined derivation operator
O : ~AAX;s ! A0 þ A1: The norm kðx; yÞk~AA

ð0Þ�ð1Þ
X;s

is also equivalent to the
quantity

kðx; yÞk~AAX;s�O~AAX;s
¼ kxk~AAX;s

þ ky � Oxk~AAX;s
: ð7:6Þ

For more about twisted sums in Banach space theory we refer to
[1, 36, 38].

After having dealt with the domain spaces of mappings O; we close this
section with a short discussion of the range spaces of these same mappings.
As was already hinted at above, these range spaces are related to the Lions–
Schechter type spaces ~BB

ð1Þ
X;s of Definition 6.12. Obviously, for each choice of

O associated with ~BBX;s and each x 2 ~BBX;s; the element Ox is in ~BB
ð1Þ
X;s:However

we cannot in general expect to have ~BB
ð1Þ
X;s coincide with the range of one

particular choice of O; i.e. with the set fOx : x 2 ~BBX;sg: It is not even clear a
priori that such a set is a linear space, even if O is chosen homogeneously.
(Given the large amount of freedom in the way O can be chosen, it is
relatively straight forward to explicitly construct examples where O is
chosen to ensure that this set is indeed not a linear space.)
Instead of taking the range of one particular O; let us consider the set of

all Ox with x 2 ~BBX;s where now O also varies. If O ranges over an
appropriately defined class of derivation mappings associated with ~BBX;s;
then we do obtain an identification with the whole of ~BB

ð1Þ
X;s; and there is also a

natural (quasi-) norm on this generalized range space which is equivalent to
the norm of ~BB

ð1Þ
X;s: We refer to [8, p. 207] for some other results about range

spaces.

Definition 7.4. Given Banach and Laurent compatible pseudolattice
pairs ~BB and X; a point s 2 A and a constant C51; we define RanX;sð *OO~BB ;CÞ
to be the set of all elements x of the form x ¼ Oy where y 2 ~BBX;s and O is
some derivation map associated with ~BBX;s whose optimality constant
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Copt ¼ CoptðOÞ does not exceed C: For each y 2 RanX;sð *OO~BB ;CÞ; we
define

kykRanX;sð *OO~BB ;CÞ ¼ inffkxk~BBX;s
: y ¼ Ox; CoptðOÞ4Cg: ð7:7Þ

In other words, RanX;sð *OO~BB ;CÞ is the set of all y 2 B0 þ B1 for which there
exists an element b 2 JðX; ~BBÞ which satisfies

y ¼ f 0
bðsÞ and kbkJðX;~BBÞ4CkfbðsÞk~BBX;s

: ð7:8Þ

Furthermore kykRanX;sð *OO~BB ;CÞ ¼ infkfbðsÞk~BBX;s
; where the infimum is taken over

all elements b satisfying (7.8).
An analogue of this space for the real method, i.e. corresponding

essentially to the case where X ¼ lp; was introduced and studied in
Section IV of [20]. The following result is thus an analogue of part (ii)
of Theorem 4.1 of [20, pp. 188, 189]. It is proved in a rather different way.

Theorem 7.5. Let ~BB be a Banach pair, and let X be a Laurent compatible

pseudolattice pair. Let s be a point in A: Suppose that there exists an element

u 2 JðX; ~BBÞ such that fuðsÞa0 and f 0
uðsÞ ¼ 0: Then there exists a constant

Cn51; depending only on s and u, such that, for each C > Cn;

RanX;sð *OO~BB;CÞ ¼ ~BB
ð1Þ
X;s

and the norm of ~BB
ð1Þ
X;s is equivalent to the expression in (7.7). The constants of

this equivalence depend only on s, u and C.

Remark 7.6. The hypothesis about the existence of u is a mild one which
clearly holds, for example, whenever X is such that all (or some) finitely
supported B0 \ B1 valued sequences are in JðX; ~BBÞ: All examples of X

which we have considered in this paper have this property. In fact it may
also hold without our ‘‘usual’’ requirements that the pseudolattice pair X
admits differentiation and that S�1 is bounded on JðX; ~BBÞ: But if both
these conditions do hold then the existence of u follows from (7.5) and
Theorem 7.2.

Proof. It is obvious from the definition that, for every choice of C > 1;
we have RanX;sð *OO~BB ;CÞ � ~BB

ð1Þ
X;s and also kyk~BBð1Þ

X;s

4CkykRanX;sð *OO~BB ;CÞ for each
y 2 RanX;sð *OO~BB ;CÞ: We shall establish the reverse inclusion and the reverse
inequality

kykRanX;sð *OO~BB ;CÞ4C0kyk~BBð1Þ
X;s

ð7:9Þ
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for each C > Cn where the constant C0 is given by

C0 ¼
2kukJðX;~BBÞ

CkfuðsÞk~BBX;s
� kukJðX;~BBÞ

þ 1

 !
ð7:10Þ

and we choose

Cn ¼
kukJðX;~BBÞ
kfuðsÞk~BBX;s

: ð7:11Þ

This also ensures, incidentally, that Cn51 and that the denominator in
(7.10) is strictly positive.
Let y be an arbitrary element of ~BB

ð1Þ
X;s and choose an arbitrary small

positive number e which also satisfies 1þ eoC0: There exists b 2 JðX; ~BBÞ
such that f 0

bðsÞ ¼ y and

kbkJðX;~BBÞ4ð1þ eÞkyk~BBð1Þ
X;s

:

If kbkJðX;~BBÞ4CkfbðsÞk~BBX;s
then we obtain that y 2 RanX;sð *OO~BB ;CÞ and also

that

kykRanX;sð *OO~BB ;CÞ4kfbðsÞk~BBX;s
4kbkJðX;~BBÞ4ð1þ eÞkyk~BBð1Þ

X;s

4C0kyk~BBð1Þ
X;s

;

as required. Otherwise, we have

kbkJðX;~BBÞ > CkfbðsÞk~BBX;s
ð7:12Þ

and this is the case where we need to use the special element u:
We shall show (very easily!) that, for an appropriate choice of l > 0; we
have

klu þ bkJðX;~BBÞ4CkfluþbðsÞk~BBX;s
: ð7:13Þ

and

kfluþbðsÞk~BBX;s
4C0kbkJðX;~BBÞ: ð7:14Þ

Since f 0
luþbðsÞ ¼ y; these last two estimates will imply that y 2 RanX;sð *OO~BB ;CÞ

with

kykRanX;sð *OO~BB ;CÞ4ð1þ eÞC0kyk~BBð1Þ
X;s

:

This will give (7.9) and so complete the proof.
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In view of the estimates klu þ bkJðX;~BBÞ4lkukJðX;~BBÞ þ kbkJðX;~BBÞ and
(7.12) and

CkfluþbðsÞk~BBX;s
5ClkfuðsÞk~BBX;s

� CkfbðsÞk~BBX;s
> ClkfuðsÞk~BBX;s

� kbkJðX;~BBÞ;

it is clear that (7.13) will hold for l > 0 satisfying

lkukJðX;~BBÞ þ kbkJðX;~BBÞ ¼ ClkfuðsÞk~BBX;s
� kbkJðX;~BBÞ: ð7:15Þ

Since we are assuming that C > Cn; our definition (7.11) of Cn ensures that
the number

l ¼
2kbkJðX;~BBÞ

CkfuðsÞk~BBX;s
� kukJðX;~BBÞ

is positive and satisfies (7.15). Apart from giving (7.13) this also implies
(recalling (7.10)) that

kfluþbðsÞk~BBX;s
4 klu þ bkJðX;~BBÞ

4
2kukJðX;~BBÞ

CkfuðsÞk~BBX;s
� kukJðX;~BBÞ

þ 1

 !
kbkJðX;~BBÞ

¼C0kbkJðX;~BBÞ:

Thus we have established (7.14) and the proof indeed is now complete. ]

8. EQUIVALENCE THEOREMS

The classical ‘‘equivalence theorem’’ in the theory of real interpolation
states that two different constructions, usually referred to as the ‘‘J-method’’
and the ‘‘K-method’’ of Peetre, give rise to the same interpolation spaces.
Earlier versions of these two methods appear as the two definitions of
‘‘espaces de moyennes’’ given in [41, pp. 9, 10]. Our definition here of the
spaces ~BBX;s is of course modelled on the J-method and the first definition in
[41, pp. 9, 10] (cf. also the equivalent ‘‘discretized’’ definition in [41, pp. 17,
18]). However it turns out that the second definition in [41], corresponding
to the K-method, can also be generalized to our context here. Furthermore
the condition introduced in Definition 3.4 for other purposes is also exactly
what is required to prove a generalized version of the equivalence theorem,
which will be the main result in this section. By analogy with the real
method, our equivalence theorem can be expected to be a convenient tool
for describing the duals of the spaces ~BBX;s and for obtaining reiteration
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theorems. It might ultimately be helpful, also for other purposes, to know
that there are equivalent definitions in the style of the K-method for the
complex method and the � method.

Definition 8.1. For each Banach pair ~BB and pseudolattice pair X we
define KðX; ~BBÞ to be the space of all couples of B0 þ B1 valued sequences

b ¼ ðfb0;ngn2Z; fb1;ngn2ZÞ

such that the sequence fejnbj;ngn2Z is in XjðBjÞ for j ¼ 0; 1: This space is
normed by

kðfb0;ngn2Z; fb1;ngn2ZÞkKðX; ~BBÞ ¼
X1
j¼0

kfejnbj;ngn2ZkXjðBjÞ

and is of course a Banach space.
For each fixed s 2 A; letKsðX; ~BBÞ be the subspace ofKðX; ~BBÞ consisting

of those couples of sequences b which satisfy the condition snðb0;n þ b1;nÞ ¼
b0;0 þ b1;0 for each n 2 Z: For each such element b; let kðbÞ ¼b0;0 þ b1;0:
Then we let ~BBX;s:K be the space of all elements b 2 B0 þ B1 which can be
represented in the form b ¼ kðbÞ for some b 2 KsðX; ~BBÞ: We define a
seminorm on this space by setting

kbk~BBX;s:K
¼ inffkbkKðX;~BBÞ : b 2 KsðX; ~BBÞ; b ¼ kðbÞg:

Theorem 8.2. Let X be a Laurent compatible pair of pseudolattices and

let ~BB be an arbitrary Banach pair and let s be any point of A:

(i) If X admits differentiation then ~BBX;s � ~BBX;s:K and the embedding is

continuous.

(ii) If the right-shift operator S�1 is bounded on XjðBjÞ for j ¼ 0; 1 and if

for each r 2 ð0; 1Þ

lim
n!�1

rjnjkbnkB0
¼ 0 for all fbngn2Z 2 X0ðB0Þ ð8:1Þ

and

lim
n!1

rnkbnkB1
¼ 0 for all fbngn2Z 2 X1ðB1Þ ð8:2Þ

then ~BBX;s:K � ~BBX;s and the embedding is continuous.
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Corollary 8.3. If (2.4) holds and if the shift operator S is an isometry on

XjðBjÞ for j ¼ 0; 1 then the spaces ~BBX;s and ~BBX;s:K coincide to within

equivalence of norms.

Proof. The corollary follows immediately from the theorem by
Lemma 3.6.

The proof of the theorem is an easy adaptation of well-known proofs for
the special case of the real method: First, for part (i), suppose that b 2 ~BBX;s

with kbk~BBX;s
o1: Then there exists a sequence fbngn2Z in JðX; ~BBÞ with

kfbngn2ZkJðX;~BBÞo1; such that b ¼
P

n2Z snbn: Let us define b ¼ ðfb0;ngn2Z;
fb1;ngn2ZÞ by setting

b0;n ¼ s
X
ko0

skbnþkþ1 and b1;n ¼ s
X
k50

skbnþkþ1:

Then fb0;ngn2Z ¼ sD0;1=sðfbngn2ZÞ: Furthermore enb1;n ¼ ðs=eÞ
P

k50 ðs=eÞk

�enþkþ1bnþkþ1 so that fenb1;ngn2Z ¼ ðs=eÞD1;s=eðfenbngn2ZÞ: This establishes
that b 2 KðX; ~BBÞ with norm not exceeding

C1ðX; ~BB; sÞ :¼ skD0;1=skX0ðB0Þ!X0ðB0Þ þ ðs=eÞkD1;s=ekX1ðB1Þ!X1ðB1Þ:

But obviously we also have snðb0;n þ b1;nÞ ¼ b for each n 2 Z: So b 2
KsðX; ~BBÞ and b ¼ kðbÞ 2~BBX;s:K with (semi)norm not exceeding C1ðX; ~BB; sÞ:
So part (i) is proved.
Now, for part (ii), suppose that b 2 ~BBX;s:K with kbk~BBX;s:K

o1: Then there
exists an element b ¼ ðfb0;ngn2Z; fb1;ngn2ZÞ in KsðX; ~BBÞ with kbkKðX;~BBÞo1
such that b ¼ kðbÞ: We define the sequence fbngn2Z by setting bn ¼ b0;n �
s�1b0;n�1 for each n 2 Z: Then, since snðb0;n þ b1;nÞ ¼ sn�1ðb0;n�1 þ b1;n�1Þ;
we obtain that bn ¼ s�1b1;n�1 � b1;n and consequently bn 2 B0 \ B1: By the
boundedness of the right-shift operator we deduce that fbng 2 JðX; ~BBÞ with
norm not exceeding C2ðX; ~BB; sÞ :¼ 1þ s�1maxj¼0:1fejkS�1kXjðBjÞ!XjðBjÞg: By
(8.1) we have that limn!�1 ksnb0;nkB0

¼ 0 and by (8.2) we also have that
limn!1 ksnb1;nkB1

¼ limn!1 kðs=eÞn
enb1;nkB1

¼ 0: ThenX
n40

snbn ¼
X
n40

ðsnb0;n � sn�1b0;n�1Þ ¼ b0:0 � lim
n!�1

snb0;n ¼ b0;0

and X
n51

snbn ¼
X
n51

ðsn�1b1;n�1 � snb1;nÞ ¼ b1:0 � lim
n!1

snb1;n ¼ b1;0:

So the series
P

n2Z snbn converges to b0;0 þ b0;1 ¼ b with respect to the norm
of B0 þ B1: This shows that b 2 ~BBX;s with norm not exceeding C2ðX; ~BB; sÞ:
This completes the proof. ]
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APPENDIX A.

A.1. Uniform Boundedness of the Operator Norms kDj;rkXjðBÞ!XjðBÞ
and kS�kkXjðBÞ!XjðBÞ over the Class of all Banach Spaces B

The key to studying these norms will be the following result:

Proposition A.1. Let X be a pseudolattice and let V ¼ fvjkgj;k2Z be an

infinite scalar matrix such that, for each B 2 Ban;

(i) for all fbngn2Z 2 XðBÞ; the sum
P

k2Z vnkbk converges in B for each

n 2 Z and the sequence f
P

k2Z vnkbkgn2Z is an element of XðBÞ; and

(ii) the matrix V defines a bounded linear operator from XðBÞ into itself,
which we will also denote by V. Then supB2Ban kVkXðBÞ!XðBÞo1 and there

exists a Banach space Y such that

supB2Ban kVkXðBÞ!XðBÞ4CðXÞ2kVkXðYÞ!XðY Þ;

where CðXÞ is the constant appearing in part (iii) of Definition 2.1.

Proof. It will be convenient to present the main step of the proof as a
separate lemma. ]

Lemma A.2. Let fBggg2G be a family of complex Banach spaces indexed

by an index set G and let BG denote the Banach space of ‘‘bounded functions’’ f

defined on G such that f ðgÞ 2 Bg for each g 2 G and such that the norm

kf kBG
¼ supg2G kf ðgÞkBg

is finite. Then any pseudolattice X and operator V

satisfying the hypotheses of Proposition A.1 also satisfy

sup
g2G

kVkXðBgÞ!XðBgÞ4CðXÞ2kVkXðBGÞ!XðBGÞ: ðA:1Þ

To prove this lemma, we fix an arbitrary e > 0 and an arbitrary b 2 G and
let fbngn2Z be an element of XðBbÞ such that kfbngn2ZkXðBbÞ ¼ 1 and
kVðfbngn2ZÞkXðBbÞ5kVkXðBbÞ!XðBbÞ � e: For each n 2 Z we denote *bbn ¼P

k2Z vnkbk; i.e. f *bbng ¼ Vðfbngn2ZÞ: We shall need two norm one linear
operators P : BG ! Bb and Q : Bb ! BG: We define P by setting Pf ¼ f ðbÞ
for each f 2 BG: For the definition of Q; for each b 2 Bb; we let Qb be the
element of BG such that QbðbÞ ¼ b and, for each gab in G; QbðgÞ is the zero
element of Bg:
By part (iii) of Definition 2.1, the sequence fQbngn2Z is an element of

XðBGÞ with kfQbngn2ZkXðBGÞ4CðXÞ: It is also clear that VðfQbngn2ZÞ is the
sequence fQ *bbngn2Z: Furthermore, since PQ is the identity operator on Bb we
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obtain, applying (iii) of Definition 2.1 again, that

kVðfbngn2ZÞkXðBbÞ ¼ kf *bbngn2ZkXðBbÞ ¼ kfPQ *bbngn2ZkXðBbÞ

4CðXÞkfQ *bbngn2ZkXðBGÞ

4CðXÞkVkXðBGÞ!XðBGÞkfQbngn2ZkXðBGÞ

4CðXÞ2kVkXðBGÞ!XðBGÞ:

Since b and e are arbitrary this gives (A.1) and proves the
lemma.
We can now proceed with the proof of Proposition A.1. Let l ¼

supB2Ban kVkXðBÞ!XðBÞ: If l ¼ 0 there is nothing to prove. Otherwise,
whether or not l is finite, let flngn2N be a sequence satisfying 0olnolnþ1
ol and limn!1ln ¼ l: For each n 2 N; there exists a Banach space Bn 2
Ban such that kVkXðBnÞ!XðBnÞ5ln: Now let G ¼ N and apply Lemma 9.2 to
the family fBngn2N:We choose Y to be the Banach space BG: By hypothesis
V : XðBGÞ ! XðBGÞ is a bounded map, and so (9.1) gives the conclusions of
the proposition. ]

We can now apply Proposition 9.1 to obtain the results mentioned in
Remarks 3.5 and 3.7.

Corollary A.3. Let X ¼ fX0;X1g be a fixed pair of pseudolattices

which admits differentiation. Then

(i) for each r 2 C with 0ojrjo1; there exists a finite constant CnðX; rÞ
depending only on X and r such that supB2Ban kDj;rkXjðBÞ!XjðBÞ4CnðX; rÞ for

j ¼ 0; 1:

(ii) If, furthermore, X admits differentiation uniformly then, for each a
and b with 0oaobo1; the quantity

CðX; a; bÞ ¼ supfkDj;rkXjðBÞ!XjðBÞ : a4jrj4b; j ¼ 0; 1; B 2 Bang

is finite.

Proof. For j ¼ 0 and each n 2 Z we set vnm ¼ r�mþnþ1 for each mon þ 1
and vnm ¼ 0 otherwise. Then V ¼ D0;r: If we choose X ¼ X0; then
conditions (i)–(iii) of Definition 3.4 ensure that V satisfies conditions (i)
and (ii) of Proposition A.1 and so supB2Ban kD0;rkX0ðBÞ!X0ðBÞo1: An
analogous argument for j ¼ 1 completes the proof of part (i).
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For part (ii), let G be the set of all triples g ¼ ðj; r; nÞ where j 2 f0; 1g;
a4jrj4b and n 2 N: For each such g ¼ ðj; r; nÞ; we know by part (i) that
supfkDj;rkXjðBÞ!XjðBÞ: B 2 Bang is finite. So there exists a complex Banach
space Bg for which

kDj;rkXjðBgÞ!XjðBgÞ5supfkDj;rkXjðBÞ!XjðBÞ: B 2 Bang � 1=n: ðA:2Þ

By hypothesis, the Banach space BG constructed as in Lemma A.2 using
this particular family fBggg2G must satisfy

supfkDj;rkXjðBGÞ!XjðBGÞ: j ¼ 0; 1; a4jrj4bg :¼ lða; b;XÞo1:

So, for any fixed j 2 f0; 1g and r 2 C satisfying a4jrj4b; we can apply
Lemma A.2 with X ¼ Xj and V ¼ Dj;r and obtain from (A.1) that

sup
g2G

kDj;rkXjðBgÞ!XjðBgÞ4CðXjÞ2lða; b;XÞ:

This, together with (A.2), gives that

supfkDj;rkXjðBÞ!XjðBÞ: B 2 Bang4max
j¼0;1

CðXjÞ2lða;b;XÞ

and completes the proof of (ii). ]

Corollary A.4. Suppose that X is a Laurent compatible pair satisfying

the hypotheses of Lemma 3.6. Then these same hypotheses hold uniformly for

all complex Banach spaces, i.e.

X
k>0

rk sup
B2Ban

kS�kkX0ðBÞ!X0ðBÞo1 and

X
k>0

rk sup
B2Ban

kSkkX1ðBÞ!X1ðBÞo1 ðA:3Þ

Proof. Let Z0 ¼ Z=N and Z1 ¼ N: Then (A.3) is equivalent to

X
m2Zj

rjmj sup
B2Ban

kSmkXjðBÞ!XjðBÞo1 for j ¼ 0; 1: ðA:4Þ
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Fix j ¼ 0 or 1: For each m 2 Zj; Sm has a matrix representation V which, by
the hypotheses of Lemma 3.6, also satisfies the hypotheses of Proposition
9.1 for X ¼ Xj: So Proposition 9.1 gives that

sup
B2Ban

kSmkXjðBÞ!XjðBÞ4CðXjÞ2kSmkXjðYmÞ!XjðYmÞo1;

for some Banach space Ym: Now let G ¼ Zj and let Y ¼ BG where Bm ¼ Ym

for each m 2 Zj: Then Lemma A.2 gives that

kSmkXjðYmÞ!XjðYmÞ4 sup
k2Zj

kSmkXjðYkÞ!XjðYkÞ4CðXjÞ2kSmkXjðY Þ!XjðY Þ:

We deduce thatX
m2Zj

rjmj sup
B2Ban

kSmkXjðBÞ!XjðBÞ4CðXjÞ2
X
m2Zj

rjmjkSmkXjðYmÞ!XjðYmÞ

4CðXjÞ4
X
m2Zj

rjmjkSmkXjðYÞ!XjðY Þ:

By hypothesis this last sum is finite, and so we obtain (A.4) and complete the
proof. ]

A.2. Boundedness of the Constants Cs;s0 for Large js� s0j

Here we prove the estimate (4.26), i.e. that for each d > 0

supfCs;s0 : s; s0 2 S; jes � es
0 j5dgo1:

Let us first observe that

jes � es
0 j5d ) jes�s0 � 1j5d

e
) jeðs�s0Þ=2 � e�ðs�s0Þ=2j5 d

e
ffiffiffi
e

p

) c1ðs� s0Þ5 jeðs�s0Þ2 jd
e
ffiffiffi
e

p
js� s0j5

e�ðImðs�s0ÞÞ2d
e
ffiffiffi
e

p
js� s0j :

Then, since c1ð0Þ ¼ 1 and c1ðzÞ ¼ 0 only when z ¼ 2pki for some nonzero
integer k; we have that for each d > 0

inffc1ðs� s0Þ: s; s0 2 S; jIm s� Im s0j42p; jes � es
0 j5dg > 0:

So, by (4.23), Cs;s0 ¼ gCðs; s0Þ satisfies for each positive R and d,

Kd;R ¼ supfCs;s0 : s; s0 2 S; jIm s� Im s0j4R; jes � es
0 j5dgo1: ðA:5Þ
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This reduces the proof of (4.26) to showing, for example, that

supfCs;s0 : s; s0 2 S; jIm s� Im s0j > 2p; jes � es
0 j5dgo1

for each d > 0: ðA:6Þ

One ingredient for the proof of (A.6) is the fact that, for all s and s0 which
are not ‘‘too close,’’ the set R

* ;1ðb;Copt; s; s0; ~BBÞ is ‘‘trivial’’ in the sense
that it is uniformly ‘‘comparable’’ with the unit ball B½~BB�Re s0

of ½~BB�Re s0 :More
specifically, there exists a universal constant b such that, for all s and
s0 in S satisfying jIm s� Im s0j > 2p; and for every Copt51 and every
e > 0;

Coptkbk½~BB�Re s
B½~BB�Re s0

� *RR
* ;1ðb; bCopt; s; s0; ~BBÞ

� ðbþ eÞCoptkbk½~BB�Re s
B½~BB�Re s0

: ðA:7Þ

(As in the statement of Theorem 4.2 we still require the constant Copt to
satisfy Copt > 1:) For every choice of positive b and e; the second inclusion
in (A.7) is an immediate consequence of the definitions. Let us now prove
the first inclusion. We shall use an entire function f ¼ fx;Z;S which is defined
for any two distinct points x and Z in S by

fx;Z;SðzÞ ¼
z � Z
x� Z

eðz�xÞ2 ¼ ðz � xÞ þ ðx� ZÞ
x� Z

eðz�xÞ2 : ðA:8Þ

It satisfies fðxÞ ¼ 1 and fðZÞ ¼ 0 and supz2SjfðzÞj is finite. In fact

sup
z2S

jfðzÞj4 1ffiffiffi
2

p
e2jx� Zj

þ e4
1ffiffiffi

2
p

e2jIm x� Im Zj þ e
:

(A different choice of fx;Z;S with similar properties and a smaller supremum
could improve our estimate of b:) Given any b0 2 Coptkbk½~BB�Re s

B½~BB�Re s0
; we

choose f1 2 Fð~BBÞ with f1ðs0Þ ¼ b0 and kf1kFð~BBÞ4Coptð1þ eÞkbk½~BB�Re s
: We

also choose f2 2 Fð~BBÞ with f2ðsÞ ¼ b and kf2kFð~BBÞ4ð1þ eÞkbk½~BB�Re s
4

Coptð1þ eÞkbk½~BB�Re s
: Set f3 ¼ fs0;s;Sf1 þ fs;s0 ;Sf2 (i.e. using two func-

tions defined as in (A.8)). Then f3ðsÞ ¼ f2ðsÞ ¼ b and f3ðs0Þ ¼ f1ðs0Þ ¼ b0
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and

kf3kFð~BBÞ42ð1þ eÞ 1ffiffiffi
2

p
e2jIm s� Im s0j

þ e

 !
Coptkbk½~BB�Re s

:

Since jIm s� Im s0j > 2p and e > 0 can be arbitrarily small, this shows that
the first inclusion of (A.7) holds for

b ¼ 2
1

2
ffiffiffi
2

p
e2p

þ e

� �
:

Now we use an obvious inclusion like the second inclusion in (A.7) followed
by an application of the first inclusion in (A.7), but with Copt replaced by
ð1þ eÞCopt and s0 replaced by any another point s00 2 S which satisfies
Re s00 ¼ Re s0 and jIm s� Im s00j > 2p: This gives

*RR
* ;1ðb;Copt; s; s0; ~BBÞ � ð1þ eÞCoptkbk½~BB�Re s

B½~BB�Re s0

� *RR
* ;1ðb; bð1þ eÞCopt; s; s00; ~BBÞ: ðA:9Þ

More specifically, we can choose s00 ¼ s0 þ 2pki for some integer k: Then
es

00 ¼ es
0
: Furthermore, by choosing the integer k appropriately, we can have

2pojIm s� Im s00j44p: This enables us to apply (A.5) with R ¼ 4p and
(4.8) to obtain that

*RR
* ;1ðb; bð1þ eÞCopt; s; s00; ~BBÞ � *RRðb;Kd;4pbð1þ eÞCopt; es; es

0
;FC; ~BBÞ:

ðA:10Þ

Combining (A.9) and (A.10) we obtain that the supremum in (A.6) is indeed
finite (it can be taken to be any number larger than Kd;4pb) and so we have
proved (4.26).

A.3. Unboundedness of Cs;s0 as es
0

Tends to es

Inclusions (A.7) also provide us with a means of proving, as one would
conjecture after Remark 4.3, that the constant Cs;s0 cannot remain bounded
as jes � es

0 j becomes arbitrarily small: Let us fix some s 2 S and let fs0ngn2N
be some sequence in S which converges to sþ 4pi: We can suppose that
jIm s0n � Im sj > 2p for all n; and so, by (A.7),

Coptkbk½~BB�Re s
B½~BB�Re s0

� *RR
* ;1ðb; bCopt; s; s0n; ~BBÞ:
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This implies that there exist two distinct points xay which are contained in
*RR
* ;1ðb; bCopt; s; s0; ~BBÞ for all n: Now suppose that there exists some

constant C such that Cs;s0n4C for all n: This implies that x and y are both
contained in *RRðb;CCopt; es; es

0
n ;FC; ~BBÞ for all n: We shall see that this leads

to a contradiction by showing that *RRðb;CCopt; es; es
0
n ;FC; ~BBÞ is contained in

a ball in B0 þ B1 whose centre is b and whose radius rn tends to 0 as n tends
to 1: Consider the class #EE of functions f : %AA ! B0 þ B1 of the form f ðzÞ ¼P

k2Z zkbk where fbkgk2Z 2 Eðb;CCopt; es;FC; ~BBÞ: Since kf ðzÞkB0þB1
4

CCopt for all z 2 @A; it follows by Cauchy’s formula that f 0 is bounded
in B0 þ B1 norm on compact subsets of A: More specifically,

supfkf 0ðzÞkB0þB1
: f 2 #EE; jz � esj4dg ¼ Mdo1

for each dodistðes; @AÞ: Our sequence fs0ng necessarily satisfies jes
0
n � esj4d

for some such fixed d and for all n 2 N: Since each b0 2 *RRðb;CCopt; es; es
0
n ;

FC; ~BBÞ is of the form b0 ¼ f ðs0nÞ for some f 2 #EE; we see that kb0 � bkB0þB1
¼

k
R es

0
n

es
f 0ðzÞ dzkB0þB1

4jes0n � esjMd ¼ rn: This indeed gives the desired contra-
diction and shows that limn!1 Cs;s0n ¼ 1:

A.4. The Coincidence of Lions–Schechter Spaces on the Strip with their

Analogues on the Annulus

In this appendix we will use some notation and definitions from the first
part of Section 4.
For each nonnegative integer n; each y 2 ð0; 1Þ; and each Banach pair ~AA;

the Lions–Schechter interpolation space ½~AA�ðnÞy is defined to be the set of all
elements a 2 A0 þ A1 of the form a ¼ f ðnÞðyÞ where f 2 Fð~AAÞ: It is normed
by the natural quotient norm.

Remark A.5. The original definitions given by Lions [39, 40], and
Schechter [55] use a slightly modified version of Calder !oon’s space Fð~AAÞ;
which we may denote here byFLSð~AAÞ; whose elements f : %SS ! A0 þ A1 are
required to have the property that t/f ðj þ itÞ is a continuous map of R into
A0 þ A1 for j ¼ 0; 1: This is weaker than the condition required for
Calder !oon’s space, namely that t/f ðj þ itÞ is continuous into Aj: As shown
in [18] (at least for n ¼ 0) replacing Fð~AAÞ by FLSð~AAÞ can sometimes give
interpolation spaces which are strictly larger than ½~AA�ðnÞy : However the result
to be presented in this subsection is valid for the interpolation spaces
corresponding to either Fð~AAÞ or FLSð~AAÞ:

Proposition A.6. For each nonnegative integer n; each y 2 ð0; 1Þ and

each Banach pair ~AA; let ½~AA�ðnÞ;1y denote the space obtained when Fð~AAÞ
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is replaced by F1ð~AAÞ in the definition of ½~AA�ðnÞy : Then ½~AA�ðnÞ;1y ¼ ½~AA�ðnÞy
and

kak½~AA�ðnÞ;1y
4kak½~AA�ðnÞy

4Cnkak½~AA�ðnÞ;1y
for all a 2 ½~AA�ðnÞy ; ðA:11Þ

where Cn is a constant depending only on n. In particular, C0 ¼ C1 ¼ 1:

Proof. As already mentioned at the beginning of Section 4, the case
n ¼ 0 is easy and well known. The case n ¼ 1 is similar and essentially the
same as Theorem 4.1. The case for general n is another slight modification of
these two cases: Let us define the sequence famgm50 by a0 ¼ 1 and then
recursively by

am ¼ � 1

m!

Xm�1

k¼0

m

k

 !
k!ak

dm�k

dxm�k
ex2 jx¼0:

Then, for each nonnegative integer n; the function fnðzÞ ¼ ez2
Pn

m¼0 amzm

satisfies fnð0Þ ¼ 1 and fðmÞ
n ð0Þ ¼ 0 for each m ¼ 1; 2; . . . ; n: Now, given

any a 2 ½~AA�ðnÞ;1y and e > 0; choose f 2 F1ð~AAÞ such that a ¼ f ðnÞðyÞ
and kf kFð~AAÞ4ð1þ eÞkak½~AA�ðnÞ;1y

: For any d > 0 we define gdðzÞ ¼
fnðdðz � yÞÞf ðzÞ: Then gd 2 Fð~AAÞ and g

ðnÞ
d ðyÞ ¼ f ðnÞðyÞ ¼ a: This shows

that ½~AA�ðnÞ;1y � ½~AA�ðnÞy and establishes the second inequality of (A.11) with
Cn ¼ infd>0ðsupfjfnðdzÞj : Re z 2 ½�1; 1�gÞ: The remaining inequality and
reverse inequality are obvious.

Corollary A.7 (cf. Lions [40, p. 3], Schechter [55, p. 122]). The space

½~AA�ðnÞy is continuously embedded in ½~AA�ðnþ1Þy and the embedding constant

depends only on n and y:

Proof. Given any a 2 ½~AA�ðnÞy and f 2 Fð~AAÞ with a ¼ f ðnÞðyÞ and kf kFð~AAÞ
4ð1þ eÞkak½~AA�ðnÞy

let gðzÞ ¼ ðz � yÞfnðz � yÞf ðzÞ where fn is as in the
preceding proof. Then g 2 Fð~AAÞ with kgkFð~AAÞ4Cðy; nÞkf kFð~AAÞ and
gðnþ!ÞðyÞ ¼ ðn þ 1Þ dn

dznðfnðz � yÞf ðzÞÞjz¼y ¼ ðn þ 1Þf ðnÞðyÞ ¼ ðn þ 1Þa: ]

Proposition A.8. For each nonnegative integer n; each y 2 ð0; 1Þ
and each Banach pair ~AA; let ½~AA�ðnÞ;2py denote the space obtained when Fð~AAÞ
is replaced by F2pð~AAÞ in the definition of ½~AA�ðnÞy : Then ½~AA�ðnÞy ¼ ½~AA�ðnÞ;2py
and

1

Cn

kak½~AA�ðnÞy
4kak½~AA�ðnÞ;2py

4C0
nkak½~AA�ðnÞy

for all a 2 ½~AA�ðnÞy ðA:12Þ
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where Cn is the constant appearing in (A.11) and C0
n is another constant

depending only on n.

Proof. The case n ¼ 0 goes back to [17] and the case n ¼ 1 is essentially
proved as part of Theorem 4.2. An elaboration of the same approach will
also work for all n51:
Let f : C ! C be the entire function defined by

fð0Þ ¼ 1 and fðzÞ ¼ ez2 ez � 1

z

� �nþ1
for all z a0:

Then let cðzÞ ¼ fðzÞ
Pn

k¼0 bkzk; where the numbers bk are defined by b0 ¼ 1
and then recursively by

bm ¼ � 1

m!

Xm�1

k¼0

m

k

 !
k!bkf

ðm�kÞð0Þ:

This ensures that cð0Þ ¼ 1 and cðmÞð0Þ ¼ 0 for m ¼ 1; 2; . . . ; n: We can also
see that, for each integer ma0;

cð2pmiÞ ¼ c0ð2pmiÞ ¼ c00ð2pmiÞ ¼ � � � ¼ cðnÞð2pmiÞ ¼ 0;

since f has this same property.
Now, given a 2 ½~AA�ðnÞy and e > 0; we choose f 2 Fð~AAÞ such that a ¼ f ðnÞðyÞ

and kf kFð~AAÞ4ð1þ eÞkak½~AA�ðnÞy
: Then define F : %SS ! A0 þ A1 by

FðzÞ ¼
X
m2Z

cðz � yþ 2pmiÞf ðz þ 2pmiÞ: ðA:13Þ

By essentially the same arguments as in the proof of Theorem 4.2,
F is an element of F2pð~AAÞ with kFkFð~AAÞ4C0

nkf kFð~AAÞ where C0
n ¼

supRe z2½�1;1�
P

m2Z jcðz þ 2pmiÞj: The series in (A.13) can be
differentiated term by term any number of times at each z 2 S: Thus the
properties of c mentioned above imply that F ðnÞðyÞ ¼ f ðnÞðyÞ ¼ a:
This proves that ½~AA�ðnÞy � ½~AA�ðnÞ;2py and the second inequality of (A.12).
The first inequality and reverse inclusion follow trivially from
Proposition A.6. ]

Let us define FAð~AAÞ to be the space of functions f : %AA ! A0 þ A1 such
that f ðezÞ ¼ FðzÞ for all z 2 %SS and some F 2 F2pð~AAÞ with norm kf kFAð~AAÞ ¼
kFkFð~AAÞ ¼ supfkf ðejþitÞkAj

: t 2 ½0; 2p�; j ¼ 0; 1g: For each y 2 ð0; 1Þ and
each nonnegative integer n we define ½~AA�ðnÞ;Ay to be the space of elements
a 2 A0 þ A1 of the form a ¼ f ðnÞðeyÞ for some f 2 FAð~AAÞ with the natural
quotient norm.
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As has already been remarked (cf. (6.22)), for each n we have the
continuous embeddings

½~AA�ðnÞ;Ay � ½~AA�ðnþ1Þ;Ay ðA:14Þ

and their proof is a simpler analogue of the proof of Corollary A.7.

Theorem A.9. For each y 2 ð0; 1Þ and each nonnegative integer n the

space ½~AA�ðnÞ;Ay coincides with ½~AA�ðnÞy to within equivalence of norms and the

constants of equivalence depend only on n and y:

Proof. Yet again the case n ¼ 0 is known from [17] and the case n ¼ 1 is
essentially proved in Theorem 4.2. Let us now deal with general n: We can
proceed by induction, assuming that the result is known for each m ¼
0; 1; . . . ; n � 1: Suppose first that a 2 ½~AA�ðnÞ;Ay : For any e > 0; choose f 2
FAð~AAÞ with a ¼ f ðnÞðeyÞ: Define F : %SS ! A0 þ A1 by FðzÞ ¼ f ðezÞ: Then
F 2 F2pð~AAÞ and F ðnÞðyÞ ¼

Pn
m¼0 cm;yf

ðmÞðeyÞ for suitable constants cm;y: So

a ¼ 1

cn:y
F ðnÞðeyÞ �

Xn�1
m¼0

cm;y

cn;y
f ðmÞðyÞ: ðA:15Þ

The first term on the right-hand side of (A.15) is an element of ½~AA�ðnÞ;2py ¼
½~AA�ðnÞy (cf. Proposition A.8) with norm bounded by a constant multiple of
kFkFð~AAÞ ¼ kf kFAð~AAÞ: The remaining terms, where m ranges from 0 to n � 1;
are elements of ½~AA�ðmÞ;A

y and therefore, by our inductive assumption, of
½~AA�ðmÞ

y : Repeated applications of Corollary A.7 show that all of these
elements are in ½~AA�ðnÞy and that the norms of each of them can be bounded by
constant multiples of kFkFð~AAÞ ¼ kf kFAð~AAÞ: We conclude that a 2 ½~AA�ðnÞy
and that ½~AA�ðnÞ;Ay is continuously embedded in ½~AA�ðnÞy :
It remains to prove the reverse embedding: If a 2 ½~AA�ðnÞy then, by

Proposition A.8, a ¼ F ðnÞðyÞ for some F 2 F2pð~AAÞ with kFkFð~AAÞ4
const:kak½~AA�ðnÞy

: Define f : %AA ! A0 þ A1 by f ðzÞ ¼ FðLog zÞ where Log z

denotes the principal branch of the complex logarithm. Then f 2 FAð~AAÞ
and f ðnÞðeyÞ ¼

Pn
m¼0 *ccm;yF ðmÞðyÞ for suitable constants *ccm;y: The rest of

the argument to show that a 2 ½~AA�ðnÞ;Ay is now almost exactly analogous to
the first part of the proof, with (A.14) now playing the role of
Corollary A.7. ]
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