Longhorn Notes The University of Texas at Austin Functional Analysis Seminar 1985-1986

Applications of an inequality for H_1 -functions

N.J. Kalton*

University of Missouri-Columbia

1. Introduction.

In [5] we showed that if $f \in H_1$ then the limit

$$\sigma = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) \log |f(re^{i\theta})| d\theta$$

exists and

$$|\sigma - f(0) \log |f(0)|| \le 2(||f||_1 - |f(0)|).$$

This inequality was used in the construction of a compact convex subset of a quasi-Banach space which cannot be affinely embedded in L_0 . The purpose of this role is to explore some related inequalities and give an application to the study of (UMD)-spaces.

In Section 2 we shall establish the main inequality. We then show the existence of a constant C = C(p) for $0 so that if <math>f \in H_p$ and $f \log |f| \in L_p$ then

$$d(f\log|f|, H_p) \le C ||f||_p.$$

We then relate our results to recent work of Coifman and Rochberg [4] and Rochberg and Weiss [7].

In Section 3, we apply our results to the so-called (UMD)-Banach spaces introduced and studied by Burkholder ([2], [3]). Our result is that the twisted sum spaces Z_p (1) introduced in [6] are (UMD)-spaces. The motivation for this result is that the three-space problem for (UMD)-spaces is apparently unresolved; that is, it is unknown whether a Banach space <math>X must be (UMD) if it possesses a closed subspace E so that E and X/E are (UMD)-spaces. The spaces Z_p (1) are natural candidates for a counterexample since <math>E can be chosen so $Z_p/E \approx E \approx \ell_p$ and Z_p cannot be embedded in any L_r -space ([6]). However, our result shows that these spaces do not provide the expected counterexamples. As remarked in [1], the collection of known (UMD)-spaces is rather small and the addition of a new class is perhaps interesting.

Let us introduce some notation. T will denote the unit circle and Δ the open unit disk in the complex plane. A typical point of T is denoted by $w = e^{i\theta}$. Haar

^{*} Supported by NSF grants DMS-8601401 and DMS-8301099.

measure on T, i.e., $(2\pi)^{-1} d\theta$ is also denoted by dm. L_p $(0 denotes the complex space <math>L_p(T,m)$ and $\|\cdot\|_p$ is the norm on L_p . H_p is the closed subspace generated by $\{w^n : n \ge 0\}$. For 1 the Riesz projection <math>R is the bounded projection of L_p onto H_p given by

$$Rf = \sum_{n \ge 0} \hat{f}(n)w^n$$

where $(\hat{f}(n))_{n\in\mathbb{Z}}$ are the Fourier coefficients of f, *i.e.*,

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} f(e^{i\theta}) d\theta.$$

If X is a complex Banach space then $L_p(X)$ $(1 \leq p < \infty)$ is the space $L_p(T, m, X)$ and the norm on $L_p(X)$ is denoted

$$||f||_p = \left(\int ||f||^p \, dm\right)^{1/p} .$$

The vector Fourier coefficients are given by

$$\hat{f}(n) = \int w^{-n} f(w) \, dm(w) .$$

 $H_p(X)$ is the subspace of $L_p(X)$ so that $\hat{f}(n) = 0$ if n < 0. X is a (UMD)-space if the vector Riesz projection \tilde{R} is a bounded projection of $L_p(X)$ onto $H_p(X)$ for some (and hence for all) p with 1 . Here

$$\tilde{R}f \sim \sum_{n \geq 0} \hat{f}(n)w^n .$$

This definition is equivalent to the standard definition by a result of Bourgain [1]. The spaces Z_p $(1 were introduced in [6]. The (complex) space <math>Z_p$ consists of all pairs of complex sequences $((u_n), (v_n))$ such that

$$\|(u,v)\|_{Z_p} = \left(\sum_{n=1}^{\infty} \left|u_n - v_n \log \frac{\|v\|_p}{|v_n|}\right|^p\right)^{1/p} + \|v\|_p < \infty$$

where

$$||v||_p = \left(\sum_{n=1}^{\infty} |v_n|^p\right)^{1/p}$$
.

Here, as always, $0 \log 0 = 0 \log \infty = 0$. $\|\cdot\|_{Z_p}$ is a quasi-norm but is equivalent to a norm ([6]).

The function space analogues ZF_p $(1 may be defined analogously. <math>ZF_p$ is the space of all pairs (f, g) in $L_0(T)$ so that

$$||(f,g)||_{ZF_p} = \left(\int |f-g\log\frac{||g||_p}{|g|}|^p dm\right)^{1/p} + ||g||_p < \infty.$$

The spaces Z_p and ZF_p actually arise quite naturally in interpolation theory ([7]). Finally we note that we use the convention that C is a constant depending on p but not on f, g, h etc., which may vary from line to line.

2. The main inequalities.

For convenience we write $\log_+ x = \max(\log x, 0)$ and $\log_- x = \min(\log x, 0)$ for x > 0. If $f \in H_p$ we denoted by f_r $(0 \le r < 1)$ the function

$$f_r(e^{i\theta}) = \tilde{f}(re^{i\theta})$$

where \tilde{f} is the analytic extension of f to Δ .

Our first lemma is a simple technical result which is surely well-known.

Lemma 2.1. Suppose $1 \le p < \infty$, and $f \in H_p$. If $f \log |f| \in L$ then

$$\lim_{r \to 1} ||f \log |f| - f_r \log |f_r||_{p} = 0.$$

Proof. Since $x \log_{-} |x|$ is a bounded function, the Bounded Convergence Theorem implies

$$\lim_{r \to 1} ||f \log_{-} |f| - f_r \log_{-} |f_r||_{p} = 0.$$

Since $f_r \log_+ |f_r| \to f \log_+ |f|$ a.e., it now suffices to find nonnegative functions $h_r \ (0 \le r < 1), \ h \in L_p$ so that $||h_r - h||_p \to 0$ and $|f_r| \log_+ |f_r| \le h_r$ a.e.

In fact we can set $h = |f| \log_+ |f|$ and define h_r $(0 \le r < 1)$ by

$$h_r(e^{i\theta}) = \int_0^{2\pi} P(r, \theta - \varphi) h(e^{i\varphi}) \frac{d\varphi}{2\pi}$$

where P is the Poisson kernel. As the function $|x| \log_+ |x|$ is convex, Jensen's inequality implies $|f_r| \log_+ |f_r| \le h_r$ and $||h_r - h||_p \to 0$ as required.

Our next results restate the inequality proved in [5].

Proposition 2.2. Suppose $f \in H_1$ and $f \log |f| \in L_1$. Then

$$\Big|\int f\log|f|\,dm - \tilde{f}(0)\log|\tilde{f}(0)|\Big| \leq 2\big(\|f\|_1 - |\tilde{f}(0)|\big)\ .$$

Proof. Define $F: \Delta \to H_{\infty}$ by

$$F(z)(w) = f(zw)$$
 $z \in \Delta$ $w \in T$.

Then F is an analytic function. If we define $\Psi: H_{\infty} \to \mathbb{R}$ by

$$\Psi(g) = 2\|g\|_1 - \int (Reg) \log|g| \, dm$$

then Ψ is continuous and plurisubharmonic, since the function $2|z| - x \log |z|$ is subharmonic on \mathbb{C} . If |z| = r,

$$\Psi(F(z)) = 2||f_r||_1 - \int (Ref_r)\log|f_r|\,dm$$

and so the expression on the right increases with r. Rearranging we have

$$Re\left(\int f_r \log|f_r|\,dm - \tilde{f}(0)\log|\tilde{f}(0)|\right) \le 2\left(\|f_r\|_1 - |\tilde{f}(0)|\right)$$

and hence, letting $r \to 1$, by Lemma 2.1

$$Re\left(\int f \log |f| \, dm - \tilde{f}(0) \log |\tilde{f}(0)|\right) \le 2(\|f_r\|_1 - |\tilde{f}(0)|)$$

and this implies the Proposition by considering αf in place of f where $|\alpha| = 1$.

The next lemma is a standard calculation by power series which we omit.

Lemma 2.3. Suppose $a, b \in \mathbb{C}$ with $|a|^2 + |b|^2 > 0$. Then

(1)
$$\int_0^{2\pi} \log|a + be^{i\varphi}| \frac{d\varphi}{2\pi} = \log(\max(|a|, |b|))$$

(2)
$$\int_0^{2\pi} e^{i\varphi} \log|a + be^{i\varphi}| \frac{d\varphi}{2\pi} = \begin{cases} \frac{1}{2} \frac{\bar{b}}{\bar{a}} & |b| \le |a| \\ \frac{1}{2} \frac{a}{\bar{b}} & |a| \le |b| \end{cases}$$

Theorem 2.4. Suppose $1 \leq p < \infty$. Then there is a constant $C = C_p$ so that if $f \in H_p$ with $f \log |f| \in L_p$ and if $g \in H_{q,0}$, where q is the conjugate index for p, then

$$\left| \int fg \log |f| \, dm \right| \leq C_p \, ||f||_p ||g||_q \, .$$

Proof. Since the integral is homogeneous in both f and g it will suffice to suppose $||f||_p = ||g||_q = 1$ in each case.

$$\frac{\text{Case 1: } p=1}{\text{By Proposition 2.2}},$$

$$\bigg| \int fg \log |fg| \, dm \bigg| \le 2$$

but $||g \log |g|||_{\infty} \le e^{-1}$ so that

$$\left| \int fg \log |f| \, dm \right| \le C_1 = 2 + e^{-1} .$$

Case 2: p=2

Lemma 2.1 allows us to specialize to the case when $f, g \in H_{\infty}$. For $0 \le \varphi \le 2\pi$ set

$$h_{\varphi} = e^{-i\varphi} f + e^{i\varphi} g .$$

Observe that

$$\int_0^{2\pi} \|h_{\varphi}\|_2^2 \, \frac{d\varphi}{2\pi} = \|f\|_2^2 + \|g\|_2^2 = 2 \, .$$

By 2.2, applied to h_{φ}^2 , since $\tilde{h}_{\varphi}(0) = e^{-i\varphi}\tilde{f}(0)$,

$$\left| \int h_{\varphi}^{2} \log |h_{\varphi}| \, dm - \frac{1}{2} e^{-2i\varphi} \tilde{f}(0) \log |\tilde{f}(0)| \right| \leq ||h_{\varphi}||^{2} - |\tilde{f}(0)|.$$

Integrating over φ we obtain

$$\Big| \int_0^{2\pi} \int h_{\varphi}^2 \log|h_{\varphi}| \, dm \, \frac{d\varphi}{2\pi} \Big| \leq 2 \, .$$

Define $G \in L_{\infty}$ pointwise by

$$G = \frac{1}{2\pi} \int h_{\varphi}^2 \log |h_{\varphi}| \, d\varphi \ .$$

Then by Fubini's theorem

$$\left| \int G \, dm \right| \leq 2 \; .$$

We now estimate G pointwise, by expanding h_{φ}^2 . First we have

$$\left| \int_0^{2\pi} e^{-2i\varphi} f^2 \log |h_{\varphi}| \frac{d\varphi}{2\pi} \right| \le \frac{1}{2} |f|^2$$

by Lemma 2.3. Similarly

$$\left| \int_0^{2\pi} e^{2i\varphi} g^2 \log |h_{\varphi}| \frac{d\varphi}{2\pi} \right| \leq \frac{1}{2} |g|^2.$$

For the remaining term

$$\int_{0}^{2\pi} fg \log |h_{\varphi}| \, \frac{d\varphi}{2\pi} = fg \log H$$

where $H = \max(|f|, |g|)$. Thus

$$|G - 2fg \log H| \le \frac{1}{2} (|f|^2 + |g|^2)$$

and so

$$\Big| \int fg \log H \, dm \Big| \le \tfrac{3}{2} \; .$$

However $0 \le |f| \log \frac{H}{|f|} \le e^{-1}H$ so that

$$\Big| \int fg \log \frac{H}{|f|} \, dm \Big| \le e^{-1} \Big| \int H|g| \, dm \Big| .$$

Let $A = \{w : |f(w)| > |g(w)|\}$ and $B = T \setminus A$. Then

$$\int H|g| \, dm \le \left(\int_A |f|^2 \, dm \right)^{1/2} \left(\int_A |g|^2 \, dm \right)^{1/2} + \int_B |g|^2 \, dm$$

$$\le \sigma + 1 - \sigma^2$$

where $\sigma = (\int_A |g|^2 dm)^{1/2}$. Thus since $0 \le \sigma \le 1$

$$\left| \int fg \log \frac{H}{|f|} \, dm \right| \le \frac{5}{4} e^{-1}$$

and

$$\left| \int fg \log |f| \, dm \right| \le C_2$$

where $C_2 = \frac{3}{2} + \frac{5}{4}e^{-1}$.

Case 3: 1 .

Again we suppose $f, g \in H_{\infty}$. By using inner-outer factorization we can write f = IF where I is inner and F is outer. Now let

$$f_0 = F^{\frac{p}{2} - 1} f$$

$$g_0 = F^{1 - \frac{p}{2}} g$$

Then $||f_0||_2 = 1$ and

$$||g_0||_2^2 = \int |F|^{2-p} |g|^2 dm$$

$$\leq \left(\int |F|^p dm \right)^{\frac{2}{p}-1} \left(\int |g|^q dm \right)^{2/q} = 1.$$

Thus by Case 2

$$\Big|\int f_0g_0\log|f_0|\,dm\Big|\leq C_2$$

and so

$$\Big| \int fg \log |f| \, dm \Big| \le C_p = \frac{2}{p} C_2$$

Case 4: 2 .

Again we assume f, g bounded. Then

$$\Big| \int fg \log |g| \, dm \Big| \le C_q$$

(by Case 3). However

$$\Big|\int fg\log|fg|\,dm\Big|\leq 2$$

by 2.2. Thus

$$\Big| \int fg \log |f| \, dm \Big| \le 2 + C_q = C_p \; .$$

Corollary 2.5. Suppose $1 \leq p < \infty$. Then if $f \in H_p$ and $f \log |f| \in L_p$

$$d(f\log|f|, H_p) \le C_p ||f||_p.$$

Proof. This is simply the Hahn-Banach Theorem.

The analogue of Corollary 2.5 holds also for 0 .

Theorem 2.6. Suppose $0 . Then there is a constant <math>C_p$ so that if $f \in H_p$ is bounded then

$$d(f\log|f|, H_p) \le C_p ||f||_p.$$

Proof. Let f = IF where I is inner and F is outer. Then $IF^p \in H_1$ and there exists by 2.5, $g \in H_1$ with

$$||pIF^p \log |f| - g||_1 \le C_1 ||IF^p||_1$$

= $C_1 ||f||_p^p$.

Then $p^{-1}F^{1-p}g \in H_p$ and

$$f \log |f| - p^{-1}F^{1-p}g = p^{-1}F^{1-p}(pIF^p \log |f| - g)$$
.

By Hölder's inequality,

$$\int |f \log |f| - p^{-1} F^{1-p} g|^p dm \le (p^{-1} C_1 ||f||_p^p)^p \left(\int |F|^p dm\right)^{1-p}$$
$$= (p^{-1} C_1 ||f||_p)^p$$

so that the theorem is proved with $C_p = p^{-1}C_1$.

We conclude this section by relating our ideas to some known results in harmonic analysis. In [7] (in particular Proposition 3.35) Rochberg and Weiss use interpolation theory to show that operators such as the Riesz projection or the Hilbert transform satisfy certain nonlinear commutation relations with the function $x \log |x|$. We derive from Corollary 2.5 a direct proof for the Riesz projection (and hence for the Hilbert transform). Note also that Theorem 2.7 implies Corollary 2.5, but without the specific constants.

Theorem 2.7. For 1 there is a constant <math>C = C(p) so that if $f \in L_r$ where r > p then

$$||R(f \log |f|) - (Rf) \log |Rf|||_p \le C ||f||_p$$
.

Proof. In this argument C will denote a constant depending only on p but which may vary from line to line. Let u = Rf, v = f - Rf. Then

$$\left|u\log|u|+v\log|v|-f\log|f|\right|\leq \frac{2}{e}(|u|+|v|)$$

so that

$$||u \log |u| + v \log |v| - f \log |f|||_p \le \frac{4}{e} ||R|| ||f||_p$$
$$= C ||f||_p.$$

By 2.5 there exists $g \in H_p$ with

$$||u \log |u| - g||_p \le C ||u||_p \le C ||f||_p$$

and h with $\bar{h} \in H_{p,0}$ and

$$||v \log |v| - h||_p \le C ||f||_p$$
.

Thus

$$||R(f \log |f|) - g||_{p} \le C ||f||_{p}$$

and hence

$$||R(f \log |f|) - u \log |u|||_p \le C ||f||_p$$

as required.

Finally we note a real-variables version of 2.2. Let ReH_1 be the space of real functions $f \in L_1$ so that there is a unique $g \in L_1$ such that $f + ig \in H_{1,0}$. Set

$$||f||_{ReH_1} = ||f + ig||_1.$$

Proposition 2.8. If $f \in ReH_1$ and $f \in L_p$ for some p > 1 then

$$\left| \int f \log |f| \, dm \right| \le 3 \|f\|_{ReH_1}$$

Proof. In fact

$$\left| \int (f+ig) \log(f^2+g^2)^{1/2} \, dm \right| \leq 2 \|f\|_{ReH_1}$$

and hence

$$\left| \int f \log(f^2 + g^2)^{1/2} \, dm \right| \le 2 ||f||_{ReH_1} \ .$$

Now

$$|f|\log \frac{(f^2+g^2)^{1/2}}{|f|} \le (f^2+g^2)^{1/2}$$

and the Proposition follows.

Let f^* be the radial maximal function defined by

$$f^*(e^{i\theta}) = \sup_{r < 1} \left| \int_0^{2\pi} P(r, \theta - \varphi) f(e^{i\varphi}) \frac{d\varphi}{2\pi} \right|.$$

Then $||f||_{ReH_1}$ is equivalent to $||f^*||_1$ and

$$\left| f \log |f| - f \log f^* \right| \le \frac{1}{e} f^*$$

so that we easily deduce

Proposition 2.9. There is a constant C so that if $f \in ReH_1 \cap L_p$ for some p > 1

$$\left| \int f \log f^* \, dm \right| \le C \, \|f\|_{ReH_1} \, .$$

A very similar result is proved by Coifman and Rochberg [4]. They show

$$\left| \int f \log(|f|^*) dm \right| \leq C \|f\|_{ReH_1}.$$

The relationship between this and Proposition 2.9 is not clear at the present.

3. Applications to (UMD)-spaces.

Let us suppose X is a Banach space with a closed subspace E so that E and X/E are (UMD)-spaces. It is unknown whether, in general, X is a UMD-space. Our next proposition gives a simple criterion.

Proposition 3.1. Suppose 1 is fixed. Let X be a Banach space with a closed subspace E so that E and <math>X/E are UMD-spaces. Then X is a (UMD)-space if and only if the natural quotient map $\tilde{q}: L_p(X) \to L_p(X/E)$ maps $H_p(X)$ onto $H_p(X/E)$.

Proof. Suppose X is (UMD). If $f \in H_p(X/E)$ there exists $g \in L_p(X)$ with $\tilde{q}g = f$. If the vector Riesz projection \tilde{R} is bounded then $\tilde{q}\tilde{R}g = f$.

Conversely let $f \in L_p(X)$, and assume \tilde{q} maps $H_p(X)$ onto $H_p(X/E)$. Then $\tilde{q}f \in L_p(X/E)$ and so $\tilde{q}f = g_1 + g_2$ where $g_1 \in H_p(X/E)$ and $g_2(w^{-1}) \in H_{p,0}(X/E)$. By assumption we can find $h_1, h_2 \in L_p(X)$ so that $h_1 \in H_p(X), h_2(w^{-1}) \in H_{p,0}(X)$ and $\tilde{q}h_j = g_j$ (j = 1, 2). Now $f - h_1 - h_2 \in L_p(E)$ and so $f - h_1 - h_2 = h_3 + h_4$ where $h_3 \in H_p(E)$ and $h_4(w^{-1}) \in H_{p,0}(E)$. Writing $f = (h_1 + h_3) + (h_2 + h_4)$ we are done.

Our next Proposition is the vector version of Corollary 2.5.

Proposition 3.2. If $1 \le p < \infty$ there is a constant C = C(p) so that if X is a reflexive Banach space and $f \in H_p(X)$ satisfies $f \log ||f|| \in L_p(X)$ then

$$d(f \log ||f||, H_p(X)) \le C ||f||_p.$$

Proof. Since X is reflexive, $L_p(X)^* = L_q(X^*)$. Thus there exists $g \in H_p(X)^{\perp} = H_{q,0}(X^*)$ so that $||g||_q = 1$ and

$$d\big(f\log\|f\|\ ,\ H_p(X)\big) = \int \langle f,g\rangle \log\|f\|\,dm\ .$$

Let $h \in H_p$ be an outer function with |h| = ||f|| a.e. Then $\langle h^{-1}f, g \rangle \in H_{q,0}$ and

$$\int |\langle h^{-1}f, g \rangle|^q dm \le \int ||g||^q dm$$
$$= 1.$$

Thus

$$\left| \int \langle h^{-1} f, g \rangle h \log |h| \, dm \right| \le C \, ||h||_p$$
$$= C \, ||f||_p$$

by Theorem 2.4, and the proof is complete.

Theorem 3.3. For $1 , <math>Z_p$ is a (UMD)-space.

Proof. We show that the natural quotient map $\tilde{q}: L_p(Z_p) \to L_p(\ell_p)$ maps $H_p(Z_p)$ onto $H_p(\ell_p)$. To do this it suffices to show that there is a constant C so that if $f \in H_p(\ell_p)$ is bounded and vanishes off a finite number of co-ordinates in ℓ_p then there exists $g \in H_p(Z_p)$ with $\tilde{q}g = f$ and $\|g\|_p \leq C \|f\|_p$.

Let

$$f(w) = (f_k(w))_{k=1}^{\infty}$$

where $f_k \in H_{\infty}$ and $f_k = 0$ for $k \geq N$. By 3.2 there exists $g \in H_p(\ell_p)$, so that

$$||f \log ||f|| - g||_p \le C ||f||_p$$
.

Clearly we may suppose

$$g(w) = \left(g_k(w)\right)_{k=1}^{\infty}$$

where $g_k = 0$ for $k \ge N$.

By 2.5 select $h_k \in H_p$ with $h_k = 0$ for $k \geq N$ and

$$||f_k \log |f_k| - h_k||_p \le C ||f_k||_p$$
.

Thus

$$\int |f_k \log |f_k| - h_k|^p \, dm \le C^p \int |f_k|^p \, dm$$

and by summing

$$\int \sum_{k=1}^{N} |f_k \log |f_k| - h_k|^p \, dm \le C^p \, ||f||_p^p \, .$$

Now define $G \in H_p(\mathbb{Z}_p)$ by

$$G(w) = \left(g_k(w) - h_k(w), f_k(w)\right)_{k=1}^{\infty}$$

$$||G||^{p} \le C \left(\sum_{k=1}^{N} |g_{k} - h_{k} - f_{k} \log \frac{||f||}{|f_{k}|}|^{p} + |f_{k}|^{p} \right)$$

$$\le C \left(\sum_{k=1}^{N} |g_{k} - f_{k} \log ||f||^{p} + \sum_{k=1}^{N} |f_{k} \log |f_{k}| - h_{k}|^{p} + \sum_{k=1}^{N} |f_{k}|^{p} \right)$$

Thus

$$||G||_p \leq C ||f||_p$$

and clearly $\tilde{q}G = f$.

Remark. Similar arguments show that ZF_p is a (UMD)-space for 1 .

References

- 1. J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Math. 21 (1983), 163-168.
- 2. D.B. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Prob. 9 (1981), 997-1011.
- 3. ______, Martingale transforms and the geometry of Banach spaces, 35-50 in "Probability in Banach Spaces III" (A. Beck, ed.), Springer Lecture Notes 860, Berlin 1981.
- 4. R.R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), 249–254.
- 5. N.J. Kalton, Compact convex sets and complex convexity, to appear.
- 6. N.J. Kalton and N.T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30.
- 7. R. Rochberg and G. Weiss, Derivations of analytic families of Banach spaces, Ann. Math. 118 (1983), 315-347.