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Interpolation of Banach spaces 1133
1. Introduction

There are several excellent books now available treating the general theory of interpola-
tion from various points of view (see, for example, Bergh and L&fstrém [8], Bennett and
Sharpley [5], Krein, Petunin and Semenov [69] and Brudnyi and Kruglyak [12]). The aim
of this chapter is to consider the interaction between interpolation theory and the geometry
of Banach spaces, and so we will not treat many topics that can be found elsewhere.

Historically, interpolation theory as an abstract concept was developed by Lions, Peetre
and Calderén in the 1960s. The first real application in Banach space theory seems to be
the celebrated Davis—Figiel-Johnson—Petczynski factorization theorem [35] from 1974, al-
though at the time the language of interpolation was not used; we can now see in retrospect
that this result belongs to interpolation theory. This result will be discussed below (Theo-
rem 3.4). In the 1980’s Pisier played a pioneering role in bringing interpolation techniques
into the mainstream of Banach space theory. Interpolation played a role (at least implic-
itly) in the development of Pisier’s work on the Grothendieck program [93] and in the local
theory of Banach spaces [94]. More recently Pisier, Kislyakov and Xu have studied inter-
polation of Hardy spaces and non-commutative analogues: we refer to [65,67,68,97,95]
and [96]. Some of these ideas are covered in [66]. See also [58].

In this article we will treat some rather different topics. We will concentrate on the real
(8, p)-method and the complex method. We first introduce these and discuss the Davis—
Figiel-Johnson—Petczyniski factorization theorem. This leads us naturally to consider the
general problem of interpolation of Banach space properties and properties of operators by
these methods. In this area Theorem 5.2 is very useful; it gives a general construction to
give a counterexample to many possible conjectures. We also draw attention to the Cwikel
problem: is compactness of an operator preserved by complex interpolation? This problem,
we believe is quite challenging for Banach space theorists.

Next we discuss Calderén couples. The characterization of pairs of r.i. space which
form Calderén couples curiously involves conditions (shift properties) which have natural
meaning in the context of Banach space theory.

We then devote much of the remainder of the article to developing differential methods
in interpolation theory. This theory was initiated by Rochberg and Weiss in 1983 [101]
and is very relevant to the construction of twisted sums or extensions of Banach spaces
(see also [60]). We develop this theory specializing to the case of interpolation of Banach
sequence spaces and relate it to the theory of entropy functions [42,55] and [87]. We discuss
applications in harmonic analysis and in operator theory.

2. The basics

In this section, we will introduce the basic ideas of interpolation. First we define the notion
of a Banach couple. Let W be a Hausdorff topological vector space (the ambient space).
Suppose Xo and X are two Banach spaces which are continuously embedded into W. We
refer to X = (Xo, X1) as a Banach couple. We can then define the sum and intersection
spaces. The sum space ¥ (X) = Xo + X is equipped with the norm:

llx | g = inf{ | xoli x, + llx1llx,: x =x0 +x1, x0 € Xo, x1 € X1}
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The intersection space A(X) = Xo N X7 is a Banach space under the norm:

el s gy = max{ lx 1 xo. 1L, }-

Once we have defined these spaces, note that it is always possible to replace the ambient
space W by the sum space 2 (X).

If X and Y are two Banach couples, then a linear operator 7': X — Y (we write
T € £(X,Y)) is a bounded linear map T:¥(X) — X(Y) such that T(Xg) C Yo and
T(X1) C Y1. From our assumptions, it then follows that T is bounded from X; to Y; for
j=1,2. We define

”T“Y_)7 :max{”T“X0—>Yov HT”Xl—)Yl }-

If X =Y we simply write || T |¢-

For any Banach couple X, an intermediate space Z is a Banach space such that
A(X) € Z C 2(X). Z is then called an interpolation space if for every T € LX) we
have T (Z) C Z. We then have from the Closed Graph Theorem that ||T ||z < C||T || for
some C. If C =1 we say that Z is an exact interpolation space. Notice that A(X) and
X (X) immediately give two exact interpolation spaces.

A motivating example for this set-up, and indeed the original Banach couple, is obtained
by taking an arbitrary o -finite measure space (£2, i), and letting Xo = Loo (1), and X; =
L1(u). The ambient space can be either the space Lo of all measurable functions (with the
topology of convergence in measure on subsets of finite measure) or Lo, + L.

It is sometimes convenient to impose mild extra conditions on a Banach couple.

The simplest such requirement is that the intersection space A(X) is dense in both Xg
and X in their respective topologies. This allows to form a dual Banach couple. If we
take A(X)* as an ambient space then X7, X { can be considered as continuously embedded
into A(X)*. Thus (X)* = (X, X}) is also a Banach couple with X" = AX)* and
AX") = (ZX)* in a natural way. Note that it does not then necessarily follow that the
dual couple X" has a dense intersection space, although this does follow if, for example,
X and X are reflexive Banach spaces.

A second natural assumption is that of Gagliardo completeness. This requires that the
sets Bx; = {x: ||x|lx; < 1} are closed in the topology of X(X) for j =1,2. The weaker
assumption that the closure of each By; is contained in X; allows us from the Closed
Graph Theorem to obtain Gagliardo completeness for certain equivalent norms on each
X ;. An easier example of a non-Gagliardo complete pair is the pair (C[0, 1], L1[0, 1])
where it is easily seen that the closure of By, in the topology of the sum space is the ball
of Lso[0, 1].

Interpolation theory has its origins in the classical Riesz—Thorin and Marcinkiewicz the-
orems. Both these theorems lead to the idea of an interpolation method. This is a functor
F which assigns to any Banach couple X an interpolation space F(X) in such a a way that
if X, Y are two interpolation couples and T € £(X, Y) then T maps F(X) to F(Y) bound-
edly. The Riesz—Thorin theorem abstracts to the complex methods and the Marcinkiewicz
theorem is abstracted in the real methods.
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One may isolate two basic types of questions implicit in interpolation theory. One can
study a particular method in order to develop applications. In this case one needs to take
specific practical examples of Banach couples and then calculate the effect of the corre-
sponding method. The second type of question is to identify all interpolation spaces for a
given couple.

In Banach space theory, interpolation has played a pivotal role in several areas (particu-
larly in the local theory and in problems related to Grothendieck’s theorem). It is probably
fair to say that in Banach space theory one is mainly interested in knowing about the preser-
vation of properties of spaces or operators under interpolation.

3. The K -functional and the (0, p)-methods

The fundamental notion of real interpolation theory is the K-functional. Suppose X is a
Banach couple. We define the K -functional by

K@x,0)=K(x,1; X)=imf{|lxollx, +tllx1llx,: x=x0+x1}, x€Z(X).
Thus K (x, 1) is simply the usual norm of ¥'(X) and each x — K (x, ¢) gives an equivalent
norm on the sum space for which it becomes an exact interpolation space. It is easy to
check that for fixed x the function ¢t — K (x, t) is increasing and concave for 0 < ¢ < co.
If x € A(X) one has an estimate

K (x, 1) <min{[|x|x,. x|l x, } < llx | s min(1, 7).

There is a dual construct known as the J-functional:

Jx,0)=1J(x,1,X) =max{|x|x, tlxllx,}, xeaA(X).

These form a family of exact interpolation norms on A(X).

If0 <8 <1land 1< p < oo we define the real interpolation spaces Xg,, = (X0, X1)g.p
by x € X, p if and only if

© ar\/?
||x||9.p=</0 t"’K(x,t)”7> < 00. (3.1

If p = co we define Xp_ as the space of x such that

lxllg.00 =supt K (x, ) < oo.
>0

It is easily seen that both these definitions can be given in discrete form, e.g.,

1/p
Ixlo, » ~ (ZZ oPnK (27,1 ) . (3.2)

neZ
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The functor which takes the couple X to Xp. ,, is the (8, p)-method; this clearly provides
an example of an exact interpolation method. The theory of this method is well-developed
and understood and we can refer to [5] and [8] for a full discussion of such topics as re-
iteration and duality. For our purposes it is useful to point out an equivalent definition in
terms of the J-functional, first obtained in the fundamental paper of Lions and Peetre [76].
Consider the case 1 < p < 00. Define for x € Xo + X1,

1/p
ity = inf{ (Z max { |l lo, 2 & [l }") cx=) 2%x ] (33)

keZ keZ

where the series converges in Xo + X. Then x € Xy , if and only if ||x||f9’p < 00 and
the norms ||x ||f9’ » and ||x|lg,, are equivalent. In (3.3) we have formulated the J-method
discretely; it is more usual to use a continuous version. The equivalence of the J-method
and the K-method of definition can be obtained from the Fundamental Lemma, which we
discuss later (Theorem 6.1). Note that we must have that A(X) is dense in the spaces Xg. »
provided 1 < p < co. Using this, one can show a duality theorem [74]:

THEOREM 3.1. Suppose A(X) is dense in both Xo and X1. Then if 1 < p < 00 and
0 < 8 < 1 the dual of (Xo,X1)g.p can be identified naturally with (X5, X{)g.q where

The (8, p)-methods have proved extremely useful in many branches of analysis includ-
ing Banach spaces. We conclude this section by discussing the first major application of
interpolation in Banach spaces theory, the Davis—Figiel-Johnson—Pelczynski factorization
theorem [35]. The basic idea of this theorem is to establish conditions under which certain
interpolation spaces are reflexive, although in the initial paper the language of interpola-
tion was not used. Later Beauzamy [3] established the general result. Consider the spaces
Zn = (A(X), Jon) where J;(x) = J(x,?) is a norm on A(X). Now we can use (3.3) to
define a quotient mapping Q :£,(Z,),cz — Xo,p Dy

O((a)rez) = Z 2%y

keZ

The following lemma is an easy gliding hump argument:

LEMMA 3.2. Suppose 1 < p < o0 and 0 < 8 < 1. Suppose a, = (anr)iez is a bounded
sequence in £,(Z,) such that for each k we have lim,, ., anr = 0 weakly in Xo + Xi.
Then Qa, converges to zero weakly in Xg p.

PROOF. Itis enough to construct a sequence of convex combinations of (Q(ax))«>, which
is weakly null. First by Mazur’s theorem we can take convex combinations and assume
limp— o0 llankllxy+x, = O for each k. It follows quickly that lim, o llanklle,, = O for
each k. Indeed we can split an;r = b,; + cax Where by is bounded in Xg and converges
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to zero in Xy while ¢,y 1s bounded in Xy and converges to zero in X¢. Then we use the
estimate

1-6 0 1-¢ o
lanklle,p < C(1bnkcllx,” 1Bk, + llenrlly” llenk I, )-

It follows that we can find a sequence N, — oo so that

— 0.
g.p

‘ Q@) — Y 2%an

k|2 Nn

Let bpi = ani if |k| 2 N, and O otherwise. Standard gliding hump arguments show that b,
is weakly null. It is then easy to conclude that a, is also weakly null. (|

An immediate consequence due to Beauzamy [3] is that:

THEOREM 3.3. Suppose 1 < p < o0 and 0 <0 < 1. Then (Xo, X1)g,p is reflexive if and
only if B 5%, is relatively weakly compact in ¥ (X).

This follows from the preceding lemma and the Eberlein—Smulian theorem. Now the
Factorization Theorem of Davis, Figiel, Johnson and Petczynski is given by:

THEOREM 3.4 ([35]). Suppose X and Y are Banach spaces and T:X — Y is weakly

compact. Then there is a reflexive space R and a factorization of T = BA where A: X —
R and B:R — Y are bounded.

PROOF. We use the following typical trick. Let K be the closure of T(By) and let Y be
the Banach space generated by taking K as it’s unit ball. Let ¥; = Y and then take R = Y3 ,
for some choice of 0 < 6 < 1 and 1 < p < 0o0. For A we treat T as an operator into R and

for B we take the inclusion of R into Y. O

There is a sense in which the (6, p)-methods give rise to Banach spaces with relatively
simple structure. This is the content of a theorem of Levy [71].

THEOREM 3.5. Suppose A(X) is not closed in X(X). Then for 0 <6 <1, 1 < p < 00
the spaces (Xo, X1)g,p contain a complemented copy of £ .

In order to prove this theorem, we first prove a preliminary lemma:

LEMMA 3.6. Suppose A(X) is not closed in X (X). Then either
(1) Foreveryt > s >0 and ¢ > 0 there exists x € A(X) with

K@) 21 —e)s ' K(s,x), s<t<t,

or
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(2) Foreveryt >s > 0and e > 0 there exists x € A(X) with
K(t,x) 21 —8e)K(t,x), s<tT<l.

PROOF. Note first that z~ 'K (z, x) is decreasing and K (¢, x) is increasing. Assume (1)
fails. Then there exists € > 0 and ¢t > s > 0 such that t_lK(t,x) < (1 - s)s'lK(s,x).
Then for any x € A(X) we have K(z,x) < (1 — e)t||x||x,. Thus, putting 6 =1 — &/2 we
can find u; € Xo, v1 € Xj sothatx =u;+vy and |Ju1llx, < tlx]lx, and [Jv1[lx, <38llx|x,.
Now we can iterate the argument as in the Open Mapping Theorem and write v; = u3 + 2
where |luzllx, < dtllxllx; and |jvallx, < 82t||x|]X1. Continuing in this way we construct
(u)o2 4 in Xo and (v,)52 ; in X such that

-1
lunllx < 28" llxllx, , lvnllx, <28* x|,
and
XxX=uy+---+u,+u,.

Clearly Z;’;l u, converges in Xo and its sum must be x (by computing in Xo + X).
Hence || x|lx, <z(1 -8 | x, - Similarly the failure of (1) implies that ||x || x, < Cllx||x,
whenever x € A(X) for a suitable constant C. Thus if both (1) and (2) fail then the two
norms | - || x, and | - || x, are equivalent on the intersection, and this implies the intersection
is closed in Xo + X. O

‘We now turn to the proof of Theorem 3.5:

PROOF. Note that (3.2) the space Xy , can be regarded as a subspace of the £ ,-sum of the
space Xo + X1 with the norms 279" K (2", x) for n € Z. To show it has a complemented
subspace isomorphic to £, requires only the existence of a normalized sequence (xn)3>_,
in Xp , so that for each n we have lim;, o, K (2", x») =0 (i.e., x» converges to 0 in
Xo + X1). This follows by standard gliding hump techniques.

If such a sequence does not exist then there is a constant C so that

1/p
(22_"9”K(2”,x)p> < CK(1,x).

neZ

That this 1s impossible follows from the preceding lemma. a

4. The complex method

We first define the complex method for a Banach couple X which we now assume consists
of complex Banach spaces. We introduce a Banach space F of analytic functions as fol-
lows. Let S = {z: 0 < Rz < 1} and let F be the space of analytic functions F : S — 2 (X)
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such that F extends continuously to the closure S and the functions 1 — F(j + if) are
continuous and bounded in X ; for j =0, 1. We norm F by

Il = oy _ 308 IFG 0l

We then define the interpolation spaces Xg = [Xp, X1]o by x € Xy if and only if there
exists F € F with F(f) = x and then we set

Ixlix, = inf{ | Fllz: F(6)=x}.

This method is known as Calderén’s first method or lower method, and is usually
called simply the complex method. It was introduced independently by Lions [73] and
Calder6n [14]; most of the basic theory was developed by Calderdn in [14].

Calderén’s second method or upper method ([14]) is described similarly but taking a
different family F of analytic functions. Suppose F:S — X (X) is a bounded analytic
function. Then any anti-derivative F # is Lipschitz and extends continuously to S. We say
F e Fift — F*(ir) is Lipschitz into Xo and 7 — F*(1 +1z) is Lipschitz into X ;. We then
put

?

I | F*(it) — F*(is)| x,
sup
s<teR |t — 5|

Hﬁﬂ+m—WU+MM%
sup .

s<teR [t —s|

Then we define the spaces X[g) = [Xo, X 118 by x € Xp) if and only if there exists F € F
with F(#) = x and we define

”x”X[e] =1nf{”F”f‘ F(9)=x}.

It is clear that the complex interpolation spaces Xy and X are further examples of
exact interpolation spaces. It is also clear that in general Xy C X[ and the injection is of
norm one. The fundamental difference between the upper and lower methods is that A(X)
is always dense in Xy, but not necessarily in X[g7. In fact it is shown in [7] that X, is
simply the closure of A(X) in X[g].

Let us discuss conditions under which the two methods coincide. We will need the Pois-
son kernel for the strip. These are maps P:9S x & — (0, oo) such that if u is harmonic
and bounded on S and extends continuously to S then

u(z) =/ P(w, 2)u(w)|dw|
s

=/ P(it,z)u(it)dt—I—/ P(1 +it, Du(l +ir) dr.

—00 —00
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LEMMA 4.1. Suppose F € F. Then

|F®)]y, < exp(/as P(w,0)log| F(w), |dw|).

This lemma is proved very simply using the existence of appropriate outer functions (it
is perhaps most easily seen by noting that the strip is conformally equivalent to the unit
disk).

Based on this we can quickly see the connection between the two methods described
above:

PROPOSITION 4.2. Suppose F € F. If F*(j +it) is differentiable in X j on a set of positive
measure for either j =0 or j =1 then F(0) € Xg for 0 <8 < 1 and | x| x, < | F|l &

The following corollary was proved first with the hypothesis that one space is reflexive
in [14]; see [91].

COROLLARY 4.3. If either X or X1 has the Radon—Nikodym property then the spaces
[Xo. X1lp and [Xo, X1]js] coincide isometrically.

PROOF OF PROPOSITION 4.2. Foreachh > 0let F,(z) = h~ ! (F¥*(z+ih) — F*(2)). Then
Fp € F and || FrllF < || F| #. For fixed 6 we have that F;(8) — F(0) in X (X). Assume
F #(it) is differentiable on a set E of positive measure. Then Fj(it) converges in Xy a.e.
on E. Note that

|, 6) — Fry @), < exp( /a P 6)log|| F, (w) — Fr, (w) | meldwl>

and this inequality implies that || F, (8) — Fp,, (0) |l x, converges to zero as hy, ho — 0, 1.e.,
that limy,_, o F(8) exists in Xg. The proposition follows. O

The following is the duality theorem for complex interpolation due to Calderén [14].

THEOREM 4.4. Suppose X is a Banach couple such that A(X) is dense in both X and X 1.
Then the dual space of [Xo, X1]g can be identified isometrically with [ X, X’f]g. In par-
ticular if one of the spaces Xo or X1 is an Asplund space (i.e., either X or XT has the
Radon—Nikodym property) then the dual of [Xo, X11p can be identified with [ X}, X T]g.

There is a sense in which real interpolation scales can be regarded as special cases of
complex scales. Let us quote the Re-iteration theorem (see [14,75,64,22]):

THEOREM 4.5. Suppose X is a complex Banach couple. Then:
(1) If0< 1 < o < 1 then [Xy,, X4, 1o coincides isometrically with
[Xo, X11(1-6)p,4+6¢5-
(2) f1< p<ooand0 < ¢ < ¢ <1 the space [Xp, p, X, plo coincides with (up to
equivalence of norm) X ¢, (1-9)+¢-0. p-
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See also [33] for some endpoint results and [30] for extensions to the quasi-Banach
setting.

One of the drawbacks of the complex method is that in general it seems relatively diffi-
cult to calculate complex interpolation spaces. There is one exception to this rule, which is
the case when one has a pair of Banach lattices. The following theorem follows from the
work of Calderén [14].

THEOREM 4.6. Suppose that X = [Xg, X1] is a couple of Banach function spaces on some
measure space (K, ). Assume that either Xy or X1 has the Radon—Nikodym property.
Then the space [Xo, X1]g is isometric to the space X(l)fe X?, where

110 xo = nf{ 113" 121%,: & € Xo, h e X1, |f1=1gI"*IrI°}.

Let us note that this theorem can be applied when one can has a Banach couple X where
X and X have a simultaneous unconditional basis; in particular it can be to study many
types of function spaces (Besov spaces, Hardy spaces, Triebel-Lizorkin spaces, etc.) where
one can find such a basis using wavelets. Essentially this approach was used by Frazier and
Jawerth [40] (using instead the essentially equivalent idea of the ¢-transform). It seems
however to be a general rule that the only cases where complex interpolation spaces are
calculable are those when Theorem 4.6 can be used. For example, the interpolation of
Schatten ideals by the complex method is possible only because it can be reduced to the
interpolation of symmetric sequence spaces.

5. Properties preserved by interpelation

There is vast literature on preservation of properties under interpolation. We consider prop-
erties of the underlying Banach spaces or of operators. Let us first discuss the underlying
spaces. Suppose P is a property of Banach spaces: we ask for conditions so that if one or
both of the spaces Xg, X1 has the property P then the intermediate spaces (Xg, X1)g.p Or
| X0, X1]s obtained by real or complex interpolation inherit the property. It is also possible
to discuss other methods of interpolation of course.

Let us give an example. If Xy or X is reflexive so are the spaces (Xo, X1)g,p and
[Xo, X1]p for 0 <8 < 1 and 1 < p < o0; the former is implied by Theorem 3.3 and the
latter is due to Calderén | 14].

In fact there is a very simple technique to see that certain types of properties interpolate
for the real or complex methods.

PROPOSITION 5.1. Let X be a Banach couple. Then:
(1) f0<0 <1land 1< p < oo then (Xg, X1)9.p is isomorphic to a quotient of a
subspace of the Banach space £,(Xo @ X1).
(2) If 0 < 0 < 1 then [Xo, X1]p is isomorphic to a subspace of a quotient of L ,(Xo @
X1) for any choice of 1 < p < oc.
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Case (1) of Proposition 5.1 is essentially proved in Section 3. Case (ii) follows from some
alternative formulations of the complex method. From this proposition one can see imme-
diately that if, say, X¢ and X have non-trivial type then so do (X0, X1)s.p and [Xo, X1le
when0 <6 <land1 < p < co.

Suppose X is a Banach couple. We shall say that an interpolation space X is
0-exponential where 0 < @ < 1 if whenever T € £(X, X) then

1T Ix—x < CNT IR x 1T 1%, - x,

The real interpolation spaces (Xo, X1)g,, and the complex interpolation spaces [Xo, X1]s
are examples of 8-exponential interpolation spaces.

The following theorem is due to Garling and Montgomery-Smith [41]. It provides a
strong converse to Proposition 5.1.

THEOREM 5.2. Let Z be the quotient of a subspace of a separable Banach space Y. Then
there exists a Banach couple X such that both the end-point spaces Xo and Yy are isomor-
phicto Y ® Y @Y, but such for every 0 < 0 < 1 and every 0-exponential interpolation
space X we have that X contains a complemented subspace isomorphic to Z.

So, for example, for any separable Banach space Z, there is a Banach couple X so that
the end point spaces are isomorphic to £1, but such that for every 0 < 8 < 1 and every
0-exponential interpolation space X, we have that X contains a complemented subspace
isomorphic to Z. Thus we see that many properties cannot be inherited by any interpolation
method which is §-exponential for some 0 < 6 < 1. For example, the Radon—Nikodym
property and non-trivial cotype can never be preserved by such a method.

Indeed, Dilworth and Sobecki [36] showed that any Banach space property that is passed
from the end point spaces to the spaces created by the real or complex method must also
pass from any Banach space to any subspace of any quotient of that space. They remark that
the only property of £; preserved under either the real or complex methods is separability.

Now suppose X and Y are two Banach couples and that 7 € £(X,Y). We now dis-
cuss properties of the operator 7 which can be interpolated. Let us first note that if
T:Xop — Yo is weakly compact then 7 :(Xo, X1)s,p, — (Y0, Y1)g,, is weakly compact
forany 0 <9 < 1 and 1 < p < oo. This is due to Aizenstein (see [12] for a full discus-
sion of interpolation of weak compactness by general real methods). In fact, in this case
it can be seen to follow from the corresponding result for the property of reflexivity and
the Factorization Theorem 3.4. The same argument establishes a similar result for complex
interpolation.

We shall now consider the question of interpolating compactness. If both 7: Xy —
Yo and T:X; — Y; are compact then, as early as 1969, Hayakawa [45] showed that
T:(Xo, X1)o.p = (Yo, Y1)g.p is compact for 0 < 6 < 1 and 1 < p < oo. The stronger
one-sided result was proved, in full generality, only in 1992 by Cwikel [25]:

THEOREM 5.3. Suppose X and Y are two Banach couples and that T € L(X,Y) is such
thatT : Xo — Yo is compact. Then T : (Xo, X1)9.p — (Y0, Y1)g,p is compactfor0 <6 <1
and1 € p < oc.
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Curiously the same problem for the complex method is unsolved. It was first considered
by Calderon [14] in 1964. Surprisingly, it is not even known under two-sided conditions.

PROBLEM 5.4. Suppose X and Y are Banach couples and T € £(X,Y) is such
that 7:X; — X; is compact for j =0,1. Is T:[Xo, X1lo — [Xo, X1l¢ compact for
0<0 <17

This problem appears challenging for Banach space theorists, as the discussion in [29]
shows. In [27] a partial result was given:

THEOREM 5.5. Suppose X and Y are complex Banach couples and that T € L(X,Y) is
such that T : Xg — Yy is compact. Suppose Xg is a UMD-space. Then T :[Xo, X11p —
[Yo, Y1lo is compact for 0 <6 < 1.

Some other conditions on X are also considered in [27]. For example, it suffices (in
place of assuming Xy is a UMD-space) that X is itself an interpolation space Xp =
[E, X1]p for some 0 < 6 < 1 and some E. In this form the result can be regarded as
an improvement (for complex interpolation) of the following earlier extrapolation result
of [25]:

THEOREM 5.6. Suppose X and Y are Banach couples and that T € L(X,Y). Suppose
1< p < 00 and that for some 0 <6 < 1 we have T :[Xq, X1]9 — [Yo, Y119 (vespectively
T:(Xo, X1)e,p —> (Yo, Y1)a.p) is compact. Then T :[Xo, X1lg — [Yo, Y11lg (vespectively
T:(Xo, X1)9,p — (Yo, Y1)g,p) is compact for every 0 < 6 < 1.

Extrapolation theorems of this type can also be proved for certain properties of Banach
spaces. Let us fix our attention on complex interpolation. Suppose Xg = [Xo, X1]e. It is
clear from Theorem 4.5, for example, that if X is reflexive for some 0 < 0 < 1 it is
reflexive for every O < 6 < 1. There is an abstract approach to these ideas via the notion of
the Kadets distance (see [63]).

Let X and Y be two subspaces of a Banach space Z. We define A(X,Y) to be the
Hausdorff distance between By and By, i.e.,

A(X.¥)=max{ sup inf |x —yll, sup inf Jlx —y]}.

xeBy YEPY yeBy X

Now suppose X and Y are any two Banach spaces. We define the Kadets distance dg (X, ¥)
to be the infimum of A(X, ¥) overall spaces Z containing isometric copies of X, 7.1t may
be shown that dx is a pseudo-metric on any set of Banach spaces; unfortunately there are
non-isomorphic Banach spaces X, Y so that dg (X, Y) = 0. The following theorem now
has the content that the map 6 — [Xp, X1]p is continuous for the Kadets metric.

THEOREM 5.7. Suppose X is a Banach couple and Xg = [Xo, X11p for 0 <6 < 1. Then
f0<f<¢<l,

sin(rr (¢ — 6))/2

TS o o2
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Theorem 5.7 allows us to prove extrapolation theorems by showing that certain prop-
erties of Banach spaces define sets which are either open and closed or merely open. If
the property is an isomorphic invariant then one can use Theorem 4.5 to give also the
corresponding extrapolation result for the real method.

Let us say a property P is stable if there exists o > 0 so thatif X has P anddg (X, 7Y) <
o then Y has P. Stable properties define open and closed sets. Typical stable properties are
separability, reflexivity, containing £;, super-reflexivity and having non-trivial type.

THEOREM 5.8. Suppose X is a Banach couple and Xo =[Xo, X11g for 0 < 8 < 1. Then
if P is a stable property and Xg has P for some 0 < 0 < 1 then Xy has P for every
0<6<1.

Some other properties are merely open, i.e., they define open sets. For example
(see [63]), X =~ cg and X ~ ¢ are both open for the Kadets metric.

THEOREM 5.9. Suppose X is a Banach couple and Xg = [Xo, X1]p for 0 <6 < 1. Then
if P is an open property and Xy has P for some 0 < 0 < 1 then there exists § > Q so that
Xy has P for every |¢ — 0| < 6.

There are many unresolved questions about the Kadets metric. For example, we can
consider the set of separable Banach spaces under the Kadets metric. This pseudo-metric
space is not connected (for example, the super-reflexive spaces form an open and closed
subset). It is not difficult to show that the component of any Banach space X contains all
isomorphic copies of X. One can ask to identify the component containing £». It is not clear
if this contains all super-reflexive spaces. An old extrapolation result of Pisier [92] implies
it contains all super-reflexive Banach lattices. Another intriguing question is to identify the
component of cp. It is tempting to conjecture this consists of all spaces isomorphic to a
subspace of ¢g.

We refer to [63] for a fuller discussion of these ideas and of the relationship to the
Gromov-Hausdorff distance.

6. Calderén couples

‘We now turn to the interpolation theory question of determining all intermediate spaces for
a given couple. Let us first note that the construction of the (8, p)-spaces in (3.1) and (3.3)
can be generalized in an obvious way by replacing the a weighted L ,-space by an arbitrary
Banach function space.

To make this precise we define our notion of a Banach function space over a o-finite
measure space (£2, ). We say that a Banach space E, || - || continuously embedded in
the space M of all measurable functions (with the topology of convergence in measure on
subsets of finite measure) is a Banach function space if whenever g € F and | f| < |g] a.e.
then f € E and || fll£ < lIgllk-
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Let us suppose E is a Banach function space on the space (0, oc) (with Lebesgue mea-
sure) with the property that min(1, #) € E. Then given a Banach couple we can define an
interpolation space X as the space of all x such that X (¢, x) € E and we can put

Ixllxe = | K x) | -

Each such function space E then induces an interpolation method. The interpolation
method associated to E is called a K-method, with parameter E.

‘We say that an interpolation space X for the Banach couple (Xg, X1) is K-monotone if
there is a constant C so that whenever y € X and x € Xo + X with

Kit,x)<K(@#,y), 0<t<oo,

then x € X and ||x||x < C|lyllx. It is clear that each K-method yields a K-monotone in-
terpolation space. It is a deep result of Brudnyi and Kruglyak that for Gagliardo complete
couples the converse is true, i.e., that every K-monotone interpolation space can be ob-
tained by a K-method.

The so-called Fundamental Lemma and K-divisibility Principle are the key ingredients
of this result. The Fundamental Lemma appears in [24]. A forerunner appeared in Cwikel
and Peetre [32].

THEOREM 6.1. There is an absolute constant C with the following property. Let (Xo, X1)
be a Gagliardo complete couple and suppose x € X (X). Then there exists a sequence
(1j) jez 50 that u; € A(X) except for at most 2 values of j, x = ZjeZ ujin X(X) and:

K(t,x)< Y _min(lujllxy thujllx,) <CK(@,x), 0<t<oo. (6.1)
jezZ
REMARK. Here if for some j, we have u; ¢ Xo M X we interpret
min(]lu; | xy. tllujlx,) < oo
to imply that u; € Xo U X). The precise value of the constant C has been investigated
further in [26].
The principle of K-divisibility of Brudnyi and Kruglyak [12] was announced in [11].
The Fundamental Lemma was used by Cwikel [24] to give an independent proof of K-

divisibility.

THEOREM 6.2. TheLe is an absolute constant C so that if (Xo, X|) is a Gagliardo com-
plete couple, x € X (X) and ¢; is a sequence of concave functions such that ’

Zgoj(l) <00
j=1




1146 N. Kalton and S. Montgomery-Smith

and
o0
K, x)< Zqoj(t), 0<t<oo,
j=

—_

then there exist u;j € (X) such that x = Z;’il uj in >(X) and K (t, uj) < Co;(t) for
O<t<ooandjeN

We now discuss the proofs of Theorems 6.1 and 6.2. Let us first remark that they are
equivalent. If we assume Theorem 6.2 then we can obtain Theorem 6.1 by observing that
since t — K (¢, x) 1s concave it may be represented (uniquely) in the form

K(t,x)=a+ bt +/oomin(s,t) du(s), 6.2)
0

where 1 is a Borel measure on (0, 0o) such that  min(s, 1) di(s) < co. By approximation,
if & > 0 one can find a sequences (s1)52 7, (Cn)nez in (0, co) such that

K, x)<a-+bt +ch min(s,, ) < (1+)K({#,x), 0<t<o0. 6.3)

neZ

Note that if X (¢, ) < a for all ¢ then by Gagliardo completeness ||u| x, < a and similarly
if K(z,u) < bt forallsthen |ju|x, <b.If K(¢,u) < cmin(s, ) forall ¢ then |jullx, < cs
and |lu||y, < c. Thus if apply Theorem 6.2 to (6.3) we obtain Theorem 6.1 with constant
C(l+e).

Next we consider the converse direction. In this case we find (u,,) as in Theorem 6.1 and
let

Y(@) =Y min([unx,. tllnllx, ).

neZz

Thus
Kit,x) <y @) <CK(,x), O<t<oo.

Now consider the set I" of continuous maps 6 : (0, o0) = £1 of the form 0(¢) = (0;(?)) jen
where each 6; is non-negative and concave and we have 6;(t) < ;) but 3~ - 0;() >
C @) for 0 <t < o0). It is not difficult to see by the Ascoli—Arzela theorem that I”
is compact for the topology of uniform convergence on compacta, and so has a minimal
element o (t) = (0 (¢))nez- It then follows without difficulty that in fact we have

Zaj(t) =C_11//(t), 0<t<oo.

JjeZ
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Indeed if ) o > C~ 14 () on some maximal open interval I then it is easy to see that
> o, must be affine on I; if I = (o, ) where 0 < « < 8 < oo then the fact that ¢ is
concave leads to a contradiction, while the other cases when o = 0 and/or 8 = 0o can be
treated similarly.

Now using the definition of ¥ and the fact that each o7; is concave we see that

1 .
o) =C Z(Sjkmlﬂ(llukllxo,t||uk|lxl),
keZ

where Y ;.7 8;x =1 and &;; > 0. (One way to see this is to use the representation 6.2 for
¥ and o;.) Let

vj =Z<Sjkuk.

keZ

Then Z;”;l v; converges absolutely in Xo + X to x and
K@, v) £Coj(0) < Coj ).

It is clear from the foregoing discussion that if we define y; as the infimum of all con-
stants C for which Theorem 6.1 holds and y» as the infimum of all constants C for which
Theorem 6.2 holds then y; = y». Their commmon value, y is called the K-divisibility con-
stant. Its exact value is unknown and seems to be a challenging problem. The best estimate
from above was obtained by Cwikel, Jawerth and Milman [26], ¥ < 3 4 2+/2. On the other
hand, an example of Kruglyak [70] gives a lower estimate y > 1.6.

Let us now sketch the ideas in the proof of Theorem 6.1, but without attempting to
give the most delicate estimates (following [5]); we refer the reader to [26] for these. For
fixed x € X + X let us define 1o = 1 and then construct a sequence (¢;) jez by two-sided
induction such that for any j we have that one of the three mutually exclusive possibilities
holds:

o _n( Ky, x) th(tj_l,x)>

K(@tj—1,x)" t;21K(tj,x)

or
2) tj1= 0 and

, (K(zj,x) 1K (t,x)

) 2, O<t<t;,
K0 tK(tj,x)>< ==l

or
(3) tj=oc0and

. ( K@,x) tK{tj_1,x)

n ) <2, tip<t<oo.
K (tj_1,x) :j_lK(:,x)> /
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For each j € Z such that 0 < t; < oo pick v; € Xo and w; € X so that x = v; + w;
and ||vjllx, +tllwjllx, <2K(tj,x).Ift; =0letv; =0and w; = x.If t; = 00, let v; = x
and wj=0.
Nextletu;=v; —v;j—1.If 0 < t;_; <t; < oo then
-1
lejllx, <4K (), x), llujllix, <262 K(tj-1, X).
It follows thatif 7;_| <7 < ¢; then
min(([|u; llxo, tll#jllx,) < 8K (2, x).
If0=tj_) <t; thenu; =v; and
lujllx, <2K (2, x).
In this case either
. 1
lim K (£, x) 2 =K (¢, x)
t—0 2
or

-1 -1 -1
£ K(rj,x)gtlg%t K(t,x)<2tj K, x).

In the latter case we use Gagliardo completeness to deduce that ||x||x, < 2t]7l K(tj,x)and
hence

ot sl < xlixg + Hwjillx, <4tj_1K(tj,X)-
In either case we have
min(||ujl|x,, llujllx,) <8K(t,x), 0<t<1;.
Similarly if #;_; < tj; = 00 we obtain
min(||ujllxy, llujllx,) 8K (¢, x), 1<t <00.
Now if t;_14, <t < tj4, where r € Z\ {0} then we may see that
K@, x)=2""K(@,x), r>0,
and

TR, x) > 21—"r].—j11<(rj_1,x), r<O.
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Hence

min(Jlu | x,. tlujllx,) < 8- 27K (2, x).
Hence
Zmin(”ujﬂxo,tﬂuj”x])§24K(t,x), 0<t<oo.
jez

Itis clear that )  u; converges absolutely in Xo + X and it is not difficult to check that its
sum must be x in all possible cases.

The above argument is clearly quite crude with regards to constants. In [26] a somewhat
more delicate analysis is performed, keeping track of the intercepts on the axes of the tan-
gents to the concave function t — K (¢, x). With this analysis one can achieve the constant
342+/2+¢ forany e > 0.

The main conclusion from the principle of K-divisibility is that K-monotone interpola-
tion spaces coincide exactly with interpolation spaces obtained by the K-method:

THEOREM 6.3 (Brudnyi and Kruglyak [11]). If X is a Gagliardo complete couple then
any K-monotone interpolation space is given by a K -method.

Suppose Y is a K-monotone interpolation space. The idea of Theorem 6.3 is that one
can define a Banach function space E on (0, oo) by

I£lle =inf{2 Iyslly: |70 <3 K@y, 0<t < oo}.
j=1 j=1

Now if x € Xg + X; and K (¢, x) € E we can find y; € Y so that
oQ
K(t,x) < ZK(t y), 0<t<oo,
j=1

and

o0
> lyilly 2| K. 0],
j=1
Then by K-divisibility (Theorem 6.2) we can decompose x = Z?‘;l ujin Xg + X so that
K(t,uj) < CK(,y)),

where C is a universal constant. If ¥ is K-monotone this implies that u; € ¥ and that
we have an estimate |lu; ||y < Ci|lyjlly for some constant C; depending on Y. Hence
x=352ujeY and |x[ly < C2lK ¢, x)| -
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We say that a Banach couple is a Calderdn couple if every interpolation space is
K-monotone (or, by Theorem 6.3, every interpolation space is given by a K-method). This
terminology is based on the classical Calderén—-Mitjagin theorem on interpolation spaces
for (L1, Lo)- This theorem is in some sense already classical, but we will discuss it below
as motivation.

Let us first make an equivalent formulation of the problem. Suppose 0 # x € 3 (X). We
can define an orbit space for x, O, namely the space {Tx: T € L£(X)} with the norm

Iyllo, =inf{||T||72 Tx= y}‘

Then Oy is an interpolation space. If Oy is monotone then there is a constant C so that for
any y satisfying K (¢, y) < K(¢,x) we have T € £L(X) with Tx =y and ||T || < C. We
thus have:

PROPOSITION 6.4. X isa Calderdn couple if and only if for every x € X(X) there is a
constant C =_C(x) sothatif y € X(X) and K(t,y) < K(¢,x) for 0 <t < oo then there
exists T € L(X) with Tx = y.

Somewhat surprisingly it appears to be unknown if the constant C can be chosen inde-
pendent of x. If this is the case we call X a uniform Calderén couple.

We now consider the special case of the pair L = (L1 (R), L (R)) where R is equipped
with standard Lebesgue measure. In this case the K-functional is computable and is given
by the formula:

1
K(t,f)=/ f¥(s)ds,
0
where f* is the decreasing rearrangement of | f|, i.e., the function on (0, 00) given by

()= sup inf |fw)|.
A(F):s uekl

If we introduce f** as usual by setting

1 t
o= f F*(s)ds
tJo

then of course K (¢, ) =tf**(¢).

We recall a Banach function space X is symmetric (or a symmetric lattice ideal) if it
satisfies the condition that if f € X and g is any measurable function with g* < f* it
follows that g € X and || g||x < || f|x- It is not difficult to show any interpolation space for
L is a symmetric space.

Now for f, g € Loo + L1 let us say f < g if f**(t) < g™ (¢) for 0 <t < 00. In many
symmetric Banach function spaces X the property f € X and g < f implies g € X and
lgllx < |l fllx; for example, this holds if X is separable. However it does not hold in
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general, so we shall use the term rearrangement-invariant or r.1. space to mean a symmetric
space with this additional property.
The following theorem is due to Ryff [103] and Calderén [15]:

PROPOSITION 6.5. If f < g then there is an operator T € L(L) with Tz =1 and
Tg=f.

THEOREM 6.6. The interpolation spaces for the couple (L, L) coincide with the ri.
spaces on R and (L1, L) is a Calderdn couple.

Let us remark that this theorem is equally valid for the couple (L1, Loo[0, 1]).
It is natural then to try to extend this Theorem 6.6 to other function spaces. A major
advance was made in this direction by Sparr [106] and [107] (see also [1]):

THEOREM 6.7. The Banach couple (L, (wo), Lp (w1)) is a Calderén couple for any
choice of 1 < p;j < o0 and any pair of weight functions w ;.

On the other hand, Ovchinnikov shows that the pair (Lj + Loo, L1 N L) is not a
Calderon couple [88]. Indeed Maligranda and Ovchinnikov [78] showed that the L, N L
and L ,+ L, are not K-monotone with respect to this couple when 1 < p < o0, p # p’ and
1/p+ 1/p’ = 1. However these spaces are complex interpolation spaces for this couple.

This raises the general question of classifying pairs of r.i. spaces (Xo, X1) on either
(0,1) or (0, oc) which form Calderén couples. For special examples (certain types of
Lorentz spaces and Marcinkiewicz spaces) positive results were obtained by Cwikel [23]
and Merucci [81]. In [56] a full study of this problem was undertaken and although the re-
sults are not complete, a good description was obtained for sufficiently “separated” pairs of
spaces, in a sense to be described. Curiously enough some of the properties which surface
in the characterization have a flavor suggestive of Banach space theory.

We first need to introduce some standard ideas (see [72], for example). If X is an r.i.
space on [0, 1] or [0, oc) then the dilation operators D, on X are then defined by D, f (¢) =
f(/a) (where we regard f as vanishing outside [0, 1] in the former case). We can then
define the Boyd indices py and gx of X by

_ loga
PX = 5% Tog [ Dallx
and
loga
gax =

=lim ——.
a—0 IOg | Dallx

In many texts, the reciprocals of px and gy are used for the Boyd indices following the
original convention of Boyd [10]. The Boyd indices are of course extremely useful in
interpolation theory because of the classical Boyd interpolation theorem [10], which we
will discuss in Section 7.
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For convenience we restrict our discussion to the case of r.i. spaces over (0, 00). Let
en = X prt1y- Associated to each r.i. space X we can introduce a Banach sequence space
Sx modelled on Z defined by £ = (&,)n¢z if and only if ), ez bnen € X and

Z Enen

neZ

I 1sx =

X

Now it is clear from consideration of averaging projections that (X, Y) is a Calderén
couple if and only if (Sx, Sy) is also a Calderén couple. It turns out we can answer this
question under separation conditions on the Boyd indices in terms of some conditions with
a Banach space flavor. Let us suppose that £ is a Banach sequence space modelled on Z.
We shall say that E has the right shift-property (RSP) if whenever (x,,)fl\;l, (y,,)fl\':1 are
two sequences satisfying

(1) suppx) <suppy; <suppx; < --- < SUPpX, < SUPPYn.,

@) lynlle € lxnllg, n=1,2,...,N,
then

<C

N
2

n=1

N
Z In

n=1

Similarly we say E has the lefi-shift property (LSP) if whenever (x,)V_,, (y,)"_, are two
sequences satisfying

(1) suppx; > suppyj > Suppxs > - -- > SUpp X, > Supp yn,

@ lynlle € llxnlle,n=1,2,..., N,
then

<C

N
Z Yn .

n=1

N
E Xn
n=1

We then say that an r.i. space X on (0, 00) is stretchable if Sy has (RSP) and compressible
if Sx has (LLSP). If X is both stretchable and compressible then X is elastic.
The main theorems of [56] then assert the following:

THEOREM 6.8. Let (X,Y) be a pair of ri. spaces on (0, 00) such that py > gqx. Then
(X, Y) is a (uniform) Calderdn couple if and only if X is stretchable and Y is compressible.

THEOREM 6.9. Let X be an ri. space on (0, 00); then (X, L) is a Calderdn couple if
and only if X is stretchable.

Of course the condition py > gx is a quite strong separation condition on the Boyd
indices; it asserts that the intervals [px, gx] and [py, gv] do not intersect. A remarkable
feature of the conclusion of Theorem 6.8 is that the condition that X is stretchable (or Y is
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compressible) is independent of the normalization of e,,. To illustrate this note that if X is
a Lorentz space with norm

00 1/p
Iflx = (/0 | O w@) dt>

for a suitable decreasing weight function w then X is always elastic because Sy up to
normalization is simply £ ,.

The above Theorems 6.8 and 6.9 have similar statements when (0, oo) is replaced by
[0, 1] and for sequence spaces. It is necessary simply to formulate the shift properties on
sequence spaces modelled on N or Z \ N. We refer to [56] for details.

It is possible to give a rather complicated characterization of stretchable and compress-
ible Orlicz spaces. In fact for Orlicz spaces the conditions are equivalent and any such space
is elastic. The following theorem is given in [56] (we specialize to [0, 1] for definiteness).

THEOREM 6.10. Let F be an Orlicz function. Then the following conditions on F are
equivalent:
(1) LF[0, 1] is elastic (respectively, stretchable, respectively, compressible).
(2) (Lool0, 11, LF[0, 1) is a Calderén couple.
(3) There is a bounded monotone increasing function w :[1, 0©) — R and a constant C
sothatif 1 <s <tand0<x <1 wehave

F(tx) < F(sx)
F@) ~ F(s)

+ w(t) — wls).

(4) There is a bounded monotone increasing function w :[1, c0) — R and a constant C
sothatif 1 <s <t and 0 <x < 1 we have

F(sx) < F(tx)
F(s)  F@)

+ w(t) — w(s).

These conditions are a little difficult to check. They are related to somewhat similar cri-
teria for Orlicz spaces to coincide with Lorentz spaces [84]. Perhaps the simplest practical
condition which follows is the following.

THEOREM 6.11. Let X be an Orlicz space on [0, 1]. Then if (X, Lo[0, 1]) is a Calderén
couple we have px = qx.

This allows the construction of some very easy counter-examples to the conjecture that
(LF[0, 1], Lo[0, 1]) is a Calderén couple for every Orlicz function F.

In spite of the difficulty in classifying Calderén couples, there is a form of converse to
the theorem of Sparr, obtained by Cwikel and Nilsson [31]. Here we consider all possible
changes of density. If X is a Banach function space we define X (w) = {f: fw € X} with
| flx @y = || fwllx, where w is a weight function (a strictly positive measurable function).
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THEOREM 6.12. Let (Xg, X1) be a pair of Banach function spaces on [0, 1] or [0, 00).
Suppose that for every pair of weight functions the pair (Xo(wo), X1(w1)) is a Calderdn
couple. Then there exist 1 < pg, p1 < 00 and weight functions vg, v1 so that Xo = L, (vg)
and X| = L, (v1) up to equivalence of norm.

Finally let us note a problem raised by Cwikel which was solved in [80]. Cwikel asked if
apair (X, Y) of complex Banach spaces is a Calderdén couple if and only if every complex
interpolation space is K-monotone. In [80] counter-examples are exhibited even for pairs
of ri. spaces.

7. Interpolation spaces for (L, L,)

Throughout this section we will suppose that our rearrangement invariant spaces are over
{0, 1] or [0, o0). Let us start by noting that the K -functional for (L, L4) can be approx-
imated in terms of the Hardy operators. To this end, we have the following formula of
Holmstedt [47]:

1 7t L/p 1 [ l/q
t‘”"K(f,r””‘”‘f)%(;f f*(s)Pds) +(;f f*(s)qu) :
0 7

This formula, combined with the fact that (L,, L,) is a Calderén couple, can be used
to obtain useful results. For example, it is now easy to prove the following interpolation
result [46]. Given an Orlicz function @, we will say that @ is p-convex if the map 7 —
& (¢1/P) is convex, and g-concave if the map ¢ — & (+'/9) is concave (we will say that all
functions are oo-concave).

THEOREM 7.1. Let 1 < p < q < o0, and let X be an interpolation space for (L, Ly).
Then there is a positive constant ¢ such that the following holds. If f, g are functions such
that (gllp < W fllp for every function @ that is p-convex and q-concave, and if f € X,
then g € X with |gllx < cllfilx-

In [61], the authors were able to obtain the following characterization of interpolation
spaces for (L, L;). In order to state this result, we need the notion of conditional expec-
tation. On [0, 1], this is standard. On [0, o0) the same construction works, as long as the
o-field’s atoms all have finite measure.

THEOREM 7.2. Let 1 < p < g < 00. A rearrangement invariant space X is an interpo-

lation space for (Lp, Ly) if and only if there is a positive constant ¢ such that for any
function f, and any sub-o -field M whose atoms have finite measure, we have that

| E(£171M)77 | <l flix

andif g < o0

1l < | (1 £191M)) ) .




Interpolation of Banach spaces 1155

This gives the following collection of sufficient conditions, the fourth of which is the
classical Boyd interpolation theorem [10], which is also proved in [72] (see also [86]).

THEOREM 7.3. Let X be a rearrangement invariant space, and 1 < p < q < 0o Suppose
that any of the following hold:

e X is p-convex and q-concave;

e X is p-convex and has upper Boyd index less than q;

e X is g-concave and has lower Boyd index greater than p;

e X has Boyd indices strictly between p and q.
Then X is an interpolation space for (L, Ly).

Finally we end this section with some results about the span of the Rademacher series
in rearrangement invariant spaces. That is, given a rearrangement invariant space L on
[0, 1], we can form a sequence space R; which is the space of sequences (a,) whose
norm || 3 o2, anral| ;. 1s finite. (Here (r,;) denotes the sequence of Rademacher functions
on [0, 1])

It was shown by Rodin and Semenov [102] that R, is isomorphic to the space £> if and
only if L contains the space G, where G is the closure of the simple functions in the Orlicz
space derived from an Orlicz function equivalent to exp(x?). They went on to calculate the
space Ry for some lattices that do not contain G.

More recently this work was extended by Astashkin [2]. One of the main results of this
paper can be summarized as follows.

THEOREM 7.4. A symmetric sequence space S is naturally isomorphic to Ry for some
rearrangement invariant space L on [0, 1] if and only if S is an interpolation space for the
couple (£1, £2).

8. Extensions

Let us briefly describe the elements of the theory of extensions (or twisted sums). This
discussion overlaps the discussion in [60] but here our emphasis is slightly different. We
note that a good reference for the general theory of twisted sums in the context of Banach
space theory is [18]. Let X and Y be a Banach spaces (or more generally quasi-Banach
spaces). An extension of X by Y is (formally) a short exact sequence

0>Y—>Z—>X—0,

where Z is a quasi-Banach space. Less formally we regard the space Z is an extension of
XbyYif Z>Y and Z/Y is isomorphic to X. One can of course restrict extensions to lie
in the category of Banach spaces.

There is a general construction of extensions via quasi-linear maps. Let V be any vec-
tor space containing Y (we may take ¥ = V but some flexibility is useful here.) A map
£2:X — V is called quasi-linear if




1156 N. Kalton and S. Montgomery-Smith

e QUOx)=A2x),xeX,rekK.
e There is a constant C so thatif x1, x> € X then £2(x1 +x2) — £2(x1) — 2(xp) € Y and

12001 +x2) — 2Ge1) — 26| < C (il + 12l @.1)

We then can define an extension X @ ¥ to be the subspace of X @ V of all (x, v) such
that v — £2x € Y, and equipped with the quasi-norm

|G, o) || = el + llv — 2x]1.

In general this is not a norm, but it will be equivalent to a norm if it satisfies an estimate of
the form

n n
I
= =l

It follows that X @ Y is isomorphic to a Banach space if (and only if) (8.1) is replaced
by the stronger inequality:

n n
Z Qx; — £2 (Zxk)
k=1 k=1

In fact, in the above construction, it is only necessary that §2 be defined on a dense linear
subspace; the construction above yields a space whose completion is an extension.

Now it is a key fact that every extension can be represented in this form. Indeed if Z is an
extension of X we can definetwo maps F: X — Zand L:X — ZsuchthatgF =¢gL =
Ix where g is the quotient map. F is defined to be homogeneous (not necessarily linear)
and satisfy || F (x)|| € 2|x||, while L is required to be linear (but not necessarily bounded).
If we set 2(x) = F(x) — L(x) then £2:X — Y is quasilinear and one can easily set up
a natural isomorphism between Z and X @o Y. Notice, however, that the choice of 2
depends heavily on certain arbitrary choices (e.g., of the linear map L).

‘We refer to an extension Z of X as trivial if there is a bounded projection of Z onto X.
In this case Z splits as a direct sum X @ Y. It is easy to show that X @ Y splits if and
only if there is a linear map L: X — V so that 2x — Lx € Y for all x and

. Xl,.-Xxp €X,01,..., 0 €V

n
<C Y[ vp)
j=1

n
<C Y lxell (8.2)
k=1

|2x — Lx|| < Clx|l, xe€X.

In [60] we discussed the case of minimal extensions. A minimal extension is an extension
by the scalar field K. In this case all Banach extensions are trivial, by the Hahn—Banach
theorem. A Banach space X is called a K-space if all minimal extensions of X are trivial.
The following proposition is then very useful:

PROPOSITION 8.1 ([51]). X is a K-space if and only if any extension of X by a Banach
space is (isomorphic to) a Banach space.
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It is conjectured (see [60]) that X is a KC-space if and only if X* has non-trivial cotype.
It is known that any space with non-trivial type is a X-space.

An extension of X by X is called a self-extension; in this case we introduce the notation
doX = X ©po X. We will see shortly that these are intimately related with interpolation
theory, but first let us discuss the historical origins of the study of self-extensions.

9. Self-extensions of Hilbert spaces

A self-extension of a Hilbert space is called a twisted Hilbert space. The basic question
of the existence of a non-trivial twisted Hilbert space was apparently first raised by Palais.
It was solved in 1975 by Enflo, Lindenstrauss and Pisier [39] who produced the first non-
trivial example of a twisted Hilbert space. A few years later in [62] an alternative example
was constructed based on the ideas of Ribe’s construction of a non-trivial minimal ex-
tension of £ (see [99] and [60]). We will discuss this example and some variants in this
section. It is interesting that the link between minimal extensions of £; and self-extensions
of £5 is now much better understood than it was in 1979, and we will explain this connec-
tion later.

Let us recall that Ribe’s space is associated to the quasilinear map £2 : copg — R given by

28 = Zg}_n log |&:] — (Zgn) log Z%-n

n=I1 n=1 n=1

. CRY

We define a corresponding self-extension of £, denoted by Z; by taking £2: 4, — w (wis
the space of all sequences) as

16l \
2% =|%&,log .
§ (g ° ||s||;>>n:1

Here we interpret Olog0 and 0log0/0 as 0. Thus Z- is the space of pairs of sequences
((&n)ﬁil, (7711),?):1) such that

o\ 172

> oo

0 1/ 2 0

||<s,n>||=(zne,,|2) +(Z
n=1 n=1

This equation defines a quasi-norm; the fact that it is equivalent to a norm (and thus Z» is

a genuine Banach self-extension) follows from Proposition 8.1.

The Banach space properties of the space Z; are of some interest. It is immediate that
there is a natural unconditional Schauder decomposition into two-dimensional spaces and
it is shown in [62] that it has no unconditional basis; in [50] it is shown to fail local uncon-
ditional structure as well. In fact in [17] it is shown that any space with a two-dimensional
UFDD (E,) (oreven a UFDD with bounded dimensions) with local unconditional structure
has an unconditional basis which can be chosen from the subspaces. The main unresolved
problems concerning Z, are:

1€ |
1112

Nn — & log
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e Is Z, prime?

o Is Z, isomorphic to its hyperplanes.
It has been widely conjectured that Z, is not isomorphic to its hyperplanes (in some sense,
Z, is even-dimensional and its hyperplanes are odd-dimensional!). Of course, since the
celebrated example of Gowers [43], this problem is less pressing.

Let us notice (as in [62]) that this construction can be generalized quite a bit. Let F: R —
R be any Lipschitz map, and let E be any Banach sequence space and define

Rr&)= (an<10g 5] )) .
IENE / /et

Then 2r induces a self-extension dgp. E of E. In fact one can go further and consider
complex sequence spaces and then allow F:R — C. In [57] this idea was exploited taking
E=/¢and F(t) = 11 This produces a complex Banach space Z;(«) which is not
isomorphic to its conjugate space. The conjugate space of a complex Banach space X is
the space X on which multiplication is defined by A x x = Ax. In this case it is not difficult
to see that the conjugate space of Z»(«) is isomorphic to Z>(—«) and then it can be shown
without undue difficulty that Z;(«) and Z>(—«) are not isomorphic as complex Banach
spaces; see [57] or [6]. Earlier examples had been constructed by probabilistic methods by
Bourgain [9] and Szarek [108].

10. Analytic families of Banach spaces

In this section we sketch the origins of the theory of non-linear commutators and analytic
families and how it relates to the preceding examples. Let us introduce the idea of an ana-
Iytic family of Banach spaces. To do this we will abstract the ideas of complex interpolation
introduced in Section 4; this has the added convenience of incorporating the description of
interpolating families of spaces by Coifman, Cwikel, Rochberg, Sagher and Weiss [20].

Let us suppose U is an open subset of the complex plane conformally equivalent to the
open unit disk D; in fact we need only consider the case f =D and Y =S :={z: 0 <
Mz < 1}. Next let W be some complex Banach space (the ambient space) and let 7 be a
Banach space of analytic functions F : 1/ — W. We assume that F is equipped with a norm
I - | = such that:

e The evaluation map F — F(z) (F — W) is bounded for each z € 4.

o If ¢:U4/ — D is a conformal equivalence then F € F if and only if ¢ F € F and

IFlz = loF 7.

We will call such a space F admissible. Then for z € if and x € W we define

x|l =inf{|Flz: F(z)=x}
and let

X:={xeW; |xl: < oo}
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The family of spaces (X;),<y is then called an analytic family of Banach spaces. If Wy is
the linear span of the spaces {X;: z € U} then a linear map T : Wy — Wy will be called
interpolating if F — T o F is defined and bounded on F. It then follows that 7'(X;) C X,
for each z € U/ and

ITx.»x. <IT o Fllpmr-

If we take a Banach couple X = (Xp, X1) and define F as in Section 4 then one may see
that {X: z € U/} is an analytic family and X, = Xy, where Xy is the complex interpolation
space between X and X ;. Thus our definition abstracts the ideas of complex interpolation.
Under these assumptions any T € £(X, Y) is interpolating. The upper method also yields
an analytic family at least when X is Gagliardo complete.

Let us note that it is possible to describe the ideas of this section in much more generality,
by relaxing our assumptions on F, so that real and other methods may be included; we refer
to [28] for a fuller discussion, using an annulus in place of the disk. To keep our discussion
reasonably crisp we will retain our much stronger conditions.

We now invoke ideas of Rochberg and Weiss [101] (which in embryonic form appear
in work of Schechter [104]). For each z we define a derived space dX, C W x W by
dX:={(x1,x2): | (x1.x2)llax. < o0} where

|Gty x2) | g, = nf{IIFll s F2) =1, F'(2) = x2}. (10.1)

Let Y be the subspace of d X, defined by x; = 0. We claim that ¥ is an isometric copy
of X.. Indeed let ¢ be a conformal map of I/ onto D with ¢(z) = 0. Then if F(z) =0 we
can write F = @G where ||G||F = || F||#- Then F'(z) = ¢’(z)G(z) and so

-1
[0, x2)] ;5. = ¢’ @] lIx2llx..

On the other hand d X; /Y is trivially isometric to X, so that we have a short exact sequence
0= X, —»dX;,—> X, —0

and 4 X; is a self-extension of X,.

Thus we can use the ideas from Section § to give a representation of 4X,; in the form
doX. where £2:X; — W is a quasilinear map. It is easy enough to see that an appro-
priate £2 is given by £2(x) = F’(z) where F is any choice of F € F with F(z) = x
and || F||# < CJ/x||z. In many circumstances there is a unique optimal choice of F with
|Fllz = |lx]l; and in this case one can define £2 in a very natural way. In general, there
is some arbitrariness in the definition of £2 but any two such choices differ by a bounded
function. Thus we have

| Cets x| g, xtllz + llx2 — 221l

Rochberg and Weiss used this construction to obtain commutator estimates. If T is an
interpolating operator then (x1, x2) — (T x1, T x2) is bounded on d X ; and this implies
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PROPOSITION 10.1. If T is an interpolating operator then there is a constant C so that if
xeX . then|T,Q2lx=TRx —2Tx e X; and

|17, 21|, < Clix|l.-

To conclude this section, let consider the case of interpolation of £,-spaces. Suppose
1< p1 < po < 00. We will take W = w, the space of all complex sequences, as our ambient
space. Let us consider the space G of analytic functions on the strip S of the form F(z) =
(fr ()72, where (fi)72; are bounded analytic functions. We can then extend each f; a.e.
to the boundary of the strip by taking non-tangential limits, i.e.,

fir(G+i) =lim fi(x+ir), j=0,1.
x—j
Now define F to be the space of all F € G so that F(j +1if) € £,; a.e. for j =0, 1 and
F :max( esssup | F(j+1t < Q.
IFllz = max (esssup | F(j )JJ%)

It may be shown that this method coincides with the upper Calderén method, and hence by
Corollary 4.3 yields the same interpolation spaces as complex interpolation, i.e., X; =£,_
where if 8 = Jiz we have

1 1—-6 @
i 4+ = .
P P Po

The advantage of using this method, however, is that we can write down explicit extremals
when computing norms in the interpolation spaces.

Now suppose 0 < 6 < 1 and x = (§)2, € £p where p = pg. In this case we can
construct an optimal F so that F(9) = x and [[F [z = [lx|l¢,. Let us suppose first that
llxlle, = L. Then F is given by

L_L T —
fk(Z):.Xkl_xkl(Pl PO)(” g)

with fx(z) = 0 if x; = 0. It follows that we can define §2 : £, — w by the formula:

o0
2((x)= ((i - £>xk log |xk|) .
P1 Po k=1

In general by homogeneity we have

oo (5Bl
Pl PO Ixlle, )/ k=1

If we take pg =1, p; =00 and 6 = 1/2 we have

2(x)= 2<xk Iog<ﬂ))
||x||£g k=1
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so that (except for a normalization factor of 2) one sees that Z» is really nothing other than
d X1 for this interpolation process.

Of course exactly the same calculations are possible for function spaces and this was
originally done in that context by Rochberg and Weiss [101]. In particular they noticed
that if one applies this and Proposition 10.1 to the Hilbert transform H on the space L ,(T)
where 1 < p < 00 one obtains inequalities of the form

|H(flog|f1) — Hf (log|HI) |, < Cpllfllp-

Let us also notice that if one use the couple (L2(€p), L2(£4)) where 1/p +1/g=11t1is
not difficult to use these ideas to see that Z, is a (UMD)-space; this result was originally
shown directly in [52].

Let us remark that it is also possible to develop a theory of commutator estimates for
real interpolation spaces ([49]). However as remarked in Section 4 one can treat real in-
terpolation scales as complex interpolation scales. For a unified treatment see [28]. We
also remark that nothing prohibits us from generalizing our ideas to higher-order results
by considering the map F — (F(z), F'(2), F"(2), ..., F"(2)) for n > 1. There is quite a
substantial literature on higher-order estimates (see, e.g., [16,82] and [100]).

11. Entropy functions and extensions

In this section we will extend the ideas developed in the preceding sections to more general
spaces. Our discussion will overlap with ideas in [60]. We will be discussing interpolation
of lattices, but it will be convenient to discuss the special case of sequence spaces; function
spaces can be treated almost identically but certain irritating (but fundamentally unimpor-
tant) complications arise.

As in [60] we will use the term Banach sequence space to mean a Banach sequence
space X equipped with a norm | - ||x such that

e The basis vectors ¢, € X.
If x € X and |ni| < |xg| forevery k thenn € X and ||n|lx < |Ix|x.
For every n € N the linear functional n — 7, is continuous.
If x is asequence such thatn € N S, x = (x1, ..., %, 0,...) € X and sup || Sy x||x < o0
then x € X and ||x || x = sup, ey 1Snx|lx-
Thus a key assumption is that a Banach sequence space will always be assumed to have the
Fatou property. This is essentially the statement that By = {x: ||x| x < 1} is closed for the
topology of pointwise convergence. Of course if we consider only reflexive spaces this is
immediate; the main significance is that we consider £, and not ¢o to be Banach sequence
spaces. The analogous assumption for function spaces is that By should be closed under
convergence almost everywhere.

We will use X* for the Ko6the dual of X, i.e., x* € X* if and only if

oo
%] e = sup{}: | x| 1l Ilxllx < 1} < 00.

k=1
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We need a fundamental result of Lozanovsky [77]:

PROPOSITION 11.1. Suppose X is a Banach sequence space. Suppose u € £1 withu >0
and |ull; = 1. Then there exist x € Bx,x* € Bxx with x 2 0,x* > 0 and u = xx*, i.e.,
up = xkx,:‘ for 1 < k < co. Furthermore x,x* are uniquely determined if we insist that
x; =xx =0 when u; =0.

This result was originally obtained by Lozanovsky by interpolation techniques; it is
also valid in function spaces. Several subsequent proofs has appeared (e.g., [42]). The
factorization u = xx* is called the Lozanovsky factorization of u.

Let us also introduce the notion of the entropy function of X:

(e8]
Px(u)= sup Zukloglka (11.1)
Ixlx<1 5y

The study of this functional goes back to Gillespie [42] in 1981. The term indicator func-
tion of X was used in [55] and the name entropy function of X in [87] where it plays
an important role in the solution of the distortion problem. As explained in [60] for any
such Banach sequence space X the entropy function @y extends to a quasi-linear map
@y : coo — R which induces a minimal extension of £;.

The entropy function was used by Gillespie [42] to give a simple proof of the
Lozanovsky factorization (Proposition 11.1). We treat the case of sequence spaces; with
some extra technical work, the argument can be extended to function spaces. It suffices to
prove the proposition if u € cgp (as then standard limiting arguments can be used, exploit-
ing the Fatou property). For fixed u pick x € Bx with x > 0 to maximize the expression
>0 uklog|xk|. Now if & € By with £ > 0 we have

Z urlog(xe +1 (& — xp) <

k=1

Nk

urlogxy, 0<tr<1.

7
Il

1

Note that if u; > 0 then we must have x; > 0. Hence differentiating

Z ukfk—xk <o.

Xk
uy 70 k

Let xj = uy/x; if uy # 0 and 0 otherwise. Then

o0 o0
kax;f < Z up=1
k=1 k=1

so that HX*Hx* < 1.
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Uniqueness is immediate since if ¥ = xx* = yy* where ||x|lx = ||yllx = |x*|lxx =
[ly*|ly= and x, x*, y, y* > 0 then

e o]

1
ZZ xk+)’k) Xx +)’k) 1
k=1
and this can only happen if x; = y; and x;/ = y whenever uy # 0.
Note that this implies that if u € caf),

o0
Py () =Y uglog|xcl,
k=1
where x € By is determined by the Lozanovsky factorization of u/||u|| . We can exploit to
canonically extend @y to cop by defining
o0
Py ()= Y urlog|xel,
k=1
where x is given by the Lozanovsky factorization of |u|/|lu|/1. This definition of ®@x is
also quasi-linear on cqg.
Next we turn to complex interpolation of Banach sequence spaces, using the upper

method which may be formulated as described at the end of Section 10. If Xy and X,
are two Banach sequence spaces we define F to be the subset of G of functions such that

IFllF = max esssup [F(j+in],, <oo
J=0,1 —co<t<co !

and then we obtain an analytic family X, for z € &. In this case Xg for 0 <@ < 1 is
obtained by the Calderon formula Xg = Xé_e X‘19, i.e., x € Xp if and only if

1% lxp :=inf{ xoll e, Ix11%, s el = 1xol' = |x11°} < oc.
As we have seen in Theorem 4.6 above the spaces Xy are simply the usual interpolation
spaces for complex interpolation when either X or X; has the Radon—Nikodym prop-
erty (essentially this means one is separable under our restrictions). Note that the entropy
functions linearize this interpolation method, i.e.,

Py, =1 —-0)Px, +0Px,.

The Lozanovsky factorization theorem gives the formula

Ox+ Px+= A,
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where A = @y, is given by

— %
e §x ST
Thus A coincides on the positive cone with Ribe functional given by (9.1). Note all also
that P, = %A for 1 € p < oo and in particular that @, = 0.
The following result is the specialization to our situation of Theorem 5.2 of [55], giving
a full characterization of entropy functions:

THEOREM 11.2 ([55]). Let @ : c(% —> R be any functional. Then in order that there exists
a Banach sequence space X such that ®x = @ it is necessary and sufficient that:

(1) @ is positive homogeneous, i.e., (au) =ad W) if« = 0.

(2) @ is convex.

(3) A — D is convex.

Note that (X, || - || x) is unique: in fact we can characterize By by

oo
By = {x: Zuklog[xkl L PWm) Vu 20}.
k=1

Moreover, the inequality

|®y @) — Pxw)|< Cllulli, u>0,
is equivalent to the statement that ¥ = X and

e “llxlly <llxlix <elixlly, xeX.

It is amusing to point out that this identification gives a “calculus” for Banach sequence
spaces which can be used to prove an old extrapolation result of Pisier [92]:

COROLLARY 11.3 ([92]). Let X be a Banach sequence space which is p-convex and
q-concave where | < p <2and1/p+1/q = 1. Then there is a Banach sequence space ¥
such that X = Yl_efg where 0 =2/p — 1.

To prove Corollary 11.3 it suffices to note that X is p-convex (with constant one) if and
only if there is a sequence space ¥ with X = Y/ so that @y satisfies that %A — &y is

convex. Similarly g-concavity (with constant one) means that %A — @y« is convex. If we
now solve the equation @y = (1 — )P + %QA it can be shown that @ and A — @ are
convex so that we can determine Y with @ = ®y.

Now fixing X and X let us describe the derived spaces d Xy. Assume x € Xy and
Ilxllx, = 1. Then there is an optimal factorization |x| = |xo|'~?|x;|® where x; € Bx;. It
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can be assumed that xg, x| have the same support as X. The optimal choice of F € F with
F(0) = x is given by F(z) = x|x1|*"%|x0|? . Thus d X4 can be identified with d Xy
where

2x = x(log |x1] — log |x0|).

However if we similarly interpolate X and X7 then it follows from the calculus devel-
oped above (or in most cases from the basic duality theorem of [14]) that the correspond-
ing intermediate spaces are given by X} . Now assume x can be normed by some x* € X}
(e.g., if x* is in the closure of cpp). Then x* has a similar factorization |x*| = |x||x]|
and the corresponding optimal F* is given by F*(z) = x*|xf|5_9 |x8|9_5. Let us sup-
pose F(z2) = (fr(z)) and G(z) = (gr(2))- Then Zf’;l Jf1(2)gr(z) assumes its maximum
value 1 at the interior point z = 6 and hence is constant. It then follows that for each k
the functions f;(z)gr(z) can only take real values and thus individually constant. Thus
|x[|x*] = [xg||x]| = u say. Thus x| and x( are determined by the Lozanovsky factorization
of |x||x*| where x* norms x. Note also that we have

<.Qx, x*) = Py, (xx*) — Py, (xx*)

if x € cpo. This last formula can be extended to a larger domain but not to all x € X. It may
also be shown that arbitrary x € X and x* € X* (not necessarily norming x we have

|(.Q(x),x*) — Cb(xx*)| < C||x||x||x*Hx*, xeX, x*eX*, (11.2)

where @ = @x, — Dy, , for a suitable constant C. There is thus an intimate relation between
entropy functions and the derived spaces d Xj. To illustrate the meaning of this statement
suppose X is obtain from X by a change of weight, i.e., X1 = {x: xw € X¢} for some
positive weight sequence w = (w,) and ||x[x, = llxwlix,. Then |x|lx, = ||xw9||xo. In
this case @ is linear and

o0
D)= —Zunlogwn.

n=1

The spaces d Xy which arise in this way are special self-extensions of X, in the sense
that the multiplication operators M,x = ax for a € £, must naturally extend to d Xy, since
they are interpolating operators. In terms of £2 this means an estimate of the form

|2(@x) —a2@)|, < Cllallsollx ] x,-

We may say that the spaces d X¢ are lattice self-extensions (in [53] the term lattice twisted
sum was used). This notion can be made precise but we will not do so here for lack of
space.

Let us now consider the problem from the opposite direction. Suppose we fix a Banach
sequence space X; we wish to characterize all lattice self-extensions. It can be shown that
this reduces to looking at the notion of a centralizer (cf. [53]). A map £2: X — w is called
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a centralizer if it is homogeneous (i.e., 2 (xx) = «$2(x) for « € C and x € X) and there is
a constant C so that:

la2x — 2(@ax) |, < Cllallwolxlx, a€lo, x€X. (11.3)

It is easy to show that a centralizer is quasilinear and so induces a self-extension dp X
which is a lattice self-extension.

Let us say that £2 is real if £2(x) is real-valued whenever x is real-valued (in particular,
this holds if we form a lattice self-extension of the real space X and then complexify). In
general £2 is equivalent to £2) - 1£2> for suitable real centralizer £21, §25.

Now a key idea (and a rather simple calculation) is that every centralizer on X lifts to a
centralizer on £1:

PROPOSITION 11.4 ([53]). Let §2 be a real centralizer on X. Then there is real centralizer
£2' on £ such that for a suitable constant C we have

H.Q’(xx*) —x*Q(x)”1 < C||x||x|}x*||x*, xeX, x*eX”.

For u € cop we define @ (u) =Y o | (§2'(u))x. From the fact that £’ is a centralizer it
follows that the series must converge and that @ : cgg — C is quasilinear on £; and takes
real sequences to R. Furthermore we have:

|® (xx™) — (2(x), x*)| < Clix|l]| x*

, xeX, x"eX*. (11.4)

We thus are led back to the problem of characterizing all quasi-linear maps on £1 or
alternatively all minimal extensions of £ (see [60].) If we compare (11.4) and (11.2) it is
apparent that we can represent dp X in the form d Xg for suitable X, X; and0 <8 < 1 if
we show that @ is equivalent to $x, — Px,. The main result we need is as follows:

THEOREM 11.5. Suppose 0 < & < 1; then there is a constant C so that if ¢ :caz) — R is
a map satisfying:
(1) ®lou)=ad ), o« >0, u €y
2) [ Pu+v)—DPw)—PW)| <A ~e)log2(f|ulji +vl1), u,ve caz), then there exists
a Banach sequence space X so that

&) — (Px () — Px+(w))| < Cllufli,  u€cyy.
Now if X is super-reflexive Theorem 11.5 can be applied to show (see [55]):

THEOREM 11.6. Let X be a super-reflexive Banach sequence space and suppose §2 is a
real centralizer on X. Then for some c > 0 there exist super-reflexive Banach sequence

spaces Xg, X1 sothat X = X2 = X(l)/zX}/2 and the derived space dX |2 is induced by a
centralizer 2" equivalent to ¢S2, i.e.,

|2/x) —c2x)|, <Clixlx. xeX.

In particular the lattice self-extension dg X is isomorphic to the derived space dX1/2.
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We stress that this entire program can also be carried for function spaces and it is in this
form that it is developed in [53] and [55].

12. Commutator estimates and their applications

‘We now revisit Proposition 10.1, which so far we have not exploited. Initially we continue
to treat sequence spaces for technical reasons, but in fact our main interest lies in similar
calculations for function spaces.

Let us suppose X and X are two reflexive Banach sequence spaces, and that 7: X ; —
X ; is a bounded operator for j = 0, 1. In this case the interpolation procedure described
in the preceding section coincides with complex interpolation. Let 0 < 6 < 1 we have the
estimate for Xy = X(l)_g X?.

T, 21x| . < Cllxllx,-

|

Suppose x, x* € coo; then we have

[(20), T*x*) — (2 (Tx), x*)| < Cllxlix, |x*|

X3

Noting that £2x € cgg as well, we can apply 11.2 to obtain
|@(x.T7x%) = @(Tx.x")| < Clixlix, |7y, x€X, 2™ € X7,

where @ = @y, — Px,. Noting that P is quasilinear we obtain the following estimate:
|<15(x.T*x* - Tx.x*)| < Clxllix, ”x*”xg'

We can do slightly better than this by exploiting the Krivine theorem (see [72]) that T
actually maps X ;(£2) to X j(£2). We finally obtain:

LEMMA 12.1. Suppose Xo, X1 are reflexive Banach sequence spaces and T € L(X, X).

If0 < 6 < 1 then there is a constant C so that if X1, ..., Xn, X}, ..., X, € coo then if & =
S
N N
@ (an.T*x;: - Txn.x;;) <C Y Ml x5, - (12.1)
n=1 n=l1

These calculations are carried out in [53] for function spaces, although the strengthening
by using Krivine’s theorem has not been observed before.

In order to push these estimates further we now suppose T is bounded on £, and £,
where pg < p1. If we fix po < p < p1 we can obtain (12.1) with

o
®w)=(py" —pi ) AW = (py" = pi") D unlogus|-

n=1
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However more can be achieved if we apply Boyd’s theorem for sequence spaces (Theo-
rem 7.3) and note that T is bounded on any r.i. sequence space whose Boyd indices obey
Po < px < gx < p1. Thus we can consider any pair X, Xo of r.i. sequence spaces sat-
isfying these conditions and Xé_a X(l’ = £,. We then get a family of estimates. In fact it
suffices to consider Orlicz sequence spaces and we must consider the family of quasilinear
maps given by

oo
®(Fiu)=Y u,F(loglusl). F eLip,

n=1

where Lip, is the family of Lipschitz maps F:R — R with Lipschitz constant one. We
then get a uniform estimate.

Let us replace Lip; by the space of all Lip; . of all ¥ € Lip; so that F’ is compactly
supported (i.e., F is constant on (—o0, —a] and on [a, co) for some a > 0. For such F
we have the advantage that @ (F; u) is defined for all u € £;. Then we can define a quasi-
Banach space hiy ™ (the symmetric Hardy sequence space) as the space of all sequence
& = (§,)°° ; such that

n=1

1€l =Y leel+ sup @(F:8) <oo.

=1 FeLip; .

Itis clear that & € h;ym implies £ € £; and that y .-, £, = 0. A convenient description of

hslym is as follows. Suppose & € £1. Let (,,)32 | be a sequence such that |A,,| is monotoni-
cally decreasing and such that if o # O the sets {n: A, = «} and {n: &, = «} have the same

cardinality. Then & € kL _ if and only if

sym

i[}\1+"'+}\nl

n

< 0. (12.2)

n=1

We refer to [53] and [54] for details. This equivalence actually hinges on replacing Orlicz
spaces by Lorentz-type spaces in the above argument.
One can then show that the above ideas yield the following theorem:

THEOREM 12.2. Suppose 1 < po < p < p1 <oo and 1/p + 1/q = 1. Suppose that
T:L,, — £p; is bounded for j =0, 1. Then the bilinear form Br(x,x*) = x.T"x* —
Tx.x* is bounded from £, x £, to héym.

Although we have given our exposition in terms of sequence spaces, the most interesting
applications of these ideas are found with function spaces, where essentially the same
steps can be made (with some annoying technicalities). Let us consider a measure space
(K, u) where K 1is a Polish space and p 1s a o-finite non-atomic Borel measure with either
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u(K) =1 or u(K) = oco. We define the symmetric Hardy function space Hslym(K , 1) to
be the space of f € L1(K, ) such that

WM%=LUWH-M>LUWWHMM<W

FeLip, .

As before Hslym is a quasi-Banach space of functions. A description such as (12.2) can be
obtained. Let us note that f € Hy,, if and only if R f, Sf € Hp,. If £ € Lo(K1, 1) and
g € Lo(K», up) are two measurable functions we write f ~ g if whenever B is any Borel
subset of C \ {0} we have w1 (fi € B) = u2(f> € B). Let us note that f & Hslym if and
onlyif Rf,3f € Hslym. Therefore it suffices to consider real functions. If f € L{(K, u)
is real then we may find a function f;:R — R so that f; is decreasing and non-positive
on (—o0, 0), decreasing and non-negative on (0, o0), and such f; ~ f. Thatis, if B is any
Borel subset of R \ {0} we have u(f € B) = m(f; € B) where m denotes either Lebesgue
measure on R. Now let

t
M((t) = fa(s)ds, r=>0.
—t

Then f € H]

ym

/mwdt< 0. (12.3)
0

t

is equivalent to:

The continuous analogue of Theorem 12.2 is given by:

THEOREM 12.3. Suppose 1 < po < p < p1 <o and 1/p + 1/q = 1. Suppose that
T:Lp,(K,u)— Lp,(K, ) is bounded for j =0, 1. Then the bilinear form Br(f, g) =
fT*g —Tf.gis boundedfrom L, x Ly to Hslym(K, ).

Let us interpret this result by considering K = T and du = (27)~1d6. It is natural to
consider the Riesz projection (or equivalently the Hilbert transform) given by

RF©O)~ Y fme,

nz0

where

do

]Z*\(n) — ‘/';r f(eié)e~in€ o

Since R is bounded on L, for 1 < p < oo we can apply Theorem 12.3 when p =g =2.
Note that R* is the Banach space adjoint of R (not the Hilbert space adjoint). Suppose
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feHyand g € Hyg (i.e., g € Hy with g(0) =0). Then R*g =0 and Rf = f. Hence we
obtain an estimate || fg|| Him < C|fl2llgll2. But by standard factorization this reduces to

1 £ sy, <CIflI1  f €Hio.

In particular if f € Hj o then i f satisfies (12.3). This result is, in fact, the main part of a
theorem of Ceretelli [19], proved independently somewhat later by Davis [34].

THEOREM 12.4. Let f € L1(T) be real-valued. Then there exists g € Hi o(T) with
Rg~ fifandonlyif f e Hslym.

Next we consider non-commutative analogues of the ideas developed above. Suppose H
is a separable Hilbert space. If X is a symmetric Banach sequence then we denote by Cx
the space of all operators T whose singular numbers s, (7') satisfy

oo

1T llex = [ (2 ()5 | < 00

In the case X = £ we obtain the trace-class C;.
Much of the foregoing theory can be generalized using the fact that [Cx,,Cx,] =
Cy1-6 4o if Xo, X are reflexive Banach sequence spaces. Probably the most interesting ap-
0 1

plication is to theory of commutators (or traces). A trace T on a two-sided ideal of compact
operators 7 is any linear map such that 1(AB) = t(BA) for all a € J and B € B(H).
Let us define the commutator subspace Comm J to be the space of all A € J so that
7(A) = 0 for all traces T on J. Then Comm [ is the linear span of all commutators
[A,B]=AB — BA fora € J and B € B(H). The problem of identifying CommC; goes
back to [89]. It was shown by Gary Weiss in 1980 [109] (see also [110]) that Comm C; does
not coincide with {T € C;: trt T = 0} or, equivalently, that there exist discontinuous traces
on (1. The precise identification, however, requires the non-commutative analogue of hslym
and this was done by interpolation-style arguments in [54]. We define the eigenvalue se-
quence (A, (T))32 | for a compact operator T to be the sequence of non-zero eigenvalues of
T repeated according to algebraic multiplicity, completed by zeros if there are only finitely
many, and arranged so that (|A,,(T)|)72 ; is decreasing. There is some possible ambiguity
here if T has two different eigenvalues with the same absolute value, but this does not
cause problems.

THEOREM 12.5. Suppose T € Cy. Then T € CommCy if and only its eigenvalue sequence
On (TN € hiyp or equivalently

i IA(T) + -+ A (T)]
< X0
n

n=1

It was shown in [54] that if 7 € Comm 7 then T is the sum of at most six commutators.
This theorem has recently been improved dramatically following work of Dykema, Figiel,
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Wodzicki and Weiss [37] (see also [59] and [38]) where the case of general ideals is treated;
in particular it is shown in [37] that three commutators suffice in Theorem 12.5.

One can introduce a quasi-normed analogue of hslym denoted by Ch1 := CommC;. It can
be shown that this is made into a quasi-Banach space by the quasi-norm:

1T len = 1T lle, + | 0 (1)),

sym.
hl

‘We remark that the quasi-Banach spaces h;ym, Hslynrl and Ch are all examples of logconvex

spaces. A quasi-Banach space X is logconvex if it satisfies an estimate of the type

/3 n 1
> x <C<Z||xk||log i ”)
=1 k=1 k

whenever Y ;_, [xx[ = 1. One can apply this to prove results of the following type:

THEOREM 12.6 ([54]). Suppose (A) is a sequence of trace-class operators and B, is a
sequence of bounded operators. Suppose

s 1
I Anlic, | B ||(1+lov —) <00
2_ I 4nllc, 1By Tl Anllc, | Ball

n=1 Cq
Then Z?;l [An, Bn] (S COmmC’l.

Now suppose X is any symmetric sequence space. Then the entropy function @ x obeys
an estimate

|x )| < Cllullyy, . u eh!

sym*

We can then define @ (T) := Px (A, (T):2 ) for T € Cy. Suppose S, T € Cy. Consider
the operator:

S+T7 O 0
A= ( 0 -5 0 ) .
0 0 -T
Then A is the sum of two commutators and it may shown that we have an estimate:
IAllcr, < C(ISlle, + 1T licy )-
This leads quickly to an estimate:
|@x(S+T) — @x(S) — Dx (D] < C(ISle, + T lc,).-

Thus @ is quasi-linear on C; and induces a minimal extension of C;.
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We close by remarking that it would be natural to attempt to classify all minimal exten-
sions of C; in a similar way to Theorem 11.5 (for £1). However it is not clear how to do

this.
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