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Calderén couples of rearrangement invariant spaces
by

N. J. KALTON (Columkbia, Mo.)

Abstract. We examine conditions under which & pair of rearrangement invariant
function spaces on [0, 1] or [0, cc)} form a Calderén couple. A very general criterion is
developed to determine whether such a pair is a Calderdn couple, with numercus appli-
cations. We give, for example, a complete classification of those spaces X which form a
Calderén couple with Loo. We specialize our regults to Orlicz spaces and are able to give
negessary and sufficient conditions on an Orlicz function F so that the pair (Lg, Leo)
forma a Calderén pair.

1. Introduction. Suppose (X, Y} is a compatible pair of Banach spaces
(see [4] or [5]). We denote by K(t, f) = K(¢, f; X, Y} the Peetre K-functional
oun X +Y,ie.

K(t, f) = mf{|lzlx +tlyly : 2 +y = f}.

Then (X,Y) is called a Calderdn couple (or a Calderdn—Mityagin couple} if
whenever f, g satisfy
K(t,f) < K(tg)

for =1l ¢ then there is a bounded operator T : X + ¥ — X + Y such that
|Tllx, |T]|y < ocandT'g = f. We will say that (X, 1"} is a uniform Calderén
couple (with constant C) if we can further insist that max(||T|x, [|T|ly) <
. Calderén couples are particularly important in interpolation theory be-
ealse it is possible to give a complete description of all interpolation spaces
for such a couple. Inceed, for anch a couple, it is easy to show that a space
Z is an interpolation space if and only if it is K-monotone, ie if f € Z
and g € X +Y with K(t,9) < K¢, f) imply g € Z. It follows from the
K-divisibility theorem of Brudnyi and Kruglyak [7] that if Z is a normed
K-monotone space then ||f]|lz on Z is eguivalent to a norm |[|K (2, f}l|s
where & is an appropriate lattice norm on functions on (0, cc). Thus, for
Calderdn couples, one has a complete description of all interpolation spaces.
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We also remark at this point Lhat there are apparently no known examples
of Calderén eouples which are not uniform.

There has been a considerable amount of subsequent effort devoted to
classifying Calderén couples of rearrangement-invariant spaces on [0,1] or
[0,00). It is a ¢lassical resuls of Calderén and Mityvagin ([9], [32]) that the
pair (L1, L) is a uniforro Calderén couple with constant 1. It is now known
that any pair (L,, L) is a Calderén couple {(and, indeed, weighted versions
of these theorems are valid); we reler the reader to Lorentz and Shimogaki
(27], Sparr [36], Arazy and Cwikel [1], Sedaev and Semenov [35] and Cwikel
[13], [15]. Subsequent work has shown that under certain hiypotheses pairs
of Lorentz spaces or Marcinkiewicz spaces are Calderdén couples; see Cwikel
[14], Merucei [30], [31] and Cwikel-Nilsson [16], [17]. For further positive
results on Calderén couples see [18] (for weighted Banach lattices), and [21]
and [38] (for Hardy spaces).

On the negative side, Ovchinnikov [34] showed that on [0, 0) the pair
(L4 Loo, L1NLge) i not a Calderdn couple; indeed, Maligranda and Qvchin-
nikov show that if p # 2 then Ly N Ly and L, + L, (1/p+1/qg = 1) are
interpolation spaces not obtainable by the K-method [29].

The general problem we consider in this article is that of providing neces-
sary and sufficient conditions on a pair (X, Y) of r.i. spaces (always assumed
to have the so-called Fatou property) on either [0,1] or [0, cc) so that (X, Y)
is a Calderdn couple. Althougl we canuot provide a complete answer to this
probleni, we can resolve it in certain cases and this enables 118 to settle
some open questions in the area (see e.g. Maligranda [28], Problems 1-3,
or Brudnyl-Kruglyalk [8], p. 685, [z, [i]). For example, we give a complete
classification of all r.i. spaces X so that (X, L..) is & Calderén couple and
hence give examples of r.i. spaces (even Orlicz spaces) X so that (X, L..) s
not a Caldersn couple. Our methods give fairly precise information in the
problem of classifying pairs of Orlicz spaces which form Calderdn couplag.
It should also be mentioned that our results apply equally to symumetric
sequence spaces,

We now describe our results in more desail. Let X be an r.i. space on
[0,1] or [0, o0} or & symmetric sequenice space. Let e, = Kjon an+1) for € J
where ] =Z_ = —Nor [ = Z or J= NU{0}. We associate with X a Kathe
sequence space Ex on J by defining

|§HE:{ = || L‘f(ﬂ)eugl o
X
nel
We then say that X is stretchable il the sequence space Ex has the right-
shift property (RSP), ie. there is a constant C so that if (z,.,y, )., is
any pair of finite normalized sequences in Ex so that suppz; < suppy; <
SUpPp Tz < ... < SUPP ¥p then for any a1,..., oy we have
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Thus Ex has (RSP) if the right-shift operator is uniformly bounded on
the closed linear span of every block basic sequence with respect to the
canonical basis. We similarly say that X is compressible if Ex has the cor-
responding left-shift property (LSP). Finally, we say that X is elastc if it
ie both stretchable and compressible. It is easy to see that Lj-spaces and
more generally Lorentz spaces with finite Boyd indices are elastic becauss
Ey in this case is a weighted £,-space (in fact, this property characterizes
Lorentz spaces when the Boyd indices are finite), On the other hand, it is
not difficult to give examples of r.i. spaces which are neither compressible
nor stretchable. Curiously, however, we have no example of a space which is
either stretchable or compressible and not elastic.

The significance of these ideas is illussrated by Theorem 5.4. The pair
(X, Ly,) is a Calderén couple if and only if X is stretchable. Dually, if we
assume that X has nontrivial concavity then (X, L1) is a Calderdn couple
if and only if X is compressible (Theorem 5.5). More generally, if (X,Y)is
any pair of r.i. spaces such that either the Boyd indices satisfy py > gx or
there exists p so that X is p-concave and Y is p-convex and has nontrivial
concavity then (X, Y) is a Calderdn couple if and only if X is stretchable
and Y is compressible.

In Section 6 we study these concepts for Orlicz spaces. We show that for
an Orlicz space to be compressible it is necessary and sufficient that it 1s
stretchable; thus we need only consider elastic Orlicz spaces. We show for
example that L #[0,1) (where F' satisfies the As-condition) is elastic if a:nd
only if there is a constant ¢ and a bounded monoctone increasing function
1w(t) so that for any 0 < ¢<1and any1<s <i<ocowehave

Ftx) F(sz)
7 = FG)

This condition implies that the Boyd indices {or Orlicz—Matuszewsk:? .in—
dices) pr and gp of Lp coincide. In fact, it implies the StIOIlgBI‘lCOIl.dl‘tIOD
that F must be equivalent to a function which is regularly varying in the
sense of Karamata (see [6,). We give examples to show that F' can l?e regu-
larly varying with L inelastic and that I can be elastic without coinciding
with a Lorentz space (cf. [26], [33]). .

Brudnyi (cf. [8]) has conjectured that if a pair of (distinct} Orlicz spaces
(Lp[0,1], Lg0,1]) isa Calderén couple then pp = ¢r and pe = 45 We show
by example that this is false. However, we also show that either pr = prz
and gr = ge or both Lp and Ly are elestic, in which case pr = gr and

o = 4c-

X

+u(t) — w(s).
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Let us now introduce some notation and conventions. Let 2 be a Polish
space and let 4 be a c-finite Borel measure on £2. Let Ly{g) denote the space
of all real-valued Borel functions on {2 (where functions differing on a set
of measure zero are identified), equipped with the topology of convergence
in g-rncasure on sets of finite measure. By a Kdthe funclion space on {2
we shall mean a Banach space X which is a subspace of Ly containing the

characteristic fimction x 5 whenever u(B) < oo and such that the norm | | x
satisfies the following conditions:

(a) |[/llx < lgllx whenever |f] < |g| a.e,
(b) Bx = {f:||f|x <1}is closed in Ly.

Condition (b) is usually called the Fatoy property; note here that we include
the Fatou property in our definition and so it is an implicit assumption
throughout the paper. It is sometimes convenient to extend the definition of
I fllx by setting || f|x = oo if f € X. We will also write Pgf = [p = fx,
when B is a Borel subset of £2. We let supp f = {« : f(w) 5 0}

If X is a Kothe function space then we say that X is p-convezr (1 <p
< oo) if there is a constant M so that for any fi,..., fn € X we have

(i)™, s (2 0si)

and p-concave if there exists M so that

(L ()7,

Similarly, we say that X has an upper p-estimate if there is a constant M
so that if fy,..., f are disjoint in X then

. )1/;9

X ?

|25, = (s
k=1 k=1

and X has a lower p-estimate if there exists M so that if fi,..., fn are
disjoint then

y
|§{) Tem

n \1/p L)
(X Ifellze) ™ < 2 325
k=1 k=1 «
See Lindenstrauss—Tzalriri [25] for a fuller discussion.

We will sometimes use {f.g) for [, fgdp. With this notion of pairing
we will also nse X~ for the Kéthe dual of X (which will coincide with the
full dual if X is separable). '

If (X,Y) are two K6the function spaces on. (2, 1) then the pair (X, Y)is
necessarily Gagliardo complete (cf. [4]). We denote by A(X,Y) the space of
admissible operators, i.e. operators T : X + Y — X + ¥ such that |7/ x =
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sup{|TFlx : Ifllx <1} < oo and [Ty =sup{|Tflly : [fly < 1} < oo
We norm A(X, ¥) by [[Tllx,vy = max([Tiix, [ T]ly)- . _

In the special case when 2 = J is a subset of Z and p is counting
mensure we write w(J) = Lo(u) and a Kéthe function space X is called a
Kéthe sequence space modelled on J. An operator T on X is then called a
matriz if it tekes the form

Tzi{n) = Zank:u(k)
kel
for some (@,k ) pecy- We remark here that the assumption that T is a matrix
- * * * . -
forces the existence of an adjoint operater 77 : X% — X* even in the
nonseparable situation, when X* is not the full dual of X.. '

¥ 0 = [0,1] or [0,00) (with pu Lebesgue measure) or if .Q‘ — N (with u
counting measure] then for f € Lo(y) we define the decreasing rearrange-
ment f* of f by

‘()= sup nf [f(s)l,
) Biu(B) <t 5€8
Ji i i iant space (or a
for 0 < t < oo. We say that X is a rearmngemeiat TRVGTTGTL
symmelric sequence space if {2 = N if || Fllx = || F*]1x for all f e Lg. If we
define

Fr) = % [ Fle)ds
0

then it is well-known that if f,g € Lo with f™ = g** then | filx < l¢l'x

If X is an r.i space on [0,1] or [0, 00) then the dilation operators D. on
X are defined by D,f(t) = f(t/a} (where we regard f 28 va..mshlng ouiamde
[0,1] in the former case). We can then define the Boyd indices px and ¢x
o , log e — lim oz .

Px = B0 Togfindx T molog IDallx |

Tn the case when X is a symmerric sequence space we define px and ¢x In
.the same way but we define D, by the nonlincar formula

Dof(n) = ["(n/a)

* is well-defined on [0,00).
Whe;\?xlilly, let us mention two special crlasses of rr.i. sp.aces. If 1*§ p < o;af
we will say that an r.i. space X on 1= an i] or [0, oo) ig a forenéz jg;mifmh
order p if there is a positive increasing nght fu.f:(:tmn u_) : t.(}.l — (a;inow;n
that supy speq w(2t)/w(t) <00 and ||f||x is equivalent to the qu r

a7
1 fllwp = (}[ Fr)Puw(t)® 7) -
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We can then write X = L., ,. If we take w(t) = t*/9 we obtain the standard
Lorentz spaces L(g,p). It 1s easy to compute that the Lorentz space X =
L, p has Boyd indices px,gx where

1 ) —1 ()
— = lim sup logw(at) —logu(t) ,
PX ey oten loga

1 log t) — log w(t
— = lim inof ogw(at) — log w(t) .
gx .09 terefl loga

If we impose the additional restriction that gx < oo then it can easily be
seen that we may suppose that w satisfies inf; o0 w(2t)/w(t) > 1.

We will also be interested in Orlicz function spaces and sequence spaceg.
By an Orliez funection we shall mean a continuous strictly increasing convex
function ¥ : [0,00) — [0, 00) such that F{0) = 0. F is said to satisfy the
Ag-condition if there is a constant A such that F(2z) < AF(z) for all z = 0.

The Orlinz function space Lp (52, p) is defined by

1Files =inf{a- >0: [ Fla™f{t))dt < 1}
M3

sothat Lp = {f : [|f|lrr < >}

In this case the Boyd indices pp = pj . and gr = gr.. are closely related
to the Orlicz—Matuszewska indices of F (see Lindenstrauss-Tzafriri 23|,
p. 139). More precisely, let o™ (F} (resp. a”(F)) be the supremum of all g
so that for some C' we have F(st) < CsPF(t) forall0 < g < landallt >1
(resp. t < 1). Similarly, let 3%(F) (resp. F%(F)} be the infimum of all 4 so
that for some C' we have sPF(1) < CF(st)forall0 < s < Land allt > 1
(tesp. ¢t < 1). Then if 2 = [0, 1] we have pp = o*(F) and qp = B8=(F). I
§2 = {0,00) then pp = min(a®(F), o"(F)}} and gr = max(3%(F), 5°(F)).
If we assume the Ag-condition (and we always will) then g5 < oo.

2. The shift properties. Let J be one of the three sets %, Z,. = {n &
Z:n >0}or Z. = Z\Z4. Let w(]) denote the space of all sequences
modelled on J. If ¢ = {z{k)}4ey is a sequence (modelled on J) we write
suppz = {k : (k) 5 0}. If A, B are subsets of ] we write 4 < B ifa < b
for every a € A, b € B.If I is any interval of Z and (2., yn)aers is a pair
of sequences in w(J) we say (., y.) Is interlaced if each z,,y, has finite
support. and Supp 2, < supp ¥, (n € I) and suppy, < supp #,4; whenever
nn+lel.

Let E be a Kothe sequence space modelled on J. We will say that £ has
the right-shift property (RSF) if there ig a constant ¢ such that whenever
(@n; Yuduer is an interlaced pair with ([y.|lz < |lenllz = 1 (n € I) then for
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every finitely nonzern sequence of scalars (o,)ner we have
“ E Cnln = Cl S Qe Tn
E |
nel nel

Converssly, we will say that E has the left-shift progerty (LSP) if there
is & constant C' so that for every interlaced pair (2, yn)ner with ||z,/s <
lnllz = 1, and every finitely nonzero (g )ner we have

HE Gndn E X ln
nel nel

PROPOSITION 2.1. K has (LSP) if and only if E* has (RSP).

Proof. We will only prove one direction. Tet us assume E* has (RSP)
with constant C. Let (€, %n)ner, be an interlaced pair with |lya[lp <
llzallz = 1. We may assume each @y, yn is positive (ic. z,(k), yn(k) = 0 for
every k). Suppose (&n)ncr 15 afinitely nonzero sequence of nonnegative reals.
Let f = Y_ ot ¥yn- Then there exists positive g € F* with suppg C supp f
and so that {f,g) = | flz while ||g||g- = 1. We can write

g= Zﬁr\.vn

where each v, is positive, ||z« =1 and SUpP Vn C SUDD Yn-
Next pick positive u, with supp u, C Supp Tx, (£, ua) =1 and ||| £«
—= 1. We conclude from the fact that E* has (RSP) that

| 3 B
nel

B .

g’

<’
=

<C.
E*

Thus

| S e, = S antalym vn) < K ante
nel nel
F(OITANOWIMNEL PICE

Thus the proposition is proved. m

P

PROPOSITION 2.2, Suppose E is a Kéthe sequence space modelled on Z.
Define By = E{Zy) and E_ = E(Z_). Then & has (RSP) (resp. (LSP)) if
and only if both EL and E_ have (RSP) (resp- (LSP)).

Proof One direction is obvious. For the other, suppose both E_ and
E_ have (RSP) with constant C', say. Suppose (£, Yniner 15 an i_nterlfmced
pair of sequences with l|ya(|s < |lzallz = 1 and that (Qn)ner is finitely
nonzero. Then there exists m & I so that supp(z, + yn) C Z_ forn < m
and supp{%, + y») C Zy for n > m. Now

Hzanyn ' B < |am| -+ ” Z an'y’-n.\
nel & <1

E+ ” Z an'yni »
T



240 N. ] Kalton

<0 +1)|| 3 onsa |

ned
Thus £ has (RSP) with constant at most 2C + 1. =

To simplify our discussion we introduce the idea of an order-reversal,
Let E = E(J) be a Kothe sequence space. We let J = {—(n+ 1) : n € I}
and if z € w(l) we set T(n) = z(~(n + 1)) for n € J. Let E(I} be defined
by |zfiz = |Z}|e; then F is the order-reversal of E. Clearly (LSP) (resp.
(RSP)} for F is equivalent to (RSP) (resp. (LSP)) for E.

Next observe that if (w, Jney satisfy w, > 0 for all n then the weighted
sequence space E{w) = {z : 2w € E} normed by ||z]| g = ||ow |z satisties
(LSP) (resp. (RSP}) if and only if E satisfies (LSP) (rezp. (RSP)).

PROPOSITION 2.3. Let B = E(J) be a symmetric sequence space. Suppose
E has either (LSP) or (RSP). Then E = £,(J) for some 1 < p < oco.

Procf. For convenience of notation we cousider only the case J = Z,
and (LSP) and leave the reader to make the minor adjustments necessary for
the other cases. Let {1, ).exn be auy normalized positive block basic sequence
in E(J). Select ay, € suppuqn. Then (uan,eq,y, ., )aen 18 an interlaced pair.

Thuas
” Z QipCp, E =< GH Z X Uan
nsH nel

Similarly (ea,, _,,%an)nen i8 an interlaced pair and so

i

. § Qo Usn . 2 anen‘
nely neEN

Thus (uz,) is 0% equivalent to (e,) and similarly 0 is (v2n-1)nen. It then
follows that the basis (or basic sequence) (e,) is perfectly homogeneous and
by a theorem of Zippin [39] (see Lindenstrause-Tzafriri [24]) this implies
that it is equivalent to the £,-basig for some p or the cp-basis; in the latter
case we deduce that £ = {,({}. The result then follows. m

B

<o
E

B

PROPOSITION 2.4. Let E = FE(Z.) be a Kéthe sequence spuce with
(LSP) or (RSP). If E contains a symmetric basic sequence then there
erists L € p < oo and an increasing seguence (ax)g»o with ay = 0 so that
E = t,(Elag, agy1)). In particular, when E is separable, we have p < oo and
any symmetric besic sequence in E is equivalent to the canonical £,-basis.

Remark. Of course there is a similar result if J = Z_. However, in the
two-ended setting J = Z we recall that E has (RSP} (resp. (LSP)) if and
only if both E{Z,) and E(Z.) have (RSP) (resp. (LSP)). In particular,
£o{Z_) @ €, (Z4) has (LSP) and (RSP) even if v # p.
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Proof of Proposition 2.4. We can suppose that (u,} is a nor-
malized symmetric block basic sequence. By an interlacing argument as in
Proposition 2.3 it will follow that a subsequence (e,,) of the unit vectors
is symmetric. Since the resiriction of E to this subsequence has (LSP) or
(RSP) it follows that it is equivalent to the /,-basis for some 1 < p < 00 or
to the ¢p-basis by Proposition 2.3. For convenience we suppose the former
case and fix p. Let Iy = [ak, ag+1)- Then, for suitable ¢, by an interlacing
argument any normalized sequence {(vy) supported on Iy is C-equivalent
to the fp-basis; similarly, any normalized sequence supported on Japyq is
C-equivalent to the £,-basis and the first part of the result follows. For the
last part, if E' is separable then obviowsly » < oo and a simple blocking
argument gives the result. m

Remark. Tt is possible that E contains no symmetric basic sequence,
Indeed, Tsirelson space I' [37] and its convexifications provide examples
of such spaces with (RSP) and (LSP) (see {10] and [12]). It is not diffi-
cult to nse Krivine’s theorem [22] to show that if E = E(Z.) has (LSP)
{or {(RSP)) then there is a subsequence (e,,) of the unit vector basis so
that for some C,p we have for all k and every &k vectors z,,zs,...,zx with
suppzy < supp g < ... < suppzy and supp(z1 + ... + i) C {@aknp1,

e 2\YP . . = » \ 177
R ON N IES DIEN NEL DN
n=1 n=1 n=1
with appropriate modifications when p = oo. Thus any space F having ei-
ther (LSP) or (RSP) and no symmetric basic sequence has a “Tsitelson-like”
subspace.

ProBLEM. Does there exist a Kéthe sequence space with (LSP) and not
(RSP)?

Let us remark.that tbis is probably nontrivial. ITndeed, the corresponding
question for simple shifts has been considered (3] and Bellenot has only
recently given an example [2].

LEMMA 2.5. Let E be a Kithe sequence space on [ with [(RSP); then
there 45 o constant C' so that whenever (Tn, yn)ner 6 on interleced pair of
sequences with |y.||g < |l@nlle = 1 ond (a2 )ner is o sequence in E* with
suppa® C suppz, and t5(z,) = [|Tallg- = 1 then the operalor T defined
by Tw =3, cr(z, a})yn 18 bounded on B with [Tz < C.

Proof. For any = € E with finite support, 7z has finite suppert and we
can define g ¢ E* and a finitely nonzero sequence (o )ner o that jgell=1
(n€T), supp gl C SUPD ¥n: || 2 cmglh[g- =1 and
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<T:c, Z ang;\) = ||Tz|g.

nel
Thus
!
ITzlz = 3 cnan(@) = (2,3 onz)
nel nel
. |
<l 3o anss| < Cllslle| P anet] . < Cllols
nel ne&l l

where (' is the (LSP) constant of E* (which actually is the (RSP) constant
of E by Proposition 2.1 and its proof). The result follows. w

LeMMa 2.6. Under the hypotheses of Lemma 2.5, there 48 o conslunt
Cy se that if (J,)ner is o sequence of intervels in J with J, < Joq
whenever n,n—+ 1 € I, (T ner. (Un)nes are two normaolized sequences wilh
SUPP Zn, SUPPYn C Jy and (23) is any sequence with suppz), C suppz,
and 23 (0n) = 1 = ||z} |z then the operaior

Ts = Z<H” 3;:1>'.',’11+1
nel
(where yp41 = 0 if n+1 € I) is bounded on E with [Tz < C).
Proof. The sequence pairs (3321L1y2n+1)2n,2n+1EL (J;En‘—Tsy'i!n.)‘zn—l,'zuef

are interlaced and the lemma follows from 2.5 with ¢ = 2 by simply
adding. =

Remark. If F is separable and has both (LSP) and (RSP) then Lemma
2.6 quickly shows that every normalized block basic sequence in E spans a
complemented subspace; this property is, of course, enjoyed by Tsirelson
space [12] (see also Casazza-~Lin [11] for an earlier similar example). If this
property holds for a symmetric sequence space then it iz isomorphic to £,
for some 1 < p < oo (see Lindenstrauss—Tzafriri [23]).

3. The shift properties for pairs. We next consider a pair of Kéthe
sequence spaces (E, F) modelled on J. We will say that {(E, F') has (RSP)
if there is a constant C' so that whenever {z,,, ¥n }ner 18 an interlaced pair
with |#nllz < ||znlls = 1 and =y, = 0 then there is a positive matrix
T with |77 < C and Tz, = yy,. We will say that the pair (£, ") has
(ISP} if (F, E) has (RSP). If (E, F) has both (LSP) and (RSP) then we
say that it has the shift property (SP).

We first note that if (E, F') has (RSP) then E has (RSP). Conversely, it
follows from Lemma 2.5 that if F has (RSP) then (E, E) has (RSP).

In this section. we show that, under certain hypotheses, one can deduce
(RSP) for the couple (E, F) from the property (RSP) for E alone. We will
nced some definitions. We define the shift operators 7, for n € Z on w(J])
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by () (k) = z(k — n), where we interpret z(j) = 0 when j ¢ J. We define
fp (E) = limy— oo HTHHJIE/“ (which can be 0o in the case when m is unbounded

on E) and £_(E) = il o0 |7-nl|i "~ We will also let o(n) = o(n; B, F) =
lewlls/|lexllp- We will say that (E,F) is ezponentially separated if there
axist 8 > 0 and Cp so that if m,m +n € J then p(m 4+ n) 2 Cytanf p(m).

LeMMa 3.1 If k_(E)x, (F) < 1 then (E, F) is ezponentially separoted.

Proof Here we have p(m+n)/o{m) > ([|7_ulzll7a] )" The hypoth-
esis then implies that for some 3 > 0 we have ||T_a|lzllmllF < c2f for
gome C > 0. The result then follows. 8

LEMMA 3.2. Suppose (E,F) is exponenlially separated. Then there is a
constant C, so that if supp = C [a,b] then

Crlela)lzlir < lzls < Cra®)|z]r-
Proof. Suppose £ = ¥ p., o(k)ex. Then
lele <3 | leslz < Y lz(B) a(k)lles
< Coy o277 a(k) | lexll»

< Goa(t) (3 27) maeeiol)] sl < Celele
k=0 ‘

F

for a suitable constant . The other inequality is similar. m

LEMMA 3.3. Let E,F be a pair of Kithe sequence spaces satisf;!in.:g
k_(E)&y (FY < 1. Suppose E has (RSP). Then (E,F) has (RSP). Simi-
larly, if F has (LSP) then (E,F) has (LSP).

P roof. We first note that it is only necessary to prove the first statgvmex'lt
since (?,E) will satisfy (he same hypothesis £_(F)s4 (£} < 1 and F will
have (RSP) if F has (LSP).

We refer back to Lemma 2.5; it is clear that there exists Cp so tha:t if
{Zn,Untner is a positive interlaced pair witlh lyallz < Hﬁ"nHE = 1 then if we
pick =% > 0 with supp %, C SUPPZy and (z,,z%) = |zhfg~ = 1forn €1
then |[T|| g € Co where

Tz =Y (2,23)%n-
ncA
Obviously T is a positive matrix, We now compute |T|\s. Suppose k €
supp yn where n ¢ 1. Then, since suppzy C (—20, k) and yn(k)er < Yn,

IT(k)] = () (B) € oo Imlerlls -
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Now
l2(com iz < e(leslle < el S a7kl e
i<k i<k
‘We have
Tz(k) < 3 Ir—yz(b)li|ms-4ll5
i<k
and hence, since T'z(k) vanishes for zll coordinates not of this form,

[e.=]
Tz <> s el al.

i=1

The hypothesis k_(E)x (F) < 1 implies that there exist M and 0 <4 <1
so that ||7—;|| g7 ilr < M for 7 > 0. Hence

OO0
1Tz p < M&||z| 5

i=1
so that [|T||r < Ci for some constant € depending only on £, F. =m

Although Lemma 3.3 is enough for most of our purposes, there are some

possible modifications. First we give a simple argument in the case F = £,
which will be useful later.

LEMMA 3.4. Suppose E is o Kithe sequence space with (RSP) and that

F = £.(I}. Suppose (E,F) 1s ezponentially seperated. Then (E,F) has
(RSP).

Proof We may sssume that for some Cy, f > 0 we have |leqnfls <
ODZ_'B“!|e.m+n\'E. In this case we proceed as in Lemma 3.3 but note that
| Tz||p == sup [Tz (k).
ked
If k € supD¥n,
Tz (k)| = [{z, 37} |ym (k) < 2(cop | 5llexllz"

< lzsllleslzlexlz < Co > las27PE 9 < || p
J<k i<k
for a suitable C¢. =

B

T4

o

Another version of Lemma 3.3, which actually generalizes Lemma 3.4, is
given by

LeMMA 3.5. Suppose (F, F) 1s ezponenticlly separated, E has (RSP) and
that either (a) there ezists 1 < p < oo so that E has a lower p-estimate and
F has an upper p-estimate or (b) F 1is r-concave for some v < oo and there

ezists 1 << g < oo so that K has an upper g-esttmate and I has a lower
g-estimate. Then (B, F) has (RSP).
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Proof. For (a) we note that the case p = 0o is essentially covered in
T.emma 3.4. Suppose p < oo. By Lemma 3.2 there is a ccnsiant 1 so that
if supp z < suppy then ||z||z|wl|F < Cillz] 7|yl z- There is also a constant
Oq so that if uy,...,u, are disjoint vectors in E or F,

g
5=1 =
“ ;ui . =< CZ(ZN“;’H%)UP_

i=1
We suppose (Zn,Yn)nei 18 a positive iuterlaced pair with |ynllz £ |lzn e
— 1 Define T' as in Lemma 3.3, and set Ji = suppz}. Now if z € F,

# : 2y b M
Telle = | 32 et £ (3 lenblmana )
kcA ke A

LSNP .
<0 (Y lloally) < CiCil i
ke A

and (a) follows. -

We turn to the proof of (b). Tet 1 < p < 0o be conjugatie to g. Then E*
lias (RSP) by Propesition 2.1. Also, (E*, f‘*) is exponentially separated, and
E* has a lower p-estimate while F* has an upper p-esbimate; thus by (a) the
couple (E*, F*) has (RSP). It follows that (F*,£7) has (LSP). We further
can assume, by renorming, that E has an upper p-estimate with constant
1 and an r-concavity constant 1 {apply Lindenstrauss-Tzafriri [25], p. 88,
Lemma 1.£11, to E*) Let G be the associated (LSP) constant for this
couple. We first prove a claim:

CLamm. There exist constants Cy and § < 1 depending only on (E,F)
with the following property. Suppose {Tq,Un}ner 8 u positive interlaced pair
of sequences with ||Taljz = [lyulle = 1. Then there is a subset D of I and
« positive matriz operator § with [|Sle,rm S O, so that ST, = PpYn and
|tts — Poynllr < 6, whenever n € I

Choose x} > 0 with supp =} C supp Ik and ||z;llz = ekl = {Tr, BT)
== 1. Similarly, choose y} = 0 with supp y; C SUPP ¥ and |\yillz = |y&l &2 =
lyg, y7). We begin by using the (LSP} property of (£7,E") to* produce a
positive matrix V on E with [Vlizr = ¢, and V*y; = =) whenever
keI Thus (Vo y;) = 1.

Tix r > 0 small enough so that 37 — %C’f’r?’ =« > (. Let D be the set
of j € suppy so that War(f) = yu(f). Let D = |Uges Di- Clearly there
is a positive matrix § with 1Sther < 261 = Cs and Szp = Ppye. Now
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observe that (Vi — PpVg, v < % so that

(TPpVay + % — Ppys, ) 2 1+ %T — lPoylle.
Thus
14 27— [Poelie < (7 + )7 < 14 Soprr,
Upon reorganization this yields
1Povelle 2 5r——Ct7 =

This in turn implies

lve = Powrlle < (1" =6 <1,
This establishes the claim.

To complete the proof from the claim is quite eagy by an inductive ar-
gument. We may clearly construct a disjoint sequerce of subsels (D, )y>1 of
J anﬁ:il a sequence of positive matrix operators (Sn)n>1 with Snllg E,;) <
2Ch 8"~ and so that SaZe = Pp,yp and Hyk - Z?:l I)D_,-yl\;”E < &M

The operator T = 3%, S, is a positive matrix and Toy = ya; furthier
1T)igm < 2C1{(1—6)"1 u

ProrosITION 3.8. Suppose (B, F) is a pair of Kéthe Sequence spaces.
Suppose either

(a) (B, F) is ecponentiolly separated, F' is r-concave for some r < oo,

and there erists 1 < p < oo so0 that E has a lower p-estimate and F has an
upper p-estimate, or

(b) b (EYky(F) < 1.
Then (B, F) has (SP) if and only if £ has (RSP) and F has (LSP).

Proof. (a) We use Lemuma 3.5 lo show that (B, F) has (RSP) and (F, E
has (RSP) end tha result follows. ’ (SE) e

(b) This is immediate from Lemma 3.3 m
4. Cald«larén couples of sequence spaces. We now turn to calculating
the K-functional for an exponentially separated pair.

LEMMA 4.1, :S'npposc (K, F) is ezponentially seporated. Then there is o
constant Cy so that if p(a) <1 < ola + 1),

K 2) < 0(s0,0lle + H[Tac0)lr < CoK (2 ).
In particular,

”'T(—m,u:”E + 9(“)|lm[a,oc)HF < GZK(Q(G): 3) .
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Similarly, if t < p(a) for all a {in the case J = 7..) then
tz|lp < CLK(E, =)

while if t > p(a) for all a (when J =Z_) then
llzle < CoK{L, z).

Proof If suppz C {—o0,a] then it follows from Lemma 3.2 that
CiK(e(a),z) > ||z||g. Similarly, if suppa C |2, 00) then C,K(o(2),z} >
p{a)]z| p. Combining these staternents gives the results. w

TAROREM 4.2. Suppose (E, F) is erponenticlly separated aond forms o
Calderén pair. Then E satisfies (RSP) and F satisfies (LSP).

Proof. First we remark that it suffices to prove the result for E. Once
this is established we can apply an order-reversal argument to get the result
for F. Tnderd, (¥, E) is also exponentially separated and a Calderdn pair;
thus F has (RSP) aad F has (LSP),

We will suppose that a(m) < Co2~ " g(m+n) for m,m+n € J and that
Uy and 'y are the constants given in Lemmas 3.2 and 4.1.

We now introduce a notion which helps in the argument. An edmissible
pair is a pair (z,]) where I is a finite interval in J and z is a positive
vector with suppz C I, max(suppz) < max7, and ||z|| g = 1. An edmissible
family is a finite collection F = (zz,Ir)7_, of admissible pairs so that
(I} are pairwise disjoint. We define supp F = | J Iy. If F is an admissible
family then we definc I'{F) to be the least constant M so that if (yx)F-;
satisfy |yxlg < 1, suppyx C I and suppwi, < suppyg, then there exists
T e A(E, F) with HT”(E,F) < M and Tap = yp for 1 < k < n. Notice
that since max(supp ) < max Jp there is “room™ for some yj, satisfying
our hypothesee. It is not difficult to show that such a I'(F) it well-defined
since we can restriet the problen for each such family to a finite-dimensional
space.

We next make the remark that if 7" is such an eptimal choice of operator
then 7' can be replaced without altering its norm by 3> ,_, Pr, TPy, . Thus it
can be assumed that Tz = ( for any z whose support is disjoint from [ I;.
Now suppose F aud G are two admissible families with disjoint supports so
that their union F UG is also admissible. Then using the above remark it is
clear that we can simply add optimal operators to ohtain

(1) N(FUG) < I'(F)+T(G).

Next suppose F is a single admissible peir (z, I). Suppose ¥ is supported
on [ and satisfies ||y|g < 1, and suppz < suppy. Then we can choose
z* € E* with |[z*|z+ = 1, suppz” C suppz and (z,z*) = 1. Consider the
operator § defined by S¢ = {£,z*)y. Of course ||S||g < 1. Now suppose the
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maximum of suppx is a. Then

(15¢lm < [yl pllE ~ec,alllz < C2lElw

where (7] is the constant of Lemma 3.2. Hence I'(F) < Clz. It then follows
by the addition principle (1) that if |F| = n then I'(F) < nC7{.

Now we seek to prove that I'(F) is bounded over all admissible [am-
ilies. Let us suppose on the contrary that it is not. We then can con-
struct inductively a sequence of admissible families (F,) for n € N and
an increasing sequence of integers (my) so that supp 7, C {—mg, m,] and
I(Frp) 2 nln+ 1)+ Ci2my +2n 4 1),

Now refine F,, by deleting all pairs (x, I) so that I intersects [—1n., — n,
My, + n]. This removes at most 2., + 1 pairs and creates a new admissible
family *7 so that I'(F)) = n(n + 1). The families F, are now disjoint. If
we write the members of 7 in increasing order of support as (sck,Ik)g:l
then we can define F,, » for 0 < r < Lo be the family of all (zy, I),) where
k =7 mod (n+1). At least one of Fy, , satisfies I'(F., ») 2 n by (1). Call this
family G.. We note that if (z,1) and (y, J} are two congecutive members of
G, then [ +n < J (since n nontrivial intervals in F, lie between I and J).
Furthermore, there is a gap of at least n between any interval represenied
in G, and any interval represented in G for some &k < n.

Finally, let us consider the union of all G, for n > 1. This may be
written as a sequence of admissible pairs {zy, Ix)rea where A i3 one of the
sets Z,Z_,Z4 and Iy < Iy for all ko k+ 1 € A Write Iy, = [ag, be).
Then b < ar+1 whenever k,k+ 1 € A. Furthermare, the gaps hetween the
intervals fend to infinity as |k| -+ co. Precisely, if o = (og41 — by) then
M|k oe 0k = 00. Now let dx = max(suppazy) so that ap < di < bg. Let
Jp = (dk,bk] for k= A

We now claim:

CLAM. There ezists a finite subset Ag of A and a constant M so that
if A = A\ Ay, and if {yr)kea, is any sequence satisfying ||ykllz = |
and suppyr C Ji, then there ezists T € A(E,F) with Tz py < M and
T2 — )5 < 3.

Let us first assume the claim is established. We consider the space
V = Lo(E(Jx))kea, and the map S : A(E, F) — ) defined by S(T) =
(PrTxzi)ica,- Clearly ||S|| € 1 and it follows from the claim that if
Y = (tr)kea, € ) there exists T £ A(E,F) with IT)ie,m < M|y| and
15(T) —¥|| < 3lly|. By a well-known argument from the Open Mapping
Theorem this is enough to show that S is onto and indeed if |y|| < I then
there exists T with [Tz 7y <2M and §(T) =y.

Now suppose G, = {(2x, Ix)}rep, where B, C A;. Then if (yr)ies,
satisfy |yx| p < 1, and suppxy < suppyx C Iy it follows that there is
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an operator T € A(E, F) with ||T|(z,;,y < 2M and Py Tz = e If we
set Ty = 3 4. p PuT¥r, then |Tollz,ry < 2M and Tozp = Ye. Thus
I'(Gn) < 2M. Now since Ap is finitc we conclude that I'(G,) < 2M for all
but finitely many n. This contradicts the original construction of G,. The
contradiction shows that there is a constant My so thal I'(F) < My for all
admissible families F. In particular, if we have a finite set of finitely sup-
ported vectors &y, Z2,---, Ty Y1, - - Yn 50 that suppzy < suppyy < ... <
suppz, < suppyn and ||zx)p = 1 for all k and |[yx/lz < 1 then there is
an operator T : E — E with |T'|g < 2Mg and Tz = yg. Hence for any
a1, ..., 0, we would have

T bt
[$-conl, <20 S
k=1 B k=1

and this means that E has (RSP).

Thus it only remains to prove the claim. We start by defining o scquence
(An)rca such that g1 — Ap = %,@o’k. We next make some initial observa-
tions, Let us suppose thet suppuy C Ik for k € A and |Jux|z = 1 for all k.
We claim that there exists a constant Cy independent of the choice of (ug)
so0 that if k € A then

. |, <o
i<k
and
(3) H EZA’W”F < Ca2™ Juxlp .
ik

In fact, (2) follows easily from the fact that if j < k then

1,5 1
Aj = Ap— 513205 < g 5("‘3*.7)5'-
i=j
For (3) we note that if j > &,
|ujll 7 < Crolag)™" CL 02 7Pt o (by) !
< 030[32“3(ﬂf‘b*3\|uk|\;.~ < Ci"‘cug—%)\rhc)uukup

so that
9% |puy||r < C2Ce27 P02 fjug | e
from which (3) will follow. -

In particular, let us define 2 = 3 ¢4 2*egz,. The above calculations
chow that z € B+ F. Since (B, F) is a Calderén couple there is a constant
My = My(z) so that if w € E+ F and K (1, u) < K(t,2) for all £ then there
exists T € A(E, F) with ||[T|(g,7) £ Mo and Tz = u.
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Now suppose (yx ke a s any sequence with |yxlip = 1 and suppyx C J.
We set v = 3" 2"y, € E+ F. We turn to comparing K(t,v) with K(¢,z).
et us note first, that for every k £ A we have

lukllr < Cro(di) ™t < CF 2| -

1f ¢ satisfies ¢ < o(az) for all k then we must have A = Z_ and we male
the estimate

K(t,v) <tllv]s € Cot2* ||yg| r < CaCPE2™ || p
so that by Lemma 3.3,
K(t, v < cac:ngK(t, ZJ .

Similarly, if £ > g(b) for all £ € A then we can have 4 = 7. and we
make a similar estimate

K(tw) < [lujls < Cs2* < C3ll2a_y 5

E < CoCsK (2, 2).

In the other cases we first consider the case when o(n) <t < o{n+1) for
some 7 in an interval [ay, dz ). Then K (¢, z;) > tCT o(ds) ! by Lemma 3.2,
Hence

K(tf ”[%:00)) hs Caz”ﬁ[%,awl}”f" = C’Etz)Uc ”kaF < G3Olt2/\k9(dk)_l
S GO K(t,34) < CC2K (1, 2).
If £ is the initial element of A we are done. Otherwise,
(8, s00,) € G327 < Gyl ngran | < CE (4 2)

Combining in this case we have K(1,1) < CK(t,z) for some constant C
depending only on €y, and Cj.

For the final case, we can snppose there exists n not in any interval
[ak,dx) and such that p(n) < ¢ < e(n +1); it may also be asswmed that
there exists k € A with k+1 ¢ 4 and dy £ n < apyy. Then by Lemma 3.3,

F S CaK(t, 2),

"Z(-m,n] ”E + tHz(n,m)l
1—copilllE < Co2™ < Gl 21— omll -

[Win 003 7 < G324 yua | < C2Ca | 20,00 -
Thus combining all the cases there exists C4 independent of (y;} so that
K(t,v) < C1K(t,z). Hence there is an operator T & A(E, Fy with Tz = »
and ||TH(E,F) <Oy M.

- Now for fixed k € A assume first that k is not the initial element of A.
en

”z[—o-:.',a.zc) ”E < (/YSQZ\&-I < Gagwéﬁﬂ'k—1 2’\”' .
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Thus we have
T (2 coma))|E < CaCsMo2= 3875122
If k is not the final element,
[2(b.00) | 7 < C324 |y ||
< CLC32M4 plag 1) Th < CpCy a2 k7P o)=L
Thus if f = T(2(t,.00) ) (dub] then
file < Crolbi)l flir
< C1CsMoo(bi) 2oy o) | & < CoCIC3CL M2 30762
It follows that if & is not an initial or final elemneni of A,
e — Pr,Taxlle < CsMg2™ 377

where (5 is a constant depending only on F and F and 7 = min(ey_1,o%)-
Now if we set §'= 3, ., Ps, TPy, then [|S|(g,rm < CyMy. Further, if we
let A; be the set of & € A so that k is not an mitial or final element and
CsM32728™ < 1/2 then Ag = AN\ A, is finite and ||Szy — yil| < 1/2 for
k € A). Thus the claim is established and the proof is complete.

LeMMA 4.3, Suppose (B, F) sctisfies (RSP). Then there is a constant C
sothat if 0 <2,y € E+F and |Y—wqllz < [|2(-x .ol for alle € ] then
there exists o positive T € A(E, F) with ||T|j(gr) < C ond Tz =3.

Proof By applying the argumens of Lemma 2.6 we deduce from (RSP)
the existence of a constant Cp o that if 4 is an inlerval in Z, (Ji)kea
is a collection of finite intervals in J with J,, < Jio1 whenever k,k + 1
¢ A and (zi)rea, (¥k)eca are positive and satisfy suppzy, suppye C Ji
and llwerillz < ||lzxlls for kb + 1 € A then there is a positive matrix
operator T with |7z 5y < Cp and Ty = yry1 whenever b,k +1 € A.

Let us prove the lemma when =,y have disjoint supports. We first define
a function o : Z —+ Z U {=xoo} by setting o(k) = —ooc if b < [, a(k) = o if
k > J and otherwise o(k} is the greatest j € Z U {—co} so that ||z gl &
= 44,

Let In ={k €T : a(k) > o(k —1)}. We then let I be the subset of Fy of
all k5o that if n € Jg with n < & then [|T(—co ) (2 < 5[50 2

We can now index [ a8 (6n)nea where A is ap interval in Z which can
he assumed to have 0 as ibs initial element if T is bounded bclow.

‘We now define B to he Z_ when infiez o(k) > —co, and emply othe:-
wise. We only need to introduce B in the case limg . oo |Z(—co.q)llz > 0.
If B is nonempty then I is bounded below and there exists a greatest A so
that |2 e k)llm > 4* for every k (in this case J cannot be bounded below).
We must have | 2(_.o 4 llz < 4*7! whenever & < ao. It follows that we may
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pick a_; so that ||z_; alz 2 49%a0) -1 and then inductively a_, so that
HI(n,ma -1yl HE > 4)\—]-

In this way we define (Gn)ncaun. We now let zn = 2(q,_, a,] 20d Yn =
Yian_1,an] if 7+ € AU B is not the initial element of AUB; ifn = 0 s
the initial element we let @y = T(—co,ng] 30d Yo = Yi-o0o,a)- If n is the
final element of AU B we set Ynt1 = Yia,,00] We may now verify that
Y oneaun En < o We also claim thet 37, oy pyn+1 =y L AUB = Z this is
clear. T AU B = (—o0,n] for some n it follows from our definition of y. 1. If
AU B is bounded below (by 0) then B is empty and hence o(ag — 1) = —00.
Thus yy = 0 and we obtain our claim easily.

We first prove that if n,n +1 € A then claps1 — 1) € olan) + L I
not, there exists a first k, so that o(ki) > ¢{a.) + 1 and a first kg so
that o{ks) > oan) + 2 and a,, < by < ko € apq1 — 1. Then &,k are
in Jo\ 1. Thus [[€/—e,allz > 31%(—c0,kyll2- The equality &y = ks would
entail 7(_oopllz = 47942 and thus [|2(-c eyl > 4702071, which
contradicts the definition of o(a,). Thus k1 < ks and we conclude also
that [[2(-cokillz > Fle(-coklle s0 that [w—couille > 22 (-com e,
which implies the absurd conclusion a(k2) < o(an)+ 1. Thus, as claimed,
O(tnt+1 — 1} < ola,) + 1.

The same argument shows that if 4 i3 bounded above then if k& > a,, we
must have o (k) < o(a,) + 1.

Now if n,n + 1 € A we can argue that since &, y have disjoint supports,
Unt1 15 supported on (un, gry1) and thus |[yer1lle < ||2eana-1le <
47(e)+2 Gimilerly, let n be the last slement of A. Then for all & > an,
W millE < |2(—oomllz € 470 < 4700342 Thug (ly,qq |z £ 4706042

On the other hand, if n is not the initjal element of A,

“ : 1
Hxn“b = llx(—m,a,}”&' - [:m(—oo,an_ﬂ”E Z E . 4d(a“) ’

If n = 0 is the initial element, we either have, if B = i}, x5 = Z(—o0,uqg] 40
that ||zo] > 47, or if B # @ then |ja| > 47("0)=, In all such cases, if
ne A we have |yat1]le < 4|z, |5

Next suppose n,n + 1 € B. Then ||gn1]
while ||z,,]| > 421 Thus ||lynsille € 42)|za] -

Finally, consider the casen=-1€ B and n+1 =0 & A. Then since op
is in the sui)plort of = we have ||ynt1lz < [|2(—co,an-1)llz < A1 However,
lenllz > 4471 50 <hat lyn_1 |5 < 4] eall.

Combin‘ing all cases, we conclude that there is a positive operator T with
| T|l(p,Fy < 4°Co so that Tz, = yn 1. Now it i clear that YomcaupTn S I
while 35 caig¥nst = % Thus if § = Y oneacn Pouppyn_1 T Piuppz, then
I5|l¢z,7; < 64Cy and Sz = y. Thus the lemma is established in the case
when z and y have disjoint supports.

B < Hw(—-oa,ﬂ,,w_l)ll}?} < gAtt
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For the general case welet I = {n € J : y» > 2zn}. Let J = J\I. Then set
u=z; and v = y;. For any k € J we have [(£1n(_cox 2 < %Hy(—so,k}HE <
U@ —comll B Thus [[u—sogllz 2 4ll%(—collz- Hence there is a positive
operator § in A(E, F) with Su = v and ||5|| g7 < 128Cg. On the other
hand, iy < 2z and so there is a multiplication operator V € (I, I') with
|Vlig,r <2 and Vo =y, Finally, the operator T = SP;+ V establishes
the lemma. w

LEMMA 4.4. Suppose (E, F) is exponentially separated and satisfies (SP).
Then there exists o comstant C so that if 0 < z,y € E~F and K(t,y) <
Kit,z) for ell t > O then there emists a positive matriz T € A(E, F) with
”TH(E‘,F) S CandTe = Y-

Proof. It follows from Lemma 4.1 that there is a constant (g so that
for all @ € J we have, whenever K (¢,y) < K(t, z} for all # > 0,

max( ]|y —oo.a | 2+ (@) | Vta.00) 1l 5) < 2C2 max(||2(—ce,afll 2, 2(a} 22000 || £ -

Thus for every a either

(4) ly(~zo,all 2 < 2C2||x(~ 0,0/l 2
or
(5) Hy[u.m]”F < ?'C?.Hﬂ[a,oo)llf" -

Let J; be the set of a so that (4) holds and let J = J\ Ji. Since (E, F) has
(RSP) we can apply Lemma, 4.3 to deduce the existence of 2 positive matrix
Ty with || 11|l z,#y < C3 where Cy depends only on (E,F) and 13 = yu-
Similarly, since (E,F) has (LSP) we can find a positive matrix T with
”TEH(E,F‘) < (5 so that Tyz =y, Then (13 +Ty)(z) =y =

THEOREM 4.5. Let (B, F) be a pair of Kdthe scquence spaces. Suppose
either

(a) ko (E)ry(F) <1, o7

(b {E, F) is ezponentially separated, F is r-concave for some r < o0
and there erists p with 1 < p < oo so that E has a lower p-estimate ond F
has an upper p-estimate.

Then (B, F) is a (uniform) Calderén couple if and only if E has {RSP)
and F' has (LSP).

Proof. Thisis an immediate deduction from Proposition 3.6, Theorem
4.2 and Lemma 4.4. =

R em ark. Note thas in fact Lemma 4.4 implies that under these circum-
stances if K(t,y) < K(t,z) for all { and 2,y = 0 then there is a positive
operator T with [Tl g7y < o0 and Tz =y.
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The following theorem is similar to results of Cwikel and Nilsson na].

THEOREM 4.6. Let £, F' be symmetric sequer.ce spaces on Z, and suppose
(E, F(w)) és a Calderén pair for a weight sequence w = (wy). Then cither
F(w) = F (i.e. 0 < inf wy, < supw, < ®) or B = £, F = £, for some
1<p,g<oa.

Prool. If (wy) is unbounded we can pass to a subsequence satisfying
Wn,, > 2Wwn,_,. Then the pair (B, F(w,,)) is a Calderén pair and we can
apply Theorem 4.2 (o deduce that F has (RSP) and E has (LSP). An
application of Proposition 2.3 gives the result. Tf (wz1) is unhounded wa
can argue similarly. m

5. Calderén couples of r.i. spaces. Let {2 denote one of the sels
[0,00), (0,1} and N. Let J be the set Z, Z_, or Z, respectively. If X is an r.i.
space on {2 (or a symmetric sequence space if 2 = N ) we will associate with
X a Kothe sequence space Ex on J. To do this let €n, 1 € J, be defired by
n = X[gngnt1y- We then define for z € w(l),

lollze = | 3 alklen |
kel

(Here we use e with a dual meaning a3 both the canonical basis element
of w(J) and as an element of X(£2).) We observe that Ex tegarded as a
subspace of X is 1-complemented by the natural averaging operator. Notice
also that Ex. = E%(2") is a weighted version of E%. We also note that on
Ex we can compute |7, ||g, < [|Dan||x where D, is the natural dilation
operator. Furthermore, it is easy to see that for f € X we have Dy f* <
Tn+1 P f* where P is the natural ayeraging projection of X onto B 5y thus
[Pan|lx < ||7nt1 ) &, - Thus ki(Ey) = 21/Px 3nd ke (Ex) =2719% where
Px and gx are the Bovd indices of X.

We now shiow how 1o build examples of r.i. spaces from sequence spaces.
'To keep the notation straight we prove our results for the case of function
spaces 2 = [0,1] or {2 = [0,00). However, simple modifications give the
analogous results for sequence spaces.

PROFPOSITION 5.1. Let B be q Kithe sequence space on J. Then:

(1) I 54(E) < 2 there is an ri. space X — X(92) so that ||f||x 1
equivalent to || 37, - F*(2)e, &

.(2) Ife(B) <12 s (F) <2 and X is an ri. space so that ||f||x s
equivalent to || 30 1 f*(2Meq||z then Ex = E (up to equivalence of norm).

Proof. (1) We define X to be the set of measurable functions on 12 such
that
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£l = || 30 @ e < oo

nEel
We show that the functional ||f| x is equivalent to a norm by computing
17l where f**(¢) =1 [ #*(s) ds. Then
frEn) < ) e,
k<n
Thus

[o.a]

e <327 (e e)|
1771 2 aneﬂu .
Thus since x4 {F) < 2 there is a constant C7 so that | f**||x < C1||f||x.
Since f — ||f**||x is plainly an r.i. norm and the set {f : ||F**x < 1} is
closed in measure it is clear that X is an r.i. space.

(2) Let || |x denote the quasinorm induced by E. We remark that it
follows from (1) that there exists a constant C' so that for f € X we have
£ x < Csl|f| x. Now, considering the Ex-quasinorm induced on w(I) it
is clear that if z is a nonincreasing sequence then ||z|| 5, = ||z||g- In general,
we note that if f € Ex then for some O3 = 37,5, 17—l g, since n_(E) < 1,

Imas 7 lls < Cell 1 2

so that

flex <Cilflis-
For the converse direction we observe that if f € X it is trivial that
D2 Fllx < |51l 2l f]l¢- Then

7l = g i3/ = mgle-af i < | X Dasl 1]

< D=5 £)|x < Cs || x < C2Callfllx -
i>0 .

Thus Ex is (up to equivalence of norm) identical with E.

Remark. Il follows from the above proposition that there is a natural
one-one correspondence between r.i spaces X with Boyd indices satisfving
1< py < gx < co and sequence spaces F on J with s_(E) < 1 < sy (E) <
2 determined by E = Ex. Under this correspondence, if 1 < p < o0 an r.i.
space X with gx < oo is & Lorentz space (of order p) if and only if Ex is a
weighted £,-space. For if

oo ar I/P
151 = [ (o T)

0
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where w is an increasing function satisfying 1 < infw(2f)/w(t) <
sup w(2t)/w(t) < co then the above proposition shows that Ex = £,(wn),
where w, = w(2"). Conversely, if Ex is an {,-space then Ex = &;lwy)
where the assumption that gy < oo snables us to assune inf Wog 1/ Wy > 1.
1f we define w(t) = wy, whenever 27! < ¢ < 2" then it is easy tc see that
X is a Lorentz space.

‘We now prove the elementary

PROPGSITTON 5.2. Let (X,Y) be a pair of r.i. spaces on £2. Then (X,Y)
is o Calderdn couple if and only if (Ex, Ey) 1s o Calderdn couple.

Proof. By using the averaging projection it is clear that if (X,Y) is a
Calderén couple then sc is (Ex, Fy). In fact, it is trivial to see that for f &
Ex + By we have K(t, /1 X,Y) = K(t, f; Ex, Ey). Thusif K(¢, ; Ex, Eyv)
< K(t, f; Ex, BEv) for all { there exists T’ € A(X,Y) so that Tf = g. If Pis
the averaging projection thew PT € A(Ex,By) and PTf =g.

Conversely, suppose (Ex, By} is a Calderén couple. Suppose f, g € X -V
and K(t,9; X,Y) < K(i, f; X,Y) for all ¢ > 0. We then observe that if
G = 3,502, and F = ) . f*(2")en then ¢* < G £ Dag* and
fr<F<Dyf* and

K(t,G X, Y) < K(t, Dag™ X,Y) S 2K (¢, f:X,Y) <2K(LF, X, Y.

Since F, (3 are in Ex -+ Ey we can deduce the existence of T € A{Fx, Ey)
with I'F = (. Now since F < Dof* and g* < it is clear that there exists
Sec AX,)Y) withSf=g. n

Remark. It now follows that every pair of Lorentz spaces whose Boyd
indices are finite is a Calderén couple, since every pair of weighted /,-spaces
is a Calderén couple (cf. [36], [13]}; this result is due to Cwikel [14] and
Merucci [30] for certain special cases.

We introduce the following definitions. We say X is stretchable if £y
has (RSP), and we say that X is compressible il Ex has (LEP). If X is hoth
stretchable and compressible, we say thal i is elustic. It is immediate from
Proposition 2.1 that X is stretchable if and only if X™ iy compressible arl
wice versq; thus elasticity is a salf-dual property. We remnark that we have
no example of a stretchable (or compressible) space which is not already
elastic. In fact, we shall see that for Orlicz spaces these concepts do indeed
coincide.

THEOREM 5.3. Let (X,Y) be o pair of mi. spaces on {1 whose Boyd
indices satisfy py > gx. Then (X,Y) 45 a Culderdn couple if and only if X
15 stretchable and YV is compressible.
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Proof Since x_(Ex) = 27Y9% and xy(By) = 2'/P¥ we have
k_(Ex)ks(Ey) < 1 and so the theorem is immediate from Theorem 4.5
and Proposition 5.2. m

If one space is L, we can do rather better.

THEOREM 5.4. Let X be un 1.4, space on 22 = [0,1] or 2 = [0,00). Then
(X,Loo) is a (uniform) Calderdn couple if and only if X is stretchable.
Simnilarly, if X is a symmetric sequence space then (£oo, X) is a (uniform)
Calderdn couple if ond only if X is stretchable.

Before proving Theorem 5.4 we state a result which has a very similar
proof. We remark that Theorem 5.5 only improves on Theorem 5.3 under
the assumption that py = p = gx since the case py < gy is already covered.

THEOREM 5.5. Suppose (X,Y) is a ecouple of r.i. spaces on 2 so thal for
some 1 < p < oo X i5 p-concave and ¥ is p-convex and suppose also that ¥
is r-concave for some r < oo. Then (X,Y) is a (uniform) Calderdn couple
if and only if X is stretchable and Y is compressible.

Proof of Theorems 54 and 55 Theorem 54 corresponds to
the case p = 00, and Y = Lo,. We can and do assume that the p-convexity
constant of ¥ and the p-concavity constant of X are both equal to one. Under
this hypothesis it is easy to see that, when p < oc, 27K/7||gy || x is increasing
and 27%/P||e, ||y is decreasing. Thus for p < oo, (k) = [lexl[x/ lexlly is au
increasing function and g(k + 1) < 2p(k) whepever k,k + 1 € J. Then for
kel welet I = {nel:2* < oln) <28}

Before continuing let us make a remark which we use several times in the
pruof. Assuming p < oc suppose f, g are two finitely supported functions in
Eyx which satisfy || flls = |g]lp and

t 4

JGrrds < [ (g (s)7ds

o] 0

for every t > 0. Then we have the inequalities | [y < lglly and [If]lx <
|9llx- In fact, it follows fromn & well-known lamma of Hardy, Littlewood and
Pélya, [19], [25], p. 124, that 'f*|P is in the convex hull of the set of all
rearrangements of |g*|F; this can be proved by partitioning the supports of
f*,g* into finitely many sets of equal measure. The assertion is then a direct
consequences of the definitions of p-convexity and p-concavity.

We make some initial remarks which will be needed in both directions of
the proof. Bach set Iy is an interval (possibly infinite) or is empty. The set
of k so that I; is nonempty is an interval A. Let E(Iy} be the linear span
of (g : n € I}) when k € A. We state the following lemma.



258 N. 1. Kalton

LEMMA 5.6. If f,g € E(I}) then, under the hypotheses of Theorem 5.5,

IFxtglls < 20/ Fellglix s Ay gl < 20150519

where|l ||, denotes the usual Ly-norm, so that || Y cyerl], = (3 2% ey [P) /7.
Under the hypotheses of Theorem 5.4, we have

£l xglloe < 41 F)oollgllx -

X

Proof. In fact, suppose f, ¢ € [en : & < n < b] where a,b € I, and that
neither is zero. We may observe that for all ¢ > 0 we have
t ¢ b
27 [ (ea(e))?ds 2 £ [ (£*())" ds > 27" [ (eh(s))F ds
0 0 0
with similar inequalities for g. It thus follows from the remarks ahove that
27 eally 2 LA M I 1y 2 2702 fea
Similarly,
27 eallxe < 171 1A < 2702 ey
There are similar irequalities for g. Since 2* < g(a) < p(b) < 2571,
27 eyl < BT oy ly < 2RI 0Py < 2 270 P oy )

Combining these we see that

1Az 1 1l < 209ll5 9] x
and

. #
LA Ay < 2090, Mol
whence the claimed inequalities follow. For the last part, we observe that

I lmallen [x <N Fllx < 1£|loollee + ... +esllx < 20/ flloolles] x
and proceed similar'y. =

We draw immediasely the conclusion that if A is finite (s0 that p s
bounded) then both X and V¥ coincide with Ly(p) and there is nothing (o
prove. In other cases at most one Ty is infinite. We write Iy = [ag, b)) if
Iy is finite and T}, = [az, 00) or Ty = (~oc,by] if I}, is infinite. Let Ay be
the set of k so that k — 1,k+ 1 € A. We define a set J by taking one
point dy from each J; for k € 4. We introduce the sequence ypaces Fy
and £y modelled on A by setting | z| p,, = | Y oeed 270 (KYey, d
lzflmy = 11304 2“1‘“"'?’.1:(!:)e,,_;_,t |¥. In the case p = oc we define I
I EkeA z{k)ea,| x.

LEMMA 5.7, Under the hypotheses of Theorem 5.8, suppose Ey (J) has
(LSP). Then there is a constant Cy so that if f € Ly then [ flly is Cp-
equivalent to ||| f1, )| r -

x aud

PTX =
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Proof It suffices to prove such an equivalence if f ¢ Ey satisfies
fr. = 0 for k € A, since thers are at most two values of & ¢ Ay and
Lemma 5.6 shows that the Y-norm on each such E(I}) is equivalent to the
Lp-norm. Next observt'e that for such f if g = Z}CEAQ Q_d"+1/p||f1k|i;;ﬁdk+1
then for all ¢ > 0, [/ (g"(s))Pds < foi(f*(s})p ds. Thus we have immedi-
ately by the p-convexity and rearrangement-invariance of ¥, |glly < || f]|v.
Similarly, if b = Y0, 0, 27%=1/P| £ {l,eq, , then |[hlly > [|fily. Next lec
5 =2kea, 27%/¥|| fr, || pea, - We complete the proof by showing that for
some C, |[hlly < C||f]ly and ||flly < Cg]y. Once this is done it will be
clear that || f||v is actually equivalent to || f|l¢ as claimed.

The proofs of these stalements are essentially the same, so we concentrate
on the first. Note that

X
|x <2175/ F|leg, ||y

2B P ey, fly < 2R ey

S 2_(k—1}‘dk/puedk

and so if C is the (LSP) constant of By (J) we have l|aly < 2C|fly.
Similarly, || flly < 2Cg|ly. »

In a very similar way, exploiting the p-concavity of X one has

LemmA 5.8. Suppose Ex (J) has (RSP). Then there is a constant (which
we also name Cy) so that if f € Ex then |f|lx i Co-equivalent to

L oM e

Sketch of proof. Firsl consider the case of Theorem 5.5. We assume
f € Ex is finitely supported. Proceed as in Lenuua 5.7, defining g, %, [ as
before. In this case we have ||g(|x 2> |flx = ||kl x. The remainder of the
argument mirrors that of Lemma 5.7.

Let us also sketch the argument when p — oo (i.e. for Theorem 5.4).
Analogously to Lemma 5.7 we note that ||g|lx > ||fllx > ||kllx where
9= Soneas |frullootay, and h=3" 4 [l fr.llec2a,- The remainder of the
argument is the same, =

Now let us turn o the proofs of Theoremns 5.4 and 5.5, Suppose first that
the couple (X,Y) is a Calderén couple. Then she couple (Ex(J}, By (J))
must also be a Calderén couple since there is a common averaging projection
from (X,Y) onto (Ex, Ey). Now it is clear that (Ex(J), By (J)) is expo-
nentially separated (when J is indexed as a sequence). We can thus apply
Theorem 4.2 to deduce that By (J) has (LSP) and Ex{J) has (LSP). We
conclude this direction of the proof by showing that if Ev(J) (and hence
Fy) has (LSP) then E'y has (LSP) and so ¥ is compressible. A very similar
argument shows that X is stretchable.
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'L'o prove this we suppose that {f;, g;};e5 is an interlaced pair of positive
sequences in By with || f;]|v < |lgs]ly = 1. For given j let I(§) be the largest
k so that Pr_f; # 0. (Note here that if such a largest k does not exist then
J is the maximal element of B and g; = 0; hence this case can be ignored.)
We then split f; = f+ [} where f! = Py, ., f;. Similarly we let g; = g} — g7
where g; = 1, . g;. Let By = {j : | f/lly > 1/2}, and les By = B\ By.

For j € Bo we set v; = (J|P;kfj’-ﬂp)kg,1 € Fy; for j € By we set w; =
(1 Pry £ o) rea- For all 5 & B we set w) = (|| Pr,g},) and w) = (122,97 l1)-

Let {a;);en be positive and finitely nonzero. First observe that for j
in By we must have suppv; < supp(w} + wf/). Further, [jv;[lp, > (2C;)
while [w; + 10} |m < Ch. Thus, since Fy has (LSP) applying Lemma 2.6
we get the existence of a constant € depending only on (E, F) o that

’ i
“ Z o (w3 +wj)(}?v = OLH Z a“,'v;," F
J€Byg * jEBg ¥

Notice also that (wi+w/]) e g, have disjoint supports so that we can conclude

that
oy - I
IS anl, <ol i
€D JE€By

‘Fy )
Similarly,

H Z ijﬂjHF_ < CoH }: ﬂ’jfjHY-
FE€ R e JCBy

Combining we have
| 3 s, schar] as],
iEBo i€Bp Y

We now obtain a similar estimate on By. In fact, if we set By ={j¢
By :w # 0} then we can argue as above to show that

1
| 30 et <6l 32 o,
j€By jEBg ¥
and hence obtain an estimate
)
‘ 2 o5

by
‘ | 0 fi I,{,-
JEH JEB,

Finally, we observe that for j & By, || Py Gills < 4| PyiySfillo b
Lemma 5.6. Thus for auy k, sl < 4| z(”fj“P ’

”Pr,, Z czjg}’ = ( Z Jajl-”HP;hg;.”g)l/F
jeB ()=t

<4( 3 lagPlen i) = a2y Y e,

< G,
v
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Thus

| 32 wsoil, <43 X2 ety
jEL, jeB,
Combining these estimates gives

|5 i, <o) 5
jEB JEB Y

for = suitable constant . This completes the proof that Y is compressible
and, ag explained above, a similar argnment shows that X is stretchable.

We now consider the other direction in Theorems 5.4 and 5.5. We suppose
X is stretchable and ¥ i3 compressible. It follows that E x has {(RSP) and Ev
has (LSP) and we can apply hoth Lemmas 5.7 and 5.8. We can immediately
deduce

LEMMA 5.9. There exists C g0 that if 0 < f,g € Ex + Ey and ||fr.|l» >
llgr,llp for all k € A then there erists 0 < T € A(Fx, By) with |T| 2, 8.)
<CandTf=yg

Now supposc f,g = 0in Ex+Ey and that K¢, g) < K{t, fiforallt > 0.
We define ' = 3oy 22 frllpes, s5d ' = 3oz ? s, lpea.
Then Lemma, 5.9 yields the conclusion that K'(¢,¢") < CK{t,g9) < K{, f) <
C?K(t, f). Now (Ex(J), Ey(J)) is exponentially separated.

Now for Theorem 5.5 we quote Theorem 4.5 to conclnde that (Fx(J),
Ey(JY) is a Calderén couple and hence there existe S € A(Ex (J), By (J))
with |||/ (5x n,8v (g1 < Co, where C3 depends only on (F, F}, and 5 =
g" It follows easily from Lemma 5.9 that (Ex,Fy) and hence (X,Y) is &
uniform Calderéu couple.

In the casc of Theorem 5.4 we note that it suffices to consider the case
when f and g are decreasing functions; then f' and g’ are also decreasing.
Then K(t, ') < C*Kt, f') lor all ¢ implies that

%01 % < C2 1 x0,0llx -

We further note that (Ex(.J), £-(J)) has (RSP) by Lemma 3.4 and then
apply Lemma 4.3 to obtain a positive S € A(Ex(J), £eo{J)) with
1SN By i)ty 2 Cz and Sf' = g'. This leads to the desired conclusior. u

v

<o
Y

COROLLARY 5.10. Let X be an r.d. space on [0,1] or [0, 00). Suppose X
ig r-concave for some v < oo. In order thet both (L1, X) and (Lo, X) be
Calderdn couples it is necessary and sufficient that X be elastic.

ExAMPLES. We begin with the obvious remark that the spaces L, for
1 < p < oo are elastic and so cur results include the classicul results cited
in the introduction. On the space [0, co) one can basically separate behavior
at co from behavior at O so that spaces of the form L, 4 Lg and Ly N
I, are also elastic. Note, however, that we cannot apply Theorems 5.3 or
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5.5 unless we have appropriate assuinptions on either the Boyd indices or
convexity/concavity assumptions; thus pairs of such spaces are not always
Calderén couples.

Let us now specialize to [0, 1]. In certain special cases we can easily see
that an r1.i. space is elastic. For example, suppose X is the Lerentz space
on [0, 1], for which ¢x < oc. Then it is imniediately clear that X is elagiic
since Ex is a weighted £,-space. Rather more abscure elastic spaces can be
built using a weighted Tsirelson space for K.

On the other hand, it is possible to give casy examples where Ex fails
(RSP) or (LSP). Indeed, if one tazes any symnmetric sequence space I on ]
which is not an £,-space and considers E(w™) where | < w < 2 then there is
an r.i. space X for which Ex = E(w™). By Proposition 2.3, Ex fails (RSP)
and (LST). In this case we note that Bincc m_,_(EX) =wand k_(Ex) =w"?,
we have pxy = gx = (logow) ™' If, say, I = £p(Z_) for some Orlicz function
F' satisfying the Ag-condition then X is an “Orlicz-Lorentz space™ given by

1£lx ~ f P gen @

where p = px = gx. Note that ior such a space the pair (L., X) fails to be
a Calderén couple. This answers a well-known question (cf. [8], [28]).

In the next section we will investigate Orlicz spaces in more detail. We
will also give examples of Orlicz spaces Ly for which {Loo, Lr) is not a
Calderén couple.

We will conclude this section by considering a sitnation suggested by the
example of Ovchinnikov [34] (cf. [29]).

TEROREM 5.11. Suppose 1 < p < oo and that X i3 an r.i. space on
[0,00) whose Boyd indices satisfy either gx < p orp < py < qx < ™.
Thern (X N Lp, X + L) ts @ Caldersn couple if und only if X is a Lorenls
space of order p.

Proof. If X is a Lorentz space of order p, then both X + L, and XN L,
are also Lorentz spaces of order p, and so form a Calderén couple. Conversely,
suppose (X M Ly, X -+ L) is a Calderén couple; then so is (Exnr,, x4z, )-
Let us consider the case qx < p; the other case is similar, Then Fy =
E_xm:, =Ex(Z_ )EBEL (Z+) and Fp = E'{+L —EL (Zn )EBE}((Z+) Note
that for all n we have lex) 2L, = llen]lxs L) further if we rearrange the
sequence (&, )nez S0 that HBn||AnL,,/H€on+L Increases, it is not difficult
to see that (&g, By) is exponentially separated. Thus By has (RSP) and £,
has (LSP) for this ordering. Tt also follows easily from our assumptions on
the Boyd indices that there exists k so that the gap in the new ordering for
Eg between two consecutive elements of Z is at most £. Indeed. the ratio
lleallxrz,/|lenllx+1, behaves like 27"/P||e, | x for n < 0 and like 2“”’”8 %
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for n > 0 and we have an estimate for k > 0, C712%/7 < |lepqrl x/lenllx <
C2* for suitable ¢ and r with gy < 7 < p. Thus Ep must be a weighted
fp~space by the argument of Proposition 2.3. Hence Ex(Z_) is a weighted
¢,-space. Similarly, Ex(Z,) is a weighted £,-space and so X is a Lorentz
space of order p. m

6. Orlicz spaces. Let F' be an Orlicz function, i.e. a strictly increasing
convex function F : [0,00) — [0, co) satizfying F(0) = 0. We will also assume
that F' satisfies the Ay-condition with constant A, i.e. F(2z) < AF(z) for
every x > 0. We will use the notation Fi(z} = F{tz)/F(x).

We recall first that F is said to be regularly narying at oo (resp. of 0),
in the sense of Karamata, if the limit lim, . Fi{z) (resp. lim; ,q Fy(z))
exists for all z (in fact, it suffices that the limit exists when z < 1). In
this case there exists p, 1 < p < oo, so that lim; o Fy(z) = =¥ (resp.
lim; g Fy(z) = z”); F is then said to be regularly varying with order p. See
(6] for details.

LEMMA 6.1. The following conditions are equivalent:

(1) F is equivelent io an Orlicz function G which is reqularly varying
with order p at oo (resp. 0).

(2) There exists a constant C so that if xp < 1 there exists 0 < g < 00
so that if t >ty (resp. t <tp) and xg < 2 <1,

C7le? < Fy(x) < COxP .

(3) There exists a comstant C' so that if = < 1, limsup,_ ., Fiy(z) <
Climinfy_, o Fi(z) (resp. imsup,_o Fi(z) < Climinfi g Fi(z)).

Proof. The implication (1)=(3) is immediate and (3)=-(2) is a sim-
ple compactness argument. We indicate the details of (2)=(1). Let f(z) =
log F(e*) for z € R. The function f(zx) — = is then increasing. Then iv is
easy to translate (2) as:

(2)' There exists ¢ so that if yg > 0 there exists xq so that if 0 <y < yo

then
[fla) = fla-y) —pyl S e,

whenever z > Zg.

Now we can pick a function u = u(z) for £ € R so that u(z) = 0 [or
% < 0, u is differentiable, increasing, /() < 1, mgoo uw{z) = o0, an_d
f(z) — flz —y) —py < cfor 0 <y < ulz) Now define g(z) = f(z) if
u(z) =0 and

g(z) = (fls)+plz—s))ds

E]n—l
rzL‘—;H



264 N.J Kalton

if 2 > 0. Tt is easy to show that f — g is bounded. Further, if u > 0,

7)== (o) — e )~ ) + T Sl =) =p) T
Since »
u' (B 1
ulz) = u

it is easy to see that limg'(x) = p and so if Go(z) = exp(g(log z)) then Gy
is regularly varying and equivalent to F.

It remains to comstruct a convex G with the same properties. First note
that since f(z) — x is increasing we have if u > 0,

oe) - @) <L [

Hence
!

-1
g’(m) Zp+ —u‘y—(f(“uj r—f('r; — 11,) _pu) _ r 5 o
>p-(p-11-u)—(p—1 2 1.

It 110w follows that G{z)/z is increasing, The proof is completed by setting

fD (Go(z)/z)dz and it is then easy to verify thas G has the desived
propertm: ]

If Fis an Orlicz function, 0 < z < 1, and C > 1 we can define ¥% (2, C)
{resp. !FS(J:,C')) to be tha supremum {possibly oo) of all N so that there
exist @; < ag < ... <ay withap/ag_1 > 2for k < N—1and a; > 1 (resp.
ay < 1) so that for all k either F,, () > CzP or o¥ > OF,, {x). It is ensy
to show the following:

PROPOSITION 6.2. I is equivalent to a regularly varying function of erder
7 ot 0o {resp. at 0) & ond only if for some C and all 0 < 2z < 1 we have
Ve (z, ) < o0 (resp. Wg(m, C) « oo).

‘We omit the proof which is immediate. However, we can now state {he
result of Montgomery-Smith {33] which characterizes Orlicz spaces which
are Lorentz spaces (see Lorentz [26]).

THECREM 6.3, Fn order thot Lg[0,1] coincides with o Lorentz gpace of
order p # is mecessary and sufficient that there exist Cp, C) andr > 0 s0
that for cvery 2 with 0 <z <1 we have Tp(z, Cy) < Chz™ T,

This is & somewhat disguised restateinent of Moutgomery-Smith's result.
However, we will not pause in our exposition to derive this result as a proof
is implicit in our approach to elastic Orlicz spaces. Further, we state the
result in order to motivate the following definition.
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For C > 1and 0 < z <1 let us define 2 (z, C) (resp. ¥} (,0)) to be
the supremum of all n so that there exist a; < hh<as<lh<...€an < by
with a; 2 1 (resp. b, < 1) sa that Fy (2) > CF, (7), for 1 < k < n. For
C>1and 0 < 2 < 1 let us define (2, ) (resp. ¢°{z, C)) to be the
supremum of all 7 so that there exist a) <by < ag <by < ... < a, <
with a1 > 1 (resp. by < 1) so that Fy, (z) > CF, (), for <k < n
We say that F is elastic at oo (resp. at 0) if there exist Cp,C1 > 1 and
r > 0 so that for 0 < 2 < 1 we have & (z,(y) +92(z,Cp) < Crz7™7 (resp.
&Y (z,Co) + D% (2, Ch) < Crz™™). From now on, we will consider only the
case at oo although similar results can always be proved az 0.

LEMMA 6.4. F is elastic at oo if and anly if there exist comstants Cg, C1
> 1andr >0 so0that if 0 <z < 1, 3P(z.Cp) < Cr27" (resp. % (z, Co)
< Clm_r).

Proof Assume &5°(z,Ch) < Ciz™". Suppose 1 < a1 < &1 < ... <
Gn < bp with Fak(m) > elyFy (z) for | < k < n Consider an inter-
val [bg,agr1] where 1 < k < m — 1. Let v = v be the integer part of
{log Co) " (log Fa,,, (z) — log Fy, (z)). Then we can find by = ¢p < c1 <

< ey, < apq1 so that log Fy, (2) — log Fo,_, () == log Ch. Tt follows that

it—1

> vy < @4(3,Co)

k=1

and hence that
n—1

Z(log; Ty (z) —log Fy, (z}) < {log CoP4(z,Co) +n —1)
k=1
and thus
log Iy, {z) — log Fo, (&)

< (log Co)(Ciz™ ™ — 1) - n.

Now
log Fy, {z) — log Fy, () = log Fy (z) > ~Chllogz| —
for suitable Cy, Ca by the Ap-condition. Hence
n < {log Co)(Crz™" — 1) + Callog z| + C3
and so
F2(e,eCy) < Caz ™™
for a suitable €Y. The other case is similar. =
PROPOSITICN 6.5. The following conditions on F are cquivalent:

(1) F s elostic at oc.
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(2) There exist constants Cp, Oy > 1 so that if 1 <y <b €...< oy
<by and 0 < 2 < 1 then:
> (Fyz) = CoFy, (2)) 2 C).
k=1
(3) There ewist constants Cy,Cy > 1 so that if 1< ay < by < ...
< by, and 0 < x <1 then

IA

Oy,

i
D (Fa(z) = CoFy(2)) < C1.
k=1
(4) There exists a bounded monotone increasing function w : [1,00) = E
and a constant Cy so that if 1 <s<t and 0 <z <1 then
Filz) < CFy{z) + w(t) —w(s).

(5) There exists a bounded monotone increasing function w : [1, 00) — R

and ¢ constant Cp so that if 1< s<tand0 <z <1 then
Fy(z) < CF{z) + w(t) —w(s).

Proof. (1)=(2). We assume that for suitable constants Cy, Cy > 1 and

r > 0, we have
PPz, o) < Caz™".

We will assume that Oy > A from which it follows easily that F W(2)/ Fplz) 2
C; implies b > 2a. First suppose mis an integer with m > r. We will estimate
@f{m,(}'gl). Suppose 1 <o) < b ... € @, < by and Fy, (i) > Ci Fy, (2).
Let s be the smallest integer greater than |log, |+ 1. Thenay > ! and
Qpe > :r:"lb(k,l)a for 2 < k < [n/s]. Let ¢ = z1/™,

Now, for each 1 < & < [n/s] there exists oy, with 0 < ¢y, < m — 1 so that

Ferwp, o (§) 2 CoFgeug,, (€) and the intervals [€7og, £74b ] are disjoint in
[1,00). Hence we have an estimate

STIE,Co) 2 Infs]
and this means that
[n/s] < Cug™".
Thus
n < Cy(s+ L)x™""™ < Oy + Cyllog zla/™
for suitable constants Oy, Cs. This leads to an estinate
PL (2, Cf) < Cgn®
where (0 < & <2 1.

Now suppose Oy = ACT®. Suppose 1 < a; < b, < ... < ap < b, and
that 0 <z € 1forl <k <m. For j & N let I; be the set of % such Lhat
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277 < g <2277 Then
> (Fou{on) ~ CoFu(@n)) < ) (AFp, (279) — Coki, (279))
< 46277, Cg‘)m?buk(Q_j)

< Gy =i
Thus

n oo
> (Fi(3) = CoFe, () < CoA S 2709,
k=1 =1
This establishes (2).
(2)=>(4). We define w(¢), for 1 < £ < o, 10 be the suprernun of
b (Fo(an) ~ CoFp(zp)) overall nand all 1 € oy < by € ... < a, <
bp Standall 0 <z <1forl €k < n Clearly w(t) is increasing and
bounded above by €. Coudition (4) is immediate from the definition.
(4)=(1). Suppose 0 <z < 1and that 1 < a; < b <... < a, < b, are
such that Fj, (z) > 2C5F,, (). Then we have
ki T
Toy_ Fle) < D (wlh) —wlar)) < C
k=1 k=1
where () = Umg_,o w(z) — w(l). Now F,{z) > Caz™ for all ¢, for a suitable
Ca, by the Ap-condition. Thus

P75, 20)) < Ch{CyCa) T,
The implication now follows from Lermma 6.4.

The remaining implications arc similar, =

LeMMA 6.6. If F is elostie at oo then F is equivalent to an Orlicz func-
tion which is regularly varying at 0.

Proof. It follows immediately from (4} above that

limsup #,{x) < Cy lifm iogf Fi(z)

—0a

for 0 < x <1, Apply Lemmma 6.1. m
We now come to our main theoremn on elastic Orlicz functions.

THEOREM 6.7. Let F be an Orlicz function satisfying the Ay-condition.
Then the following are equivalent:

(1} F is elastic at co.

(2} LFp|0,1] is stretchable.
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(3) Lp[0,1] is compressible.
(4) Lp[0,1] 1s elastic.

Proof We will only show (1)=(2) and (2)=5{1). The other implications
will then be clear. We will write E = Fp for Ex where X = Lr|0,1]. Then
FEp is the modular sequence space of Z_. defined by |||z, = 1if and only if
Soncz. F(z(n))2™ = 1. Let us define A, for n & Z_ by F{X,) = 27". Then
(An)nez. is strictly decreasing and Ap_—y < 2A, for n < 0.

(1)={2). We must show that £ has (RSP). It suffices to show the ex-
istence of a constant € so that if ay < b < ¢ € ag < by < ey <

Iyl g € ||zx||z = 1 then

n n
< N R
|, <0| P ma],
k=1 fe=1

To do this let us suppose n, ax, b, ¢k, Tp are fixed and let I' be the least
constant ¢ for which this inequality helds. We show a uniform bound on I
We can suppose the existence of constants Cp, C; and an increasing funetion
wt [1,00) — R with limg_,oc w(z) = w(l) + Cy so that if 1 < s < ¢,

Ez) < CoFi(2) + w(t) —w(s)
for0 <z < 1.
Define @i, = itz b, D)5 20 4 = Dy iz, vald)es Then
S PFCa() -2 <27 Y 2 <1,

F<hy
Thus |z, — @4jz < 1/2 and similacly ||y, — wlle & 1/2. We lot zh(7) =
main (27 (7)), Aa, ) and (7)) = min(2[yL (7)), As,). Then |lof||s, lvi |5 < 2.
Now for any ai,...,a, such that || 37 opzills = 1 we set z =

m k3
Dokt MYy and v = 30 gy, Woe also let w = Y apAp,en,. Then
for fixed k&,

> YF(awyi()) € 3 Y F(lenyi (7))

jE[bklck)

< G2 Fllanlhe) Y 2 F(LG)
4y (5)#£0
+ E 2 F (i (1)) (w(An,) — wlyil{)))
Y ()50
< CgAZb"F( o | Ap, )+ Alw(e, ) — w(de,,)) -
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On summing, we get
Yo P () < CoAY P P(luli)) + AC.
7 i
Now, in the other direction, for fixed &,
2% F(Je Ao, ) € CoF (gl (1)) F(2f(7) H + w(ha,) = w(,)

whenever =} (5) # 0.
Thus

P F(ewh,) Y 2 Flag () £ Co D 2 Flansi (9)))
- :

+ Z ZjF(xﬁ(j))(w()\%) - w(Abk)) :

Now we observe that 1/2 < ||z4||g <1 so that 1/2 < [z{||g < 2. Hence
1/2 <% 2 F(a}ij)) < A Thus we have

28 Flann,) < 26048 Y ¥ Filanal()) + 24(w(ha) — w(n,))-
Sumining as befare,
> E(fu()
)

We thus have an estimate

S 2T F(()) < Co Yy PF(|n()]) + U
i i

) €204 D 2 F(|v(f))) + 201 4.

for constants Cy, Oy depending only on F. This in turn implies an estimate
|zl g < Caljv|le for some constant Cy.
Now we conclude by noting that

7 k&
H 5 Wk%HF <lzlle + H > ol - Uf«)HE
k=1 i d=1

< Cully

[

r
E-&—I’max“yj —y;,”EH E&k!ﬂkHE < 04 + E .
g k=1

Thus I' < Oy + I'/2 and so ' € 2C, and E has (RSP). |

(2)=>{1). Suppose £ has (RSP). This implies that for some C’o,‘ if
ap < by < ag < ..o < Gp < bn oare negative integers, and 0 < =g with
ZQ“*F(J\%J:;G) < 1, then ZZ”“F’[A;,,C:G;,,) < Cg. We alsc note from the
Ag-condition that we can suppose C1Fy(z) > z" for some Cy and r and all
t>0 0<z<l
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Tor any constant & > 20, A% and 0 < = < 1 suppose now that 1 <o <
d < ey < ... <dpor S, < dyand F(z) 2 Chy, (z). Then we must
have dj, > 23ck. Now choose b1 € Z— to be the largest integer 80 that
Mbirpr 7 Ch and lew an_ge1 be the smallest integer so that Ao oys < di
Tt ig clear that o; < by < ag < ... < @&, < by. Further, Xy ., < 2¢; and
Min oy 2 /2. It follows that for every & with 1 < k < n we have

2k F( A, 2) > CAT225 F(N,, ).
Now suppose 7 > Cyz7". Then we can select a subset J of {1, ... ,n} so
that 1/2 < 30, 2% F(Az,z) £ 1. Then we can conclude that
cA~?
2

< Ezbw(,\bk 2) < Ch.
keJ
Since C' > 2C,A? we reach a contradiction and conclude that n £ Chz™™.
Thus
¥z, C) < O™
and F is elastic by Lemma 5.4. =

Of course thers are corresponding results for sequence spaces and Qrlicy
spaces on [0, 0c0). We will omit the proofs.

THEOREM 6.8, Suppose ¥ is an Orlicz funetion satisfying the Aq-condi-
tion. Then:

(1) In order that £y be elastic (resp. compressible, resp. stretchable) it is
necessary and sufficient that F be elastic at 0.

(2) In order that Lp[0,c0) be elastic {resp. compressible, resp. gtretch-
able) it is necessary ond sufficient that F be elastic at both 0 and o,

Remark. It is perhaps worth pointing out that the theorem of Mont-
gomery—Smith {(Theorem 6.3) cited above can be proved in much the same
manner as Theorem 6.7; the problem in this case is to show that F 15 a
weighted £,-space. In fact, our proof of Theorem 6.7 is derived from the
arguments used oy Montgomery-Smith [33].

Returning to the case of [0, 7] we note the following simple deduction.

. PROPOSITION 6.9. If the Orlicz space Lp[0,1] is elustic then its Boyd
indices prp = pr, and qp = gL, coincide.

Proof In fact, we can suppose F is regularly varying by Lemma 6.6
and so the conclvsion is immediate. m

Remark. The analogous result holds for sequence spaces, hut not for
L [0, co) where one must cunsider behavior at hoth 0 and co. Thus L,NL,
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is elastic for any p,q. Let us also mention at this point that Proposition 6.9
allows us very easily to give examples of Orlicz function spaces Lg[0,1] so
shat (Do, Lp) 18 not a Calderdn couple by simply ensuring that pr 7# q#.

ExaMPLES. We now give two examples to separate the concepts im-
plicit in our discussion above. We first construct a regularly varying Orlicz
function which is not clastic. To do this first suppose {§n) is a positive
sequence, botuded by oue and tending monotonically to zero. We define
d(x) = 2 i » £ | and then dlz) = 2+ (~1)*&, if 277! <z < 2" Define
Flx) = [ o) dt and F{x) = exp(f(log2)). Then F(2)/x is increasing and
hence I () = [ (F(t)/t)d# is an Orlicz function equivalent to F. Further,
F aud £, are vegularly varying of order 2. It remains fo show that Fy or
cquivalently F is not elastic at co. Suppose ¢ > 1 and that 0 < z < 1. If
o=t s log 2! then

Pe's) . P a)

log et W

_F(GHH-) 2 (En + €n+1) log a7,

It we nssmne that £, gees to zero slowly enough, say &, ~ (log log n)~*, this
will exceed log ¢, O(exp(x™)) times for some r > 0 and so Fy cannot be
clagtic.

Our second construetion is of an clagtic Orlice space which is not a
Lorenlz space. 1t is of course clear that, conversely, every Lorentz spacc is
elastic. We note first that if F(z) = exp(f(log ©)) where f is convex then I’
is olastic at oo, by applying Proposition 6.5(4) (the same conclusion holds
when f is concave). We thus consider a function ¢(i) = 2+ 15(t) where ¢(2)
is hounded by one and decreases monotonically to 0. Let flz) = fg B(t) dt
as above. Ag usual, it may be necessary to convexify F by constructing Fh;
however, this is equivalent to F. Now we show that for Lp[0,1] to be a
Loventz space it is necessary that ¢ tends to zero at a certain rate. In fact,
if weole, Cy) & e~ it follows that $(26=7 Y < log Cy/ log z~+ and
hence that ¥i{u} = O({loglog w)™1). Thus if we choose 4 converging to ze1o
slowly enough then L0, 1] is an elastic non-Lorentys space.

Wo now tirn to the gencral problem of determining when a pair of Orlicz
spaces Lp[0, ] and Le [0, 1] forms & Calderén couple. Of course if the Boyd
indices sabisfy g < pey this can only happen if both F' and G are elastic at
e in which case pr = qp abd po = 4a. Brudnyi [8] has conjectured that if
L and Lg are distinet then if (I, L) forms a Clalderén couple then we
wust have pp = gp and pe = g¢. The next theorem shows that if eicher
prr % gp or pao # g then F and G raust in some sense be sitnilar functions.
However, following the theorem we will give a counterexample to Brudnyt's
coujecture.
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THEOREM 6.10. Suppose I and G are Orlicz funchions satisfying the
Ag-condition ond such that (Lr[0,1], Lg[0,1]) forms a Culderdn pair. Then
either F' and G ore both elastic or pp = po and gp = gg.

Proof. Let us assume that yr > gg. The other case is similar, It will
be convenient to pick gy, g1 so that g < go < gr < g1 and to suppose (hy
passing to equivalent functions) that #'(z)/z% and G(x) /29 are decreasing.

Let F be the closure of the set of functions {F, : ¢ > 1} in €0, 1].
This set is relatively compact, For each M > 1 let Fus be the closure of
the set of functions {F: : ¢ > 1, F(2)/G(t) = M} and let F, = Mg Faso
Similarly, if @ < 1 we let F, be the closure of the set of functions {F,
t 21, F(£)/G(t) < a} and set Fo = [, F.

Now suppose t > 1 and A; is a measurable subset of [0, 1] such that
p(A:) = F(t)7!, Then X 4,lle =271 while |[x, 1, = s~" where G(s) =
F(t). It F{t) > ([t} we conclude that s > ¢ and further from the A,
condition for G we have x, |1, > qé(F(t)/G(t))HxAﬁHLP where ¢ is a
function satisfying lim, .. ¢(u) = oc.

Suppose ., is nonempty and H,, Hy € Fo. Then we can find a sequellce
(tn)nz1 such that 4, > 2, ¢, > 2,_, and F(t.)/C(t,) — oo,

Ixs, e Mxa,  lzo

s, Ien ™ "llxa, _ les

for n > 1 and such that Fy,, — H, while Fy, | — Hy. Since pds, <27
we can suppose these sets are disjoint. If we restrict to the sub-g-algebra A
of the Borel sets generated by (A, ) then (L r{A), Lg(A)) forms a Calderdu
couple. Regarded ag a couple of sequence spaces it is exponentially separated
and hence the Orlicz modular space ¢p,, has (LIP) by Theorem 4.2. By
passing 1o a subsequence of the unit vectors it follows that both the Orlicz
sequence spaces £y, and £z, have (L3P) and Further that the space obtainerd
by interlacing their bases has {LSP). Hence from Proposition 2.4, H,(z) and
H(7) are both equivalent to some (common) 2%, We thng conclude that
there exists py so that any H € F is cquivalent to @b,

By similav reasoning, if ¢ is uopemmpty there exists p; so that every
H € Fy is equivalent to zPt.

Now suppose gg < 7 < ™ < gp. We pick an integer m large enough
so that {m — 2)r1 + 20 < mry. Then for any £ < 1 the function Fole) =
max{z ™t " F(t) 1 £ < t < 1} is equivalent to F and therefore Fy(z)/am
cannot be decreasing everywhere. Thus for any zo there exists z > =y such
that for some & > 0 we have Fy(u)/u™ < Fy(x)/z™ ifg—6 < u < 2. It
follows that Fyy(z) = F{z) and hence F{z) > TN i e <1 < o,

Next define Pi(y) = max{y" ™™ F(t) : ¢y < ¢ < y}. Notice that
Fiy) < €1~ F(éy). We will argue that Fi(z)/2™ cannot be decreasing on
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(€™ i, Ex). I it is then Fy(€x) < F1(6™'s) and hence
Fz) < {70 F(6a) £ £ Fi(£n)
< rf_cm-'g)wl—qu‘[ (émulm) < E_(m_g)r‘l_quF(fmZ"
and thus (m - 2)7r) + 2q5 > e, contrary to assumption.
We now argue as above and conclude similarly that there exists u with
&l <y < g wuch that Flu) > w1y~ F(1) for éu <t < u.
Now notice that

F(w)/G(u) < u~%g% "2 F(5) /G (z)

and ga
Flu)/G(u) <L (2) /Glx).

I follows that given any £ < 1 any zy we can pick z > 2y so that
Fx) 2 o™t " F{t) for é2 £t € 2 and either F(x)/G(z) > £~ {re—)/2
or F(r)/G(z) < glo=ra)/2 Thus we ran find a sequence £, — oc such
that Fy (z} = «™ for n7! < ¢ < 1 and either F(t,)/G(t,) — oo or
Fltn)/G(ts,) — 0.

Consider the former case. Then there exists H € F, with H{z) > z™.
Hence py 2 r). Tn the latter case p; > ry. Since r; < gp is arbitrary we
concinde that either pg = gp or p; = gp.

Jousider the case pg = gp; in particnlar, F(1)/G(¢) is unbounded for
i > 1. We will argue that F'(t)/G(2) tends to infinity. For any € < 1 consider
the haction h(z) = min{F(4)/G(t) : £z < ¢t < z}. If A does not converge
to oo then given any M and z, there exist 2 > @y and § > 0 so that
h(m) = M and h(z) < h(u) for © — § < w < z and this implies that
F(t)/G(t) < F(r)/CG(z) for £z < ¢ < 2. Thus we can construct t, — 0o 50
that £{¢,)/CG(ly) — oo and F, (z) < Gy, (2) € 2% forn™! < < 1. Thus
Foo contaius a function H with H{x) < 2%, This contradicts the fact that
gy < pp. Thus F(£}/G(t) — 20 and it follows easily that since T = F we
Liave pp = gp. We can involke Theoremn 5.3 to conclude that both F and &
sl be elastic,

The case py == gp iy similar, [n this case G(£)/F (1) is unbounded and we
use the same argument as above to show that G(¢)/F{t) — oo.

Wa ot (he eago pp < pe; the reasoning is much the same. w

CxAMPLE. Tt remains to construct an example of a Calderdn couple
(Lp[0,1], L 0,1]) with F and G nonequivalent and pr = pe < qr = qa.
Sucli an example i a counterexample to the previously mentioned conjecture
of Brudny¥ [8). Our construction depends on the following lemma:

LeMma 6.11. Let (Y5, Y1) be o Calderdn couple and let X be a Bonach
space. Then the pair (X & Yo, X © Y1) also forms a Calderdn couple.
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Proof. We suppose the direct sums are fj-sums. Suppose that
{(zo,yn), (x1,y1) € X ® (Yo + Y1) satisfies

K(ta (mﬂuyﬂ):X & KLX & Yl) E I{(t! (CC]_,y]),X ®Y07X @ Yl) '
Then we observe that
|zollx < [l ]| x + K (1,31, Y0, Y1)

Thus there is an operator § : X @ (Y5 + V1) — X with |Sp|l £ L and
S(z1,41) = zo. Ou the other hand,

K (t, 90, Yo, Y1) S min(1, t)||lz1| + K (¢, 31, Y0, 17).

Now (Yp, ¥1) is Gagliardo complete (13], Lemma 3) so by K-divisibility ([4],
7], [15]) we can write yp = u + v where

E(i,u, Y, ¥} < ymiu(l, )]z
and

K{t,v,Yo, Y1) < vK(t,y, Yo, Y1)
and v is an absolute constant. The former inequality implies that
max(|[% |y, l|lv, } € ¥|/z1||x and hence that there exists §;: X — YpNY,
with ||Si|| £ v and S12; = u. The latter inequality yields the existeuce
of 8 : ¥+ V1 — Yy + Y1 with §3 € A}, Y1) and Sy = v Let
S(z,y) = (Soz, 51z + Say). Then 5 is bounded on each X @ Y; and maps
(mlayl) to (IO: UD) u

We now construct the example. We suppose ¢ > p > 1; we set r =
5p+qh, @ =p—1and 8 = ¢g—r. We next define a; = 1 and then
inductively (bn)ns1, (Cn)n>1, (dn)ns: and (@,)ns2 by letting b, = 2%a,,
Cn = 4-'5717 dn =cp + 21 and Q1 = Ay, . -

We then can construct an unbounded nonnggative Lipschitz function
¢ : R — R so0 that supp¢ C |, [Gn, bs] and [¢/(z)| < az™? ae. (or
equivalently |¢(z) — d(y)| < [logz —logy| for z,y > 1). We then also define
a monregative Lipschitz function ¢ : R — R with suppyy < |, o e, dal
by defining ¥(z} = Az —¢,) for ¢, < 2 < ¢ -+ 1 and Pz = Ald, ~ )
for ey + 1 <z < dy. Finally, we put F(z) = z* exp(y(logz)) and G(a) =
z" exp{i(log ) + ¢(logx)).

Now obscrve that F' and G hoth satisfy the As-condition and botl
F(z)/z and G(z}/z are increasing functions so that F and (7 are aquiv-
alent to convex Orlicz functions, We prefer to work directly with F and ¢.

We consider the pair (Ep, Fg). For n < 0 let A, be the unique solution of

F(An) = 27" and let v, be the unigue solution of G(r,} = 27", We split
Z_ into two disjoint sets Jy, J; by setting J, = {n 1 log An € Uglen/2, 244}
and J] = Zi_ \ Jg.
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We claim that on w(Jy) thenorms |||z, and || | 7, are equivalent. In facl,
since B < (0 we need only bound ¥, 2"G(g.) subjecs to
e 2" (£,) = 1. To do this observe that if n € J; and 0 < &, < A,, then
F(&,) = (}(&,) unless log &, < log A, /2. Thus

Yo <1+ Y v s 1 ST A
e gy neJy neJy
and this establishes the required estimate since A, increases geometrically.
On w(/y) we claim both | || and | ||¢ are equivalent to weighted £,-
norus and benee form a Calderén couple by the result of Sparr (36]. Let us do
(his fLor the case of |, which we claim is equivalent to
(2 nen &/ "I T suffices to (a) bound 2oner 2MG(£n) subject to
e Sntn = 1 oand (b) conversely, bound 3 ., &v T subject to
Yo, 2NGE) = 1.
For (a) note that if 0 < £, £ v, then

En

Yn

log v,

log G&,) — log G(v,} — 7 log oz €

< alog

as long as log &, > log 14, /2. Honce
G&) L2278+ G(VT)

for m & Jp. Thus

SU2NGEL) 220+ Y 2O 2274 Yt
neJ: neJy neJy
and this gives the required estimate. (b) is similar. The argument that || || ¢
is equivalent to (3, < |€u "V iy slightly simpler and we omit it.
"This completes the construction of the example. It is clear from Lemma
6.11 that (¥, Ee) and hence (Lp[0,1], L¢[0,1]) is a Calderén couple with
Py oww By = poand gy = g = ¢ bat that F and { are nanequivalens.

Wa ranark in closivg thad it is possible to find Orlicz function spaces
Lp0,1] so that il (L, Le) forms a Calderdn pair then Ly = Lg. (We
assuane the Ag-condition for beth F' and () We sketch the details. The
arginnent of Theorewt 6.10 can be nsed to establish that if F and & are not
equiivalont at oo then there exists p with 1 < p < oo o that »® iy equivalent,
[or 0 < 2 < 1, to a funclion of the form lim Fy (&) where t,, — co. Now,
there are many examples of functions F which fail this property; for exainple
one can take the minimal Orlicz function:

Fla) = e exp (m: i(] — cos(27(log t)/2”)))

n=()

(sce [20]).
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