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A remark on sectorial operators with an
H*>*—calculus

N. J. Kalton

ABSTRACT. We construct examples of sectorial operators admit-
ting an H*°-calculus so that the angle of sectoriality and the angle
of the H*®—calculus are different.

1. Introduction

Let X be a complex Banach space. A sectorial operator A on X is
a one-one closed operator with dense domain and range such that the
resolvent operator R(\, A) = (A — A)~! is defined and bounded outside
a sector | arg A| < ¢ and further satisfies an estimate

(1.1) AR, A)| <C JargA| > ¢.

The infimum of all ¢ so that (1.1) holds is denoted by w(A). Let us
recall that a closed operator is of type w if its resolvent is well-defined
outside a sector and satisfies an estimate of type (1.1). Such an operator
becomes sectorial if in addition we have that lim; ,o_ tR(¢, A)z = 0 and
lim; o tR(t, A)z = z for every z € X.

If A is sectorial it is possible to define a functional calculus for
certain functions bounded and analytic on a sector Xy = {A: |arg A| <
¢} where ¢ > w(A). We refer to [2] for details. We say that A admits an
H>(3,)—calculus if f(A) is a bounded operator for every f € H*(Z,).
If A admits an H*°—calculus for some 0 < ¢ < 7 we define wy(A) to
be the infimum of all such ¢.

A basic result due to McIntosh [4] is that if X is a Hilbert space
and A admits an H*—calculus for some angle then wg(A) = w(A). In
[2] the question is asked whether this is true in an arbitrary Banach
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space. There is an example in [2] (Example 5.5) which almost answers
this question negatively; it is, however, not a sectorial operator because
it fails to have dense range.

The object of this note is to give a natural counterexample to the
question in [2]. For 0 < @ < m we construct a sectorial operator with
w(A) = 0 and wy(A) = 6. By an interpolation argument we show that
we can choose X to be uniformly convex.

Unfortunately we do not know an example on an explicit space such
as L, when 1 < p < oo and p # 2.

2. The examples

We start with the space Ly(R). It will be convenient to norm this
space by ’

172 = 2 / (@) = / ()P

where f is the Fourier transform. The identity follows by Plancherel’s
theorem. On this space we define a sectorial operator A by

Af(z) = " f(x)

with domain D(A) = {f : e*f(x) € Lo} It is clear that A is sectorial
with w(A) = 0. In fact A has an H*-calculus and wg(A) = 0.
For 6 > 0 we define a Euclidean norm on Ly by

171 = / &1 £ (6)Pde.

—00

Let Hy be the completion of L, with respect to this (Weaker) norm.
 If f € Ly then A® f(z) = e** f(z) so that if g = A% f then §(¢) =
f(& — s). Hence

(2.1) 1A% flle < "l fllo-

We now wish to show that A induces a sectorial operator on Hp.
We do this by simply checking that the appropriate resolvent operators
extend boundedly and satisfy the necessary bounds. To be precise if
for some 0 < ¢ < 7 we show that the operators AR(\, A) = A(A— A4)™*
extend to be bounded on Hg and if further

sup [AR(L, Al < 00

|arg A[>¢

then the operator A defined with domain (I + A)™'(Hy) and range
A(I + A)™Y(Hy) is necessarily sectorial with w(A) < ¢. The facts that



SECTORIAL OPERATORS WITH AN H*-CALCULUS 93

the domain and range are dense and A is one-one follow quickly once
one notes

lim tA(l +tA)” 1f—hm([+tA) 'f=0 feH,.

t—0+

This follows easily from the bounds on the resolvent and the fact it is
true on the dense subset Ly of Hy. This principle will be used several
times for different completions of L.

The appropriate bounds on the resolvent follow from (2.1) by a
method similar to that of the proof of the Dore-Venni Theorem [3]. The
argument only requires that a Hilbert space has the (UMD)-property,
but in the next Lemma we give a slightly more general result.

LEMMA 2.1. There exists a constant C so that if m € L' N L>(R)
satisfies

[ iineemiag < o
then for f € Ly(R)

@2)  |mflo<C (nmnw n /|£ LGE df) T

PROOF. Let us split m = mg+ m; where T?io = MX[-1,1] : Note that

Imalles < Co / 17 (€)] %€l de

€121

where Cy = Cp(6). Hence

23 ol <Ci (It [ pife)]eag).
1€]>1
Now if f € Lo
mof = 5= [ rials)Afds
2m J_o
as a Bochner integral in Ly(R). Hence
A% (mof) = / 1o(s) AV f ds.

Let F,G € Ly(R; Ly) be defined by F(t) = A~%(mof)x}-1,1) and G(t) =
A" fx(—22. Then by the above F'.= (2m) ' * G and so ||F|| <
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lmollool|G||- Hence

1 . i
Imoflls < ¢ ( / I!A“(mof)llﬁdt)
—1
N
< & molles ( / !lA”fIIZdt>
)

< 2¢*[[mollool fls,

where the last estimate follows from the fact that ||A%f]le < €®||fllo
for |t| < 2. In view of (2.3) we have

@24)  [moflle < Cs (umuw /K l> |m<f>|e9'f'ds) 1£1lo
>1
where Cy = Cy(6). On the other hand

mif = m(s)A®” fds
Is|=1
so that
sl < ([ (o ) 17
. s|>1
Combining with (2.4) gives the Lemma. O

LEMMA 2.2. A naturally extends to a sectorial operator on Hy,
which has an H®— calculus with w(A) = wg(A) = 6.

PROOF. Let us start from the formula
/ P — 0<Rz< L.

oo 1+ €% sinmz

Hence if t € R

0 zx t(z—1)

. e e

/ dr = — 0<Rz< 1.
oo EF €7 sinmz

By analytic continuation we obtain that for any w in the complex plane
with the negative real axis removed,

o 2T z—1
/ © d:l:=7r.w 0< Rz < 1.

T
o Wt+e Sz

Now let m, (1) = w'™%*(w + %) ™! where 0 < a < 1. Then
—i¢
R W
Tiaw(§) = sinm(a — i£)’
It follows from Lemma 2.1 that we have a uniform estimate

“mawf”0 <Clfle fel
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as long as |argw| + 6 < m — ¢ for some 6 > 0. Here C depends on
0 but not on a. We can let a — 0 and deduce a similar estimate for
mow = w(w + €*)~t. Hence if we consider the resolvent operators

RN A)=(A— A)~1
we obtain a uniform bound
INRO A flle <Cliflle f €Ly

as long as |argA| > 6 + 6 for some 6 > 0. This implies that we can
naturally extend A to be sectorial on Hy and w(A4) < 6. Now, by the
result of McIntosh [4] since Hy is a Hilbert space (2.1) implies that A
admits an H*®—calculus and wy(A4) = w(A4). O

We now introduce a new space by defining the norm

1 £llx = sup || FX(~oco,alle-
acR

The space X, is defined as the completion of L, with respect to this
norm. Note for f € Ly we have

1flle < IIfllxe < [ fllo-
For a # 0 and m,n € N we define the operator E(m,n,a) on Ly by

E(m,n,a)f(z) = %Zf(m — mka). |

LEMMA 2.3. For any f € Lo we have
lim limsup | E(m,n,a)f||x, = ||f||9

=00 m—oo

PROOF. Suppose a =0 or a = 6. FlI‘St we note t‘hat
(2.5) IE(m,n,a)flle < Vnlflla  f € L2(R).

Now fix n,a and let g, = E(m,n,a)f. Then
1 -

Am f Z e——zmka

Hence

”gmnz / Z Z = k)ma)'f(§)|2 —2a|€ld§'

- j=1 k=1

By the Riemann-Lebesgue Lemma we obtain
(26 lim [|E(m,n,0)fla = [Ifll
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Now suppose f € Ly and € > 0. Fix M so large that
If — Fxi-mallo <€

Let fo = fx(-maq and f1 = f — fo.
If m > 2M|a|™! then any ¢ € R falls in the support of at most one

of the functions fy(z —mka) for k =1,2,.... Hence for any n we have
for some 0 < k < n,

Ix(=c0 E(m,n,0)folle < (k/n)3 | E(m, k, @) follo + 7% || follo-
(If kK = 0 we interpret E(m,0,a)f as 0). This shows that

|B(m, n,a)follx, < max (k/n)z || E(m, k,a)folls + " follo.
In view of (2.5) and (2.6) this gives

(2.7) lim sup | E(m, n, ) follx, < Il folle + 777 follo-

m—oo

On the other hand
limsup || E(m,n ya)fillo = [lfillo <€

m—»o0:

so that combining with (2.7) gives

(2.8) limsup || E(m, n, ) fllx, < [lfollo +n7 %[l follo + €.

m—0o0

Since || folls < | fllo-+ l/uls < ||/l + e since obtain
lim sup lim sup ||E(m n a)f[lX(9 < || flle + 2e.

n~+00 m—oo

Since the Xy—norm is larger than the norm || - ||¢ this equation and
(2.6) imply the conclusion. O

THEOREM 2.4. The operator A on Xy is sectorial and admits an
H*—calculus but w(A) =0 and wy(A) =0. -

PROOF. For A € C\ R, let m,\(x) = A(A—€®)~1. Then for f € Ly

maf = / =

as a Bochner integral in L. Hence if 1/1 = arg A,

* e

Il < fllxe |~ 52 e
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e /°° A
——dz = dt
/_oo A=Y AP

:/ |t — ™| dt.
0

Now reasoning as before we can deduce that lim; o, tA(J +tA)71f =
limy_oo(f +tA)™ f = 0 for f € Xy by a density argument since it is
true for f € Ly. It follows that A is sectorial on Xy and w(A) = 0.

For any m € L*(R) note that if f — mf extends to a bounded
operator on Hyg then that for f € Ly we have

Now

Imfllx, = sup [[mfXx(—ooplle < Cllfllx,-

—oo<t<0o0o

It follows that on Xy, A has an H*—calculus and wg(A) < 0. It
remains to show that wr(A) > 6. To do this, we show that for any s,
1A™|[x, = [ A*[|7, = €. |

Suppose s > 0 and let a = 27 /s. For any f € Ly and m,n € N, we
note that

1A= E(m, n,a) fllx, < A%l E(m,n, a)f ]l x,-

Note by choice of a we have A®E(m,n,a)f = E(m,n,a)A®*f and so
by Lemma 2.3

1A™ fllo < 1A%, 11.f llo
and this shows ||A%||x, = | A®*||», and completes the proof. O

We conclude by showing that we can use this example to produce
a similar example modelled on a super-reflexive space. For this we will
use complex interpolation. For 0 < 7 < 1 we consider the complex
interpolation space Xp , = [Lg, Xp|.. Let us recall the definition of this
space. Let S denote the strip 0 < Rz < 1. We consider the vector
space F of all bounded continuous functions F' : S — X, which are
analytic on S and such that F(it) € Ly for —oco < t < co and t — F(it)
is continuous into Ly. We norm F by '

1F |z = max(_ sup [[F(it)llo, sup [IF(1+it)]x,)-
~oo<Lt< —oo<t<o0

We then define Xy . to be the space of all f € Xy such that for some
F € F we have F(7) = f under the norm

1fllx,, = mf{|Fll7 = F(7) = £}

We will need the following fact about complex interpolation. Let
P : 0S8 xS — R be the Poisson kernel for the strip. Given 7 let ho(t) =
P(it,7) and hy(t) = P(1 + it,7). Thus the measure on 0S given by
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ho(t)dt on the line iR and hq(t)dt on the line 14+4R is harmonic measure
for the point 7. Then hg, h; are non-negative continuous functions in
L1(R) with

/ " (ho(t) + ha(t)) dt = 1

— 00

such that if F' € F then

o0

(2.9)  IFM)x,. S/ (£ @)lloho(t) + I1F(1 + it)llx,ha(2)) .

This estimate goes back to Calderén [1].

It follows immediately by interpolation that A induces a sectorial
operator on Xy, with w(A) = 0. Indeed (1.1) for any ¢ > 0 is imme-
diate and we can deduce that

lim tA(I +tA)7'f = 11m([—|~tA) 1f=0

t—0+

for every f € Xy, either by a standard density argument or by the
remarks above. Indeed if F' is admissible then, for example, we have

Jim ltA(I + tA)_lF(is)HO = lim ItA(I + tA)'F(1+14s)||x, =0

if —0co < s < oo and so by (2.9) and the Dominated Convergence
Theorem

g 1AL+ £4) 2 F(7) L, =0

Interpolation also quickly yields that the sectorial operator A on Xg ,
has an H*—calculus with wg(A) < 0. The spaces Xy, for 0 <7 <1
are uniformly convex (and thus super—reﬂexwe) We now show that on
these spaces we also have wy(A4) > w(A).

PROPOSITION 2.5. On Xy, we have wy(A) = 0.

PROOF. By interpolation we have || A*|x, = < e, We shall show
that ||A%||x,, = €™ and by Theorem 5.4 of [2] this will imply that
(UH(A) =T70.

We need the fact that if f € Ly then ||f||x, . > ||f]lre. This follows
immediately from the fact that ||f|lx, > ||flle and [Lq, He]r = Hre.

Fix s # 0 and let a = 27/s.

‘Suppose f € Ly is such that

/ (6Pt < co.
Define F' : S — Ly be defined by
F(2)(6) = L f(e).
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Thus F extends continuously to 05 and ||F(it)|lo = ||[F(1 + it)|le =
| fll-6- Then using (2.9)

”E(m) ’I’L,CL)f”Xe’T S v
/ 1E(m, n, ) F(it)|loho(t) + || E(m, n, ) F(1 + it)| x, hn () dt.

oo
If we fix n and let m — oo we can use the Dominated Convergence

Theorem and (2.7) to deduce that

lim sup | E(m, n, ) f[1x,, <

m—Co

/oo (1 @) lloho(t) + I1F(L + 8t)[loha (£) + 77 | F (1 + it)[loha (£))dt.

—Qo0

By (2.6) we have
lim || E(m,n,0)fllo = I ]l-o-
Hence, letting n — oo we obtain
Jim lim sup || E(m, n, @) fllx,.. = [|fll-e-
Thus the analogue of Lemma 2.3 holds at least for f in a dense subset of

Lo (Whicfl is itself dense in Xy ,.) Hence arguing as before in Theorem
2.4 we obtain that

1A% 1%, > 1A= [l2, = ™.

This completes the proof. O
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