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1. INTRODUCTION

Mazur-Ulam’s classical theorem states that any isometric onto map between normed spaces is
linear. This result has been generalized by T. Figiel [F] who showed that ifΦ is an isometric embedding
from a Banach space X to a Banach space Y such that Φ(0) = 0 and vect [φ(X )] = Y , there exists a
linear quotient map Q such that ‖Q‖ = 1 and Q ◦Φ= I dX . The third chapter of this short story is [GK]
where it is shown that if a quotient map Q from a Banach space Y onto a separable Banach space
X has a Lipschitz lifting, then it actually has a continuous linear lifting. Combining this statement
with Figiel’s theorem provides another result from [GK] : if a separable Banach space X isometrically
embeds into a Banach space Y , there exists an isometric linear embedding from X into Y .

Nigel Kalton had an outstanding ability to set theorems and proofs in their proper frame. His
articles are therefore fountains of ideas, irrigating each of the many fields to which he contributed :
a non exhaustive survey on these contributions is [G]. The paper [GK] is no exception to this rule,
and among other things it prepared the ground for far-reaching extensions, where e.g. the Lipschitz
assumption is weakened to the Hölder condition, leading to very different conclusions ( [K1], [K2],
[K3] ). However, some readers could find daunting some arguments from [GK], which would probably
turn down undergraduate students.

Since the extension from [GK] of Mazur-Ulam’s theorem which is recalled above has a statement
which is understandable to any student in mathematics, it seems appropriate to provide an elemen-
tary proof. This is the purpose of the present short note, where only basic functional analysis (elemen-
tary duality theory) and calculus (culminating at Fubini’s theorem for continuous functions on Rn)
are used. Moreover this note is fully self-contained : even the generic smoothness of convex fuctions
on Rn is shown, and a detailed proof of Figiel’s theorem is provided (following [BL], although Lemma
2 is not stated there). The main result of the note is Theorem 5, whose proof follows the strategy of the
proof of ( [GK], Corollary 3.2) but in such an elementary way that diagrams, free spaces and infinite-
dimensional integration or differentiation arguments are avoided. Thus our approach makes it clear
that the core of the proof consists of finite-dimensional considerations. We can therefore teach at an
undergraduate level Mazur-Ulam’s theorem and its natural extensions from [F] and [GK].

2. RESULTS

We begin with a classical application of Baire category theorem.

Proposition 1 :Let g : Rn → R be a convex function. The function g is continuous on Rn and it is
differentiable at every point of a dense subset of Rn .

Proof : Pick x = (xi )16i6n ∈ Rn and α> 0.
If {e1,e2, ...,en} denotes the canonical basis of Rn , convexity shows that

sup
‖h‖16α

g (x +h)− g (x) = max
16i6n,|ε|=1

g (x +εαei )− g (x).

Moreover if C is a non-empty convex subset Rn such that (−x) ∈C for all x ∈C , and F : C → R is a
convex function such that F (0) = 0 and F is bounded above on C , then
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sup
x∈C

F (x) = sup
x∈C

|F (x)|.

Thus we have

sup
‖h‖16α

|g (x +h)− g (x)| = max
16i6n,|ε|=1

g (x +εαei )− g (x). (1)

It thus follows from the one-dimensional case that g is continuous at every point x of Rn .

For k ∈ N∗, 1 6 i 6 n and t > 0, let

Ok,i (t ) = {
x ∈ Rn ;

g (x + tei )+ g (x − tei )−2g (x)

t
< 1

k

}
and

Vk,i =
⋃
t>0

Ok,i (t ).

The sets Vk,i are open (as union of open sets).
Observe now that if f : R → R is a convex function, and if for a given x ∈ R we define τ : R+ → R by

τ(t ) = [ f (x + t )+ f (x − t )−2 f (x)]/t .

then f est differentiable at x if and only if

lim
t→0+τ(t ) = 0.

It follows that if we let
∆i =

⋂
k>1

Vk,i

then ∆i = {x ∈ Rn ; ∂g
∂xi

(x) exists}.
Since every convex function of one real variable is differentiable outside a countable set, the sets

∆i are dense in Rn .

Since every set ∆i is a countable intersection of open sets, it follows from Baire category theorem
that the set

Ωg = ⋂
16i6n

∆i

is dense in Rn .

Pick x ∈Ωg . We define a function G by G(y) = g (y)− g (x)−
n∑

i=1
(yi −xi )

∂g

∂xi
(x).

Applying (1) to this function G shows that for any h ∈ Rn ,

|G(x +h)|6 max
16i6n,|ε|=1

G(x +ε‖h‖1ei ).

It follows that Ωg is the set of points in Rn where the function g is differentiable. This concludes
the proof of Proposition 1.

Let ‖ . ‖ be a norm on Rn . We denote Ω‖ . ‖ the set of points where this norm is differentiable. If
x ∈Ω‖ . ‖, we denote by {∇‖ . ‖}(x) the differential of the norm at x.

It is easily seen that ‖{∇‖ . ‖}(x)‖ =< {∇‖ . ‖}(x), x
‖x‖ >= 1.

Moreover if z ∈ Rn and (xp )p>1 is a sequence inΩ‖ . ‖ which converge to z, then
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lim
p→∞< {∇‖ . ‖}(xp ), z >= ‖z‖. (2)

Lemma 2 :Let E be a finite-dimensional normed space, with norm ‖ . ‖. Pick x ∈ E a point of
differentiability of the norm ‖ . ‖ with ‖x‖ = 1. Then {∇‖ . ‖}(x) is the only 1-Lipschitz map ϕ : E → R
such that ϕ(t x) = t for all t ∈ R.

Proof : Let ϕ : E → R a 1-Lipschitz map such that ϕ(t x) = t for all t ∈ R. Pick y ∈ E .
For all t 6= 0, one has

1 = |tϕ(y)− tϕ
(
(ϕ(y)+1/t )x

)|6 ‖x − t (y −ϕ(y)x)‖.

Therefore the right-hand side function attains its minimum at t = 0. Differentiation gives

< {∇‖ . ‖}(x), y −ϕ(y)x >= 0

and thus {∇‖ . ‖}(x) =ϕ.

Lemma 3([F]) : Let E be a normed space of finite dimension n, let F be a normed space and let
φ : E → F be an isometry such that φ(0) = 0. We assume that vect [φ(E)] = F . Then there exists a
unique continuous linear map T : F → E such that T ◦φ= I dE , and moreover ‖T ‖ = 1.

Proof : We first consider the one-dimensional case. Let j : R → F be an isometry such that j (0) = 0.
For all k ∈ N. there exists x∗

k ∈ F∗ with norm 1 such that < x∗
k , j (k)− j (−k) >= 2k. It is easily seen that

< x∗
k , j (t ) >= t for all t ∈ [−k,k]. It follows by weak* compactness that there exists x∗ ∈ F∗ with norm

1 such that < x∗, j (t ) >= t for all t ∈ R, and this linear form x∗ does the job.

Take now φ : E → F as above. Pick any x ∈ E where the norm ‖ . ‖ is differentiable. By the one-
dimensional case, there exists f ∗

x ∈ F∗ with norm 1 such that < f ∗
x ,φ(t x) >= t for all t ∈ R. Lemma 2

shows that f ∗
x ◦φ= {∇‖ . ‖}(x).

It follows from Proposition 1 and (2) that for any z ∈ E\{0}, there is x ′ ∈Ω‖ . ‖ such that {∇‖ . ‖}(x ′)(z) 6= 0.
It follows that we can find points x1, x2, ..., xn inΩ‖ . ‖ such that the set of linear forms

(
{∇‖ . ‖}(xi )

)
16i6n

is a basis of E∗.
We denote by (z j )16 j6n the dual basis in E , such that

{∇‖ . ‖}(xi )(z j ) = δi , j .

For all 1 6 i 6 n, there exists f ∗
xi
∈ F∗ such that

{∇‖ . ‖}(xi ) = f ∗
xi
◦φ.

We define T : F → E by

T (y) =
n∑

i=1
f ∗

xi
(y)zi .

The map T is linear and continuous, and T ◦φ= I dE .
Uniqueness of such a map T follows immediately from vect [φ(E)] = F .
Moreover, for all x ′ ∈Ω‖ . ‖, one has
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f ∗
x ′ = {∇‖ . ‖}(x ′)◦T (3)

since these continuous linear forms coincide on the dense set vect [φ(E)]. If we pick any y ∈ F and
we apply (2) to z = T (y), it follows from (3) that ‖y‖6 ‖z‖ and thus ‖T ‖ = 1.

Theorem 4 ([F]) : Let X be a separable infinite-dimensional Banach space. Let F be a normed
space and letφ : X → F be an isometry such thatφ(0) = 0. We assume that vect [φ(X )] = F . Then there
exists a unique continuous linear map T : F → X such that T ◦φ= I dX , and moreover ‖T ‖ = 1.

Proof : We write

X = ⋃
k>1

Ek

where (Ek )k>1 is an increasing sequence of finite-dimensional subspaces. We let Fk = vect [Φ(Ek )].
By Lemma 3, there exists a unique continuous linear map Tk : Fk → Ek such that Tk (Φ(x)) = x for all
x ∈ Ek , and moreover ‖Tk‖ = 1.

Uniqueness implies that we can consistently define T :
⋃

k>1 Fk → X by T (y) = Tk (y) if y ∈ Fk ,
and ‖T ‖ = 1 since ‖Tk‖ = 1 for all k. Finally our assumption implies that F = ⋃

k>1 Fk and T can be
extended to F since it takes values in the complete space X .

Remarks : 1) Assuming X separable in Theorem 4 is a matter of convenience. The same argu-
ment works for any Banach space X , written as the union of the directed set of its finite-dimensional
subspaces.

2) Theorem 4 immediately implies Mazur-Ulam’s theorem : every onto isometry Φ : X → Y bet-
ween Banach spaces such thatΦ(0) = 0 is linear.

Theorem 5 ([GK]) : Let X be a separable Banach space. Let Y be a Banach space, and let Q : Y → X
a continuous linear map, such that there exists an M-Lipschitz map L : X → Y such that Q◦L = I dX .
Then there exists a continuous linear map S : X → Y such that Q ◦S = I dX and ‖S‖6 M .

Proof : Let Li p0(X ) be the space of Lipschitz functions f from X to R such that f (0) = 0, equipped
with its natural norm

‖ f ‖L = sup
{ | f (x)− f (y)|

‖x − y‖ ; (x, y) ∈ X 2, x 6= y
}
.

The dual space X ∗ is a subspace of Li p0(X ) and ‖x∗‖ = ‖x∗‖L pour tout x∗ ∈ X ∗.

Let (xi )i>1 be a linearly independent sequence of vectors in X such that vect [(xi )i>1] = X and
‖xi‖ = 2−i for all i .

We let Ek = vect [{xi ; 1 6 i 6 k}].

We denote Rk : Ek → Li p0(X )∗ the unique linear map which satisfies for all 1 6 n 6 k et all
f ∈ Li p0(X )

Rk (xn)( f ) =
∫

[0,1]k−1

[
f (xn +

k∑
j=1, j 6=n

t j x j )− f (
k∑

j=1, j 6=n
t j x j )

]
d t1d t2...d tn−1d tn+1...d tk . (4)

Pick f ∈ Li p0(X ). Let fk be the restriction of f to Ek . If the function fk est continuously differen-
tiable, Fubini’s theorem shows that for all x ∈ Ek

Rk (x)( f ) =
∫

[0,1]k
< {∇ fk }(

k∑
j=1

t j x j ), x > d t1d t2...d tk . (5)
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Thus |Rk (x)( f )| 6 ‖x‖.‖ f ‖L if fk is continuously differentiable on Ek . But classically, convolu-
tions with a sequence of smooth functions on Ek shows that any f ∈ Li p0(X ) is a uniform limit of
a sequence f j of functions whose restrictions to Ek are continuously differentiable, and such that
‖ f j‖L 6 ‖ f ‖L . Hence (5) shows that

‖Rk‖6 1

.

Observe now that (4) shows that if 1 6 n 6 k, then

‖Rk+1(xn)−Rk (xn)‖6 2‖xk+1‖.

It follows that for all x ∈ Ek , the sequence (Rl (x))l>k converges in the Banach space Li p0(X )∗.

We let C = ⋃
k>1

Ek and we define for all x ∈C

R(x) = lim
l→∞

Rl (x).

Clearly R is a linear map from C to Li p0(X )∗ such that ‖R‖ = 1. Moreover Rk (xn)(x∗) = x∗(xn) for
all x∗ ∈ X ∗, and thus R(x)(x∗) = x∗(x) for all x ∈C and all x∗ ∈ X ∗.

Since C is dense in X , it follows that there exists a linear map R : X → Li p0(X )∗ such that ‖R‖ = 1
and R(x)(x∗) = x∗(x) for all x ∈ X and all x∗ ∈ X ∗.

In the notation of the theorem, we may and do assume that L (0) = 0. We now define a linear map
S : X → Y ∗∗ by the equation

< S(x), y∗ >=< R(x), y∗ ◦L > (6)

Since weak* convergence in BY ∗ implies uniform convergence on compact sets, (6) shows that S(x) is
weak* continuous on BY ∗ and thus S takes its values into Y . Moreover, for any x∗ ∈ X ∗,

< x∗,QS(x) >=< S(x),Q∗(x∗) >=< R(x), x∗ ◦Q ◦L >=< R(x), x∗ >=< x∗, x >
and thus Q ◦S = I dX . Finally, ‖R‖ = 1 shows that ‖S‖6 M .

Theorem 6 ([GK]) : Let X be a separable Banach space. If there exists an isometryΦ from X into a
Banach space Y , then Y contains a closed linear subspace which is linearly isometric to X .

Proof : We may and do assume that Φ(0) = 0 and that vect [Φ(X )] = Y . By Lemma 3 and Theorem
4, there is a quotient map Q : Y → X of norm 1 such that Q◦Φ= I dX . We can therefore apply Theorem
5 with L = φ, and this shows the existence of S : X → Y with ‖S‖ = 1 and Q ◦S = I dX . It is now clear
that S is a linear isometry from X into Y .

Remark : In sharp contrast with what happens in Theorem 4, the separability of X is crucially
important in Theorems 5 and 6, which both fail for instance when X is a non-separable Hilbert space
( [GK], Theorem 4.3).
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