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A general family of interpolation methods is introduced which includes, as special
cases, the real and complex methods and also the so-called + or G| and G, methods
defined by Peetre and Gustavsson—Peetre. Derivation operators Q and translation
operators Z are introduced for all methods of this family. A theorem is proved about
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the boundedness of the commutators [T, Q] and [T, %] for operators 7" which are
bounded on the spaces of the pair to which the interpolation method is applied. This
extends and unifies results previously known for derivation and translation operators
in the contexts of the real and complex methods. Other results deal with higher order
commutators and also include an “equivalence theorem,” i.e. it is shown that, as
previously known only for real interpolation spaces, all these interpolation spaces
have two different equivalent definitions in the style of the “J method” and “K
method.” Auxiliary results which may also be of independent interest include the
equivalence of Lions—Schechter complex interpolation spaces defined using an
annulus with the same spaces defined in the usual way, using a strip. © 2002 Elsevier
Science (USA)

Key Words: derivation operator; commutator estimate; pseudolattice; real
interpolation; complex interpolation; plus—minus interpolation method; Lions—
Schechter interpolation space.

1. INTRODUCTION

The purpose of interpolation theory is to study the properties of
interpolation functors and their applications in analysis. In particular the
well-known real and complex methods of interpolation play a central role in
the theory. However, the study of these concrete interpolation methods has
traditionally emphasized their differences, which in turn has often led to the
development of disjoint sets of techniques to attack essentially similar
problems. While some of these differences are unavoidable, and indeed part
of the richness of the subject, it seems to us that a good deal of the basic
underlying theory behind the real and complex method can and should be
given a unified treatment. Indeed this has already been done in the
impressive work of Janson [29] where the real, complex and most other
known interpolation functors are revealed to be special cases of either the
minimal or the maximal functors of Aronszajn—Gagliardo. Another general
construction of interpolation spaces, which includes the real and complex
methods as special cases, has been presented by Williams [61].

The purpose of this paper is to introduce and study a different approach
to a unified treatment of some of the basic theoretical properties of the real
and complex methods of interpolation. This approach, initially suggested by
some definitions and remarks of Jaak Peetre ([48, pp. 174-177]), is
motivated here by the wish to better understand the so-called theory of
“commutators,” and we emphasize that theory here. We hope to treat other
aspects of our general approach elsewhere.

To be more specific, in this paper we introduce new interpolation functors
which provide a general method for constructing scales of interpolation
spaces. We then define certain (possibly nonlinear) “derivation” mappings Q2
and “translation” mappings # with respect to each such scale and prove
that their commutators with bounded linear operators on the interpolation
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scale are bounded operators. Our general method includes the real and
complex and other interpolation methods as special cases. Thus our results
unify, simplify and generalize known commutator theorems for the real and
complex methods in [32, 54], cf. also [27,42] and also give new analogous
results for other methods such as the = methods of Peetre and Gustavsson—
Peetre.

Ours is not the first paper to present commutator theorems in a general
abstract setting. This has been done in a different way by Carro, Cerda and
Soria, using the framework of [61] as their point of departure. See e.g.
[8-10], and, in particular, [11] for a summary and general survey of their
work on this topic. Their initial paper [8] also includes answers to some
questions raised in [20]. At various stages in this paper we shall make a
number of comparisons between this material, particularly in [8, 9], and our
own approach.

Our scale of interpolation spaces is indexed by a parameter 6 € (0,1) (or
by e’ or by e/*%). We are not aware of any way in which we could extend
our approach, including the construction of the mappings Q and £, to the
case of “function parameters,” i.e. positive concave functions p: (0,00) —
(0,00) which generalize the role of the numerical parameter 6 (which
corresponds to the function p(¢) = #%). By contrast, Janson’s approach is
well adapted to function parameters, but to date there is apparently no
known way of obtaining a version of the theory of commutators in his
setting. In this direction we mention that generalized commutator estimates
for the real method have been considered in [2]. There are also a number of
other approaches to interpolation which do not fit into the format we
present here (or, at least, we do not see how they do). These include methods
based on convexity and envelopes [16,52,57], based on differential
equations and geometric considerations [56] (see also [31, Section 4]), and
based on harmonic functions of several variables [31]. Yet another approach
[49] extends the ideas in Marcel Riesz’s original proof of the Riesz(-Thorin)
theorem. Cf. also the method of quadratic means referred to in [49] for still
other methods see [45]. We feel that the problem of bringing more unity to
these diverse viewpoints is an interesting one.

In their study of H? spaces on R", Coifman et al. (cf. [15]) proved, among
many other things, that if » € BMO(R") and T is a Calderén—Zygmund
operator, then the commutator defined by

[T,b)(f) = T(bf) = bT(f)

is bounded on L?(R") for 1 <p<oo. Note that both of the operators f'+
T(bf) and f+—>bT(f) which appear in the definition of [T,b] are not
bounded on L?(R"). The remarkable feature here is the subtle cancellation
that occurs when we subtract these two unbounded operators and make
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their difference [7',b] bounded. From our point of view here, the second
proof of this I” boundedness, given on [15, p. 621], is particularly
interesting. It can be seen as the forerunner of various arguments which
appear later in [54] and several other papers including this one.

Commutator theorems have a long history in harmonic analysis (cf. [14]
and the references therein to the fundamental work of Calder6on and
Zygmund and others). Motivated by the classical theorems on commutators
of singular integral operators, Rochberg and Weiss, in the early 1980 [54],
initiated the study of commutator estimates in interpolation theory. Since
then the theory has developed in various directions and applications have
been found to pde’s, harmonic analysis, and functional analysis. For some
of these developments we refer the reader to [23, 25, 26, 28, 34, 35, 44, 50, 51],
where more references and further applications and examples can be found.
For a survey of the earlier work we refer also to [20].

Remark 1.1.  Let us briefly recall two, by now rather standard examples
of commutator theorems in the context of L” spaces: For the first example,
we choose some fixed p € (1, c0) and consider the couple (L?(wy), L?(w;)) of
weighted L spaces on some underlying measure space (X, 2, u). If the linear
operator 7' maps L”(w;) boundedly onto itself for j = 0, 1, then of course T
is also bounded on the space L”(wy) where wy = w)=%w{ and 0 € (0, 1). But
it is also known (see, e.g. [54, pp. 335-337; 32, p. 203]) that the commutator
[T,Q] = TQ — QT is a bounded map on L?(wy) where the map Q is defined
by Qf = f'log (w;/wy). As explained in [54, pp. 335-336], this result is very
closely related to the result from [15] mentioned just above.

For the second example we consider a linear operator 7" which is bounded
on L' and L. Then it is of course bounded on L” for every p € (1,00). But
it is also known (see [54, pp. 315-318]) that [T, Q] is bounded on L?, where
this time Q is a nonlinear operator and is defined by Qf = f log |f].

The theory that has evolved around commutator estimates has largely
followed the pattern referred to above, i.e. it was essentially developed
separately for the real and complex methods. But it was also asked long ago,
e.g. in [20], whether a general method could be given to unify the approaches
to the real and complex methods, and of course the above-mentioned work
[8] subsequently showed one way in which this is possible.

One notable feature of our approach is the systematic use of analytic
functions and holomorphic structure for our general method and thus by
implication for the real and 4+ methods, not just the complex one. The idea
of using analytic functions in the framework of the real method may seem a
little exotic, but it is certainly not new. For example, it can be seen in a
setting closely related to this paper in [63, Sect. 2; 20, pp. 180-181], and it
also plays a limited role in [8, p. 209]). Perhaps its first at least implicit
appearance was in [41, Sect. 1.4, pp. 29-31]. There the analytic functions
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serve to show (cf. also [47, pp. 22-23; 17, p. 1008]), that the real and complex
methods are in some sense “Fourier transforms” of each other.

“Traditionally,” since the work of Thorin [60], the analytic functions in
interpolation theory are defined on a strip, and we could have developed our
theory here using functions on Thorin’s strip. However, we have chosen to
replace the strip by an annulus. This simplifies certain steps and corresponds
to ““discretising” (as in the real method). It is also more convenient for
observing the connection with the + method. The price we pay for this
convenience is that we have to show later that, in the case of the real and
complex methods, our constructions using the annulus are equivalent to
previously used constructions using the strip. Intuitively this seems obvious,
in the light of the well known and easily proved equivalences between the
“discrete/annular” and ‘“‘continuous/strip’ versions of the real method and
the complex method, respectively. But our proofs have turned out to be
longer than might have been expected.

While the earlier work on commutators emphasized the specific role of
certain ‘“‘derivation’” mappings, more recently the emphasis has been on
trying to understand the role that cancellations play in the theory (cf.
[7,44]). This has been particularly fruitful in obtaining ‘“higher order”
commutator estimates and has led to some simplification of the theory. The
method which we develop here enables us now to express the cancellation
conditions for the real, complex, + and other methods in the same unified
way: certain derivatives of the analytic functions representing elements of
the interpolation space have to vanish at the point corresponding to the
parameter of the interpolation space. This approach leads efficiently to
higher order estimates and characterization of domain spaces unifying and
generalizing methods developed in [7, 44].

The paper is organized as follows: In Section 2, we define a general
method to construct interpolation spaces using analytic functions on an
annulus, and observe that the real and complex and also the £ interpolation
methods all arise as particular cases of this method. In Section 3, we
construct the derivation and translation mappings and prove a general
commutator theorem.

Section 4 provides the above-mentioned proofs, in the case of the real and
complex methods, that the modification of our constructions with the
annulus replaced by a strip, gives essentially the same derivation and
translation operators. This shows that our general commutator theorem
contains the commutator theorems obtained in earlier papers as special
cases.

In Section 5, we indicate some connections and some differences between
our approach and that of Carro, Cerda and Soria.

In Section 6, we extend the results of Section 3 emphasizing the role of
cancellations in the computation of the norms in interpolation spaces and
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use these observations to prove higher order commutator theorems. In
Section 7, we obtain a general characterization of the domain spaces
associated with derivation operators. Finally, in Section 8 we obtain an
“equivalence theorem” for our interpolation spaces, i.e. a result which
generalizes the equivalence of the two “‘standard” ways (i.e. the J and K
methods) for defining real interpolation spaces.

There are many natural questions which can be asked concerning the new
interpolation spaces introduced in this paper. To give just one example: do
these space satisfy some version of Wolff’s Theorem [62]? Can this be proved
using the methods of [62] and/or [33] and/or [30]?

2. INTERPOLATION SPACES DEFINED VIA ANALYTIC
FUNCTIONS ON AN ANNULUS

In this section we introduce a class of interpolation methods defined using
analytic functions on an annulus. As we shall see, these methods include as
special examples the complex and real methods of interpolation as well as
the + methods of Peetre and Gustavsson—Peetre. The idea of looking at
these particular methods in a unified way goes back to Peetre, and our
construction here has its origins in his definitions and remarks on pp. 174—
177 of [48].

We start with some general definitions.

DEerFINITION 2.1.  Let Ban be the class of all Banach spaces over the
complex numbers. A mapping Z : Ban — Ban will be called a pseudolattice,
or a pseudo-Z-lattice, if

(i) for each B € Ban the space Z(B) consists of B valued sequences
{bn},ez and if

(i) whenever A is a closed subspace of B it follows that Z(A4) is a
closed subspace of Z'(B) and if

(iii) there exists a positive constant C = C(%') such that, for all 4, B €
Ban and all bounded linear operators 7:4 — B and every sequence
{an} ez € Z(A), the sequence {Ta,},., € Z(B) and satisfies the estimate

||{Tan};1ez||;%(3) <C@| THAHB”{aﬂ}H;T(A)'

Let us now present a number of examples of pseudolattices. For each of
them we have C(Z') = 1.

ExaMPLE 2.2. Let X be a Banach lattice of real valued functions defined
on Z. We will use the notation 4 = X to mean that, for each B € Ban,
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Z(B) is the space, usually denoted by X(B), consisting of all B valued
sequences {b,} such that {||b,[|p},c, € X. It is normed by |{bu},czl x5 =
[{12nll 5} nezll -

ExaMPLE 2.3. For each B € Ban let FC(B) be the space of all B valued
sequences {h,},c; such that b, =L [T f(e)dr for all n and some
continuous function f:T — B. FC(B) is normed by |[{bu}|pcp =
sup.ct |If (7)|| 5. The notation &' = FC will mean that 2'(B) = FC(B) for
each B. Where necessary, we may use the more explicit notations FCy and
FCy(B).

(“FC” indicates that here we are dealing with the Fourier transform FC
(T, B) of the space C = C(T, B) of continuous (B-valued) functions on T.
Cf. [29] where analogous sequence spaces FL! and FL*® also appear and
play important roles. There are of course obvious possible variants of this
example where the space of continuous B valued functions on T is replaced
by some other suitable space of B valued functions on T.)

ExaMPLE 2.4. We shall use the notation 4 = UC, when 2 (B) = UC(B)
for all B € Ban, where UC(B) denotes the Banach space of all B valued
sequences {b,},. such that the series ) ,., b, is unconditionally
convergent in B. As norm we take [|{bu}|| 45 = supll 3,cr enbullp where
the supremum is taken over all finite subsets F C Z and all sequences ¢,
taking only the values +1.

ExaMPLE 2.5. We shall also consider a variant of the preceding example
where b, is required only to be weakly unconditionally convergent in B. The
norm is as above, and we shall use the notation WUC(B) for the
corresponding Banach space and # = WUC for the pseudolattice.

Remark 2.6. Each of the pseudolattices 2 in the preceding Examples
2.3-2.5 has the property that

16ml 5 < 1{n} | 2() (2.1)

for all m € Z, all {b,},., € Z(B) and all Banach spaces B. The same also
holds for Example 2.2 provided the lattice X has the property that

I{Omn}tpezlly <1 for each me Z (2.2)

(Here 0,,, denotes the usual Kronecker delta.)

We shall use the usual notation B = (By, B) for Banach pairs (also often
referred to as “Banach couples™ in the literature) of Banach spaces By and
B (cf. [4, Chap. 2] or [5, p. 91]). Also the notation 7 : 4 — B will have
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the usual meaning, that T is a linear operator T : Ay + A; — By + B; such
that 7 maps 4; to B; continuously for j=0,1. We set ||T|; 5=
max{| 1|y, | TlL4—s,}-

Let Zy and % be any two pseudolattices. We consider them as a pair,
which we denote by X = {Z,%}. (Note that a pseudolattice pair is an
essentially different object from a Banach pair.)

DEFINITION 2.7. For each Banach pair B and pseudolattice pair X we
define # (X, B) to be the space of all By N B; valued sequences {b,},., for
which the sequence {¢"b, },., is in Z;(B;) for j = 0, 1. This space is normed by

||{bn}nez||/(x,§) = ;28‘)1( ||{ejnbn}nez||1;(3,-)'

It will be convenient to exclude some ‘“‘pathological” phenomena by
requiring the space # (X, l_i”) to be “not too small.” One way of doing this is to
impose the following condition. As we shall see later, it is also equivalent to
various other seemingly stronger conditions.

DEFINITION 2.8. Let A be the open annulus {z € C: 1<|z|<e}. We shall
say that the pseudolattice pair X is nontrivial if, for the special one-
dimensional Banach pair B = (C,C) and each s € A, there exists {bn}per €
#(X, B) such that the series > nez S"by converges to a nonzero number.

In all concrete examples to be considered in this paper it will be
immediately evident that this condition is fulfilled because the sequence
{bn},cy defined by by =1 and b, =0 for all n#0 will be an element of

7 (X, (C,C)).

DErINITION 2.9.  We shall say that the pseudolattice pair X is Laurent
compatible if it is nontrivial and if for every Banach pair B, every vector
valued sequence {b,},.; in #(X, B) and every fixed z in the open annulus
A the Laurent series ), z"b, converges in By + By and || >°, .7 Z"bul 5,
< CH{bn}neZH(;f(Xﬁ) for some constant C = C(z) independent of the choice
of {bﬂ}nel'

Remark 2.10.  This convergence of ), z"b, implies of course that

liril P"bullp, 5, =0  for all p € (1,e). (2.3)
n—100

It follows from (2.3) that ), , z"b, converges absolutely (with respect to
the norm of By+ B;) and uniformly on every compact subset of A.
Consequently the sum of this series is an analytic function of z in A and
can be differentiated term-by-term. The series for its derivative f'(z) =
> nez nZ"b, must also converge absolutely in By + B.
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It is easy to check that any pair X = {%Z, %} of pseudolattices both of
which satisfy (2.1) must be Laurent compatible. Thus, from Remark 2.6 we
have several examples of such pairs. It is also clear that considerably weaker
conditions on each of the pseudolattices Z; would suffice to give Laurent
compatibility, for example

16|l g < C(1 + |m\)}‘||{b,,}||_9fi(3) forallme Z and j=0,1, (2.4)
where Z is any positive constant.

DEFINITION 2.11.  For each Banach pair B, each Laurent compatible
pair X and each fixed s € A we define the space B‘X,S to consist of all elements
of the form b=, , s"b, where {b,},; € #(X,B), with the natural
quotient norm

ne

|6llg,, = inf {n{bn}neznﬂx,g) b= b} (2.5)

neZ

The Laurent compatibility of X and the completeness of # (X, E) imply,
respectively, that || - |5, is indeed a norm, rather than merely a seminorm
and that By, is a Banach space. The nontriviality of X implies that
(C,C)x, =C for all s € A. In fact these two conditions are equivalent.

Under additional conditions on X we can replace (2.5) by a useful
“convexity” estimate. (Cf. [41, Lemme (3.1), p. 12]). These conditions are
conveniently formulated in terms of shift operators, which we will also need
for some other purposes later.

DErINITION 2.12. Let S denote the left-shift operator on two-sided
(vector valued) sequences defined by S({bn},cz) = {bnt1},cz- Then of
course S! is the right-shift operator S ({bn},cz) = {bn-1}nez-

LEMMA 2.13. Suppose that S maps Z;(B;) isometrically onto itself for
Jj=0,1. Then, for each s € A and each b € By,

16115, < einf{n{bn}nez (o 1€ But ez 7,8t {Pubacz € I (X, B),

b=>" s”bn}, (2.6)

neZ

where 0 = log |s].

Proof. This i§ very similar to the argument on [41, p. 13]. Given any
{bn},ez € F(X,B) with b=3", _, s"b, we see that, for each k € Z, we
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have that {b,i1},c7 € j (X B). More specifically, by the isometry of S,
Wek have H{bn+k} = [{bn}tuezlloy(zy and [{e"buii} ez
I{e"*busi} ) s “I{e" ”}nGZ”I] (81 SO

2(B) T

II{bn+k}nez||f<xﬁ> = max{|{b}pezllzo50) € I Ba}ncz 2y}
Let us now choose k so that
1{bn} )<efk“{€nbn}nez 218 Sell{bntnezll oy o)
Then 3 ,c7 8buik =3 ez 8" *by = s7%b with
Is7*bll 5, <ell{bu}uczll sz (2.7)
Note that

. 0
‘k|_6k< ||{€b} )
||{b }HEZ” lo Bo

so that, after multiplying (2.7) by %

n 0
”bHBX <e|[{b, }neZHJO Bo) [[{e bn}neZHﬂﬁ(Bl)'

, we obtain

To complete the proof we simply take the infimum over all {b,},c; €
J(X,B)withb=3,_, s"b,. 1

THEOREM 2.14. Let B = (Bo, B1) be a Banach pair, let X be a Laurent
compatible pair and let s be any point in A. Then

(1) the space B'X’X is intermediate, i.e. it satisfies the continuous inclusions
ByN B, C BX,x and BX,S C By + B;.

(i) Let A = (Ay,A,) be another Banach pair and suppose that T :
Ay + Ay — By + By is a linear operator which maps A; boundedly to B; with
norm M; for j = 0, 1. Then T maps AXS boundedly to BXSfor each s € A with
norm

17114y 5y, < max M,C(2).

(ii') If, furthermore, S maps Z';(B;) isometrically onto itself for j = 0, 1
then the norm ||T||z 5 —also satisfies

1T 11y, 5y, SE(C(Z0)Mo) =" (C(21) M)’

where 0 = log |s|.
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Proof. We start with (ii) which has an obvious proof which can be left to
the reader. A small modification of that proof using Lemma 2.13 gives (ii').
The second inclusion in (i) is an immediate consequence of the Laurent
compatibility of X. It remains to prove the first inclusion of (i). We choose
Ag= A, =C and use the nontr1v1a11ty of X to ensure that AXJ =C.
Then we apply (ii) to the operator T : A — B defined by T{ = (b for all
{€C, where b is an arbitrary fixed element of By B;. This gives
that b=T1€ Bx, with |b| 5, <max;—o1M;C(Z)|I1| 7, <bllg,np,
xmax; o, C(Z)||1]z,.. 0

The conclusions of Theorem 2.14 can be re-expressed more formally by
stating that, for each X and s, the map El—»ﬁxﬁ is an interpolation functor
(cf. [4, p. 28] or [5, p. 140]). It is easy to check (cf. also [48, pp. 174—177]) that
this new general interpolation functor coincides with various ‘“classical”
interpolation methods for suitable choices of X: More spec1ﬁcally, let us set
s = ¢’ for some 6 € (0,1). Then, if 2y = Z'; = ¢, the space Bx, coincides
with the Lions—Peetre real method space By » = (Bo, Bl) using the
equivalent ‘““discrete definition.” (See e.g. [41, p. 17] where thls space is
denoted by s(p,0, Bo;p,0 — 1, By) or [4, Chap. 3].) If 2 = 2y = FC, then
Bxs coincides, to within equivalence of norm, with the Calder6on complex
method space B[(;] [Bo,Bi], = [B ] (See [17]. This is also discussed below
in more detail in the course of the proof of Theorem 4.2.) If #y = 2, = UC,
then EX\ is the Peetre &= method space E«; (Bo, B1)y, [48, p. 176]. If we
replace UC by WUC, we obtain the Gustavsson—Peetre variant of (By, B;),
which is denoted by <B po)- (See [24, p. 45; 29].)

Remark 2.15. The previous identifications of the space B’X,s also hold for
any other s € A on the circle |s| = e’ since each of the pseudolattices 2 used
to define them has the property that the “rotation map” {b,},.,—
{e™ by}, is an isometry of Z'(B) onto itself for every real t and every
Banach space B.

One can of course obtain many other (often more exotic) interpolation
spaces by making other choices of {9, Z}. We need not, as we have done
so far, always require that 2y = 2. For example, in [48], Peetre also briefly
considers the space (B, B1),, - This is a generalized version of (By, B1),
which corresponds to defining Z; in terms of “‘p;-unconditionally summable
sequences” for j = 0, 1. Certain spaces correspondmg to the case where %
and 2| are both (possibly different) lattices have been studied by some
authors. See e.g. the work of Dmitriev [22]. We should mention one case
with Z¢#2 for which the description of Bxs is well known. If we take
Xo =0 and &y = ¢, then it is clear that BX s 1s exactly the space denoted
by s(po, 0, Bo; p1,6 — LBI) in [41, p. 17] which is the same, to within
equivalence of norm, as the space S(E,po,pl,Q) in [4, Sect. 3.12] and the
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space (By, B1),,, », in [46]. But then, by Théoreme 1 of [46, p. 252] (cf. also
[4, pp. 70-72; pp. 85-86]) this space coincides, to within equivalence of
norms, with (B, B1),, where 1/p=(1—10)/po+0/p1. As a contrasting
example, it is tantalizing to wonder what “hybrid” choices like X = {¢!, FC}
might give. It is easy to give concrete descriptions of (L', L>) (0, )5 and
(L', L) ¢ pey o Dut what can be said about the space (L', L)1 pey,?

3. DERIVATION MAPS, TRANSLATION MAPS, AND
COMMUTATOR THEOREMS

We are now ready to define the “derivation” mappings Q and
“translation” mappings # associated with the interpolation spaces EX,S.
Both Q and # map l:?’)g.Y into By + B;. In general they are nonlinear, and
may also be taken to be multiple valued. As one particular case of our
derivation mappings we shall obtain mappings which are equivalent (in view
of the results to be presented in Section 4) to the derivation mappings which
are defined and studied in [32] explicitly for the real method (in [19] they are
referred to as “‘quasilogarithmic operators’). In another particular case our
mappings will be equivalent (cf. Section 4) to the derivation mappings
defined in [54] explicitly for the complex method. We shall establish a
“commutator’” theorem for our derivation mappings, which includes as
special cases the commutator theorems developed in the preceding
references and thus also the two results mentioned in Remark 1.1. We
recall once more that an alternative method of putting these kinds of results
into a more general abstract framework has been developed in [8].

Our translation mappings essentially generalize previously studied maps
which are used in several contexts. For example, in the case of the real
method, such mappings appear explicitly or implicitly in [32, Sect. 5; 63,
Sect. 2; 20, pp. 179—-182]. Let us also mention various versions of such maps
which are known in the case of the complex method. For example in [12, pp.
276-277; 13, pp. 142-146] a related (one-valued) map is introduced and used
in the context of finite dimensional spaces, (infinite families rather than just
pairs). Daher [21] and Kalton (unpublished) have (independently) used one-
valued versions of (complex method) translation mappings to provide
homeomorphisms between unit balls of certain uniformly convex Banach
spaces. Another treatment of this material, including further details
concerning the moduli of continuity of such homeomorphisms, is given in
[3, pp. 204-206]. In these preceding examples the “optimality constant™ (as
defined below) is chosen to equal 1 (cf. Remark 3.3). Translation maps also
appear, at least implicitly, in the work of Shneiberg [58] (cf. also [59]).
Translation maps are also considered from the point of view of Banach
space theory in [37].
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We obtain a commutator theorem for our general translation mappings
which can be considered as a sort of generalization of results first obtained
in [27] (for I? spaces using the complex method) and later in [43] (for the
real method).

Although in previous papers it has usually been customary to work with a
derivation mapping Q which is single valued, it is perhaps a little more
convenient and natural to instead consider a certain set-valued mapping Q.
The mapping Q can then be taken to be any single valued “selection” of Q.
(There is of course a great deal of arbitrariness in the definition of Q.)
Similarly, we can consider set-valued and single-valued versions of the
translation mappings, analogously denoted by # and %.

Let us now explicitly describe these various mappings:

DEeFINITION 3.1.  Let us fix a positive constant Cop (an “optimality”
constant) usually satisfying Cop > 1, a Laurent compatible pair of
pseudolattices X, and a point s € A. For each Banach pair B and each
element b € By, let E(b) denote the set of all sequences {b,},; in #(X, B)
such that 3,5 by = b and [[{bu}cz | ox 5 < Contl18l 5

(i) Let Q(b) denote the set of all elements b’ € By + B; of the form
b =3",.7 ns""'b, for all choices of the sequence {b,},., in E(b).

(ii) For each element b € Bx, we choose some element Q(b) € Q(b).
(Assume Copy > 1.)

(ii1) Fix a second point s € A and for each B and each element b € B'X’s
as above, let #(b) denote the set of all elements »’ € By + B; of the form
b =37 (§)'b, for all choices of the sequence {b,},., in E(b).

(iv) For each element b € By, we choose some element 2(b) € Z(b).
(Assume Copy > 1.)

Where necessary we shall use thg notation QE and Qp or @g and Z5 or
Ej to indicate the underlying pair B with respect to which these mappings or
sets are defined. (Later, in Section 4, we shall use still more elaborate
notation indicating the dependence on other parameters also.)

Remark 3.2. The convergence in By + By of the series ), _, ns" b, is a
consequence of our hypotheses on {b,} (cf. Remark 2.10) and its sum is of

course f’(s) where f(z) = 3_,.7 Z"by.

Remark 3.3. It may be interesting in some cases, ¢.g. when B is a Banach
pair of finite dimensional spaces, to choose Cop to equal 1 in the above
definition. This corresponds to what is done in certain papers mentioned
above ([3,12,13,21]). But, for general Banach pairs, such a choice could
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cause the set E(b) and therefore also Q(b) and Z(b) to be empty for some
elements b. Of course if Cop > 1, as will usually be assumed, then these sets
are always nonempty. and so Q(b) and #(b) are also defined. On the other
hand, if Cop<1 then these sets will be empty for each b#0.

The preceding definitions of Q and £ are rather abstract, so perhaps it is
useful to briefly recall a simple and relatively concrete example. It arises in
the framework of the complex interpolation method. Here the relevant
complex variables will range over a strip rather than the annulus A. (But, as
already mentioned, we will see in Section 4 that the strip and annulus give
essentially the same operators.)

We will be quite informal, both with precise definitions and specific
hypotheses. Suppose W is a (possibly unbounded) positive linear operator
on a Banach space X and that /¥ admits enough of a functional calculus so
that we can make good sense of the semigroup W* s>0. In this case the
family of spaces X; defined by ||x[|y = [|[W*x||y, 0<s<1 will be a (complex)
interpolation scale. For this family the operator Q will be the infinitesimal
generator of the semigroup and the translation operators # will be given by
the powers of W; in particular W~ is the translation operator which
maps X;, boundedly (in this case, in fact, isometrically) to X, . This pair
of viewpoints, one case focusing on W*x as a varying family of vectors
residing in the fixed space X or, alternatively, focusing on x as a fixed vector
seen as living in a family of spaces, the Xj, is reminiscent of the duality in
quantum mechanics between the Schrodinger picture and the Heisenberg
picture.

In the case where X = I” and W is given by pointwise multiplication by a
positive, possibly unbounded, function w, then Q is multiplication by log w,
i.e. we recapture the first example mentioned in Remark 1.1. (We have to
choose wy = w? and w; = wow = w!'=? for some 0 € (0,1).)

In the context of such semigroup considerations it is interesting
to compare the results here with some of the basic facts about semigroups
of operators such as the Hille-Yosida—Phillips theorem. In general,
as we noted, the operators 2 and % are not linear. The previous
discussion suggests that in this case there may be some relation with
nonlinear semigroup theory or, more generally, nonlinear evolution
equations. In fact it was already noted in [12,13] that the translation
operators, there called A(z,zo;-) satisfy the propagator equation ((2.13)
on [12, p. 276] or (4.7) on [13, p. 143]) which characterizes evolution
equations.

DEfFINITION 3.4. Let X = {Z0.Z} be a pair of pseudolattices. We shall
say that X admits differentiation if it is Laurent compatible and, for each
complex Banach space B,
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(i) for every re(0,1) each element {b,},.; € Zo(B) satisfies
limg_ oo 7 ¥kl =0 and each element {b,},., € Z1(B) satisfies
limy o 7%||i ||z = 0, and

(ii) for every complex number p satisfying 0<|p|<1, for j = 0,1 and
for every sequence {b,},., € Z;(B), the new sequence {b},., is also in
Z;(B), where {h°},., and {b]},_, are defined by setting

ne

bg = Z pikbn+k+1 and b}11 = Z pkbn+k+la
k<0 k=0

(where the convergence of all these sums is of course guaranteed by (i) and is
in fact equivalent to (i),) and if also

(iii) for j =0,1 and each p as above, the linear map D;, defined on
Z;(B) by setting D; ,({bu},c7) = {P,},cz maps Z;(B) boundedly into itself.

(iv) If, furthermore, for j = 0,1, both the norms |[D; |, 5,5 are
bounded functions of p on each compact subset of the punctured open unit
disk, then we shall say that X admits differentiation uniformly.

Remark 3.5. It can be shown that conditions (i)—(iii) in the preceding
definition in fact imply an apparently stronger condition, namely that there
exists a (finite) constant Cy(X, p), depending only on X and p, such that
I1Djpll 2, (my—a,y S Ce(X, p) for all complex Banach spaces B and j =0, 1.
We defer the proof of this to an appendix: See Subsection A.l1 (Corollary
A.3(1)). Analogously, condition (iv) turns out to be equivalent to a stronger
condition, where the upper bound for || D;, |l 4,(g)—.z,(5) @s p ranges over any
give compact set is independent of the particular choice of B. For the proof
we refer again to Subsection A.1 (Corollary A.3(ii)).

The following lemma gives a simple sufficient condition in terms of the
shift operator S (Definition 2.12) for a pair X to admit differentiation
uniformly:

LEmMMA 3.6. Let X = {%o, %1} be a Laurent compatible pair and suppose
that for each B € Ban, S is bounded on Z'(B) and S~ is bounded on % (B)
and furthermore that

Zrk||S7k||%'o(B)—>yl'0(B)<oo and Z"kHSk
k>0 k>0

7B -m < (3.1)

for each re (0,1). Then the pair X ={Zo,Z1} admits differentiation
uniformly.

Proof. Obvious. 1
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Remark 3.7. Conditions (3.1) are in fact equivalent to stronger
conditions which hold uniformly for all Banach spaces, i.e. with each term
||S’"||%»j(3)_‘%(3> replaced by supBeBan||S”’|\fz-j_(3)_>(%~/(3). For a proof, see
Subsection A.1, Corollary A.4.

It is clear from the preceding lemma that the pair X = {Z, 2|} admits
differentiation uniformly whenever % and 2’} are each chosen to be any of
. FC, UC or WUC because for all of these Z;(B) is isometrically invariant
under shifts for every B € Ban. Furthermore, pairs of pseudolattices
satisfying a rather weaker form of shift invariance also admit differentiation
uniformly. For example one could take both %;’s to be weighted ¢ spaces X
of scalar sequences, where the weight varies comparatively slowly,
such as

, 1/p
{otn}nezllx = <Z Jora” (1 + |n)‘> ,

neZ

where Z is any positive constant.
We can now present a generalized version of the “‘commutator theorem™
for derivation mappings and also for translation mappings:

THEOREM 3.8. Let X be a pair of pseudolattices which admits differentia-
tion. Let A and B be arbitrary Banach pairs. Fix a point s € A and a constant
Copt > 1.

(i) Let Q; 1 27, Q and Qg denote derzvatzon L mappings correspondznq to
lhese choices of s, Copt and Xfor the pairs A and B, respectively. Let T : A —
B be a bounded linear operator. Then the commutator [T, Q] maps AX\
boundedly into Bx,. More explicitly, T(Q (@) — Qy(Ta) € Bx for each
ae Ax,s and

I17(24 (@) — Q5(Ta)l|g,, < CITl 5_5llal 4, (3:2)

for some constant C not depending on a. (See Remark 3.10 for various
estimates for C.)

(ii) Fix a second point s' € A and let % y R %B and Ry denote
translation mappings corresponding to s, s, Cop and X for the pairs A and B,
respectively. Then, for T as above, the commutator [T,R| maps AX_,A
boundedly into EX,Sf and satisfies the estimate

IT(%;() = 25(Ta)llz, <Is = '|CIIT ;_gllall 5, (3:3)

for the same constant C.
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Remark 3.9. An equivalent and perhaps slightly better formulation of
(3.2) (cf. the preamble to Definition 3.1) would be that for each @’ € Q ; i(a)
and each b' € Q3(Ta), the element Td' — b € Bx, with the same norm
estimate. Analogously one could reformulate (3.3) as the condition
Td — b € By »_with a corresponding norm estimate, for each a e % 2(a)
and each b’ € #3(Ta).

Remark 3.10. The constant C can be taken to be

N 1
& = 2Cop - C(X) max {||D0 il 1D

%”1(31)%11(31)} (3-4)

where C,p 1s the optimality constant chosen in the definition of the
derivation mappings and C(X) = max;—o; C(%;). Furthermore, (cf. Remark
3.5 and Corollary A.3) the last factor in (3.4) is bounded above by a
constant which is independent of the particular Banach spaces By and B.

In the case where the shift operator S is an isometry of Z;(B) onto itself
for j = 0,1 and each B € Ban, then we can use Lemma 2.13 and part (ii') of
Theorem 2.14 in a slightly modified version of the proof of Theorem 3.8.
This gives alternative versions of estimates (3.2) and (3.3) where C~’||T i 5
is replaced by an expression depending more explicitly on each of the
norms M; = ||T| . 5 and on 0 = log |s| and 0’ = log |s/|. By analogy with
part (11) of Theorem 2.14 one might initially expect the expression
e(C(Z0)My) ' (C(21)M;)" to appear as a multiplicative factor in such
estimates. But we obtain more complicated expressions. In (3.2) C||T|| ;_z
can be replaced by

Copt([1Do,1/sll 224 (By)— 270 (B9) (C(Z'0) Mo + e(C(Zo)My)" " (C(a) M)’
X (e D1 syell a3y, 3y (C( 1) My + e(C(Zo)Mo)' ' (Cla)My)"))’

and in (3.3) C‘HTH/IHE can be replaced by

Copt (100,15l () 0 (y) (C(F0) Mo + e(C(Z0) Mo)' " (C(a1) M) "))~
X (€ D1 s/ell g, 8,y (8) (C@ )My + e(C(Z0) M)~ (C(21) My)"))"

We leave the details to the reader.

Proof. When dealing with various sequences in # (X, 4) or #(X, B) we
shall (cf. earlier proofs for the complex method) tend to work more with the
corresponding vector valued analytic functions on A which have those
sequences as their Laurent coefficients.
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It will be convenient to present part of the proof in the format of a
preliminary lemma which we will also refer to later in the paper for other
purposes:

LemMaA 3.11.  Let X be a pair of pseudolattices which admits differentia-
tion and let B be a Banach pair. Let the sequence {fn}ncz be an element of
J(X,B) and let f : A — By + B be the analytic function defined by f(z) =
Y onez Z'fu- Suppose that f(s) =0 for some point s €A and let g:A —
By + By be the analytic function obtained by setting ¢(s) = f'(s) and ¢(z) =
f(2)/(z =) for all z € A\{s}. Let {gn},.y be the sequence of coefficients in
the Laurent expansion g(z) =),z Z"gn of g in A. Then {g,},c7 is also an
element of ¢ (X, B). More specifically,

Honbueall s < CIHbnezll o (3.5)
for some constant C which can be bounded above by
max{[|Do.1/sll iy ()70 (8 € NPssell 3y 80)

To prove this lemma we first note that for each z € A with |z| > |s| we
have

9(z) :zis Z Zhn :é Z(g)k Z Zn

neZ k=0 neZ
—k—1 kg k
= § § z' S fn = § § 2" fmket1-
k=0 neZ k=0 meZ

Because of absolute convergence we can interchange the order of
summation to obtain that the preceding expression equals
Somez 2> k>0 Sfmiks1. Since the Laurent expansion of g is unique
we must have g, = Zk>0 friks1. We shall need to deduce a second
formula for g,:

gn=5"" Z S e = =5 Z S i (since £(s) = 0)

k=0 k<0

= - Z Skﬁl+k+17

k<0
1e.

{gn}nel = _DO,I/S({f;’l}nEZ)' (37)
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Also e"g, = e~ Zk>0 (s/e) (€ fokg), e
{engn}nez = e_lDl,s/e({enﬁ!}neZ)' (3.8)

Since X admits differentiation we obtain that {e"g,},., € Z;(B;) for
j=0,1, and furthermore

{gn}nez € 7(X, B) (3.9)

with norm not exceeding

max {[[Do.1/sl 2,800y € 1 P1sselliry 80— ) ez ]y x.5)-

This completes the proof of the lemma.

We can now complete the proof of Theorem 3.8. We may suppose,
without loss of generality, that ||T'||; z=1. Fix a € Ax.,, which we may
also take to have norm 1. Then (cf. Theorem 2.14) the element b = Ta is in
Exﬁ.y with norm not exceeding C(X) = max;—o; C(%}). Let {a,},., be any
sequence in E;(a) and let {b,},., be any sequence in Ez(Ta). Since,
by definition, ||{e" antpezlla ) < Copr for j=0,1, we deduce that
||{e/ Tan}uezllz,5) < Cop C(X ) fOI'j =0, 1. We also have by definition that
[{e"b, buezlla s, <C0ptC(X). Consequently, the sequence {f,},.; =
{Ta, — ”}nEZ 1s in #(X,B), with norm not exceeding 2Cop C(X).
Our hypotheses (cf. Remark 2.10) ensure that

Zs”fn:Ta—Ta:(). (3.10)

nez

Thus we can apply Lemma 3.11 to the sequence {f,},.;. For f and g and
{9n}ez defined as in the statement of the lemma, this gives that {g,},c; €
J (X, B) with norm not exceeding

C1 =2C,n C(X) max{||D0,1/s||10(BU)H;%(BO), e ! ||Dlv~y/e||3[l<BI)HSZZ‘|(BI)}.

Consequently, f'(s) =g(s) =>_,c7 5"'gn is in Bx, also with norm not
exceeding C;. Also ¢g(s') must be in By y, again with norm not exceeding C;.
So if we choose the above sequences {a,},., and {b,},., so that ' =
Q;(a) =7 ns" 'a, and b =Qz(Ta)=Y",., ns"'b,, then we shall
have the required estimate for TQ;(a) — Qz(Ta) = f'(s). Alternatively, if
we choose {a},c7 and {b,},.7 so that & = Z;(a) =3,.;(s)"a, and b’ =
Rz(Ta) =3,y (5)"by, then we shall have the required estimate for
TR j(a) — Rg(Ta) =f(s') = (s —s5)g(s'). N
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4. COMPARISONS WITH EARLIER RESULTS

The purpose of this section is to show that, in the special cases of the
complex and real interpolation methods, the operators 2 and %, which we
introduced and studied in Section 3, essentially coincide with analogous
operators which appear in [27, 32, 34, 35,42, 54] and elsewhere. This means,
among other things, that a number of theorems in these papers, which are in
the style of our Theorem 3.8, can be viewed as consequences of Theorem 3.8
(modulo possible changes in the constants appearing in the norm estimates).
Conversely, the special cases of Theorem 3.8 for the real and complex
methods could also be easily deduced from those theorems.

The essential difference between our definitions of Q and # and those in
the previous papers is that we have found it convenient to use interpolation
spaces defined using a ‘““discrete” definition (i.e. functions defined on an
annulus) whereas previous papers used a ‘“‘continuous” method (i.e.
functions defined on a strip in the complex plane). Thus our proofs here
amount to obtaining more elaborate versions of known results (see [17] for
the complex method, and [41] or [4] for the real method) which show that
“discrete” and ‘“‘continuous’ definitions give the same interpolation spaces,
in each of these cases.

Let us first deal with the complex method. Let S be the “‘unit strip”
S ={z € C:0<Rez<1}. For any Banach pair B we let # ,(B) denote the
space of bounded continuous functions f': S — By + B; which are analytic
in S and such that, for j =0, 1, the function ¢—f(j + if) is continuous
and bounded from R into B;. We let & (B) be the space introduced in [6]
which is the subspace of . (B) consisting of those functions for
which limy . [[f(j + it)]| 5, = 0 for j =0,1. Both #(B) and 7 (B) are
normed by ‘

If

75 = sup_|fG+i)llg-
j=0,1,zeR

For each 0 € [0, 1], Calderén’s complex interpolation space [B] o is defined
by

[Bl, = {f(0):f € 7(B)}
with norm

[6ll 5, = inf {17

PRAS 7 (B), £(0) = b}.

It is well known and easy to show (e.g. with the help of scalar analytic
functions €% for small & > 0) that replacing # by & in the preceding
definition gives the same interpolation space and the same norm.
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Let us fix a point ¢ = 0 + it € S and some constant Cop > 1. Then, for
each b € [B],, let 7., (b, Copi, 0, B) be the subset of 7 (B) consisting of
those functions f* which satisfy f(¢) = b and ||f|| 75, < Cop1||b|\[§]0. We also
set 7 (b, Copt,0,B) = F (b, Copi, 0, B) N F (B).

The versions of the operators Q and % which are encountered in previous
papers dealing with the complex method correspond to (particular values of)
the multivalued operators acting on [B], defined by

Q*(ba COpta g, E) = U/(G) :f € f(b, COPU G,E)} (41)
and, for some fixed ¢/ =0 + it € S,
Rs(b, Copt, 0,0, B) = {f (') :f € F (b, Copr, 0, B)}. (4.2)

It will be a little more convenient to work with variants of these operators,
which are obtained by replacing # by # ., in these last two definitions, i.e.

‘(}*706(b7 COpta g, g) = {f,(O') f € e?TOO(b7 COPt’ o, E)} (43)
and
@*ﬁoo(bv COpt7 o, U,,E) = {f(o-,) :f S g;oo(ba Copta a,g)}, (4'4)

Let us now observe that these variants are in fact almost the same as the
original operators:

THEOREM 4.1. For each ¢ > 0,
Qu(b, Copt, 0, B) C Q, (b, Copt, 0, B) C Qu(b, (1 +&)Copr, 0, B)  (4.5)
and
R (b, Copy, 7, o, B) C R, (b, Copt, 0,7, B)
C Ri(b, (1 4 £)Copy, 0,0', B) (4.6)

Proof. Suppose that a € Q. (b, Copt, 0, B) so that a = f'(c) for some
f € Foo(b, Cop, 7, B). For each 6 > 0 let f3(z) = =9 f(z) for all z € S.
Then f5 € 7 (b, (1 4 &)Cop, 0, B) for all sufficiently small 6 and f}(c) =
f'(0) = a. This establishes the second inclusion in (4.5), and the first
inclusion is obvious. The proof of (4 6) is almost the same, except that this
time we define f3(z) = X(C=0)+(G=0V == ) p (7). y

In this section it will be convenient to use more detailed notation for the
various sets or multivalued operators which we introduced in Definition 3.1:
We shall use E(b, Copi,s,X,B) to denote the set of sequences E(b).
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Correspondmgly, Q(b, Copt, 5, X , B) will denote the set Q(b) and Z(b, Cop,
5,8, X, B) will denote 2(b). Since we are currently dealing with the complex
method we now consider the case where the pair of pseudolattices
X ={%, %} is FC = {FC,FC}.

We are now ready to compare Q. (b, Copt; 0, B) and 2, OC(b Copt; 0,
o’,B) with the operators Q(b, Copt; 5, FC ,B) and (b, Copts 5,8, FC ,B)
defined in Section 3, Definition 3.1.

THEOREM 4.2.  There exist absolute positive constants Cy and Ci, and,
for each pair of points ¢ and o in S, there exists a positive constant
Coos dependmg only on those points, such that, for each Banach pair B,
each b € [Blg, , and each Cop > 1,

Q(b, C' Copr, ", FC, B) Ce°Q, (b, Copy, 7, B)

Q(b, C\ Copy, ¢°, FC, B). (4.7)
Furthermore, provided e° # e"/,

R(b,Cy' Copi,”,¢” . FC,B) C R, (b, Copt, 0,0, B)

CR(b, CyprCop, €%, ¢ ,FC, B).  (4.8)
For each 6 € (0,2n), the constants C, o satisfy
sup{C, :0,0 €S,|o — d'|<d}<o0. (4.9)

Remark 4.3. We cannot in general dispense with the condition e” #¢ in
(4.8). In the trivial case where ¢ = ¢’, all three sets in (4.8) are either the
singleton {b} or the empty set and (4 8) in fact does hold. But if ¢” = ¢ with
a#0’, then (b, Copr, e, ¢” ,FC, B) = {b} for all choices of Cop > 1. Then
(4.8) does not hold because again for all choices of Cyp > 1, the set
R, (b, Copt,a o B) will contain all elements of the form b—l—a where
llall ,np,1s smaller than some positive number depending on Cyp, 0 and o'
An additional argument, which we defer to an appendix (Subsection A.3),
shows that, in general, C,, cannot remain bounded as ¢” becomes
arbitrarily close to e°.

Remark 4.4. The boundedness condition (4.9) is needed if one wishes to
show that results in the style of (3.3) in the settings of earlier papers imply
(3.3) in the case of the complex method. We defer further discussion of the
behaviour of C;, to Remark 4.6.
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Proof. Let F.(B) be the subspace of 7 (B) consisting of those
functions f which satisfy f(z+ 2ni) =f(z) for all z€ S. The absolute
constant C# in the statement of the theorem will be the same as appears in
the result in [17] that the space [E]é = {f(0):f € F(B)} coincides with
[B], for each 0 € (0,1) and the norm Hb||B]zn = inf{[|f ]| 75/ € F 2:(B),
f(0) = b} satisfies

1513, <I1Bll = < Cyllbll 3,  for each b e [B),. (4.10)

Our proof here will in fact include and extend that result (cf. Remark 4.5).
We observe that each f € #,,(B) corresponds to a umque function Gy :
A — By + B; which is analytic in A and satisfies f(z) = Gy(ef) forallz € S.
We consider the sequence of Fourier coefficients {fn}neZ of f, or

equivalently, Laurent coefficients of Gy, defined, for each 4 € [0, 1], by

;o 1 o (A+it)n 1 Gf(g)
fu=5- 0 O (4 + it) dt = 7{| » ac.  (4.11)

2ni e

Of course, by Cauchy’s theorem, their values are independent of /.
Furthermore, {f,},., € #(FC, B) with

F(B) (4.12)

Conversely, given any sequence {b,},.; € #(FC, B), let G({) = D onez ('bn.
Clearly the (C, 1) means of the partial sums of this series converge uniformly
in B; on {|{| =¢€} for j=0,1 and therefore uniformly in By + By on A.
Thus the function h(z) = G(¢?) is an element of 7 ,,(B) with 1]l 7 (5) =
”{b }nEZ”f FC.B)"

The precedmg remarks show that, for any ¢ € S, we have Bpc, = [B]é’T =

[B]O, where s = ¢” and 6 = In|s| = Re ¢ and

{futnezll src.3) =

18], <115l g = 1Bllg,e, < Cillbllz,  for each b€ (B, (4.13)

We can now easily obtain the first inclusions in (4 47) and (4.48). Each
b e Q(b Cy Copt,e FC B) and each b" € (b, Cy Copt,e e’ ,FC E) are
of the forms b =37 n(e)" 'b, and b’ = EnEZ ( )'b, respectlvely, for
some choices of sequences {b,},.; € E(b, Cy' Cop, e, FC ,B). For each such
sequence {b,}, 7, the function f(z) = ZneZ €"b, is an element of #,,(B)
with Wlg) = {fnhcel gpe < Oy ConlPl g < ol Thus
b= Enel = e‘”f ( ) ce’Q, (b, Copt,a B cf f(o
> ez € by € ;%* Oo(b Copt, ,0',B), which proves these 1nclu51ons Of
course in the preceding argument we assumed that the set E(b, C #lcop[,

e’ FC B) is nonempty. But if it is empty, as happens for example if b#0
and Copt < Cy, then there is nothing to prove.
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The proofs of the second inclusions in (4.47) and(4.48) are where we
elaborate upon the methods of [17]. We shall need to use some scalar valued
analytic functions with some special properties. Let H be the set of all entire
functions y : C — C which satisfy

Y(0) =1 (4.14)
and
Y(2nni) =0 for all n € Z with n#0 (4.15)

and, for each p > 0, there exists a constant C(y, p) depending only on ¥ and
p such that

W(s+it)| <C(p,p)e”  forall se[—p,p|and all e R (4.16)

For example, the function y,: C — C defined by

2 €F —

Uo(0) =1 and yy(z) =¢ for all z#0 (4.17)

z

is an element of H,. For our purposes we shall need several more functions
in Hy. The first of these, ¥/, is defined by

U0 =1 and ¥, () =" forall 220, (4.18)

Apart from being in Hy, Y, is an even function and so also satisfies
¥1(0) = 0. Our next function y,, defined by ¥,(z) = (Y,(2))* is also in
H, and satisfies

Yy(2mni) =0  for all n € Z. (4.19)

Now, given any b’ee*“f)*,oo(b, Copt,a,ﬁ), let f be an eclement of
F oo(b, Copt,0,B) such that o' =e ?f'(0). We define a new function
F:S— B() + Bl

F(z) = Z WV, (z — 0 + 2mni)f (z + 2nni). (4.20)

nez

We introduce the finite constants

7 = sup Z om0 sup Z e @m=0" and
eR ez t€(0.2n] ez

C = yC( 1). (4.21)
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Since 1, satisfies condition (4.16), it follows that series (4.20) converges
uniformly in By + B; norm on every compact subset of S and satisfies
sup_.g 1F(2)l g, 5, < C1sup..g I/ (2)ll g, 5,- For similar reasons, the same
series also converges uniformly in B; norm on every compact subset of the
line {j + ir: 1 € R} and satisfies sup,c |[F(j + i1)|| 5, < Ci supeg [/ (G +i1)]| 5,
for j = 0, 1. This means that F € 7 ..(B). We also see that F € F 2n(B) and
F(0) = f (o) = b. Furthermore, since series (4.20) can be differentiated term-
by-term for all z € S, we have, using (4.19) and the fact that ,(0) = 1, that
F'(c) =f"(0) =¢’b'. Let Gy:A — By+ B; be the continuous function
which is analytic on A such that F(z) = Gr(¢’) and let {b,},., be the
sequence of Fourier coefficients of F i.e., Laurent coefficients of Gy defined
as in (4.11). The arguments given above (cf. (4.11), (4. 12) etc.) show that
{brhucz € S(FC.B) with — {bihiall ey = Il <C1lf gy <
C ColebH[g]R” <G Copt|b]|5,..,- This 1mphes that the serles Z ez Zj

and >, 7 n{"~'b, both converge in By + B for all { € A and their sums are
necessarily Gr({), and its derivative G({), respectively. In particular, when
{=e” we get Gp(e®) = F(o) = b and ¢’ Gy (e”) = F'(0) = e?b’. This shows
that b’ € Q(b, C Copt, e, FC, B") and so we have established the second
inclusion of (4.7).

The proof of the second inclusion of (4.8) is similar. We will need to use
yet another entire function /5. Let us first note that the imposed condition
e“#e” ie. %% ¢ 7 ensures that (¢ — ') #0. So we can define

2ni

Yi(z— o)y, (z—0d)
Yi(o—d)
Then Y3(0) = y;3(0’) =1 and Y;(0 + 2nni) = Y5(0’ 4+ 2nni) = 0 for every

nonzero integer n. We also have |tp3(s-l—it)\<C(a,a’)e‘("R”>2 for all
€ [-1,1] and ¢ € R, where

Ys(z) =

for all z € C. (4.22)

Clo,d) = Cy, 1)/ (o — ). (4.23)
This gives, for y as in (4.21), that

sup Z [Y5(z + 27ni)| <yC(a,d’). (4.24)

€S ez

Now given any b" € Q. (b, Copt, 0,0’ ,B), let f be an element of
7 oo(b, Copt, 7, B) such that 5" = f (). This time we define a new function
F S — B() + B] by

z) = Z Vs (z + 2mni)f (z + 2mni). (4.25)

neZ
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Analogous to the previous step, we obtain from (4.24) and the other
properties of ; that F e %,,(B) with | 75 < Cow
Co.o Copt 1] Blne < Coo Copt|b||,.,, Where Cop 7VC(0 a') depends only
on ¢ and o. We also have F(o)=f(c)=5b and F(d¢')=f(c')=1".
We obtain the function Gr and the sequence {b,},., from F exactly
as in the previous step. Thus we have Gr(e’) =b and Gp(e”) =b" and
so b € R(b, Cg,a/Copl,e”,e“',FC,B'). This completes the proof of (4.8).
Finally we deduce (4.9) from the fact that inf{|y,(6c —d')|:0,0’ €S,
lo —d’|<d} >0. 1

Remark 4.5.  We have not sought to find the optimal value of Cx and
this problem is not addressed in [17] either. To obtain a crude estimate, we
can observe that the proof in [17] of (4.10) uses a formula just like (4.20) but
there lpz can also be replaced, for example, by V. Since supcp ) [Wo(s +
it)| <e'""max {e + 1 ,supy| ||} we obtain, for y as in (4.21), that

e —1
z .

Remark 4.6. It seems that the most interesting aspects of the behaviour
of the operators Z are when ¢ and ¢’ are close to each other. But we can also
describe the behaviour of the constant C, » appearing in (4.8) when | — ¢'|
is large. The upper bound which we obtained in the proof of Theorem 4.2
for C, becomes arbitrarily large as |o — o’| tends to oo, even if we restrict
ourselves to a subset of ¢ and ¢’ where |e” — ¢”| is bounded from below by
some positive number. However, there is an alternative approach which
gives a uniform estimate for C, .. More precisely, for each 6 > 0, we can
show that

1<C#<yemax{e+ 1, sup

lz]<1

sup{C,:0,0' €S,e” — ¢ | >0} <o0. (4.26)
We defer the proof of this to an appendix (Subsection A.2).

We now turn our attention to analogous results for the real method. This
means that we must now take the pair of pseudolattices X to be {¢, ¢}, for
which we will use the abbreviated notation V. We shall consider p in the
“usual” range 1 <p<oo (although of course there is a great deal that can be
done in other contexts of real interpolation for p beyond this range).

For any Banach pair B we define j,(é,p) to be the space of strongly
measurable functions v: R — By N By such that

0o 1/p
Ill ) = max ([ leatly ax ) <ox.
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As usual, if p = oo, the integrals are replaced by essential suprema. For
each 0 € (0, 1) it is clear (cf. [4,41] and some remarks below) that the real
method 1nterpolat10n space By p is the set of all elements of the form
b= [ e™v(x)dx for some v€ #.(B,p), and that any norm for ng
is equivalent to

161, =int{ el 5,10 € 7B b= [ iy

In particular, the norms || - ||§” and |- ||§ are equivalent, where (cf.
P

Definition 2.11 with s = ¢’ and X = P)

0.

1815, = 18]5,, = inf{n{bn}neﬂu(y,,g): b= eﬂnbn}.

neZ

We remark that if 0 is replaced by an arbitrary point ¢ € S, then all the
above definitions still make sense, and the various norms obtained are equal
to those that would be obtained with Re ¢ in place of o.

Given any ¢ = 0 + it € S, and any b € By » and some positive constant

Copt, let 7,.(b, Copt, 0, B ,D) be the subset of ¢, (B p) consisting of those
functions v which satisfy [~ e”v(x)dx = b and 10l (5, < Copt|\b||3 . The
operators Q2 and # encountered in previous papers dealing with the real
method correspond to (particular values of) the multivalued operators
acting on By, defined by

f),.(b, Copt; G,E,p) = {/ xe”v(x) dx:v e #,(b, Copt, U,E,p)} (4.27)

[o¢]

and, for some fixed ¢ = 0' +it' € S,

R.(b, Copt,a,o’,é,p) = {/ e”/xv(x) dx:ve J.(b,Cop,0, E,p)}. (4.28)

o0

We have obtained the preceding definitions from corresponding ones
appearing variously in [4,20,32] and implicitly in [63] by two trivial
transformations. In “standard” definitions, the space By p 18 defined to be
the set of all elements of the form b = fo ‘” for a suitable class of
functions u: (0, 00) — By N B;. Here we have replaced each such function u
by a function v:R — By N B; which satisfies u(r) = °v(In¢), and then we
have used the change of variables x = In ¢ to move from integrals on ((0,
00),4) to integrals on (R, dx). We have thus returned to a notation which is
closer to that appearing in the seminal Lions—Peetre paper [41] and also
more convenient for our purposes here. Definition (4.27) corresponds to
the J-functional definition of an operator Q given in [32]. We recall that the
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K-functional variant of this definition given in that paper was shown in [19,
Theorem 2.8 (p. 602)] to give the essentially the same operator.

THEOREM 4.7. There exists an absolute positive constant C* and, for each
pair of points ¢ and ¢’ in'S, there exist positive constants C#, and Cz .,
depending only on Zhose points, such that, for each Banach pair B, each
pE[l,00], each b € Bre op and each Cop > 1,

Q(b,e V> Copy, €, W, B) C Q,(b, Copy, 0, B, p) C Q(b, C*Copy, ¢°, ¥, B) (4.29)
and, provided ¢’ # ¢

*%(b (Cfo-’)_l C0p17667eol7lp7§) C E@I‘(b7 Copta g, G/agap)

CR(b,CE, Copi,¢”,¢” ¥, B). (4.30)
For each ¢ € (0,2n) the constants Cffa, and C} , satisfy
sup{Cﬁa,:a,a’ €S,|lo—d|<d}<0 (4.31)
and

sup{C; ,:0,0' € S,|0 — 0’| <} <oo. (4.32)

Remark 4.8. For similar reasons to those given in Remark 4.3, we
cannot dispense in general with the condition e” #¢” . We have not sought to
find the sharpest estimates for the constants appearing in (4.29) and (4.30).
We have preferred instead to find constants which do not depend on some of
the parameters, even if this means they are larger. Although we shall not
pursue this here, it seems likely that the argument in Subsection A.2 can be
adapted to show that, when |o — ¢'| is not too small, the set 2, (b, Copy, 0
o', B, p) is uniformly comparable with the ball Copt||b|\B ERE - This in
turn should make it possible to show that the constants C* o and C s are
bounded above on the set {(d,6") €S x S:e” — ¢ |>5} for each 6 > 0,
and also (cf. Subsection A.3) that C¥ , is unbounded as |e” — ¢”| tends to
Zero.

Proof.  Let o and f be any two complex numbers. Given any {b,},.; €
S, B) we define a strongly measurable function v,:R — By N B; by
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setting

vy(x) = Z ea(n7X)X(n71/2,n+l/2] (x)by. (4.33)

nez

00 n+1/2
/ o, (x) dx = Z e / =% dx | b,
—00 neZ n—1/2

:< a)/;—e )Z b, (4.34)

neZ

Then

where of course the last expression in parentheses is replaced by 1 if o = f3.
If « € S then, for j = 0,1 and each p € [1, 00),

w12 I/p w2 1/p
[ leu@ldx ) =il ([ e
n—1/2 n—1/2

< eRe on ||bn ”B sup e(ije o)x
! xen—1/2n+1/2]

— oRe m”bn”B e(ije o)n+|j—Re a|/2
J
=&"[bal| 5 R M2 < bl 5, Ve,

and the same estimate holds for p = co. Consequently,

_ o |
([ 1wty ) < Vel blom, 439

for j=0,1and p € [1, o0].

We can now prove the first inclusion of (4.29). Given any »' € Q(b,e'/?
Copt,e“,V,E) we choose a sequence {b,},.; € E(b,e’l/zcopl,e”,w,ﬁ)
satisfying &' =3, ., ne”b,. We set o = ¢ in (4.33) and let v = v,. Then
(cf. (4.34)) we have [* e™v(x) =3, ¢”"b, = b and also

/ xe™v(x) dx = Z ne”'b, =b'. (4.36)
- neZ

Also, it follows from (4.35) that v € 7, (b, Copt, 0, B,p) We deduce that
be@ (b, Copt, 0, B ,D), establishing the required inclusion. We remark that
this step also shows that

1815, <velbls, . (4.37)
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where 0 = Reg, and is adapted from the proof in Lemmd 323 of [4
pp. 18- 19] or [4, p. 43] that the norms || - HB(; and || - HB/ satisfy ||bHB
const. ||b]|% B, . In fact a stronger version of (4.37) holds, namely

R - z
||b||§o,,,<€9(1 H)HbHEW (4.38)

as is shown in [41] essentially by taking v(x) to be ¢”*v,(x + 1) instead of
vs(x) for T =4 — 0. (But this v does not satisfy (4.36).)

We next give an analogous argument to prove the first inclusion of (4.30).
First, note that the condition e”#¢” implies (and is in fact equivalent to)
sinh("‘T”/);éO. Given any b’ € ,@(b (C# )71C0pt,e ¢” P, B) and an asso-
ciated sequence {b, }ne% € Egb C,y yCopts ¢, ¥ ,B) we choose w=(c+d)/2
in (4.33) and let v = STah((7- a,) Snh(o—on/2) V2" These ch01ces are made because then, for
f = o and also for = ¢’, the expression in parentheses in (4.34) has the

same value % So (4.34) gives

/ e u(x) dx = Z b, =b
- neZ
and also
/ e“’xu(x) dx = Z ""b, = b
—o© nez

By (4.35) we have

(o

1oll , 5y < Ve m‘”{bn}nelnj(l”ﬁ)

< e

(60 —d)/2 _
el () ol

If we choose C(; o =1e |Smh“ J“ 0/,2 2)| then the preceding estimate proves the
first inclusion of (4.30) and we a(so obtain (4.31).

We now turn to proving the second inclusions in (4.29) and (4.30). We are
given either an element &' € Q,(h, Cop, 0, B,p) or an element b” € R, (b,

Copt, 0,0, B,p). In both cases we have to deal with a functlon ve #,(b,
Copts 0, B, p) for which either [* xe™v(x)dx = b or [* e *v(x)dx = b".
We want to use this function to construct a sequence {b }nez in E(b,

C*Copt, ¢, V,B B) or in E(b, C* Copl,e”,ll’,ﬁ) such that ), _, ne”b, = b or

a0

S ez € "b, = b". It would seem at first that the natural thing to do is to
define b, = e " [ "+11//22 e”*v(x) dx for each n € Z. (This corresponds to what

n

works in the analogous stage of the simpler proof in [41, p. 18] or [4, p. 44]
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that the norms || - HB(; and || - ||B satisfy ||bHB < const. Hb||B .) This will
certainly give 3., , ¢”b, = b and ||{b, },,ezH/lpB <yellv ||}( p) SO that
{bu} ez € E(b,\/eCopi,¢”, ¥, B). But it will not give that ZHEZ ne”b, =b'.
Instead, we will only be able to show that <7 ne”b, —b' € By, and that

15,y ne™b, — b,”Bl,_p\ZHU”/,(B,p)géCOP‘HbHBo_p' This would be sufficient

for some purposes, such as exhibiting a result like (3.2) in Theorem 3.8 in the
case of the real method, as a consequence of similar results in [32]. To get the
stronger result of (4.29) we shall need an alternative more elaborate way of
defining {b,},.,, which comes, perhaps surprisingly, from the complex
method (cf. also [41, pp. 29-31]). It corresponds to what we did at the
analogous step in the proof of Theorem 4.2.

Since ve #,(B,p), we have by Holder’s inequality, that
f?oo e~ v(x)| 5, dx<oo for all &>0 and [*[e~v(x)|s dx<oo for
all £<1. Thus

/ 60(x) || 5,4 5, dx<oo  for all &€ (0,1) (4.39)

oo

and so we can define an analytic function f': S — By + B; by setting

[ = /_00 eng(x) dx. (4.40)

oo

Note that, for each compact subinterval [«, ] C (0,1) we have

sup{ [/ (Ol g, 5 : Rel € [o, f} <oo. (4.41)

Furthermore f(¢) = b and f'(0) = [ xe”™v(x) dx =1'.

We now use the function y/,(z) = ezzez/z‘%:/z and Y, (z) = (,(z))* which
appeared in the proof of Theorem 4.2 and, as in that proof, we obtain a new
function F:S — By + By from our f by formula (4.20). It follows from
(4.41) and arguments similar to those of the proof of Theorem 4.2 that F'is
analytic. It also satisfies F(o) = b and F'(o) = b' and F({ + 2xni) = F({) for
all { € S. We now define the sequence {b,},., to be the Fourier coefficients
of F (or the Laurent coefficients of Gr:A — By + B; defined as before by
Gr(e®) = F(z)). By standard properties of Laurent expansions we have that
F(o) =3%,c7¢"b, and F'(0) =3, ., ne”"b,, where both of these series
converge in By+ B;. So, to establish the second inclusion of (4.29)
it remains to show that b, € BynB; and {b,},.; € #(V,B) with
{bn} ezl s 5 < C* Conllbllg, , -
The coeﬁic1ents b, are given by

1

2n
= E e_”()'ﬂt)F(}. + il) dl,
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where, by Cauchy’s theorem, the value of the integral is the same for all
choices of 4 € (0,1). Since the By + B; valued series in (4.20) converges
uniformly on each compact subset of S we have, for each 1 € (0, 1), that

2n
L7 i (Z Wy(A+ it — o + 2mki)f (). + it + 2nki)> dt
0

2n kez

=5 Z /27I W0y (4 — & + i(t + 21k))f (4 + i(t + 27k)) dt

keZ
1 2n o 00
=5 > / e "0 () — o + it 4 2nk)) ( / el 2mk))x ) )dx) dt.
kez V0 -

In view of (4.39) we can apply an obvious generalization of Fubini’s
theorem for Bochner integrable By + B valued functions to each term of the
preceding series, so that

1 > " (A+it)(x—n)+2mikx
bn_EZ[ <0 Ua(h— o+ i(t + 21K))e dt) (x) dx

keZ 0

/ < Yoy (A+ i(t + 2mk) — o)el A2k (x=n) dt) v(x) dx

/(EZ

1 oo [ pom(k+1) A
=5 Z / / Wy (4 + it — )P0 dr | y(x) dx.
n —00 2

kez nk

Since 1/, satisfies an estimate of the form (4.16), the series

2n(k+1)
> / Yy (4 + it — a)e* T gy
kez 2k

converges absolutely and its sum [y, (A + it — g)el* T " dt has
absolute value bounded by a constant multlple of ¢**. So using (4.39) and
an obvious generalization of the dominated convergence theorem, we can
interchange the order of summation and integration with respect to x in the
preceding formula for b, and obtain that

. (A+it)(x—n
b, = 2n (/ V(A +it—o)e dl‘> (x) dx.

We rewrite this as
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where =, : R — C is the function
. 1 [~ . —(hif)x
He(x) =— Vr(A+it —oa)e dr.
2n J_o

Since ¥/, is in the class Hy of entire functions defined above in the proof of
Theorem 4.2 it is clear, using condition (4.16) and Cauchy’s theorem, that
the above formula for Z,; is valid and independent of A for all choices of 4,
not just in the restricted range 1 € (0, 1). In particular, a simple calculation
shows that

for each o € C. (4.42)

For each m € N, the mth derivative d,mlp (z) is a finite sum of functions of
the form y(z) = ( )e (e7/% + ge*/?)z7* where P(z) is a polynomial in z, ¢
is either 1 or —1, and k is a nonnegative integer. For each constant o € C,
each such function W satisfies sup{|y|"[W(a+iy)]:y € R, |y|=>1} <o for
every positive integer n. This means that the function ¢+, (o + it) is in the
Schwartz class % (R). The square of this function, namely ¢+, (o + it)
must also be in ¥(R), and therefore the same is true of its Fourier
transform. In particular, for every constant 4, the function x> e**Z,(x) is in
Z(R). Since e *Mp(x) is an integrable By N B; valued function for all 2 > 1
we deduce that b, € By N B;.

Forj=0or 1 and p € [1,00) we have

p\ /P

B
2\ /P
B

(Z ||anbn||g.> " (Z
( 1
) <Z(/: IE = Dl dx>p> /p
s

e /fc Es(n — x)v(x) dx

[o¢]

Z / M E (n— x)eFo(x) dx

neZ

neZ neZ
i(
n+1/2
/ </ d 2, (n — x)|
nez Jn—1/2
» 1/p
X ||e/xv(x)||3f dx) dt) . (4.43)

Let us define the function ©;:R— R by 0;(r) =sup{e’|Z,(y):
t—§<y<t+2} Then, for each n EZ and all 7 € [n—4,n+1), we have
¢ E,(n — x)| < O;(t — x). Substituting this in each term of (4.43),
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we obtain that

@”anb"”@ = <nez //2/(/ (= o), dx>pdz>l/p
- </_oc </_oc (Nl u(r = )l dx>pdz>l/p. (4.44)

By the integral form of Minkowski’s inequality, this last expression is

dominated by
00 00 ) 1/p
/ @,(x)< / ||e/<f—x>u(z—x)|1;jdz> dx

< (max [ o0l (4.45)

Since y—e?Z,(y) is in L (R) it follows readily that [* ©;(r) dt<oo for
j=0and 1. Combining (4.44) and (4.45) and (4.38) gives thdt

€0ubcal < (max [~ 0,00 ) o001, (446)

- oo

where 0 = Re g. As the reader can easily check, easier variants of the same
arguments establish this same inequality also when p = co.

If we choose C* = ¢’1=9(max;_; [~ O;(x)dx) then (4.46) completes
the proof of the second inclusion of (4.29). However this choice of C*
depends on ¢. To obtain the same inclusion for a constant independent of ¢
we simply observe, using (4.42), that for all ¢ € S the functions @; in the
above proof are dominated by @/ (1) = sup{e”|Zo(y )ell:t — —<y<t+ 3.
Since ¢*Z,(y) and e ¥Zy(y) are both in &(R) the functions @ are
obviously also integrable. Also 0(1 —0)<j. So we obtain (4.29) for the
absolute constant C* = 4\/e(max;—1 [* O] (x) dx).

We still have to prove the second inclusion of (4.30). Most of the steps for
this are rather obvious variants of steps in the preceding argument (again
motivated by the analogous part of the proof of Theorem 4.2). We are given,
as mentioned earlier, an element 5" € %, (b, COpt7 o,0',B,p) and some
function v € #,(h, Copt, 7, B, p) for which I )dx = b". We define
the analytic function f:S — By + B exactly as in (4.40). As would be
expected, we then replace i, by the function 5 as defined in (4.22) so that
this time the function F: S — By + B is given by (4.25). It satisfies F(o) =
f(o)=b,F(¢') =f(¢') =" and F({ + 2ni) = F({) for all { € S. Its Fourier
coefficients b, satisfy 3, ., ¢’b, =band ¥, _, ¢” b, = b". They are given by
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the formula

bn = / Ea,a’ (n - X)U(x) dx7

(o @]

where 5, : R — C is the function

[

1 [ .
ro(X) =5- / W3 (4 + it)e” X g, (4.47)

As before, the value of the integral here is independent of the choice of the
constant A. For all constants «, € C, the function (o + it)y, (f + it)
is a product of functions in .%(R) and so is itself in ¥ (R). Since ¥5 is a
function of this form, divided by the constant , (¢ — ¢’), we obtain that, for
each constant 4, the function x+e*E, »(x) is in #(R). This means that the
rest of the proof of (4.30) can proceed exactly as in the proof of (4.29),
except that Z; has to be replaced throughout by Z;,. Thus the constant
C¥ . can be chosen to be

Cry = 4\/E<§%D1( / | 0;(x) dx>, (4.48)

—00

where now, however, the functions @; must be defined by

0,(1) = sup{e”|Zo o ()| : 1 = 3<y<t+ 3} (4.49)

D=

Finally, to show that C¥ , satisfies estimates (4.32), we have to estimate
our new functions O); from above by other integrable functions which
depend on ¢ and ¢’ in a suitable way. To start this calculation, we choose
A =0 in (4.47) and substitute from (4.22) to get

oo (x) =

m / Yo (it — o), (it — o' )e ™™ dt.  (4.50)

We use auxiliary functions defined by @(x,a)= [* e ™y, (o + it) dt
for each constant o« € C. By the same reasoning as before, we see that
x> e™@(x,a) is in F(R) for each constant 4 and «. Also v, (a+ it) =
3 70 ™ ®(x, ) dx and so

1 > itx > /
> _Ooe [/_ ®d(x—y,—0)®P(y,—0d") dy|dx

o0

=2y (—0 + i)y, (—d' +it).
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This shows that

2n /DC Wi (=0 + ity (= +it)e ™ dt

o0

= /_OO O(x —y,—0)P(y,—0d’) dy

oo

and (4.50) becomes

_ 1 e /
Beo(X) = m [m O(x—y,—a)P(y,—ad")dy. (4.51)

We observe that @(x,a) = e [*_ =+ (¢ + i) dt = ™ ®(x,0). So

—00

|®(x, —0)| <el|P(x,0)] for all x € R.

Since e**®(x,0) and e—>*®(x,0) are both in ¥ (R), this shows that for some
absolute constant C we have

|®(x, —0)| < Ce2N for all x e R

and of course |®(x, —o’)| satisfies the same estimate. So

‘/ Q(X ) —0')(1’()/, _OJ) dy‘ < C2 / g—z\x—y\—Z\yl dy

—00

1
= (22N (E + |x|> .

Substituting this in (4.51) and then, in turn, in (4.49) gives that

/e

R ETCE]

e (14 1)) for all e R and j =0, 1.
This enables us to obtain (4.32) from (4.48) and so completes the proof of
the theorem. 1

5. A COMPARISON WITH THE APPROACH OF CARRO, CERDA,
AND SORIA

Let us here try to clarify the similarities and differences between our
approach to commutator theorems and the one presented in [8].

As we shall see, the approach in [8] is more abstract, and it is more general
than ours, when it comes to constructing and studying “derivation”
mappings Q.
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On the other hand, our construction has more “‘built in structure.” This is
helpful when it comes to constructing particular examples associated with
specific interpolation functors. It also means that the verifications that
required hypotheses are met can be simpler and more systematic. Our
construction also enables the construction and study of “‘translation”
mappings # which apparently cannot be treated at this stage by the method
of [8].

DErFINITION 5.1. Given an arbitrary Laurent compatible pair X =
{Zo, %1} of pseudolattices and a point s € A, let us define a functor H
and an interpolator @ over H in the sense of Definition 2.1 of [8, p. 200]
as follows:

_(i) For each Banach pair A, let H(A ) be #(X,A) and then let D
H(A) — Ay + A, be the map @ ; ({“n}nez) D onez S"an.

(i) For every other Banach pair B and each bounded linear
operator T : A — B, the operator H(T): H(A) — H(B) is defined by

H(T)({an}nel) = {Ta”}nel'

In this case we have that H(A) is a Banach space, and condition (1) of
[8, p. 200] is clearly satisfied. Furthermore the space Z(D, as defined
in [8], coincides with AX& with equality of norms.

In order to ensure that 4y N A4, is continuously embedded in A¢, Carro,
Cerda and Soria require the following condition to hold:

(*) For each interpolator @ and associated functor H and each Banach pair
A, there exists an operator ¢ : AgN A, — H(A ) such that @ ;0 ¢ is the
identity map on Ay N A;.

In all concrete examples of pseudolattice pairs X which we have
considered in this paper, such a map does indeed exist for each ¢ and H
arising as above from X and s € A, and it can be defined by setting ¢(a) =
{an},cz where ap = a and a, =0 for all n#0. It is difficult to think of a
“natural’” example of X for which the above particular choice for the map ¢
would not have the required properties. But, conceivably, in some exotic
examples one might need to replace it, e.g. by setting ¢(a) = {¢,a} for some
suitable sequence of scalars ¢, satisfying >, s"¢, = 1.

In any case, it turns out that our requirement that X is nontrivial
(Definition 2.8) is equivalent to condition (*). As observed above,
nontriviality is equivalent to the condition (C,C)yx, =C, i.e.

(C,C),=C (5.1)
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and, even in the more general context of any interpolator ¢ and functor H
in the sense of [8], this is equivalent to (¥). It is obvious that (*) implies (5.1).
Conversely, if (5.1) holds, then there exists 7€ H(C,C) such that
®cc)(h) = 1. Now, for an arbitrary Banach pair A and each a € Ay N A,
let 7,:(C,C) — A be the operator given by T,{ = {a for all { € C. Then
the map ¢ defined by ¢(a) = H(T,)h has the properties required to
establish (*).

Having defined our particular H and &, we next define a second
interpolator ¥ on the same spaces H (/_i ). Here we are motivated by
Definition 3.1 on [8, p. 203]. The natural choice is to set

ilantiez) =) ns''a, (52)

neZ

for each Banach pair 4 and each {an}nez € H(A). This will ensure that the
definition of the mapping @ given in Definition 3.3 on [8, p. 204] will
coincide with ours (Definition 3.1). We know from part (i) of our Theorem
3.8 that the conclusions of Theorem 3.4 and Corollary 3.5 of [8] must hold
for these particular choices of @ and ¥ whenever X admits differentiation.
To obtain these same conclusions by the methods of [8] we would need to
know that the pair (@, V) is almost compatible, i.e. that it satisfies condition
(3a) of Definition 3.1 of [8]. (Note that this condition in fact already implies
the inclusion  ;(Ker @ ;) C Im @ ; mentioned in Remark 3.2 of [8].) In fact
the proof of Theorem 3.8 contains exactly what is needed for showing this,
namely the step presented separately as Lemma 3.11. Thus, the latter part of
the proof of part (i) of Theorem 3.8 can be seen as a special case of the proof
of Theorem 3.4 of [8].

On the other hand, it is not at all clear to us at this stage how one could
obtain a result like part (ii) of Theorem 3.8 in the abstract setting of [8].

We mention that, if our pseudolattice pair X has the additional property
that the left-shift operator S~! maps #(X, E) boundedly into itself, then the
second part of Lemma 6.2 (cf. also Remark 6.3) is exactly what is needed to
show that the above pair of interpolators (@, ¥) also satisfies condition (3b)
of Definition 3.1 of [8] i.e., it is compatible rather than merely almost
compatible.

In [8] separate and different proofs are given of the compatibility of the
pair (@, ¥) in the cases of the real (K and J) and complex methods. But we
can now see that these kinds of results, i.e. compatibility for the J method,
the complex method and also for both + methods are all consequences of
the same arguments in the proof of Lemmas 3.11 and 6.2. Furthermore we
can prove compatibility or almost compatibility for any other method
generated by a pair of pseudolattices which admits differentiation. We do
not deal directly with the K method in this approach, but the results of [19]
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indicate that it can be related to the J method. (The results of Section 8 may
perhaps lead the way to an alternative approach to commutator results for
the K method and for the newly revealed analogues of the K method in the
context of pseudolattice pairs other than I.)

We shall indicate further connections between our approach and the
approach of [8] and its subsequent development in [9] in later sections of this

paper.

6. HIGHER ORDER RESULTS

In this section, we present two higher order commutator theorems for our
general method of interpolation. Our first theorem, involving derivation
operators €, (higher order analogues of Q), is closely related to a result of
[9] and to previously known results for the real and complex methods
first obtained in [43, 53] (cf. also [7,44]) Analogously to the first order
case (cf. Section 5), the verification that a number of different interpolation
methods satisfy the conditions required to use the arguments of [9]
can be done simultaneously, by working in terms of general pseudolattice
pairs.

Our second theorem is a variant of the first, dealing with higher order
commutators which are defined in terms of translation operators # as well
as the operators Q,. Here (again as in the first order case) it is not clear how
to involve the approach developed in [8,9].

In order to formulate and prove these results we start by recalling and
elaborating upon the main step (Lemma 3.11) of the proof of Theorem 3.8.

Let 4 be a Banach pair. As we have seen above, there is a natural
correspondence between elements in the space ¢ (X,/T) and certain
analytic functions defined on A with values on A4y + A, and it will be
convenient to express this more explicitly with the help of the following
notation:

DEFINITION 6.1.  For each sequence b = {b,},., € (X, A) we let f;
denote the analytic function given by f,(z) = >, ., Z"by.

The values of these analytic functions at a given s € A are precisely the
elements of the space Ax .

LEMMA 6.2, Let X be a pair of pseudolattices which admits differentiation.
Let A be a Banach pair, and let s € A. For each x € Ay + A, define

Ny(x) = inf{||b]] ,x 4) = x = fi(s) with fi(s) = O}
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Then,

(1) there exists a constant ¢ :_'c(s) > 0 such that for each x € Ay + A
satisfying Ny(x)<oo we have x € Ax s and

Il g, <eN(). (6.1)

(ii) Moreover, if the right-shift operator S~! is bounded on ¢ (X, A) then
there exists a constant ¢ = c(s,||S™||) > 0 such that, for all x € AX s, we have

Il 1, > €Ny (x). (62)
Proof. Let x be as in (i). Then, for each ¢ > 0 there exists b € f(X,f_f)
such that x = f;(s), with f(s) = 0, and moreover
Ny(x) + &= ||ij(X,,Z)'

The proof of Lemma 3.11 shows that the function g : A — 4y + A; defined
by g(z) = f3(2)/(z —s) if z#s, and g(s) = f;(s) = x, is of the form

9(z) = St-00,50),e (?)
with (cf. (3.9))
H{_DO.,I/X(b)}neZH/(XA’,Z) <C||bH;*<x,/?)'
Consequently, x € /_l’x,s and
¥l < IL=Doase(B) ezl iy S lBll oy S No(x) + ).
We obtain (6.1) by letting ¢ — 0. Now, to establish (ii), suppose that

x € Ax,. Then, given & > 0, there exists b € _# (X, A) such that x = f,(s) and

X[l 7, + =10l yx 5)-  Let  F(z) = (z = 5)fs(z) = 2fp(z) — $/s(z). Then
F(s) =0 and F'( S = f(s) = x. Moreover, since

F(z) = fs1)(2) = 8/5(2) = fs1)-sn(2)s

it follows from our assumptions that

1571 (B) = sbll yx ) < UST I+ DIy x )
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Consequently, setting ¢ = 1/(||S7!|| + |s|), we have
Xl g, + &= cllS7'(B) = bl ,x.a)
= cNy(x).

We conclude by letting ¢ — 0. 1

Remark 6.3. It follows from Lemma 6.2 jhat if X admits different_iption,
and X is such that S~! is bounded on #(X, 4) for each Banach pair 4, then
for each s € A we have

Axs = {x € Ao+ Ay: x =f}(s) with b e #(X,A) and f,(s) = 0}
with
[1x[l 7, = Ns(x)-

We shall now extend the previous lemma in an obvious fashion in order to
take higher order cancellations (i.e. vanishing of higher order derivatives)
into account.

LEMMA 6.4.  Suppose that the pseudolattice pair X admits differentia-
tion. Let A be a Banach pair, let s € A and n € N. For x € Ay + A, define
N!(x) = Ny(x), and for n > 1 let

N2(x) =inf{|Bll ,x 1) X =S3"(s) with

fols) =fi(s) = - =£"(s) = 0}

Then,

(i) there exists a constant ¢ = c(s,n) > 0 such that for all x € Ay + A,
with N (x)<oo, we have x € Ax s and

¢l 4, S eVF (). (6.3)

(ii) Moreover, if the shift operator S~ is bounded on ¢ (X, j_), then
there exists a constant ¢ = c(s,||S™'||,n) > 0 such that for all x € Ax we
have

111z, = N{ (x)- (6.4)

Proof. We shall first prove part (i) by successive applications of part (i)
of Lemma 6.2. Let x be an arbitrary element of 4y + A4; with N”(x)<oo.
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There exists an element b in #(X, 4) such that
A1) = x (65)
and
fs)y=0  fork=0,1,...,n—1. (6.6)

We shall define elements h(j) of #(X,A4) for j=0,1,...,n. We first set

h(0) = b. Then, using (6.6) for k = 0 we can apply Lemma 3.11 to obtain

that the sequence b(1) = —Dy/,(h(0)) is in (X, A) with 12D yx 2) <

c(s) || (0 )Ui/(x A; and the corresponding analytic function f;() satisfies
h(0

Ty (s) 0(s) and fin)(2) = fio)(2)/(z —s) for all ze€Al{s}. Using
standard properties of analytlc functlons (in this case 4y + A; valued ones)
we see, furthermore, that fhm( s) = %,fh(ggl)( ) for all nonnegative integers

k. In particular, we have
f;ffl))(s)zo for k=0,1,...,n—2.

We can now iterate this procedure: At the jth step, provided fj,;_1)(s) = 0,
we obtain A(j) from h(j — 1) by setting h(j) = —Dq1/s(h(j — 1)). This gives
h(j) € #(X,A) and

Gy o <e)IAG = DIl (6.7)

and an analytic function f; : A — Ao+ A; which satisfies fh(](

5) =
e (s) for all k>0 and fi)(2) = fig—1)(2)/(z = 5) for all z € Al{s}.
This means that

fugs) =0 fork=0,1,n—j—1.

The final iteration occurs for j=n. Here we can use the fact that
Jin-1)(s) = 0. It follows from (6.7) that h(n) € #(X, A) with

1) yx.2) <) 101l x4 (6.8)
We also have
/ 1 1" 1 11 1
ﬁl(l’l)(s) :fh(n—l)(s> = E /1(n—2)( ) 3| h(n— 3)( ) fh ( ) = 'X

This shows that x € /_l'xﬁs, and, after taking the infimum for all choices of b
satisfying (6.5) and (6.6), we also have || x| ; <nle(s)"N{(x). This completes
the proof of part (i). At this point it will also be convenient to make an
additional observation for later purposes, namely that for all z € A\{s} the
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function f,, satisfies

_Jhn-0)(2) _San-2(2) __ Soy(2)

L P Ear

(6.9)

We now turn to showing (ii). Let x be an arbitrary element of Zxos- For
arbitrary &> 0 pick b= {bi};cs € #(X,A) such that fi(s)=x and
161y x )< (1 +&)llx] 5, - Now define another analytic function F:
A — A0+A1 by setting F(z) = (z—s)"fs(z). Then F =, for another
sequence u = {uy};., which is a linear combination of powers of the
shift operator S~ applied to b. More specifically, F(z) =Y ;o (})(— —s)F
x2"Kf,(z) and, correspondingly, u = 2}_(")(—s)*S*~"b. This gives that
ue g(X,A4) with

n
k
el < (2 OBFIS 1k a- )

k=0

Since F"(s) =n!fy(s) =n'x and FY(s)=0 for j=0,1,....,n—1, we
obtain that

Ny () <gplleel yx gy < ey, (1STHD L+ @) [1x]] 4
for all choices of ¢ > 0 and the proof is complete. 1§

Remark 6.5. As indicated in the statement of Lemma 6.2 and, as is clear
from its proof, the constants appearing in (6.1) and (6.2) depend on s and on
the norm of S~ on #(X, A). But they also depend on our choice of the
pseudolattice pair X, as will other constants appearing in the other results of
this section. Furthermore the norm |[[S~ || ) could, in principle, also
depend on the choice of Banach pair A. Throughout this section we will
adopt the convention of not explicitly denoting this dependence on X and A.
We remark that the methods of Subsection A.1 can probably be used to
enable these constants to be taken independent of the particular Banach
pairs being used if the conditions which we impose are assumed to hold for
all Banach pairs. This can certainly be done if, instead of requiring S~ to be
bounded on # (X, A) for all Banach pairs A, we impose the slightly stronger
condition that S~!':%;(B) — Z;(B) is bounded for j=0,1 and each
B € Ban. This can be shown using a simpler version of the proof of
Corollary A.4.

Remark 6.6. Lemma 6.4 establishes that, in the terminology of
Definition 2.1 of [9, p. 304], a certain system of interpolators is compatible.
This is the system (¢°, @' & ... @") which is defined, for any fixed
pseudolattice couple X satisfying the hypotheses of Lemma 6.4 and any
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fixed s € A, by first choosing the functor H and the interpolator #° = & to
be as in Deﬁmtlon 5.1. Then the interpolator @' = ¥ is defined as in (5.2),
and, generalizing this, @F is defined for all k =0, 1,2,..., by setting

1 d* .
¢§({an}nez) = E@(X;Z an)
ne z=§

for each Banach pair 4 and each {a,},., € H(A) = #(X, 4).

We can also see that this same system satisfies the condition (2) of [9, p.
307]). After interchanging the roles of the indices j—1 and #, this
corresponds exactly to the fact that the element /(n) generated in part (i)
of the proof of Lemma 6.4 satisfies

1 (s) i)
(n+p)  p

for p=0,1,2,... .

In order to state and prove our higher order commutator theorem we first
give an extension of Definition 3.1 and introduce higher order derivation
maps Q.

DEFINITION 6.7. Let Cyp >1 be a fixed constant, let X be a
Laurent compatible pair of pseudolattices X, and let s € A. For a given
Banach pair B and for each element x € EX’S, we define the set E(x) as
before by

E(x) = {b = {bu}yez € F(X,B): > §"by=x

neZ

and b}zl < Conlvl, |

and select a fixed element b € E(x). We then define ©,x for each n € N by

1 o
In particular, for n = 1, we have
Qix=Q0Qx = Z ns""'b, = f](s).
neZ

Where necessary we shall use the notation €, 5 to indicate the underlying
pair B with respect to which these mappings are defined.

Remark 6.8. 1t should be stressed in the above definition that the same
choice of b € E(x) is used for all n € N. Furthermore, for each ' #sin A, for
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later purposes, we can also define the translation operator # consistently
with a given definition of the ©,’s by setting Zx = fj,(s') for each x € Bx
making the same choice as above of b € E(x).

The first theorem in this section can be considered as a higher order
version of part (i) of Theorem 3.8. It is thus also essentially an extension of
the higher order commutator theorems of [43,53]. (To make a precise
connection with these latter results would require versions of the results of
Section 4 for higher order derivatives.) In view of Remark 6.6, it is in fact
also a special case of Theorem 2.6 of [9, p. 308].

THEOREM 6.9. Suppose that X admits differentiation. Let A and B be
arbitrary Banach pairs and fix a point s € A and a constant Cop > 1. Suppose
that the shift operator S~ is bounded on /(X B)

() For each neN, let Q 3 and Q g denote derivation mappings
corresponding to the above chozces of s, Copt and X, for the pairs A and B,
respectively. Let T : A — B be a bounded linear operator, and, for each n, let
[T,2,) =TQ, ; —Q,5T. Let C2(T) be defined inductively by

CH(T) = [T, ],

C3(T) = [T, @] - 1 CH(T),

CT) = 1,0, = 3 00 1 CO(T)

Then C,? (T) maps ZX,S boundedly into Ex_s. More precisely, there exists a
constant ¢ > 0 depending only on s and n, such that, whenever a € Ax, it
follows that C#(T)a € Bx s, and moreover

ICE(T)allg,, <l Tl 7 5llal 4.

Remark 6.10. Naively it might at first seem more natural to seek such a
result for the simpler commutator operator [T, Q,] rather than C#(T). As
we shall see, the “correcting terms” ZZ;{ Q,_«C2(T) which appear in the
definition of C#(T') are needed to guarantee that the derivatives of a// orders
less than n of an associated analytic function vanish at the point z = s. The
definition of C#(T) is in some sense “dictated” by a rather naturally defined
sequence of functions {F; } which appears in the course of the proof, and in
particular by formula (6.20) which these functions satisfy.
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Proof. One way of proving this theorem is to invoke the arguments of [9,
pp. 307-310], combined with Remark 6.6. However here we shall provide a
more self-contained argument, which we also need because it provides
most of the ingredients which will be used later for the proof of our second
result.

Fix a € Ax, and let u = {u},, € E(a) and v = {v;},., € E(Ta) be the
elements chosen in the course of defining Q 5, and @, 5 for all n € N. Thus
ue ¢(X,A) and v e #(X,B) and their norms in these spaces are bounded
by Copllalz, and Cop|Tall5 <Con CX)|ITIl;_lallz, . respectively.
Furthermore the associated functions fuand f, (in the notatlon of Definition
6.1) satisfy f,(s) =a, fo(s)=Ta and Q, ja= 1,fu (s) and @, 3(Ta) =
L™ (s) for each n € N. Let w = Tu—v, i.e. w= {Wk}kEZ = {Tux — vk} ez
and let Fy = f,, = Tf, — f,. We note for later use that

2FN(s) = TQ, ja—Q, 3(Ta) = [T, %)a  for each k eN.  (6.10)
The preceding estimates show that
ol x5y <2Com CONT 1 5lal 5, . (6.11)
We also have
Fi(s)=Ta—Ta=0

and, setting k = 1 in (6.10),

Fi(s) = [T, Q]a= C¥T)a. (6.12)

If we now apply Lemma 6.2 we simply recover part (i) of Theorem 3.8 which
is also of course the case n = 1 for the present theorem. But the preceding
steps are also the introduction to an argument which will provide a proof for
all = 1. The above function Fj is the first in a sequence of analytic functions
Fj : A — By + B; which we will now construct. They will all have the
following properties:

() Fx = fpr) for some element b(k) € #(X,B) and

(i) F,g)(s) =0 for j=0,1,...,k— 1, which in turn will imply, by
Lemma 6.4, that

(i) F*(s) € Bx, and

1EL ()15, < ek, )16 x5 (6.13)

for some constant c(k, s).
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These conditions certainly hold for k = 1 with h(1) = w. We proceed and
obtain Fj recursively for each k=2 by setting

_ k!
Fi(z) = li(Fk_] () - (ik_)l)!Hk(z)> . (6.14)

Here Hj = fi»(), where b*(k) is an element of E (F,ili_ll)(s)), which ensures
that F,Ek_l)(s) =0 and

k—1
15* ()| x5y < Copt I (5) 1 5, - (6.15)

But, more specifically, b*(k) is selected to be the particular element of
E(F*,V(s)) for which
1

—H,(C") (s)  for each n e N. (6.16)

k—1 1 n
2, 5(F5 ) = S fidly () =~

It follows from (6.14) that the sequence b(k) is obtained from the
sequences b(k — 1) and b*(k) by applying a fixed linear combination of
powers of the right shift S~! and the identity operator /. More precisely we
have,

L1 kel
k) = %(b(k - b*(k))

and consequently, if b*(k) and b(k — 1) are both in #(X,B) then we can
deduce that b(k) € #(X,B) and

16Ny ox 5, < Colles. IS DBy + 150Kk = Dl yxp)  (6.17)

for some constant Cy(k,s, | S7!||). It follows easily from the defining
formula (6.14) and these arguments that, if F; has properties (i) and (ii) for
allk=1,2,...,j, then the same is true for k = + 1 and so these properties
hold for all k € N. Also, combining (6.13), (6.15) and (6.17) we see that, for
all k=2,

160 x.3) < Cr (K 5. Copes IS~ D160k = Dl x5,

for some constant Cj(k,s, Cop, ||S7'||) depending on k, s, Cop and
1 . : . . .

IS™ 1 y(x.5)— s (x 5)- Iterating this last estllmate k — 1. times gives that,

for some other constant Ch(k,s, Cop,||S™'||) depending on these same

quantities,

10 5 x5) < Ca(ks 5, Copt, IS IDIBDI 5 x5 (6.18)
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Since b(1) = w we can combine this with (6.11) and (6.13) to give that
1ELS ()11 5, < Ca(k, s, Copes CX), ISTIDIT N 4 5llal 7,

for all k>2 and for yet another constant Ci(k,s, Copt, C(X), [|S7!|)
depending on the listed arguments. This estimate also holds of course for
k =1 (cf. (6.12) and part (i) of Theorem 3.8).

To complete the proof it remains to show that

F¥(s)=C2(T)a  for all k € N. (6.19)

The case k = 1 is already known (see (6.12)). To treat the cases where k>2
we shall use the formula

k—1
Fy (Z) ]L (Fl( ) Z(Z - S)m Hm+1 (Z)>

m=1

which is obvious for k=2 and extends immediately to all k=2 by
induction. Differentiating k times at the point z = s gives

(®) Ul N~k -
FO ) =5 A6 =) o | H ()

(k—m)
WH ot (8)s

and, after substituting using (6.10) and (6.16), this in turn gives that

k—1
FO(s) = [T, 2a— Y @, 5(Fi(s)). (6.20)

m=1

If we know that F(m)( )= CQ( T)a for each m=1,2,...,k — 1 then we

can deduce from (6.20) that F} (k) (s) = C£(T)a. Thus we have established
(6.19) by induction and the proof is complete. 1

Our second and last theorem in this section is a higher order translation
result extending Theorem 3.8(ii), i.e. estimate (3.3):

| T 30) — #5(Ta)| 5., <Cls — || Tl 1_gllal -

where Z is a “translation” operator defined in terms of a second point s’
chosen in A. The idea is to replace the commutator [T, Z]a appearing in
(3.3) by a more elaborate related expression which tends to zero more
quickly as s’ — s, i.e. its norm is bounded by |s — s'|" instead of merely
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|s — §'|. Our proof of Theorem 6.9 suggests an appropriate definition of an
analogue of the commutator C#(T'), which we shall denote by C#(T). It
involves operators ;. as well as # and these must all be chosen consistently
(cf. Remark 6.8). The proof of Theorem 6.9 also essentially provides the
proof of the following theorem:

THEOREM 6.11.  Suppose that X, A, B, s, Copt, S~ and C2(T), for each
neN, are defined as in the statement of Theorem 6.9 and satisfy the
hypotheses of that theorem. For some s'#s in A, let R; and Rz be the
translation operators defined as in Definition 3.1(iv), consistently using
the same representatives in ¢ (X, A) and ¢ (X, B), respectively, as are used
Jor defining Q3 and Qg . Let [T, %] =T%R; — R5T. Let the commutators
C?(T) be defined by

C(T) = [T, ),

CHT) =3[T, %) (s = 5)%5(CF(T)),

and, in general,

n—1
CA(T) —,;<[T, A=Y (5 =) A (AT >>>.

m=1

Then C*(T)a € Bxy for all a Ax, and

IC (Dallg,, <C'ls =S "IT i_gllal 4, (6.21)

Sfor some constant C' which depends on X, s, n, Copy and ||S™ 1||/ (X.B)— 7 (X.5)
but not on T, a or s'.

Proof. We use the functions Fj, introduced in the proof of Theorem 6.9.
We note that, for each k € N, the value of the function Fi(z) at z =" is
precisely C(T)a. We have F = fo(ny Where b(n) € #(X, B). This ensures
that C/(T)a = F,(s') € Bx,y. We next observe that, since FW( ) =0 for
k=0,1,...,n— 1, we can apply the arguments of the proof of part (i) of
Lemma 6.4 with b chosen to be b(n). Thus we obtain an element A(n) €
J(X, B) such that (cf. (6.9)) F,(z) = f5(2) = (z — )" fim (2) for all z € A. Tt
follows that

IC2(Thallg,, = 165 = " fon ()l , <I5 = sIAMI .5
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Using (6.8) followed by (6.18) and (6.11), we see that this last expression is
bounded above by

1§ = st"e()" 16 x5
<15 = s["Can,5, Coprs 1S DI x5

-1
<|s" = s["Cs(n,s, Cop, ST LX) T )| 5 5llall 44,

for suitable constants depending on the indicated parameters. This
establishes (6.21). 1

The results in this section lead naturally to the study of analogues of
interpolation spaces of Lions—Schechter type in the context of our more
general method. These spaces can be defined as follows:

DEFINITION 6.12. Let B be a Banach pair, and suppose that the
pseudolattice pair X admits differentiation. Then, for each nonnegative
1nteger n, we define the space Bgi)‘ as the set of all elements of the form
X —fb ( ), with {b,},.; € #(X, B), endowed with the natural quotient
norm

Il = inf {1l yx ) : > = £, (9}

If the shift operator S~! is bounded on # (X, E) then the spaces Eg:' >S are
naturally nested, i.e.

Eg;” ;l for each n € N. (6.22)

(This is easy to show since (z — 5)f(z) € #(X, B) whenever f € #(X,B).)
It is clear from the definitions that

Q,: Bx, — BY). (6.23)
In fact the spaces EQL are closely related to the range spaces associated with
derivation operators Q. Under suitable mild conditions they can be
identified with these range spaces, as we shall see, at least for n = 1, in the
next section. Analogously to (6.23), for any bounded operator T : A — B,
each term in the formula which defines C2(T) is clearly a bounded map
from Axé into B§(> This immediately 1mp11es also that

C}?(T) : Zx’s — Eg?l
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The cancellation properties of C%(T) allow us to prove the much sharper
commutator Theorem 6.9.

Let us also remark that, when specialized to the complex method, the ngi
spaces defined above coincide with spaces (defined using the annulus A) of
Lions—Schechter type (cf. [7] and the references therein). The methods of
Section 4 can be used to show that these spaces coincide with the usual
Lions—Schechter spaces which are defined using the strip S instead of the
annulus. For details see Subsection A.4 in Appendix A.

7. CHARACTERIZATION OF DOMAIN AND RANGE SPACES OF
DERIVATION OPERATORS

Although the operators Q are in general not bounded on the interpolation
scales /_I'X,S we have shown in previous sections that they commute boundedly
with bounded operators in the scale due to the cancellations that develop
from the operation of taking commutators. A natural question in the theory
is to describe the domain spaces associated with the operators Q. The
domain spaces turn out to be interpolation spaces themselves which are
independent of any particular choice of Q. They have been characterized for
both the real and complex methods (cf. [19,54]) and also in the more
abstract context of [8]. In this section, we formulate some analogues of these
previous results in the context of our construction. This amounts to giving
new results in the case, for example, of the + methods. We shall also
consider the corresponding characterizations for range spaces of the
operators €.

Although we shall occasionally use some results from Section 6, we shall
deal here exclusively with first-order derivation operators, i.e. 2 will always
be as defined in Definition 3.1(ii).

Let A be a Banach pair and let X be a pseudolattice pair which admits
differentiation. For each s € A and each mapping @ obtained as in
Definition 3.1(ii1) we define

DOI’I’IX,X Q;f = {a € 1‘_1')(75 :Qa € IZXJ} (71)

and let
l@llpomy, o, = llallz,, + 1€all 5, - (7.2)
For our analysis in this section we need to make a specific choice of

operators Q which are homogeneous and so to ensure that |[1a|lpoy, . o, =
. . . S 04
|2)]lall poms . 0. for every scalar A. That such a selection is possible in our
X,s 24
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context follows from the fact that (in the notation of Definition 3.1) we have
E(Jb) = JE(b) for each nonzero b € Ax and each nonzero A € C.

If we define the interpolators @ and ¥ over H in terms of X and s as in
Section 5, then the domain space Dom(Q ;) associated with operators Q
introduced in [8, Definition 3.6, p. 205] coincides with the space Domx (2 ;)
and their “‘norms” are equal. This enables us to deduce some properties of
the spaces Domx (Q ;) and related spaces from results in [8].

Since the fact that X admits differentiation implies that the corresponding
interpolators (@, ¥) are almost compatible, Theorem 3.8 of [8, p. 205] shows
that Domy 5 is a linear space and the expression in (7.2) defines a quasi-
norm. Furthermore, this space coincides to within equivalence of (quasi-)
norms with the normed space @ E(Y/:II(ZXJ)) which is independent of any
particular choice of the operator Q. This space consists of all a € 4y + 4,
such that, for some b € #(X, 4),

a=fy(s) and f(s) € Ax,. (7.3)
The norm ||a||q>g(l,,jl(/;X ) can be taken to be the infimum of the quantities
A 8
1811 x4y + 1) 12,

as b ranges over all elements having the above two properties (7.3). It is easy
to check that the constants of equivalence between |- ||, 14, and
A\t ; 8

Il lpomy, (27) depend only on Cope and on the constant which appears
in Lemma 3.11, i.e. on Cop, X and s.
Our assumption that X is nontrivial ensures that, for the special couple

A = (C,C), we have
Pce) (¥ ((C,C)k,) =C. (7.4)

Itis also clear (cf. also [8, Theorem 3.8]) that, for any Banach pa1rs A and B,
any linear operator T : A — B maps @ ; (P A (AX 5)) to P5(Py '(Bx.)) w1th
bound not exceeding ||T| ;_ 3 max{C(Z’o) C(2)}. Exactly as in the proof
of Theorem 2.14, this, together with (7.4), establishes the continuous
embedding

AyN A4, C <I>g(‘l’/}] (ZXS)) for each Banach pair A (7.5)

and completes the proof that A ® 2(‘1’2‘ (Zxﬁs)) is an interpolation
functor.

Under additional conditions on X we can give another description of the
space Domy (25 ).
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DEFINITION 7.1. Let 4 be a Banach pair, and let X be a pair of
pseudolattices which admits differentiation. Then for each s€ A we
define

A = {x:3b e 7(X,4) st fiy(s) = x.fi(s) = 0}
with
Il o0 = inf{1Dl] yx 4) 2 fo(s) = x.f3(s) = O}

THEOREM 7.2. Let A be a Banach pair, and let X be a pair of
pseudolattices which admits differentiation and such that the shift operator
S~ is bounded on ¢ (X,/_f) Then, for each s € A and for any corresponding
choice of Copt and Q we have

_ 7=
DOIl’lx"S .Qj = AX‘X
in the sense that these two spaces coincide as sets, and moreover
=1 g
||x\|ng‘ ~ ||x||D0mx_’l\ Q; Sor all x € Domx Q5,

with constants of equivalence independent of x.

Proof. The boundedness of S~!: f(X,/I) — /(XJI) implies, by part
(i) of Lemma 6.2 (cf. also Remark 6.3) that (&, ¥) is compatible. So the
result follows from part (b) of Theorem 3.8 of [8]. &

In the case of the complex method, i.e. when X = {FC, FC}, the operator
Q2 was studied in [54] with the help of a sort of “linked product space™ of
Calderon and Lions—Schechter complex interpolation spaces. The following
definition of a version of that space for general X has an apparent
connection with the spaces Zg{} ) and @ 2(‘1/:11 (Zx,s))-

DEFINITION 7.3. Let A be a Banach pair and let X be a pair of
pseudolattices which admits differentiation. For each s € A we define

AQPW = {(x,) :3b € F(X, A) st. fils) = x, f3(s) =y}
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with
G oo = infLBI x4, 2 fo(s) = x, f(s) = »}.

If X admits differentiation and S~': #(X, 4) — #(X, 4) is bounded, so
that the corresponding pair of interpolators (&, ¥) is compatible, then
Proposition 7.2 of [§] (Wthh generalizes Lemmas (2.5) and (2.9) on [54, pp.
324-325], shows that A( >@< )" coincides with the twisted sum AX s Do AX‘
which is defined to be the set of all (x,) € Ax, X (4o + A4;) such that
y—Qx e Ax,s for some homogeneously defined derivation operator
Q: Ax, — Ay + A,. The norm ||(x,y) o) is also equivalent to the
quantity

I

1 gy e0dy, = X4y, + 11y =@l 4 - (7.6)

For more about twisted sums in Banach space theory we refer to
[1, 36, 38].

After having dealt with the domain spaces of mappings 2, we close this
section with a short discussion of the range spaces of these same mappings.
As was already hinted at above these range spaces are related to the Lions—
Schechter type spaces BX 5 of Definition 6.12. Obviously, for each choice of
Q associated with Bx s and each x € Bx s, the element Qx is in B; )Y However
we cannot in general expect to have Bg coincide with the range of one
particular choice of €, i.e. with the set {Qx : x € By s} Itis not even clear a
priori that such a set is a linear space, even if Q is chosen homogeneously.
(Given the large amount of freedom in the way Q can be chosen, it is
relatively straight forward to explicitly construct examples where Q is
chosen to ensure that this set is indeed not a linear space.)

Instead of taking the range of one particular 2, let us consider the set of
all Qx with x € BXS where now  also varies. If © ranges over_an
appropriately defined class of derivation mappings associated with BXS,
then we do obtain an identification with the whole of Bg()s, and there is also a
natural (quasi- 8 norm on this generalized range space which is equivalent to
the norm of Bx; We refer to [8, p. 207] for some other results about range
spaces.

DEerFINITION 7.4. Given Banach and Laurent compatible pseudolattice
pairs B and X, a point s € A and a constant C>1, we define Rany Y(QB, 0)
to be the set of all elements x of the form x = Qy where y € BXS and Q is
some derivation map associated with BX3 whose optimality constant
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Copt = Copt(2) does not exceed C. For each yeRanx,S(Qg,C), we
define

Il Rany. (25,00 = IF{l1 x5, s 7= Qx, Cop(Q)<C} (7.7)

In other words, Ranxﬁs(f?i, C) is the set of all y € By + B, for which there
exists an element b € # (X, B) which satisfies

y=1ri(s) and bl ;x5 <Clfs(9)ll5,,- (7.8)

Furthermore |[y[[g,p, . (©4.0) = inf||fy(s)[| 5, . where the infimum is taken over
all elements b satlsfymg (7 8).

An analogue of this space for the real method, i.e. corresponding
essentially to the case where X =1, was introduced and studied in
Section IV of [20]. The following result is thus an analogue of part (ii)
of Theorem 4.1 of [20, pp. 188, 189]. It is proved in a rather different way.

THEOREM 7.5. Let B be a Banach pair, and let X be a Laurent compatible
pseudolattice pair. Let s be a point in A. Suppose that there exists an element
ue ¢(X,B) such that f,(s)#0 and f!(s) = 0. Then there exists a constant
Ci =1, depending only on s and u, such that, for each C > Cy,

RanXAS(QB’,C) = E§g>v

and the norm of B o Is equivalent to the expression in (1.7). The constants of
this equivalence depend only on s, u and C.

Remark 7.6. The hypothesis about the existence of « is a mild one which
clearly holds, for example, whenever X is such that all (or some) finitely
supported By N B; valued sequences are in ¢ (X,E) All examples of X
which we have considered in this paper have this property. In fact it may
also hold without our “usual” requirements that the pseudolattice pair X
admits differentiation and that S~' is bounded on #(X,B). But if both
these conditions do hold then the existence of u follows from (7.5) and
Theorem 7.2.

Proof. It is obvious from the definition that, for every choice of C > 1,
we have RanxS(QB,C) C B§(> and also |[y[|z0 < Cl|yllRany ( 3;.0) for each
» € Rany ‘(Q C). We shall establish the reve’fse inclusion and the reverse
inequality

H)’HRanx,S(f)E,C) < C’||y||§§(li (7.9)
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for each C > C, where the constant C’ is given by

2lull yx 5
C - J(X,B) +1 (7.10
(Cllfu(S)llgx,‘, = [lull yx 5 )
and we choose
||”Hy My (x.B)
C. — (7.11)
T ul9)g,,

This also ensures, incidentally, that C,>1 and that the denominator in
(7.10) is strictly positive.

Let y be an arbitrary element of B; and choose an arbitrary small
positive number & which also satisfies 1 4+ &< C’. There exists b € #(X, B)
such that f/(s) = y and

1615y < (1 + DIyl g0

If 6]l ;x5 < Cll/o(s)ll 5, then we obtain that y € Rany ,(Q5, C) and also
that =~

”J’HRanx,x(sz,C)S”fb( )HBX <Hb||j X,B) <(l+e)llyllz 0 UHJ’HB;‘.l’
as required. Otherwise, we have
1611 4 x.8) > Cllfo(s)l 5, (7.12)
and this is the case where we need to use the special element u.

We shall show (very easily!) that, for an appropriate choice of 4 > 0, we
have

2+ bl x5y < I () 15y - (7.13)
and
Vaen®)l5, < CNI0NL x5 (7.14)

Since f},,,,(s) = y, these last two estimates will imply that y € Rany ((Q 5 C)
with

1 Rang (@00 < (1 + &)1l o -

This will give (7.9) and so complete the proof.
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In view of the estimates |Au+ bl ;x5 <Allull ;x5 + 16l ;x5 and
(7.12) and

Cllf () 5y, = CA() 5, — Cls (), > CAfu() 5y, — 1P]] 5 x 5)>
it is clear that (7.13) will hold for 4 > 0 satisfying
Ml yx. ) + 161l x5 = CALu(O) 5, = 101l 5 x 5)- (7.15)

Since we are assuming that C > C,, our definition (7.11) of C, ensures that
the number

_ ZHb”j(X.E)
Cllfu()zy, = lull yx 5)

is positive and satisfies (7.15). Apart from giving (7.13) this also implies
(recalling (7.10)) that

fourn ()l 5y, < ll40 + bl 4 x 5)

2“””/(){5)
S ' +1)118] x5
(Cllfu(S)lng_\, — llull x5 S (X.B)
=C'||bll x 5)-

Thus we have established (7.14) and the proof indeed is now complete. 1§

8. EQUIVALENCE THEOREMS

The classical “equivalence theorem” in the theory of real interpolation
states that two different constructions, usually referred to as the “J-method”
and the “K-method” of Peetre, give rise to the same interpolation spaces.
Earlier versions of these two methods appear as the two definitions of
“espaces de moyennes’ given in [41, pp. 9, 10]. Our definition here of the
spaces By, is of course modelled on the J-method and the first definition in
[41, pp. 9, 10] (cf. also the equivalent ““discretized’ definition in [41, pp. 17,
18]). However it turns out that the second definition in [41], corresponding
to the K-method, can also be generalized to our context here. Furthermore
the condition introduced in Definition 3.4 for other purposes is also exactly
what is required to prove a generalized version of the equivalence theorem,
which will be the main result in this section. By analogy with the real
method, our equivalence theorem can be expected to be a convenient tool
for describing the duals of the spaces B‘XJ and for obtaining reiteration
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theorems. It might ultimately be helpful, also for other purposes, to know
that there are equivalent definitions in the style of the K-method for the
complex method and the + method.

DEerFINITION 8.1.  For each Banach pair B and pseudolattice pair X we
define 7" (X, B) to be the space of all couples of By + B, valued sequences

b= ({bO,n}neZa {bl-ﬁ}nel)

such that the sequence {€"b;,},., is in 2;(B;) for j =0, 1. This space is
normed by

1

1({bon}nezs (010} ue) L (Ko B) =D 11" bin} ezl )
J=0

and is of course a Banach space.

For each fixed s € A, let # (X, B) be the subspace of #'(X, B) consisting
of those couples of sequences b which satisfy the condition s"(by, + b1 ,) =
boo + b1y for each n € Z. For each such element b, let x(b) =boo + b1 .
Then we let B’X,s:K be the space of all elements b € By + B; which can be
represented in the form b = x(b) for some b e # ((X,B). We define a
seminorm on this space by setting

16115, = inf{|Ibll x5 : b € A (X, B),b = «(b)}.

THEOREM 8.2. Let X be a Laurent compatible pair of pseudolattices and
let B be an arbitrary Banach pair and let s be any point of A.
(1) If X admits differentiation then l:fx‘ys C B'x,s;K and the embedding is
CONtinuous.
(ii) If the right-shift operator S~ is bounded on % ;(B;) for j = 0,1 and if
Sfor each r € (0,1)

lim r"bllg, =0 for all {by},c; € Zo(Bo) (8.1)
and
lim byl =0  for all {bu},c; € Z1(B1) (8.2)

then B‘X,S;K C B‘X,s and the embedding is continuous.
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COROLLARY 8.3. If(2.4) holds and zf the shift operator S is an isometry on
Z;(B;) for j=0,1 then the spaces Bxs and Bxs x coincide to within
equwalence of norms.

Proof. The corollary follows immediately from the theorem by
Lemma 3.6.

The proof of the theorem is an easy adaptation of well-known proofs for
the special case of the real method: First, for part (i), suppose that b € Bx,
with B[z <1. Then there exists a sequence {b,},.; in #(X, B) with
{5 }nEZHf x5 <l, such that b=73",,s"b,. Let us define b = ({bon},cz,

{bip}tper) by settmg

k k
bon =s E §$bpik+1 and by, = E S bkt
k<0 k=0

Then {bou},cz = $Do,1/s({bn},cz)- Furthermore €"by, = (s/e) Y i~ (s/e)
XD,y 50 that {€"by,},ez = (s/€)Dyge({€” bn}”ez) This establishes
that b € & (X, B) with norm not exceeding

G (X7§7S) = S||D0.,l/x||%0(30)ﬂ10(30) + (5/5)||D1‘s/e||.9’] (B))—1(B))

But 0bv1ous1y we also have §"(bon +b1,) =b for each ne€Z. So b e
A'(X, B) and b = K(b) €Bx .k with (semi)norm not exceeding C; (X, B, s).
So part (i) is proved.

Now, for part (ii), suppose that b € BXSK with Hbqu <I. Then there
exists an element b = ({bo,},cz7, {P11}nez) in A (X, B) with ]l x 5 <1
such that b = x(b). We define the sequence {b,},.; by settlng by = b()n -

s7'bo,-1 for each n € Z. Then, since s"(bo, + b1,) = 5" (bop-1 + b1a-1),
we obtain that b, = s~ 'by,,_; — b » and consequently b, € By N By. By the
boundedness of the right-shift operator we deduce that {b } € #(X, B) with
norm not exceeding C(X, B,s) == 1 + s~ 'max;_o,{€/| S~ Hz B)—a,8)} BY
(8.1) we have that lim, .« [|s"bo.l/5, =0 and by (8.2) we dlSO have that
limy, oo [|8"b1 4l 5, = lim, oo ||(s/e)"e ”blﬁ,,HB1 = 0. Then

> 5"y =Y ("bon — 8" boar) =boo — Jim 5"bo = Do

n<0 n<o0

and

D b= (" bt = 5"b1a) = big — lim by, = big.

n=1 n=1

So the series ) |, s"b, converges to boo + bo,1 = b with respect to the norm
of By + B;. This shows that b € BX‘ with norm not exceeding C,(X, B ,8).
This completes the proof. 1
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APPENDIX A.

A.1. Uniform Boundedness of the Operator Norms ||D; |y, p)—,5)
and |\Sik||v7j(3)ﬁ,,,j<3> over the Class of all Banach Spaces B

The key to studying these norms will be the following result:

PROPOSITION A.1. Let 2" be a pseudolattice and let V = {vjx}; ., be an
infinite scalar matrix such that, for each B € Ban,

() for all {b,},.7 € X (B), the sum Y, 5 vubyi converges in B for each
n € Z and the sequence {7 Vukbi},c7 is an element of X (B), and

(ii) the matrix V defines a bounded linear operator from X (B) into itself,
which we will also denote by V. Then suppepan | V|| 4(p)—2 (5 <00 and there
exists a Banach space Y such that

SUD pgan | V”ﬂ’(B)HBZ(B) < C(%’)ZII V”ﬂ’(Y)H%(Y)’

where C(X) is the constant appearing in part (iil) of Definition 2.1.

Proof. 1t will be convenient to present the main step of the proof as a
separate lemma. 1

LEMMA A2, Let {B,},.r be a family of complex Banach spaces indexed
by an index set I and let B denote the Banach space of ““bounded functions” f
defined on I' such that f(y) € B, for each y € I' and such that the norm
If 5, = sup,er [lf (V)|l, is finite. Then any pseudolattice 2" and operator V
satisfying the hypotheses of Proposition A.1 also satisfy

sup 1V 1los)—a) < )| Vo) —am)- (A.1)
y

To prove this lemma, we fix an arbitrary ¢ > 0 and an arbitrary f € I" and
let {by},c; be an element of Z'(Bg) such that [{bn},czllyp,) =1 and
I V({b,,}nez)H%-(Bﬂ) 2 Vlzs,) -2, — ¢ For each n€Z we denote b, =
> kez Unkbi, ie. {b,} = V({bn}nez). We shall need two norm one linear
operators P : Br — Bg and Q : By — Br. We define P by setting Pf" = f(f)
for each f € Br. For the definition of Q, for each b € By, we let Qb be the
element of By such that Qb(f) = b and, for each y+ fin I', Qb(y) is the zero
clement of B,.

By part (iii) of Definition 2.1, the sequence {Qb,},., is an element of
2 (Br) with [[{Obn} ezl 45, < C(X). It is also clear that V({Qbu},c7) is the
sequence {0b, },.,. Furthermore, since PQ is the identity operator on By we

ne
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obtain, applying (iii) of Definition 2.1 again, that

1V ({bn}nez)

X(Bg) — H{b”}nel X(Bg) — ”{Pan}neZH%(B/;)

< C@){Qbn} ez llv sy
< CWV )-8 { QY ez |l 281

2
< C) NV Mgy

Since f and e are arbitrary this gives (A.1) and proves the
lemma.

We can now proceed with the proof of Proposition A.l. Let 1=
supPgegan ||Vl (5)—a(p)- If 4=0 there is nothing to prove. Otherwise,
whether or not 4 is finite, let {4,},.y be a sequence satisfying 0 <A, </,
<A and lim,_ /A, = A. For each n € N, there exists a Banach space B, €
Ban such that || V|5, .45, = /- Now let I' = N and apply Lemma 9.2 to
the family {B,},.y. We choose Y to be the Banach space Br. By hypothesis
V : Z(Br) — Z(Br) is a bounded map, and so (9.1) gives the conclusions of
the proposition. 1§

We can now apply Proposition 9.1 to obtain the results mentioned in
Remarks 3.5 and 3.7.

COROLLARY A.3. Let X={Z0,Z1} be a fixed pair of pseudolattices
which admits differentiation. Then

(i) for each p € C with 0<|p| <1, there exists a finite constant Cy(X, p)
o'l’epe(;uiing only on X and p such that supgcgay |Djpl 2, (8)-2,8) < C+(X, p) for
J =Y 1.

(i) If, furthermore, X admits differentiation uniformly then, for each o
and f with 0<a<fi<1, the quantity

C(Xa (xaﬁ) = Sup{HDj-,P||.T,(B)~>:T]-(B) HIAS |p| <57 J = 07 17 B e Ban}

is finite.

Proof. Forj=0andeachn € Z we set v,,, = p~""*! for each m<n + 1
and v, =0 otherwise. Then V =Dy,. If we choose % =%, then
conditions (i)—(iii) of Definition 3.4 ensure that V satisfies conditions (i)
and (ii) of Proposition A.l and so Supgcgan ||D07,,|\/z0(3>_.>(%»0(3) <o0. An
analogous argument for j = 1 completes the proof of part (i).
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For part (ii), let I" be the set of all triples y = (j, p,n) where j € {0, 1},
a<|p|<p and n € N. For each such y = (j, p,n), we know by part (i) that
sup{[|Dj, |l 7,8z, B € Ban} is finite. So there exists a complex Banach
space B, for which

HDj,p

2,8,)—,(8,) ZSUPL Dipllz, 8~z B € Ban} —1/n. (A2)

By hypothesis, the Banach space By constructed as in Lemma A.2 using
this particular family {B,} . must satisfy

sup{HDjsﬂ|‘:Z/(Br)~>ﬂf/(31—): J=0,1, a<[p[<B} = Ao, B, X) <00

So, for any fixed j € {0,1} and p € C satisfying a<|p|<f, we can apply
Lemma A.2 with ' = %; and V' = D;, and obtain from (A.1) that

sup 1D 118, 7,8,) < C ()2, B, X).
7

This, together with (A.2), gives that

SUD{1l 1,3y, ° B € Ban} < max C(2))"2(x 8.X)

and completes the proof of (ii). 1

COROLLARY A.4. Suppose that X is a Laurent compatible pair satisfying
the hypotheses of Lemma 3.6. Then these same hypotheses hold uniformly for
all complex Banach spaces, i.e.

Zr sup ||S7* B)—ay(p) <00 and
k>0 BeBan
k>0 BeBan

Proof. Let Zy =Z\N and Z; = N. Then (A.3) is equivalent to

Z r\m| sup ”Sm

mez; BeBan
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Fix j =0 or 1. For each m € Z;, §™ has a matrix representation V" which, by
the hypotheses of Lemma 3.6, also satisfies the hypotheses of Proposition
9.1 for & = %;. So Proposition 9.1 gives that

SUp (1”1, 8)—,8) < C@N 8™ L vy vy < 00
BeBan

for some Banach space Y,,. Now let I' = Z; and let Y = Br where B,, = Y,
for each m € Z;. Then Lemma A.2 gives that

" 2
||Sm||f[/(Y,”)~>:I,(Y,,,)< 225 ||Sn||ﬂf,~(yk)ﬂ%,(n)<C(%j) ||Sm||.9f,~(y)4l,(Y)~
j
We deduce that
m m o \2 m m
> sup 8" oy < CEDT S IS
an

mez,; mez,;

<CEN* D NS vy

meZ;

By hypothesis this last sum is finite, and so we obtain (A.4) and complete the
proof. 1

A.2. Boundedness of the Constants Cy for Large |6 — o'

Here we prove the estimate (4.26), i.e. that for each 6 > 0
sup{C, o : 0,0 € S,|e" — " | >} <oc.

Let us first observe that

! ! 5 / ! 5
le” —e”|= 0= "7 — 1|>— = [el=)2 _ (=02 5
eye
|ea a>’|5 e—(Im(c—=0"))’ 5
Zefedo — o eelo— o

Then, since ,(0) = 1 and y,(z) = 0 only when z = 2zki for some nonzero
integer k, we have that for each 6 > 0

=Yi(c—d)=

inf{y,(6 —d): 6,0’ € S,|Img —Imo'| <27, |e” — e”| =0} > 0.
So, by (4.23), Cy»» = yC(0,0’) satisfies for each positive R and 9,

Ksr =sup{C,q: 0,0’ €S,|Imo —Imd’| <R, |e” —e”| =0} <o0. (A.5)
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This reduces the proof of (4.26) to showing, for example, that

sup{C,,: 0,0’ € S,[Img —Imd’| > 27, [¢” — ¢ | >0} <00

for each 6 > 0. (A.6)

One ingredient for the proof of (A.6) is the fact that, for all ¢ and ¢’ which
are not “too close,” the set £, (b, Cop[,a,o’,é) is “trivial” in the sense
that it is uniformly “comparable” with the unit ball 5  of (Bl - More
specifically, there exists a universal constant f such that, for all ¢ and
o' in S satisfying [Imo —Im¢’| > 27, and for every Cop>1 and every
e >0,

Coptllbll 31, s25),. . CPsoo(bs BCopi, 0,0, B)

Re ¢

C(p+0)Conllbllz, B, (A7)

(As in the statement of Theorem 4.2 we still require the constant Cop to
satisfy Copi > 1.) For every choice of positive f and ¢, the second inclusion
in (A.7) is an immediate consequence of the definitions. Let us now prove
the first inclusion. We shall use an entire function ¢ = ¢, ¢ which is defined
for any two distinct points ¢ and # in S by

[N]

P

4’5,;1,5(2) = 2 s

=

It satisfies ¢(&) =1 and ¢() = 0 and sup..g|$(z)| is finite. In fact

1 1
+e< .
e2|E —n V2eImé —Impy| +e

sup |¢(Z)|<\/§

(A different choice of ¢, ¢ with similar properties and a smaller supremum
could improve our estimate of f.) Given any o' € C"P‘HbH[E]Re BB, o Ve
choose f; € #(B) with fi(¢’) = b and /11l 75 < Copt(1 +£)Hb”[§h<ea' We
also choose f> € #(B) with f3(c) =b and |f F s +8)||b”[§h<“<
Copt(1 +&)lIbll 5, - Set f3 =044, S/ + ¢, Sf (ie. using two func-
tions defined as in (A.8)). Then f3(¢) = f>(0) = b and f3(¢’) = fi(c) = V'




UNIFIED THEORY OF COMMUTATOR ESTIMATES 305
and

1
31l 75 <2(1 +¢) <\/§ez|lmo " mo| + é’) Copt|Ibll 5,

Since |[Im ¢ — Im ¢’| > 27 and ¢ > 0 can be arbitrarily small, this shows that
the first inclusion of (A.7) holds for

1
p= 2(42\/_2.827[-1-6).

Now we use an obvious inclusion like the second inclusion in (A.7) followed
by an application of the first inclusion in (A.7), but with Cop; replaced by
(1 +¢)Cop and ¢’ replaced by any another point ¢” € S which satisfies
Reo¢” = Red’ and |Im g — Im ¢”| > 27. This gives

R oo (b, Copr,0,0', B) C (1 + &) Copt||bll 7). 25

Re o/

C R, o(b,B(1+¢)Cop,0,0", B). (A.9)

More specifically, we can choose ¢” = ¢’ + 2rnki for some integer k. Then
¢’ = ¢ . Furthermore, by choosing the integer k appropriately, we can have
2n<|Im o — Im ¢”| <4=n. This enables us to apply (A.5) with R =4rn and
(4.8) to obtain that

R, 00(b, B(1 4 &) Copt, 7, 6", B) C R(b, K5 4zB(1 + &) Copr, €°, " ,FC, B).
(A.10)

Combining (A.9) and (A.10) we obtain that the supremum in (A.6) is indeed
finite (it can be taken to be any number larger than Kj4,f) and so we have
proved (4.26).

A.3. Unboundedness of Cy o as ¢ Tends to e°

Inclusions (A.7) also provide us with a means of proving, as one would
conjecture after Remark 4.3, that the constant C, , cannot remain bounded
as e — 7 | becomes arbitrarily small: Let us fix some ¢ € S and let {7’}
be some sequence in S which converges to ¢ + 4ni. We can suppose that
|Im ¢}, — Im ¢| > 2= for all n, and so, by (A.7),

C R, (b, fCopt, 0,0, l_f)

» Yo

CoptHbH[E]Rw%[E}

Re o/
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This implies that there exist two distinct points x 7y which are contained in
R, oo(b, BCopt, 0,0 E) for all n. Now suppose that there exists some
constant C such that C, o < C for all n. This implies that x and y are both
contained in (b, CCopy, €, ¢, FC B) for all n. We shall see that this leads
to a contradiction by showmg that .%(b CCopt, €%, € ", FC B) is contained in
a ball in By + By whose centre is b and whose radlus r, tends to 0 as n tends
to oo: Consider the class £ of functions f : A — By + By of the form f(z) =
Siez ZXbx where {bi}icy € E(b, CCop,e?,FC, B). Since |f(z g n <
CCop for all z € OA, it follows by Cauchy’s formula that f” is bounded
in By + B) norm on compact subsets of A. More specifically,

sup{[lf'(2)ll g+, : f € E. |z — 7| <0} = My <oo

for each § <dist(e?, OA). Our sequence {c’ } necessarily satisfies [¢” — 7| < 5
for some such fixed § and for all n € N. Since each b’ € ﬂ(b CCopy,€°,€” n
FC B) is of the form " = f(d") for some f € E, we see that ||’ — b||BO+Bl =
[ f:g"f’ z) dz|| g, 1, <le” — €| My = r,,. This indeed gives the desired contra-
diction and shows that lim,, .o, C, 4 = o0.

A.4. The Coincidence of Lions—Schechter Spaces on the Strip with their
Analogues on the Annulus

In this appendix we will use some notation and definitions from the first
part of Section 4.

For each nonnegative integer n, each 6 € (0, 1), and each Banach pair A,
the Lions—Schechter 1nterpolat1on spac [Z}E) is defined to be the set of all
elements a € Ay + A, of the form a = £ (0) where f € 7 (4). It is normed
by the natural quotient norm.

Remark A.5. The original definitions given by Lions [39,40], and
Schechter [55] use a slightly modified version of Calderon’s space ./(A)
which we may denote here by 7 ;s(A4 ) whose elements f : S — Ap + Ay are
required to have the property that 1+ f(j + it) is a continuous map of R into
Ayg+ Ay for j=0,1. This is weaker than the condition required for
Calderén’s space, namely that 71— f(j + it) is continuous into 4;. As shown
in [18] (at least for n = 0) replacing 7 (A4 ) by ,/LS_(A% can somet1mes give
interpolation spaces which are strictly larger than [4 ] . However the result
to be presented in this subsection is valid for the interpolation spaces
corresponding to either 7 (4) or 7 1 s(A).

PROPOSITION A.6.  For each nonnegative integer n, each 0 € (0,1) and
each Banach pair A, let [A ]E,> denote the space obtamed when F(A)
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is replaced by F . (A) in the definition of [A))". Then [A]{"> = [4]}"
and

lal g0 <l g < Callall g for all a € A", (A1)

where C, is a constant depending only on n. In particular, Cy = C; = 1.

Proof. As already mentioned at the beginning of Section 4, the case
n =0 is easy and well known. The case n = 1 is similar and essentially the
same as Theorem 4.1. The case for general n is another slight modification of
these two cases: Let us define the sequence {“m}mzo by o9 =1 and then
recursively by

Then, for each nonnegative integer n, the function ¢, (z) = % >0 OmZ™
satisfies ¢, ( )=1 and (ﬁflm)(O) =0 for each m=1,2,...,n. Now, given
any a€ [A]((,")oo and ¢ >0, choose f € #.,(A4) such that a =/ (6)
and sy S +e Ha||A] me. For any 6>0 we define gs5(z) =
¢,(6(z ~0) /)( ). Then g5 € #(A4) and gs' (9) =/ (0) = a. This shows
that [4]"™ c [4]%” and establishes the second inequality of (A.11) with
C, = 1nfo>0(sup{|¢ (0z)] : Rez € [-1,1]}). The remaining inequality and
reverse inequality are obvious.

_'COROLLARY A.7 (cf. Lions [40, p. 3], Schechter [55, p. 122]).  The space
[A]é") is continuously embedded in [A], U and the embedding constant
depends only on n and 0.

Proof. Given any a € [Z] and f € 7 (A) with a = /" (0) and 1 1l7 4

<(1 +s)||a||A w let g(z ):( )¢,1( 0)f(z) where ¢, is as in the
preceding proof Then gec 7(A4) with |g| ;4 <C(0,n)|f] > A and
§P0) = (n-+ Dbz — O () = 1+ L7 D) = (n-+ D).

PROPOSITION A.8.  For each nonnegatwe integer n, each 0 € (0,1)
and each Banach pair A, let [4 ]§)> denote the space obtained whe g (A)
is replaced by F,(A) in the definition of (A ]"). Then [A ]< [A] )2
and

1 <1(n
< Nall g <lall gy < <G llall 0 for all a €[4 (A.12)
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where C, is the constant appearing in (A.11) and C) is another constant
depending only on n.

Proof. The case n = 0 goes back to [17] and the case n = 1 is essentially
proved as part of Theorem 4.2. An elaboration of the same approach will
also work for all n>1:

Let ¢ : C — C be the entire function defined by

e —1

z

n+1
#(0)=1 and ¢(2) _e*( > for all z #0.

Then let y/(z) = ¢(2) Y7_o Bez*, where the numbers B, are defined by f, = 1
and then recursively by

— _ml mz( )k!ﬁk¢<’”—k>(0).
k=0

This ensures that y(0) = 1 and " (0) = 0 for m = 1,2,...,n. We can also
see that, for each integer m#0,

¥ (2mmi) = ' 2mmi) = " (2ami) = - - - = " 2mmi) = 0,

since ¢ has this same }))roperty
Now, given a € | and & > 0, we choose / € # (4) such that a = £ (0)
s < + a)||a||[A] Then define F: S — Ay + 4, by
0

= Z W(z — 04 2mmi)f (z + 2nmi). (A.13)

meZ

By essentially the same arguments as in the proof of Theorem 4.2,
F is an element of Zy,(4) with ||FHJ <C’|[f||j where C) =
SUDPRe -c[-1,1] 2_mez W (2 + 2nmi)|.  The serles in (A 13) can  be
differentiated term by term any number of times at each z € S. Thus the
properties of  mentioned above imply that F®(0) = f"(0) =a.
This proves that [4](” c [4]}""" and the second inequality of (A.12).
The first inequality and reverse inclusion follow trivially from

Proposition A.6. 1

Let us define Z (A4 ) to be the space of functlonsf A — A, + Ay such
that f'(¢?) = F(z) for all z € S and some F € % ,,(A4) with norm Fod) =
11| 54y = sup{|lf (¢")|l4, : 2 € [0,27],j = 0, 1}. For each 0 € (0, 1) and
each nonnegatlve integer n we define [4 ]g A to be the space of elements
a € Ay + A, of the form a = £ (e?) for some f € Za(A) with the natural
quotient norm.
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As has already been remarked (cf. (6.22)), for each n we have the
continuous embeddings

) gy A (A.14)
and their proof is a simpler analogue of the proof of Corollary A.7.

THEOREM A9.  For each 0 € gO, 1) and each nonnegative integer n the
space [A]é")A coincides with [A]é" to within equivalence of norms and the

constants of equivalence depend only on n and 6.

Proof. Yet again the case n = 0 is known from [17] and the case n = 1 is
essentially proved in Theorem 4.2. Let us now deal with general n: We can
proceed by induction, assuming that the result is known for each m =
0,1,...,n—1. Suppose first that a GjA 0 . For any ¢ >0, choose f €
fA(A) with a = £ (e?). Define F : §—>A0+A1 by F(z) =f(e"). Then
F e fzn(/_f) and F"(0) = I c,m(;f(”z)(e") for suitable constants ¢, 9. So

1 n—1 Cmd
a=—F"(" - 8 ) (9). A.15
L PN =3 0 (A.15)

The ﬁrst term on the right-hand side of (A.15) is an element of [4 ] ) _

[4 ]( (cf Proposmon A.8) with norm bounded by a constant multiple of
11l 7 The remaining terms, where m ranges from 0 ton — 1,
are elements of 14 f ]('")A and therefore, by our inductive assumption, of
[A](Om). Repeated apphcations of Corollary A.7 show that all of these
elements are 1n and that the norms of each of them can be bounded b

. We conclude that a € [A]<
and that [A] is contmuously embedded in [4 ]E)"

It remains to prove the reverse embedding: If a € [A]é") then, by
Proposition A.8, a=F™(0) for some F ¢ F2n(A) with
const. ||a||A]<n) Define f: A — Ao+ A, by f(z) = F(Logz) where Logz
denotes the' principal branch of the complex logarithm. Then f € % A(A)
and fM (%) =3 _&,0F"™(0) for suitable constants &,g. The rest of
the argument to show that a € [Z](g”)A is now almost exactly analogous to
the first part of the proof, with (A.14) now playing the role of

Corollary A.7. 1
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