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1. Introduction.
In [5] we showed that if f € H; then the limit

2%

o= lim f(re*®)log|f(re*?)| do

exists and

|o — £(0)log|£(O)] | < 2(lfll = 1£(O)]) -

This inequality was used in the construction of a compact convex subset of a
quasi-Banach space which cannot be affinely embedded in Lo. The purpose of this
role is to explore some related inequalities and give an application to the study of
(UMD )-spaces. '

In Section 2 we shall establish the main inequality. We then show the existence
of a constant C' = C(p) for 0 < p < oo so that if f € H, and flog |f| € L, then

d(flog|fl, Hy) < C|fllp -

We then relate our results to recent work of Coifman and Rochberg [4] and Rochberg
and Weiss [7]. '

In Section 3, we apply our results to the so-called (UMD)-Banach spaces in-
troduced and studied by Burkholder ([2], [3]). Our result is that the twisted sum
spaces Zp (1 < p < o0) introduced in [6] are (UMD)-spaces. The motivation for
this result is that the three-space problem for (UMD)-spaces is apparently unre-
solved; that is, it is unknown whether a Banach space X must be (UMD) if it
possesses a closed subspace E so that E and X/FE are (UMD) -spaces. The spaces
Zp (1 < p < o0) are natural candidates for a counterexample since E can be chosen
s0 Z,/E ~ E =~ £, and Z, cannot be embedded in any L,-space ([6]). However,
our result shows that these spaces do not provide the expected counterexamples.
As remarked in [1], the collection of known (UMD)-spaces is rather small and the
addition of a new class is perhaps interesting.

Let us introduce some notation. T will denote the unit circle and A the open
unit disk in the complex plane. A typical point of T is denoted by w = e!’. Haar
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42 Applications of an inequality for H; -functions

measure on T, i.e., (2m)~' df is also denoted by dm. L, (0 < p < 00) denotes the
complex space Ly(T,m) and || - ||, is the norm on L,. H, is the closed subspace
generated by {w™ :n > 0}. For 1 <p < oo the Riesz projection R is the bounded

projection of L, onto H, given by

Rf =) f(n)w"

n>0

where ( f (n))nez are the Fourier coefficients of f, i.e.,

~ 27“ . .
fin) = 5= / e~ () df .

If X is a complex Banach space then Ly(X) (1 < p < oo) is the space
L,(T,m,X) and the norm on L,(X) is denoted

i1 =/ Ilfll”dm)l/p |

The vector Fourier coefficients are given by
f(n) = /w_"f(w) dm(w) .

H,(X) is the subspace of Ly(X) so that f(n) =0if n < 0. X is a (UMD)-space
if the vector Riesz projection R is a bounded projection of L,(X) onto Hy(X) for
some (and hence for all) p with 1 < p < co. Here

Rf ~ ) f(n)w™.

n>0

'This definition is equivalent to the standard definition by a result of Bourgain [1].
The spaces Z, (1 < p < 00) were introduced in [6]. The (complex) space Z,
consists of all pairs of complex sequences ((n), (vy,)) such that

e ol 12\
1wz, = (}: o~ valog 12 ) T Jlolly < oo

n=1
where
oo 1/?
oty = ()
n=1
Here, as always, 0log 0 = 0log oo = 0. | - l| z, is a quasi-norm but is equivalent

to a norm ([6]).
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The function space analogues ZF, (1 < p < co0) may be defined analogously.
Z F, is the space of all pairs (f,g) in Lo(T) so that

1/p
160llz5, = ([ |7 - atog L0 " dm) ™ -l < 0.

The spaces Z, and ZF, actually arise quite naturally in interpolation theory ([7]).
Finally we note that we use the convention that C is a constant depending on
p but not on f, g, k etc., which may vary from line to line.

2. The main inequalities.

For convenience we write log, ¢ = max(log z,0) and log__ z = min(log z, 0) for
z > 0. If f € H, we denoted by f, (0 <r < 1) the function

fr(e¥) = f(re®)

where f is the analytic extension of f to A.
Our first lemma is a simple technical result which is surely well-known.

Lemma 2.1. Supposel < p< oo, and f € H,. If flog|f| € L then
tim | flog £l £ logl | llp =0.

Proof.  Since zlog_ || is a bounded function, the Bounded Convergence Theorem
implies

lim ||£log.. || — f-log_ £l Ily =0

Since frlog, |fr] — flog, |f| a.e., it now suffices to find nonnegative functions
h. (0 <r <1), h € L, sothat ||h, — h||, — 0 and |f,|log |f| < h, ae.
In fact we can set h = |f|log, |f| and define h, (0 <7 < 1) by

. 2 . d
ho(e®) = / P(r,0 - )h(e*) 22

where P is the Poisson kernel. As the function |z|log, |z| is convex, Jensen’s
inequality implies |f;|log, |f;| < h, and ||k, — h||, — 0 as required.

Our next results restate the inequality proved in [5].

Proposition 2.2. Suppose f € Hy and flog|f| € L1. Then

| [ f10g1f1dm - F0)10g 17| < 2011l ~ 1FO))

Proof. Define F : A — Hy, by

F(2)(w) = f(zw) z€A weT.
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Then F is an analytic function. If we define ¥ : Hoo — R by

¥(g) = 2lgll: - / (Reg)logg| dm

then U is continuous and plurisubharmonic, since the function 2|z| — zlog|z| is
subharmonic on@. If |z| = r,

¥ (F(2)) =2l fells / (Ref,)log .| dm

and so the expression on the right increases with r. Rearranging we have

Re ( [ 108l dm — i) 10g lf_(0)|> <21l — IFO))

and hence, letting r — 1, by Lemma 2.1

Re (/flog |fldm — f(O) loglf(0)|> < 2(“fr”1 - |f(0)|)

and this implies the Proposition by considering a.f in place of f where |a| = 1.
The next lemma is a standard calculation by power series which we omit."

Lemma 2.3. Suppose a,b €C with |a|? + |b|> > 0. Then

. 2=7r : ; dCP .
(1) /0 loga + bei#| 52 = log(max(|al, [b]))
CLa o 13 1p<la
(2) / e*¥ log |a + be'?| do _J2% <] |
0 | 20 3% la < Bl

Theorem 2.4. Suppose 1 < p < co. Then there is a constant C = C, so that if
f € H, with flog|f| € Ly, and if g € Hg, where q is the conjugate index for p,
then

| [ foto1fldm| < Cplflplsls -

Proof. Since the integral is homogeneous in both f and g it will suffice to suppose
Ifll» = llgllg = 1 in each case.
Casel: p=1

By Proposition 2.2,

| [ sotoglsalam| <2
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but ||glog |g|]lec < e? so that
I/fglogmdm <Ci=2+e7t.

Case 2: p=2
Lemma 2.1 allows us to specialize to the case when f,g € Hoo. For 0 < ¢ < 27

set _ ‘
he,=¢e""f+e¥g.

Observe that
2w 0 dgo . )
/ lholl2 o ANz +llgllz =2 -
0

By 2.2, applied to h2, since hy(0) = e f(0),

| [ HetogIhel dm — $e725¢F(0) log FO)] < lInol* = 17(0)]

integrating over ¢ we obtain

27r
|/ /h2 log |k, | dm —[ <2.

Define G € L, pointwise by

1
G= 5—;/hilog|h¢|dgo.

|/de‘g2.'

We now estimate G pointwise, by expanding hfo. First we have

Then by Fubini’s theorem

2w
| [ et og bl 52| < 3157
A .
by Lemma 2.3. Similarly
2x
| [ gt toglhal 52| < diol?
0

For the remaining term

2

. de
fglog|hy| 5, = f9logH
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where H = max(|f|, |g|). Thus
|G —2fglog H| < 3(If* +|9/?)

and so

/fglongm' %

However 0 < |f|log % e 1H so that

'/fglogg‘l‘dml Se‘II/H|g|dm|.

Let A ={w:|f(w)| > |g(w)|} and B =T\ A. Then

[Histam< ([ |fl2dm)l/2 (/ lgIde)m + [ lofam

<a+1~a

where o = ([, |g|> dm)!/?. Thus since 0.< o < 1

l/fglog-l%dml < %e"l

and

| [ so108 ldm| < G

where C = £ 4 3¢71.

Case 3: 1<p<2.
Again we suppose f,g € Hy. By using inner-outer factorization we can write
f= I F where I is inner and F is outer. Now let

fo= Fg;lf
= Fl—gg

Then ||foll2 =1 and

lgoll2 = / 22 |g]? dm

<(Jieran)” (Juron)”' 1
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Thus by Case 2
l/fogolog |foldm\ <C;

and so

| [ fe108171dm| < ¢, = 2,

Case 4: 2 <p< oo
Again we assume f, g bounded. Then

/fglog |gldm| < C

(by Case 3). However

/fgloglfgldml <2
by 2.2. Thus
l/fglog]ﬂdm‘ <24C,=0C,.

Corollary 2.5. Suppose 1 < p < co. Then if f € H, and flog|f| € L,

d(flog|f| , Hp) < Cy|fllp -

Proof. This is simply the Hahn-Banach Theorem.
The analogue of Corollary 2.5 holds also for 0 < p < 1.
Theorem 2.6. Suppose 0 < p < 1. Then there is a constant C, so that if f € H,

is bounded then
d(f-log Ifl, Hp) < Cp.“f“p .

Proof. Let f = IF where I is inner and F is outer. Then IFP € H; and there
exists by 2.5, g € H; with

lpIF?log|f| — gll1 < C1 ||[IF?|
=C1||fll5 -

Then p~1F'~?Pg € H, and
flog|f| —p~ ' F'Pg = p~ ' F'"P(pIF" log|f| - g) .
By Holder’s inequality,

1—p
[ 15108151 =5 i rgl? dm < 7 Cu 1) ( [ 17 dm)

=@ CulIfllp)”
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so that the theorem is proved with C, = p~1C}.

We conclude this section by relating our ideas to some known results in har-
monic analysis. In [7] (in particular Proposition 3.35) Rochberg and Weiss use
interpolation theory to show that operators such as the Riesz projection or the
Hilbert transform satisfy certain nonlinear commutation relations with the function
z log |z|. We derive from Corollary 2.5 a direct proof for the Riesz projection (and
hence for the Hilbert transform). Note also that Theorem 2.7 implies Corollary 2.5,
but without the specific constants.

Theorem 2.7. For 1 < p < oo there is a constant C = C(p) so that if f € L,
where r > p then . '

|R(f log|f]) — (Rf)log |Rf| |, < C I fll5 -

Proof. In this argument C will denote a constant depending only on p but which
may vary from line to line. Let u = Rf, v = f — Rf. Then

2
|ulog Ju| + vlog|v| — flog |fl| < =(lul + |vl)
so that E . 4
lulog |u| + viog [v| — flog|flll, < —[IR]l Il
=C|fllp -
By 2.5 there exists g € Hp with
lulog [u| — glly < C lJull, < ClIflly
and h with k € H, and | |
l|vlog [v] = hll, < ClIfllp -

Thus | .
|| R(f log |f|) - gllp <C “f“p

and hence

|R(flog | f]) — ulog |ulll, < C'l|fll,

as required.
Finally we note a real-variables version of 2.2. Let ReH; be the space of real
functions f € L, so that there is a unique g € L, such that f +:g € H; . Set

[l ez, = [If +gllx -

Proposition 2.8. If f € ReH; and f € L, for some p > 1 then

| [ r1og11dm] < 31 flner
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Proof. 1In fact :
| [ +igy108s? + 4142 dn| < 20 e

and hence

| [ £1og(s® + ¢%)1/2 dm| < 21 llmen,

Now

i1og LHELE < (724 g2y

and the Proposition follows.
Let f* be the radial maximal function defined by

. 2 . dp
prey=sup| [P0~ )
r<l1 0 us
Then || f||ren, is equivalent to || f*||; and

| oglfl - flog £*] < 1

so that we easily deduce

Proposition 2.9. There is a constant C so that if f € ReH; N L, for somep > 1

| [ f1o8.* dm| < C 1 flmer,

A very similar result is proved by Coifman and Rochberg [4]. They show

| [ F1o8(171%) dm| < € e, -
The relationship between this and Proposition 2.9 is not clear at the present.

3. Applications to (UMD) -spaces.

Let us suppose X is a Banach space with a closed subspace E so that E and
X/E are (UMD)-spaces. It is unknown whether, in general, X is a UMD-space.
Our next proposition gives a simple criterion.

Proposition 3.1. Suppose 1 < p < oo is fixed. Let X be a Banach space with a
closed subspace E so that E and X/E are UMD-spaces. Then X is a (UMD)-space
if and only if the natural quotient map § : L,(X) — L,(X/E) maps H,(X) onto
H,(X/E).

Proof. Suppose X is (UMD). Iffe H,(X/E) there exists g € L,(X) with §g = f.
If the vector Riesz prOJectlon R is bounded then §Rg = f.
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Conversely let f € Lp(X), and assume § maps H,(X) onto Hp(X/E). Then
§f € Ly(X/E)andso §f = g1+gz where g1 € Hy(X/E)and g2(w™) € Hp o(X/E).
By assumption we can find hy, b € L,(X) so that ky € Hy(X), ha(w™) € Hpo(X)
and (jh] = g; (] = 1,2) NOWf—-—hl —'hz € LP(E) and SOf—hl —‘h2 =h3+h4
where hs € Hp(E) and hy(w™?) € Hpo(E). Writing f = (hy + ha) + (ha + ha) we

are done.
Our next Proposition is the vector version of Corollary 2.5.

Proposition 3.2. If 1 < p < there is a constant C = C(p) so that if X is a
reflexive Banach space and f € Hy(X) satisfies flog Ifll € Lp(X) then

d(floglfll » Hp(X)) < Clifllp -

Proof. Since X is reflexive, Lp(X )* = Ly(X*). Thus there exists g € Hy(X)*t =
H, o(X*) so that gl =1 and |

A(FLogf1, Bp(0)) = [(f.0) o8 | fldm

Let h € Hp be an outer function with \h| = || f]l a.e. Then (h71f,g) € Hyp
and

[ s, gt dm < [ Yl
| =1.
Thus
| [0 5,0 iog bl am] < C 1l
| =Clfll,
by Theorem 2.4, and the proof is complete. ‘
Theorem 3.3. For1 < p < o0, Zp is a (UMD)-space.

Proof. We show that the natural quotient map § : Ly(Zp) — Ly(£p) maps Hp(Zp)
onto Hy(£p). To do this it ‘suffices to show that there is a constant C' so that if
f € H,(£,) is bounded and vanishes off a finite number of co-ordinates in £, then
there exists g € Hp(Z,) with §g = f and lgll, < Clifllp- ’

Let
F(w) = (fr(w)) 4oy

where fi € Hoo and fr =0 for k> N.
By 3.2 there exists g € H,(£p), so that

|| £ log I 1l — gll, < C lIflls -

Clearly we may suppose :
o<
g(w) = (9x(w)) =,
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where gr = 0 for £ > N.
By 2.5 select hy € Hp with hy =0 for k > N and

|fe log il — e, < C Il fellp -

Thus
[ 1setoglsi = f dm < €7 [ 1fefram

and by summing
N
/Z | filog | ful = hi|" dm < CP||F|% -
k=1 :

Now define G € H,(Z,) by
G(w) = (g(w) — he(w) , fr(w));_,

al 11l
lG|IP < ¢ (Z |9k — ki, — fi log I ,l”+lf ,p)
k=1

N N N
<C (Z |9 — Filog I FII[” + D | fulog | ful — Ri|” + D |fk|p>
k=1 k=1 k=1

Thus
IGll, < Clifllp

and clearly ¢G = f.
Remark.  Similar arguments show that ZF), is a (UMD)-space for 1 < p < oo.
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