Quotients of $L_p(0, 1)$ for $0 \leq p < 1$

by

N. J. KALTON (Swansea) and N. T. PECK (Urbana, Ill.)

Abstract. One of the main results of this paper is a lifting theorem for operators from L_p, $0 \leq p < 1$, into a quotient space $L_p(N)$. (The theorem is developed separately for L_0 and for L_p, $0 < p < 1$; the hypotheses on N are different in the two cases.) A corollary is that if N is a non-trivial finite-dimensional subspace of L_p, $0 < p < 1$, then $L_p(N)$ is not isomorphic to L_0. Several similar results are obtained; at the end of the paper, the idea of a K-space (K_0-space) is introduced and studied in connection with the lifting theorems.

1. Introduction. Let $L_p = L_p[0, 1]$ be the space of all real (or complex) measurable functions on $[0, 1]$ with the topology of convergence in measure. A. Pełczyński has asked whether the quotient of L_0 by a non-trivial finite-dimensional subspace is isomorphic to L_0. In this paper we prove a lifting theorem for operators on L_0; using this theorem, we can show that if B is a non-trivial closed subspace of L_0 which is either locally bounded or which admits a continuous linear functional, then $L_0/B \nsubseteq L_0$. Parallel results are developed for the spaces L_0 ($0 < p < 1$), where again we have that the quotient of L_0 by a non-trivial finite-dimensional subspace cannot be isomorphic to L_0 (contrasting of course with the case $p = 1$).

In Section 2, we show from certain general considerations that for $0 \leq p < 1$, $L_p/V \cong L_p/W$ whenever $\dim V = \dim W < \infty$. This enables us to define (L_0/n) to be the (unique) space obtained by forming the quotient of L_0 by a subspace of dimension n. In Section 3 we prove our main lifting theorems and in Section 4 we apply them to show that $(L_0/n) \cong (L_0/m)$ if and only if $m = n$. We conclude Section 4 by giving an example of two isomorphic locally bounded subspaces of L_0, B_1 and B_1, such that $L_0/B_1 \nsubseteq L_0/B_1$.

In Section 5 we develop the idea of a K-space; this is an F-space X such that every short exact sequence of F-spaces $0 \rightarrow R \rightarrow Y \rightarrow X \rightarrow 0$ splits. Using this notion we show that $L_0(N) \cong L_0$ implies that N has no non-zero continuous linear functionals. Similar ideas for p-Banach spaces are also developed.

8 — Studia Mathematica LXIV.1
Throughout this paper an \mathcal{F}-space will mean a complete metric topological vector space. An F-norm $x \mapsto \|x\|$ on a space X is a mapping from X to \mathbb{R}_+ such that

(a) $\|x + y\| \leq \|x\| + \|y\|$ if $x, y \in X$,

(b) $\|\lambda x\| = |\lambda| \|x\|$ if $|\lambda| \leq 1$ and if $x \in X$,

(c) $\|x\| \to 0$, as $\lambda \to 0$ for each $x \in X$,

(d) $\|x\| = 0$ if and only if $x = 0$.

For $0 < p \leq 1$, a p-Banach space is an F-space with an F-norm $\|\cdot\|$ such that

(e) $\|x\| = \|\|x\||p\|$ for all x and $p \geq 1$.

If X and Y are p-Banach spaces and if $S : X \to Y$ is a continuous linear operator, we define

$\|S\| = \sup \{\|Sx\| : \|x\| \leq 1\}$.

We denote by $\mathcal{L}(X)$ the space of all linear operators on X. If X is a p-Banach space, then so is $\mathcal{L}(X)$; if X is an F-space, then $\mathcal{L}(X)$ has, in general, no convenient F-norm topology. Unless otherwise stated, “linear map” and “linear operator” always refer to continuous maps.

We would like to thank Leonard Dor for several valuable conversations.

2. Transitive F-spaces. In this section we show that if V and W are two subspaces of $L_p (0 < p < 1)$ of the same finite dimension, then $L_p (V) \simeq L_p (W)$. We approach this result through some general results on transitive F-spaces. An F-space is said to be transitive if given $x, y \in X$ with $x \neq 0$, there exists $T \in \mathcal{L}(X)$ with $T(x) = y$. We shall say that X is strictly transitive, if for any $k \in X$, $x_1, \ldots, x_k \in X$ and $y_1, \ldots, y_k \in X$ such that $[x_1, \ldots, x_k]$ is linearly independent, there exists $T \in \mathcal{L}(X)$ with $T(x_k) = y_k$.

We do not know whether a transitive F-space is strictly transitive; however, it is possible to generalize standard arguments in Banach algebra theory (cf. Rickart [5], pp. 60-62 to derive the following):}

Proposition 2.1. Let X be a transitive F-space; suppose that

(a) X is separable,
(b) the centre of $\mathcal{L}(X)$ consists only of scalar multiples of the identity operator.

Then X is strictly transitive. If X is a p-Banach space, condition (a) may be omitted; if X is a complex p-Banach space, then conditions (a) and (b) may be omitted.

Proof. By [5], Lemma 2.4.3, it is enough to show that given two linearly independent elements $e, w \in X$, there exists $T \in \mathcal{L}(X)$ such that $Te = 0$ and $Tw \neq 0$. If not, we may define a (not necessarily continuous) operator D on X by $Dx = Tw$ when $Te = x$ (cf. [5], Theorem 2.4.6). Then D commutes with each $T \in \mathcal{L}(X)$.

It is necessary to show that $D \in \mathcal{L}(X)$; at this point we require condition (a) in general. Consider $\mathcal{L}(X)$ with the topology of pointwise convergence. Then $\mathcal{L}(X)$ is a Banach space and by the Open Mapping Theorem, the map $e : \mathcal{L}(X) \to X$ defined by $e(T) = Tw$ is open. Since $D \circ e = T$, it follows that $D \in \mathcal{L}(X)$. If X is a p-Banach space, then so is $\mathcal{L}(X)$ with its usual topology and the Open Mapping Theorem may be applied to this topology.

Now by condition (b), D is a multiple of I and we have a contradiction.

If X is a complex p-Banach space, then it may be shown that the centre of $\mathcal{L}(X)$ is a field and by Zelinski's extension of the Gelfand-Mazur theorem [11], condition (b) must hold.

It is easy to check that each of the spaces $L_p (p \geq 0)$ satisfies conditions (a) and (b) of the proposition (use an argument similar to [7], pp. 253-254; see also [5]), and hence is strictly transitive.

Proposition 2.2. Suppose X is a strictly transitive F-space and $X \simeq X \times X$; then if (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are two linearly independent sets in X, there exists an invertible $T \in \mathcal{L}(X)$ such that $Te_i = y_i$, $1 \leq i \leq n$.

Proof. We prove that there exists a projection $P \in \mathcal{L}(X)$ such that $P(X) \cong X$, $(I - P)(X) \cong X$ and $(P \circ P)(X) = (I - P)(X)$. Let F be the linear span of (x_1, \ldots, x_n); then we may choose a projection P so that $P(X) = F(X)$, $(I - P)(X) \cong X$ and $\dim P(X)$ is maximal. Since $(I - P)(X) \cong X \cong X \times X$, there exists a projection $Q \in \mathcal{L}(X)$ such that $FQ = QF = 0$ and $Q(X) \cong (I - P)(X)$ and X. Then since $(P \circ Q)(X) \cong (I - P)(X)$ and X, we have $\dim (P \circ Q)(X) = \dim P(X)$. Hence P is one-to-one on $(P \circ Q)(X)$ and if we have $\sum a_i x_i = 0$, then $\sum a_i (P \circ Q)(X) = 0$. Similarly we have $\sum a_i (I - P)(X) = 0$; combining, $\sum a_i P(X) = 0$ and $\sum a_i = 0$. Hence $P(X) = (I - P)(X)$.

Now pick projections F_1 and F_2 in $\mathcal{L}(X)$ so that $P(X) \cong (I - P)(X)$ and $(P \circ F_1)(X) \cong (I - P)(X)$ and $(P \circ F_2)(X) \cong F(X)$, $(I - P)(X) \cong P(X)$, $(P \circ F_2)(X) \cong P(X)$, $(P \circ F_1)(X) \cong (I - P)(X)$ and $(P \circ F_1)(X) \cong (I - P)(X)$. Then F_1 is invertible on X and F_2 is invertible on X and $(P \circ F_1)(X) \cong (I - P)(X)$ and $(P \circ F_2)(X) \cong P(X)$, $(I - P)(X) \cong P(X)$, $(P \circ F_1)(X) \cong (I - P)(X)$ and $(P \circ F_2)(X) \cong P(X)$, $(I - P)(X) \cong P(X)$.

We now have:

Theorem 2.3. If $0 < p < 1$ and V and W are two subspaces of L_p and $\dim V = \dim W < \infty$, then $L_p (V) \cong L_p (W)$.
Proof. This is immediate, since there is an invertible operator T on L_p such that $T(V) = V$.

Let us denote now by (L_p/m) the quotient of L_p by an n-dimensional subspace; of course $(L_p/0) = L_p$. Theorem 2.3 guarantees that (L_p/m) is well defined.

Theorem 2.4. For $0 < p < 1$, $(L_p/[(m+n)]) \cong (L_p/m) \oplus (L_p/n)$ when $m, n > 0$.

Proof. Let V be a subspace of $L_p[0,1]$ of dimension m (embedded in L_p in the obvious way) and W a subspace of $L_p[1,2]$ of dimension n. Then

$$L_p/[(m+n)] \cong L_p[0,1]/V \oplus L_p[1,2]/W \cong (L_p/m) \oplus (L_p/n).$$

3. **Lifting theorems.** Let X be a p-Banach space ($0 < p \leq 1$) and N a closed subspace of X. It is easy to see that any linear operator S: $L_p \to X/N$ may be lifted to a linear operator \hat{S}: $L_p \to X$, so that $\pi \hat{S} = S$, where π: $X \to X/N$ is the quotient map. In the case $p = 1$, a similar lifting property holds if L_p is replaced by any L_p-space and N is isomorphic to a complemented subspace of a dual space (this is effectively proved by Lindenstrauss [4]). Not surprisingly there is a corresponding result for the case $p < 1$. We say that a p-Banach space X is an L_p-space ($0 < p < 1$) if there is an increasing net $(X_n; \alpha \in A)$ of finite-dimensional subspaces of X such that $\bigcup \{X_n; \alpha \in A\}$ is dense in X and there exist linear maps S_n: $X_n \to \ell^p$ and T_n: $\ell^p \to X_n$ (where $\alpha_n = \dim X_n$) such that $\sup \|S_n\| \|T_n\| < \infty$ and $T_n S_n = 1$ on X_n. Clearly L_p is an L_p-space.

We shall also call a p-Banach space Z pseudo-dual if there is a Hausdorff vector topology \mathcal{G} on Z such that the unit ball is relatively compact for \mathcal{G}. The space L_p is not pseudo-dual (see [1]), but the spaces L_p and L_∞ ($0 < p < 1$) are pseudo-dual.

Theorem 3.1. Let Y be an L_p-space ($0 < p \leq 1$) and X a p-Banach space. Let N be a closed subspace of X and suppose N is isomorphic to a complemented subspace of a pseudo-dual p-Banach space Z. Then any operator S: $Y \to X/N$ may be lifted to an operator \hat{S}: $Y \to X$.

If $Y = L_p$, then the lifting is unique.

Proof. We observe that the unit ball of Z may be supposed to be \mathcal{G}-compact (by [1], Lemma 1). Then the argument is a straightforward imitaiton of the Lemma of [4]. We omit the details.

In the case $Y = L_p$, suppose T is any other lifting. Then $T - S$ maps L_p into N and there is a non-zero operator from L_p into Z. The induced map into (Z, \mathcal{G}) is compact, contradicting the results of [2].

We now give another result of a similar type for the space L_p.

Theorem 3.2. Let X be a p-Banach space ($0 < p < 1$) and let N be a closed subspace of X which is isomorphic to a q-Banach space, where $p < q \leq 1$. Then any linear operator S: $L_p \to X/N$ may be lifted uniquely to a linear operator \hat{S}: $L_p \to X$.

Proof. For $x \in N$, let Y_x be the linear span of the functions x^n_k ($1 \leq k \leq n^x$), where x^n_k is the characteristic function of $|k-1|^{3^{-a}}$, $k \geq 1$. Each Y_x is isometric to ℓ^p. Let S_x: $Y_x \to X$ be a lift of S: $L_p \to X/N$ with $\|S_x\| \leq 2 \|S\|$. We shall show that for $x \in \bigcup Y_x$, lim $S_x(y) - S(y)$ exists. Then clearly $\|\hat{S}\| \leq 2 \|S\|$ and \hat{S} may be extended to L_p by continuity and is then a lift of S.

Since N is isomorphic to a q-Banach space, there exists a constant C such that the q-convex hull of the unit ball of N is bounded by C. Hence, if x_1, \ldots, x_n are in N, then

$$\left\| \sum_{i=1}^n x_i \right\| \leq C \left(\sum_{i=1}^n \|x_i\|^{q/p} \right)^{1/q}.$$

Now suppose $j \leq m \leq n$, and $1 \leq k \leq 2^j$; then

$$\|S_x y_k - S_y y_k\| = \|S_x - S_y\| \left\| \sum_{i=k}^{2^j} x^n_{i(2^j-k+1)} \right\|$$

$$\leq (\sum_{i=k}^{2^j} \|S_x - S_y\| \|x^n_{i(2^j-k+1)}\|)^{1/p}$$

$$\leq 4 C \|S \| \left(\sum_{i=k}^{2^j} \|x^n_{i(2^j-k+1)}\| \right)^{1/p}$$

$$= 4 C \|S \| \left(2^{-j \cdot (q/p - 1)} \right)^{1/p}$$

and so $(S_x y_k; m \geq j)$ is a Cauchy sequence. Hence we may find the lift \hat{S}. As in Theorem 3.1, \hat{S} must be unique, since there are no non-zero operators from L_p into N (see Théorème 3.4.5 of [10] or Proposition 2 of [9], or use the argument above).

We now examine the case $p = 0$, which is rather different. Suppose X is an F-space with F-norm $\|x\|$. For $x \in X$ we define s: $X \to R \cup \{\infty\}$ by

$$s(x) = \sup \{r : x \leq r\}.$$

In the case of L_p with the F-norm

$$\|x\| = \frac{1}{n} \|x(n)\|_p d\mu(x),$$

we have that $s(x) = \mu(supp x)$.

In general, note that \(\sigma(ax) = a\sigma(x) \) if \(a \neq 0 \) and that \(\sigma(x + y) \leq \sigma(x) + \sigma(y) \). If \(L \) is a linear subspace of \(X \), we define \(\sigma(L) = \sup \{ \sigma(x) : x \in L \} \).

We shall say that \(X \) admits \(L_x \)-structure, if for any \(a > 0 \) there exist \(n = n(a) \) and subspaces \(X_1, \ldots, X_n \) of \(X \) such that \(X = X_1 \oplus \cdots \oplus X_n \) and \(\sigma(X_i) \leq a, i = 1, 2, \ldots, n \). In addition to the obvious example of \(L_x \) itself, any space of the type \(L_n(X) \) (all measurable functions from \([0, 1]\) into an \(F \)-space \(Z \)) admits \(L_x \)-structure.

The following proposition is trivial.

Proposition 3.3. Suppose \(X \) admits \(L_x \)-structure and \(B \) is a locally bounded space. If \(T : X \to B \) is continuous, then \(T = 0 \).

We next prove two lemmas before giving the main lifting theorem.

Lemma 3.4. Suppose \(X \) is an \(F \)-space and \(B \) is a closed locally bounded subspace of \(X \); let \(\pi : X \to X/B \) be the quotient map. Let \(\delta \) be chosen so that the set \(\{ b \in B : ||b|| \leq \delta \} \) is bounded.

Then if \(\xi \in X/B \) and \(\sigma(\xi) \leq \delta/\beta \), there is a unique \(x \in X \) such that \(\pi x = \xi \) and \(\sigma(x) \leq \delta/\beta \). For this \(x \), \(\sigma(x) = \sigma(\xi) \).

Proof. If \(\xi \in X/B \) and \(\sigma(\xi) \leq \delta/\beta \), then we may assume that \(\sigma(\xi) = \sigma(\zeta) \) for some \(\zeta \in X \). Let \(\nu = \pi x = \xi \) and \(\sigma(\nu) = \sigma(\xi) \).

Let \(\nu_n = \nu_n - \nu \) (\(n \in \mathbb{N} \)). Then \(\nu_n \to \nu \) and \(||\nu_n|| \to ||\nu|| \).

Thus \(||\nu_n|| \leq \frac{1 + n}{n} ||\nu|| \), \(n \in \mathbb{N} \).

Let \(\nu_n = \pi x_n - \pi x \) (\(n \in \mathbb{N} \)); then \(\nu_n \to \nu \) and \(||\nu_n|| \to ||\nu|| \).

Then \(||\nu_n|| \leq \frac{1 + n}{n} ||\nu|| \), \(n \in \mathbb{N} \).

This implies that \(\{ \nu_n \} \) is a Cauchy sequence and hence so is \(\{ \pi x_n \} \). If \(x = \lim \pi x_n \), then \(\sigma(x) = \sigma(\xi) \leq \delta/\beta \). If \(x \) is any other point satisfying \(\pi x = \xi \) and \(\sigma(\xi) \leq \delta/\beta \), then \(x - y \in B \) and \(\sigma(x - y) \leq \frac{3}{2} \delta/\beta \); this implies \(x - y = 0 \).

Lemma 3.5. Under the assumptions of Lemma 3.4, let \(Y \) be a linear subspace of \(X/B \) with \(\sigma(Y) \leq \delta/\beta \). Then there is a linear operator \(h : Y \to X \) such that \(\pi \circ h(\xi) = \xi \) for \(\xi \in X \).

Proof. Fix \(\xi \in X \). Define \(h(\xi) \) to be the unique \(x \in X \) such that \(\pi x = \xi \) and \(\sigma(x) = \sigma(\xi) \). If \(\alpha, \beta \in \mathbb{R} \) and \(\delta, \gamma, \eta \in X \), then

\[
\sigma(\alpha h(\xi) + \beta h(\eta)) \leq \alpha \sigma(h(\xi)) + \beta \sigma(h(\eta)) \leq \delta/\beta.
\]

Thus

\[
h(\alpha \xi + \beta \eta) = \alpha h(\xi) + \beta h(\eta),
\]

and \(h \) is linear.

Now suppose \(\xi_n \to 0 \) in \(Y \); choose \(x_n \in X \) such that \(\pi x_n = \xi_n \) and \(||x_n|| \leq 2 ||\xi_n|| \). Then \(x_n - h(x_n) \to 0 \). If \(x_n - h(x_n) \to 0 \), we may assume, by passing to a subsequence, that for some \(a > 0 \) we have

\[
||x_n - h(x_n)|| \geq \delta
\]

(since the set \(\{ b \in B : ||b|| \leq \delta \} \) is bounded).

Then

\[
||x_n|| > \delta - ||h(x_n)|| \geq \delta - \frac{1}{2} \delta = \frac{1}{2} \delta.
\]

This is a contradiction since \(||x_n|| \to 0 \). Hence we have \(x_n - h(x_n) \to 0 \) and so \(h(\xi_n) \to 0 \).

Theorem 3.6. Suppose \(X \) admits \(L_x \)-structure, \(Y \) is an \(F \)-space, and \(B \) is a closed locally bounded subspace of \(Y \). Then if \(\pi : X \to X/B \) is a linear operator, there is a unique linear operator \(\tilde{S} : X \to X \) such that \(\pi \circ \tilde{S} = \pi \).

Proof. Choose \(\delta > 0 \) so that \(\{ b \in B : ||b|| \leq \delta \} \) is bounded, and then \(\delta > 0 \) so that \(||\xi|| \leq \delta \). Then \(||\xi|| \leq \delta/\beta \). Let \(X_1, \ldots, X_n \) be closed subspaces of \(X \) such that \(X = X_1 \oplus \cdots \oplus X_n \) and \(\sigma(X_i) \leq \delta/\beta \).

Then \(\sigma(\pi X_i) \leq \delta/\beta \), and so there exist linear operators \(h_i : \pi X_i \to Y \), such that \(h_i(\xi) = \tilde{S}(X_i) \). If we define \(\tilde{S} : X \to Y \) by

\[
\tilde{S}(x_1 + \cdots + x_n) = \sum_{i=1}^{n} h_i x_i,
\]

then \(\tilde{S} \) is the required lifting of \(S \).

If \(T \) is any other lifting, then \(\tilde{S} - T \) maps \(X \) into \(B \) and hence \(\tilde{S} = T \) by Proposition 3.3.

4. **Quotient spaces of \(L_\rho \) (0 < \rho < 1).** In this section we treat the case \(\rho = 0 \) first and in more detail than the case \(\rho > 0 \); the arguments are analogous.

Theorem 4.1. Suppose \(X_1 \) and \(X_2 \) are two \(F \)-spaces with \(L_\rho \)-structure. Suppose \(B_1 \) and \(B_2 \) are closed locally bounded subspaces of \(X_1 \) and \(X_2 \), respectively. Then \(X_1/B_1 \cong X_2/B_2 \) if and only if there is an isomorphism \(\phi : X_1/B_1 \to X_2/B_2 \) mapping \(X_1 \) onto \(X_2 \) and such that \(V(B_1) \to B_2 \).

Proof. The “if” part is clear. For the “only if” part, let \(S : X_1/B_1 \to X_1/B_2 \) be an isomorphism, and let \(\pi_1, \pi_2 \) be the quotient maps. Then
by Theorem 3.6, there exist lifts \(V, U \) of \(S_{n_1} : X_0 \to X_0/B_0 \) and \(S^{-1} n_1 : X_1 \to X_1/B_1 \).

\[
\begin{array}{c|c|c}
X_0 & U & X_1 \\
\hline
X_0/B_0 & V & X_1/B_1 \\
\end{array}
\]

Then \(UV : X_0 \to X_1 \) is a lift of \(n_1 : X_0 \to X_1/B_1 \). By the uniqueness, \(UV = \iota_{X_1} \); similarly \(VU = \iota_{X_0} \), so \(V \) is an isomorphism of \(X_0 \) onto \(X_1 \).

Clearly \(V(B_0) = B_1 \) and \(U(B_1) = V^{-1}(B_1) = B_1 \); hence \(V(B_0) = B_1 \).

Corollary 4.3. If \(X \) admits \(L_p \)-structure and \(B \in X \) is a locally bounded subspace, then \(X/B \) admits \(L_p \)-structure if and only if \(B = \{0\} \).

Theorem 2.3 and Theorem 4.2 give

Theorem 4.3. If \(B_1 \) and \(B_2 \) are locally bounded subspaces of \(L_p \),

then \(L_p[B_1] \equiv L_p[B_2] \) if and only if there is an invertible operator \(T : L_p \to L_p \) such that \(T(B_1) = B_2 \).

In particular, \((L_p[m]) \equiv (L_p[n]) \) if and only if \(m = n \), and \((L_p[1]) \equiv L_p \).

This solves the problem of Pelszthicki (see Introduction). Also in this section we shall illustrate this corollary by showing that \(B_1 \equiv B_2 \) does not imply \(L_p[B_1] = L_p[B_2] \). First however, we state the corresponding theorem for \(p > 0 \); the proofs are similar.

Theorem 4.4. Suppose \(B_1 \) and \(B_2 \) are two closed subspaces of \(L_p \), each of which is either isomorphic to a complemented subspace of a pseudo-dual \(p \)-Banach space or to a \(q \)-singular Banach space where \(p < q \leq 1 \).

Then \(L_p[B_1] \equiv L_p[B_2] \) if and only if there is an invertible operator \(T : L_p \to L_p \) such that \(T(B_1) = B_2 \).

In particular, \((L_p[m]) \equiv (L_p[n]) \) if and only if \(m = n \), and \((L_p[1]) \equiv L_p \).

Theorem 4.5. If \(B \subset L_p \) is isomorphic to a complemented subspace of a pseudo-dual \(p \)-Banach space and \(B \neq \{0\} \), then \(L_p[B] \) is not a \(L_p \)-space.

Proof. If \(L_p[B] \) is an \(L_p \)-space, then the identity map \(I : L_p[B] \to L_p[B] \) may be lifted to a map \(J : L_p[B] \to L_p[B] \). Then on \(L_p[I = J \) maps \(L_p[B] \) into \(B \). Hence, by applying the results of [2] as in Theorem 3.1, \(I = J \) and so \(B = \{0\} \).

Example. Let \(B_1 \subset L_p \) be the closed linear span of the Rademacher functions \(r_n \) on \([0,1]\)

\[
(r_n(t)) = \text{sgn} (\sin (2^n \pi t))
\]

and let \(B_2 \) be the closed linear span of a sequence of independent random variables normally distributed with mean zero and variance one. Then \(B_1 \equiv B_2 \equiv L_2 \); we shall show, however, that \(L_p[B_1] \not\equiv L_p[B_2] \).

For suppose \(L_p[B_1] \equiv L_p[B_2] \); then there is an invertible linear operator \(T : L_p \to L_p \) such that \(T(B_1) = B_2 \). By Kwapień's Representation Theorem [3], \(T \) takes the form

\[
T_t(t) = \sum \frac{t}{n} \eta_n(t) = (\Phi(t)) \;
\]

where

1. \(\eta_n \in L_p \) \(n \geq 1 \),
2. \(m(t; \eta_n(t)) \neq 0 \) for infinitely many \(n \) = 0,
3. \(\sigma_0 \) maps \([0,1] \) into \([0,1] \); if \(A \) is measurable, then \(\sigma_0[A] \) is measurable; if \(m(A) = 0 \), then \(m(\sigma_0[A] \cap \text{Supp} \eta_n) = 0 \).

Thus for almost every \(t \in [0,1] \), the sequence \(\{T_t(n)\} \) assumes only finitely many values. Hence for some \(j \), with \(j \neq k \), we must have \(m(t; T_t(n) - T_k(0)) = 0 \). However \(T_t(t) - T_k(t) \) is normally distributed and hence \(T_t(t) - T_k(t) \); thus \(T \) is not injective, and we have a contradiction.

Remarks. For \(p > 0 \), let \(x \in L_p \) be non-zero and let \(Y \) be the linear span of \(x \). Let \(L_p(Y) \) and \(L_p(Y') \) be the \(p \)-Banach algebras of all bounded linear operators on \(L_p \) and \(L_p[V] \), respectively. If \(S \in L_p(Y') \), let \(\tilde{S} : L_p \to L_p \) be the unique lift of \(S \circ \sigma_0 \). Then the map \(\tilde{S} \to \tilde{S} \) is an algebra homomorphism, and in fact an embedding of \(L_p(Y') \) into \(L_p(Y) \). Thus \(L_p(Y') \) is isomorphic to the closed subalgebra of \(L_p(Y) \) consisting of all \(T \in L_p(Y) \) such that \(T(x) \in Y \). We may define a multiplicative linear functional \(\varphi \) on \(L_p(Y') \) by

\[
\varphi(Sx) = \tilde{S}x
\]

5. **K-spaces.** In this section, we abstract a particular property of the space \(L_p \) and consider it in more generality. We restrict to the real case, but the complex case is identical.

If \(X \) is an \(F \)-space, we shall say that \(X \) is a \(K \)-space if every short exact sequence \(0 \to R \to Y \to X \to 0 \), with \(Y \) an \(F \)-space, splits. Alternatively, if \(Y : Y \to X \) is onto and \(\dim S^{-1}(0) = 1 \), then there exists an operator \(T : Y \to Y \) such that \(ST = I_Y \).

If \(X \) is a \(p \)-Banach space (\(0 < p \leq 1 \)), we shall say that \(X \) is a \(K_p \)-space if every short exact sequence \(0 \to R \to Y \to X \to 0 \), with \(Y \) a \(p \)-Banach space, splits.

Theorem 5.1. An \(F \)-space \(X \) is a \(K \)-space \((K_p \)-space) if and only if whenever \(Y \) and \(Z \) are \(F \)-spaces \((p \)-Banach spaces) and \(S : Y \to Z \) is a surjective operator with \(\dim S^{-1}(0) = 1 \), then each linear operator \(X \to Z \) may be lifted to an operator \(T : X \to X \) such that \(ST = T \).

Proof. We prove the statement for \(K \)-spaces. Suppose \(X \) is a \(K \)-space. Let \(V = X \oplus Y \) be the subspace of all \((x,y)\) such that \(Tw = Sy \),
and define $P: V \to X$ by $P(a, y) = a$. Then $P: V \to X$ is surjective, and $\dim P^{-1}(0) = 1$. Hence there exists a linear operator $R: X \to V$ such that $PR = I_X$. Then $Rv = (v, T_0v)$; clearly $ST = T$.

For the converse take $Z = X$ and T to be the identity.

We remark now that if X admits L_0-structure, then X is a K-space (Theorem 3.6), and that an L_p-space is a K_p-space.

Theorem 5.2. If X is an F-space (or Banach space) and N is a closed subspace of X such that X/N is a K-space (K_p-space), then X has the Hahn-Banach Extension Property in X.

Proof. Again we restrict to the K-space case. Suppose $x \in N$ is non-zero; let $M = q^{-1}(0) \subset N$. Consider the natural quotient map $\pi: X/M \to X/N$; then there is a map $S: X/N \to X/M$ such that $\pi S = I$ on X/N. Then $S(X/N)$ is a closed subspace of co-dimension one in X/M and so there exists $y \in (X/M)^*$ such that $y(x) = 0$. Since $S(X/N)$ is the natural quotient map, then $yq \in X$. If $u \in N$, then $yq(u) = 0$ if and only if $q(u) = 0$. Thus $(yq)^{-1}(0)$ is a suitable multiple of yq.

There is also a converse to Theorem 5.2.

Theorem 5.3. If X is a K-space (K_p-space) and $N \subset X$ is a closed subspace with HBEF, then X/N is a K-space (K_p-space).

Proof. Suppose we have a short exact sequence

$$0 \to R \to Z \to X/N \to 0,$$

and let $\pi: X \to X/N$ be the quotient map. Then there is a lifting of π, $S: X \to Z$ so that $\pi S = \pi$ (by Theorem 5.1). Suppose first S is not surjective; then $S(X)$ has co-dimension one in Z and $\pi S(X)$ is one-one. Define $R: X/N \to Z$ by $R = 0$ where $s \in S(X)$ and $\pi s = 0$. If $\xi \in 0$ in X/N, then there exists a sequence n_i in N such that $n_i \to 0$ and $\pi n_i = 0$. Since $S_0 \to 0$ and $S_0 - R_{\pi 0} \to 0$, i.e. R is continuous.

Now suppose S is surjective; then $S^{-1}(0)$ is a non-zero linear functional on N. Let $\varphi \in N^*$ be a non-zero linear functional with kernel $S^{-1}(0)$. Then φ may be extended to $\varphi \in X$. Now define $g: X \to Z$ by $g(x) = S(x - \varphi(x))$ where $x \in N$ is chosen so that $\varphi(x) = 0$. Then $g\varphi = \pi(x - \varphi(x)) = 0$ for $x \in N$. Hence $g(x) = S(x - \varphi(x)) = 0$. Thus g is one-one on $S(X)$ and $S(X)$ has co-dimension one in Z; we can apply the previous part of the proof.

Corollary 5.4. X is a K_p-space if and only if $X \cong L_p(I)/N$ where I is some index set and $N \subset L_p(I)$ has the HBEF.

We remark that if $L_p(N) \cong L_p$, then N has HBEF and the extension is unique, since $L_p = \{0\}$.

Corollary 5.5. (i) If N is a closed subspace of L_p, then $L_p(N)$ is a K-space if and only if $N^* = \{0\}$. In particular, if $L_p(N)$ has L_p-structure, then $N^* = \{0\}$.

(ii) If N is a closed subspace of L_p, then $L_p(N)$ is a K_p-space if and only if $N^* = \{0\}$. In particular, if $L_p(N)$ is an L_p-space, then $N^* = \{0\}$.

Note here that if for x the closed linear span of a sequence of functions with disjoint supports in L_p, then $N \cong o$, and hence $L_p/N \not\cong L_p$. However $L_p/N \cong c_0$ (the countable product of copies of L_p/I); hence $c_0/L_p \not\cong L_p$.

Problem. Is L_p or $L_p(N)$ a K_p-space for any $p < p_1$, or even a K-space? In particular, is L_1 (or any Banach space) a K_p-space for any $p < p_1$? This latter question is essentially the same as a problem of Gelles [8]: if $L_p(N)$ is locally convex, must N have the HBEF?

References

- University College of Swansea
- Singleton Park, Swansea
- University of Illinois
- Urbana, Illinois

Received October 10, 1970

(1219)