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Independence in separable Banach spaces

N. J. KALTON!

Abstract. We answer a question of Fremlin and Sersouri concerning independence of

uncountable sets in separable Banach spaces.

Recently Fremlin and Sersouri [1] proved the following theorem:

THEOREM 1. Let X be a separable Banach space and let G be an uncountable subset of
X. Then, for any 1 < p < oo, there exists a sequence (g,.) of distinct points of G and a

sequence of real numbers (a, ), not all zero, such that ) |a, |? < co and
E angn = 0.
n=1

This theorem answered a question of Lipecki. They note that one cannot allow p =1
in the above theorem, and ask if instead one can require (a.) € £(1,00) where £(1,00)
denotes the space weak £, of all sequences (a, ) such that the decreasing rearrangement
(ar) of (|a.|) satisfies sup na; < oo. |

We show in this note that this question has an affirmative answer and, in fact, a rather
stronger result is true. For convenience, we restrict attention to real Banach spaces; some

obvious rewording is necessary in the complex case. Our theorem is:

1Research supported by NSF-grant DMS-8601401
AMS Classification: 46B15
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320 N. J. KALTON

THEOREM 2. Let X be a separable Banach space and let G be an uncountable subset
of X. Suppose (a,) is a sequence of real numbers satisfying Y |a,| = co and lima, = 0.

Then there is a sequence of distinct points (g,) of G and a sequence of signs €, = +1 so

that

0

Zenangn = 0.

n=1
As in [1] the first step is to reduce the problem to the case when G is dense in itself,
and one may then suppose that X is the closed linear span of G. Thus Theorem 2 follows

from Theorem 3 below.

THEOREM 3. Let X be an arbitrary Banach space and let G be a subset of X. Suppose
H is the set of accumulation points of G, and that X is the closed linear span of H. Then
given any x € X and any sequence of real numbers (a,) with Y |a,| = co and lima, =0

we may find a sequence of signs €, , and a sequence of distinct elements g, € G so that

oo
= E €nlnly.
n=1

PROOF: We may suppose (a,) is a sequence of nonnegative numbers satisfying the condi-
tions of the theorem. For convenience let b, = max;. ,, |a;|. We shall require the following
lemma;

LEMMA 4. Suppose a € R and m € N. Then we may choose signs €;, (i > m+1) so that

ifs,, = aands, = a+ Z:;m_u €;a; then we have lim s, = 0 and sup |s; | < max(b,, , |&|).

PROOF OF THE LEMMA: Define ¢, so thdt €xSk—1 < 0. Then the sequence s, must change
signs infinitely often since otherwise ¢, is eventually constant and this would imply that
> a, < oo. If s, and s,_, have the same signs then |s;| < |s;_|- If s, and s,_; have
opposite signs then |s;| < |a,|. Thus we have |s; | < max(]sx_,|,|ax|) and this implies the
second assertion of the lemma. Since lima; = 0 and s, changes sign infinitely often it also

implies the first assertion.
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RESUMPTION OF THE PROOF OF THE THEOREM: Let us define F(N, 5), for N € N,
8 > 0, to be the subset of X of all z with the property that for any m > N we can find

n>mand ¢ =1, h; € H, (m+1 <1< n)such that

n

e+ Y eah <8,

i=m+1

and
k

le+ Y &ahf <flzf+6 m+1<k<n
t=m+1

Note that the h; are not required to be distinct.

Next we define F = Ns»o Uyen F(N,6). We note first that F is easily seen to be
closed. Define E = {z: az € F Va € R}; E is also closed.

We show E contains H. In fact suppose h € H, and a € R. For arbitrary 6 > 0 we
pick N so large that by ||h]| < |a|||k|| + 6. If m > N, we pick ¢; according to the Lemma,
applied to o and m = N, stopping at n where |s, |||A|| < 6. Letting h; = k, (m+1 <7< n)
we see that H C E.

Next we claim that E is a linear subspace. In fact, it is only necessary to show that if
z€ E and y € E then z+y € F. Suppose 6§ > 0. Let M = max(||z|,||y||) and then choose
an integer s so large that 6M < sé. Next choose N so that s~ 'z,s” 'y € F(N,6/(4s)).
Now suppose m > N. Set p, = m; then we may inductively define ¢, (1 < k < s),
o, (1<k<s),€&,(pp+1<71<p,)and h; € H, (po +1 <14 <p,)sothat pe_y < g <
e, (1<k<s),

9k

6
iach +s71 -
I E eah; + s :1:H<4s

Pr-1+1
;
4 6
I Z eah; +s 'zl < u[—g;”—-i_—l,
Pr-1+1 §

forl1<k<sandp,_, +1<7<¢,and

Pk 5
.a:h: 1l <« —
” Z f,a, 't +s y“ 43

qrt+1
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5
ah 4oty < ] +96)
” Z €a;h; +s y“ < 4s ’

qx+1

for1<k<sandg +1<j<p,.
Then
D
lz+y+ Z €a; || < 6.

m+1
I pr-1 +1< 5 < g then
(k—1)5  (4ffz|| +6)

lz +yll + ===+ ==

;
s—k+1
sa; b < ———

lz+y+ > aahl) .

m+1

If ¢ +1 <5< p; then

j
s—k+1 k—-1)é6
o+ Y aahl < 2o F gy g4 )

m+1

(4ll=ll +6) | (4llyli+9)
2s + 4s + 4s )

In either case we conclude that

;
le+y+ Y ah <||z+yll+6

m+1

so that = +y € F(N,$6).

It now follows immediately that E = X. Now fix any h, € H and let 4 = llo||. Then,
we claim (*) that for any z € X, m € N and § > 0 we can find n > m, h, €EH m+1<
t<nande¢ =1, m+1<i<nso that

lz+ ) eahl <6

m+1

and, for m+1<j <n,

7
|l + Z €a;h;|| < 4bn + ||| + 6.

m+1

In fact there exists N so that £ € F(N, §/2). By the Lemma, applied to o = 0 and m, we

may find ¢;, m+1 <17 < k where k > N so that

k 6
]Ze,-a;[<§—;

m-+1
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and

| Zj: €a;| <b,

m+1

for m +1 < j < k. Now choose n >k and h; € H, ¢, = £1, (k+ 1 <17 < n) so that

“ Z 6,-a,-h‘~ + .'D” <

k+1

and

;
)
[ Z ea:h; + || < [lz]| + 2
E+1
for k+1 <7 <n. We now put h; = hy for m + 1 < ¢ < k and our claim is substantiated.

We now may complete the proof of Theorem 3. Suppose z € X is fixed. Let p, = 0.
Since H is the set of accumulation points of G, we may inductively choose signs ¢; and

g €G, (pr-1 +1 <7< pg) so that g;, (1 <7 < p,) are distinct,
P
I Zeia,-g; —z|| <27%
t=1

fork>1andifpr_, +1 <7< ps,

Pr-1

J
I eag —=f < Y aag -z +27F b,

i=1 t=1

<4.27% + b, |

for £ > 1. The series constructed in this way converges to £ and the proof is complete.
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