

## References

[1] H. Buchwalter, Espaces de Banach et dualité, Publ. Dép. Math. (Lyon) 3 (1966), fasc. 2, p. 2-61.

 [2] S. Eilenberg, Abstract description of some basic functors, J. Indian Math. Soc. 24 (1960), p. 221-234.

[3] P. Freyd, Abelian categories, New York 1964.

[4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[5] F. E. J. Linton, Autonomous categories and duality of functors, J. Algebra 2 (1965), p. 315-349.

[6] B. Mitchell, Theory of categories, New York 1965.

[7] B. S. Mitiagin and A. S. Švarc, Functors in categories of Banach spaces (in Russian), Uspehi Mat. Nauk 19 (1964), p. 65-130.

[8] Z. Semadeni, Categorical methods in convexity, Proc. Colloq. on Convexity, Copenhagen 1965 (1967), p. 281-307.

 [9] C. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc. 11 (1960), p. 5-8.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

## STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

## Unconditional and normalised bases

by

N. J. KALTON (Cambridge and Lehigh)

1. Introduction. A Schauder basis  $(x_n)$  of a locally convex space E is unconditional if, whenever  $\sum_{i=1}^{\infty} a_i x_i$  converges, the convergence is unconditional. In [16], Pełczyński and Singer proved that every Banach space with a basis possesses a conditional (i.e. not unconditional) basis. In this paper I shall generalise this theorem using the concept of normalisation introduced in [12].

A sequence  $(a_n)$  is regular if there is a neighbourhood V of zero with  $x_n \notin V$  for all n; a regular bounded sequence is said to be normalised. If there exists a scalar sequence  $(a_n)$  with  $(a_n x_n)$  normalised, then  $(x_n)$  is said to be normal; otherwise  $(x_n)$  is abnormal.

If  $(x_n)$  is a Schauder basis of E, then  $(f_n)$  will always denote its dual sequence in E'; if  $(f_n)_{n=1}^{\infty}$  is equicontinuous, then  $(x_n)$  is equi-regular, and hence regular; if E is barrelled, then any regular basis is equi-regular.

The sequence space of all a such that  $\sum_{i=1}^{\infty} a_i x_i$  converges will be denoted by  $\lambda_x$ , and  $\mu_x$  is the sequence space  $\{(f(x_n))_{n=1}^{\infty}, f \in E'\}$ . If E is sequentially complete, then  $(x_n)$  is unconditional if and only if  $\lambda_x$  is solid (see [4]), that is if  $a \in \lambda_x$  and  $|\theta_n| \leq 1$  for all n, then  $(\theta_n a_n) \in \lambda_x$ . If E is also barrelled, it can be shown that the topology on E may be given by a collection of solid semi-norms p such that

$$p(x) = \sup_{|\theta_i| \leqslant 1} p(\sum_{i=1}^{\infty} \theta_i f_i(x) x_i).$$

A sequentially complete barrelled space with a Schauder basis is complete (see [10]); in this paper I shall restrict attention almost exclusively to complete barrelled spaces.

2. Reflexivity and unconditional bases. A Schauder basis  $(x_n)$  is  $\gamma$ -complete or boundedly-complete if whenever  $(\sum_{i=1}^n a_i x_i; n = 1, 2...)$  is

bounded, then  $\sum_{i=1}^{\infty} a_i x_i$  converges; it is shrinking if  $(f_n)$  is a basis for E' in its strong topology. It is shown in [20] that E is semi-reflexive if and only if  $(x_n)$  is  $\gamma$ -complete and shrinking. The following results generalise those of [9] and [19]:

THEOREM 2.1. Let E be a complete barrelled space with an unconditional Schauder basis  $(x_n)$ ; if  $(x_n)$  is not  $\gamma$ -complete, then E contains a complemented subspace G isomorphic to  $c_0$ .

There exists a sequence  $(\alpha_a)$  such that  $(\sum_{i=1}^n \alpha_i x_i)_{n=1}^{\infty}$  is bounded, but does not converge; thus there exists an increasing sequence  $(n_j)$  with  $n_0 = 0$ , and a neighbourhood V of zero such that, if

$$y_j = \sum_{n_{j-1}+1}^{n_j} \alpha_i x_i,$$

then  $y_i \notin V$ . Let p be a solid semi-norm, then

$$p\left(\sum_{i=1}^n\beta_iy_i\right)\leqslant \|\beta\|_{\infty}p\left(\sum_{i=1}^ny_i\right),$$

where  $\|\beta\|_{\infty} = \sup_n |\beta_n|$ . However,  $(\sum_{i=1}^n y_i; n=1,2,\ldots)$  is bounded, and thus

$$p\left(\sum_{i=1}^n eta_i y_i
ight) \leqslant K \|eta\|_{\infty}.$$

Therefore  $c_0 \subset \lambda_y$ ; but as  $(y_n)$  is regular  $\lambda_y \subset c_0$ , so that  $\lambda_y = c_0$ . Let q be a solid continuous semi-norm on E such that  $q(y_j) \geqslant 1$  for all j; if  $E_j = \lim (x_{n_{j-1}+1}, \ldots, x_{n_j})$  then there exists a linear functional  $h_j$  on  $E_j$  such that  $h_j(y_j) = 1$ , and  $|h_j(x)| \leqslant q(x)$  for  $x \in E_j$ . Define  $g_j \in E'$  by

$$g_j(x) = h_j \Big( \sum_{n_{j-1}+1}^{n_j} f_i(x) x_i \Big);$$

then  $|g_j(x)| \leq q(x)$ . Then  $(g_j)_{j=1}^{\infty}$  is equicontinuous, and so possesses a  $\sigma(E',E)$  cluster point  $g_j$ ; obviously  $g(x_j)=0$  for all j, and so g=0. As zero is the sole cluster point of  $(g_j)$  it follows that  $\lim_{j\to\infty} g_j=0$  weakly. Let

$$T_k x = \sum_{i=1}^k g_i(x) y_i;$$

then each  $T_k$  is continuous and  $\lim_{k\to\infty} T_k x = Tx$  exists for each x. Therefore by the Banach-Steinhaus Theorem for barrelled spaces, T is a continuous

projection of E onto  $G = \overline{\lim} (y_j)$ . As G is complemented in E, G is barrelled; and in  $(y_j)$  is a Schauder basis of G with  $\lambda_y = c_0$ , it follows that  $\mu_y = c_0^{\beta} = l_1$ , and so  $\mathscr{G} \cong c_0$ .

THEOREM 2.2. Let E be a complete barrelled space with an unconditional Schauder basis  $(x_n)$ ; if  $(x_n)$  is not shrinking, then E has a complemented subspace  $G \cong l^1$ .

As  $(x_n)$  is not shrinking, there exists  $f \in E'$ , and a bounded block basic sequence  $(y_j)$  such that  $f(y_j) = 1$  (see [12], Theorem 5.4). If  $\sum_{j=1}^{\infty} a_j y_j$  converges, then  $\sum_{j=1}^{\infty} |a_j|$  converges, and as  $(y_j)$  is bounded  $\lambda_y = l^1$ . Let  $G = \overline{\lim}(y_n)$ , and define the norm p on G by

$$p\left(\sum_{i=1}^{\infty}a_{i}y_{i}\right)=\sum_{i=1}^{\infty}\left|a_{i}\right|,$$

then

$$p\left(\sum_{i=1}^{\infty} a_i y_i\right) = \sum_{i=1}^{\infty} |a_i f(y_i)| \leqslant \sum_{i=1}^{\infty} |f_i(y) f(x_i)|,$$

where  $y = \sum\limits_{i=1}^{\infty} a_i y_i$ . As the topology on E may be given by solid semi-norms if

$$q(x) = \sum_{i=1}^{\infty} |f_i(x)f(x_i)|,$$

then q is continuous; thus p is continuous, and  $G \cong l^1$ . For  $x \in E$ , let

$$Tx = \sum_{j=1}^{\infty} f\left(\sum_{n_{j-1}+1}^{n_j} f_i(x)x_i\right) y_{i,j} \quad \text{where } y_i = \sum_{n_{j-1}+1}^{n_j} \beta_i x_i;$$

for

$$\sum_{i=1}^{\infty} \left| f\left(\sum_{n_{i-1}+1}^{n_j} f_i(x) x_i\right) \right| \leqslant q(x).$$

Then T is a projection of E onto G, and  $p(Tx) \leqslant q(x)$  so that T is continuous.

As E is semi-reflexive if and only if  $(x_n)$  is shrinking and  $\gamma$ -complete, the following theorem is immediate:

THEOREM 2.3. If E is a complete barrelled space with an unconditional Schauder basis, then E is reflexive if and only if E possesses no complemented subspace isomorphic to  $c_0$  or  $l^1$ .

**3. Symmetric bases.** Two basic sequences  $(x_n)$  and  $(y_n)$  are said to be *equivalent* if  $\lambda_x = \lambda_y$ ; it can easily be seen that if  $(x_n)$  is a Schauder

**icm**©

basis of E, and  $(y_n)$  is a Schauder basis of F, and both E and F are barrelled, then E and F are isomorphic. Suppose  $(x_n)$  is a Schauder basis of E, such that for every permutation  $\sigma$  of the positive integers Z,  $(x_{\sigma(n)})$  is a Schauder basis of E equivalent to  $(x_n)$ ; then  $(x_n)$  is said to be symmetric. Symmetric bases of Banach spaces were introduced and studied by Singer [17] and [18]; in locally convex spaces they have been studied by Garling [6] and [7]. The definition here corresponds to condition SB<sub>3</sub> of [7] and [18].

A symmetric basis is necessarily unconditional, as for all  $x \in E$ , and permutations  $\sigma$ ,  $\sum_{i=1}^{\infty} f_{\sigma(i)}(x) x_{\sigma(i)}$  converges to x. The following lemma is essentially established in [3]:

LEMMA 3.1. If  $(x_n)$  is a symmetric Schauder basis of E, then either  $(x_n)$  is bounded, or  $(x_n)$  is a Hamel basis of E.

THEOREM 3.2. If E is a complete barrelled space with a symmetric Schauder basis  $(x_n)$ , then either  $E \cong \omega$ , or  $E \cong \varphi$  or  $(x_n)$  is normalised.

( $\omega$  is the space of all sequences, and  $\varphi$  is the dual sequence space of all sequences eventually equal to zero;  $\omega$  has the topology  $\beta(\omega, \varphi)$  (=  $\sigma(\omega, \varphi)$ ) and  $\varphi$  has the topology  $\beta(\varphi, \omega)$ ).

Let  $\sigma$  be a permutation of Z, and let  $\tau = \sigma^{-1}$ ; suppose  $\sum_{i=1}^{\infty} \alpha_i f_i$  converges weakly to f. Let

$$g_n = \sum_{i=1}^{\infty} \alpha_{\tau(i)} f_i;$$

then

$$g_n(x) = \sum_{i=1}^n f(x_{\tau(i)}) f_i(x) = f\Big(\sum_{i=1}^n f_i(x) x_{\tau(i)}\Big);$$

as  $(x_n)$  is symmetric,  $\lim_{n\to\infty} g_n(x) = g(x)$  exists, and by the Banach-Steinhaus Theorem, g is continuous. Obviously  $g(x_i) = a_{r(i)}$ , and so

$$g = \sum_{i=1}^{\infty} a_{\tau(i)} f_i;$$

as  $(f_n)$  is an unconditional basis of  $(E', \sigma(E', E))$ ,

$$g = \sum_{i=1}^{\infty} a_i f_{\sigma(i)}$$

and so  $(f_n)$  is a symmetric basis of E' in its weak topology.

By Lemma 3.1, either  $(f_n)$  is a Hamel basis of E' or is bounded; in the latter case  $(x_n)$  is equi-regular. If E' has countable dimension, then  $E \cong \varphi$ ; if E has countable dimension  $E \cong \varphi$ ; otherwise  $(x_n)$  is regular and bounded, i.e. normalised.

Eliminating the cases of  $\omega$  and  $\varphi$ , symmetric bases of complete barrelled spaces may be treated much like symmetric bases of Banach spaces.

The following theorem follows from the results of Cac [3]:

THEOREM 3.3. If E is a complete barrelled space with a normalised symmetric Schauder basis  $(x_n)$ , then the topology on E may be given by a collection of symmetric norms p, satisfying

$$p\left(x
ight) = \sup_{\left|\theta_{i}\right| \leqslant 1} \sup_{\mathbf{r} \in \mathcal{I}} p\left(\sum_{i=1}^{\infty} \theta_{i} f_{i}(x) x_{\mathbf{r}(i)}\right),$$

where  $\pi$  is the group of all permutations of Z.

Cac's result is essentially that for fixed x

$$\Big\{\sum_{i=1}^{\infty} heta_i f_i(x) x_{ au(i)}; \, au \, \epsilon \Pi, \, |\, heta_i\,| \leqslant 1 \Big\}$$

is a bounded set. For each sequence  $(\theta_i)$  with  $|\theta_i| \leq 1$  and  $\tau \in \mathcal{U}$ , the map

$$x \to \sum_{i=1}^{\infty} \theta_i f_i(x) x_{\tau(i)}$$

is continuous by an application of the Banach-Steinhaus theorem, and so this collection of maps is equicontinuous (E is barrelled). The result then follows at once.

If  $(x_n)$  is a symmetric Schauder basis of E, where E is complete and barrelled, then a k-block is an element  $u(K) = \sum_{i \in K} x_i$ , where K is a subset of Z with k members; two blocks  $u(K_1)$  and  $u(K_2)$  are disjoint if  $K_1 \cap K_2 = \emptyset$ . Then the following theorems generalise results of Lindenstratuss and Zippin [15]:

THEOREM 3.4. If  $(u(K_n))$  is a sequence of disjoint  $k_n$ -blocks, the averaging projection

$$Tx = \sum_{n=1}^{\infty} \frac{1}{k_n} \left\{ \sum_{i \in K_n} f_i(x) \right\} u(K_n)$$

is a well-defined continuous operator on E.

THEOREM 3.5. If  $(k_n)$  is a sequence with  $k_n > 1$  for all n, then E possesses an unconditional Schauder basis  $(y_n)$  with a subsequence  $(y_{n_j})$  of disjoint  $k_j$ -blocks.

The proofs of both these theorems are almost identical to the proofs of the original results for Banach spaces in [15]; all the calculations may be carried out with individual symmetric norms.

One further property of symmetric norms will be required. Let E be a  $2^n$ -dimensional vector space and let  $(x_i)_{i=1}^{2^n}$  be a basis of E; then following Pełczyński and Singer [16], one may define the Haar system  $(y_i)_{i=1}^{n}$  of  $(x_i)$  by

$$y_1 = \sum_{i=1}^{2^n} x_i, \quad y_{2^k+s} = \sum_{i=1}^{2^n} \beta_i(k,s) x_i,$$

where

$$\beta_i(k,s) = \begin{cases} 1 & \text{if } (2s-2)2^{n-k-1} + 1 \leqslant i \leqslant (2s-1)2^{n-k-1}, \\ -1 & \text{if } (2s-1)2^{n-k-1} + 1 \leqslant i \leqslant 2s \cdot 2^{n-k-1}, \\ 0 & \text{otherwise.} \end{cases}$$

The Rademacher system  $(z_i)_{i=1}^n$  is given by

$$z_k = \sum_{s=1}^{2^{k-1}} y_{2^{k-1}+s}.$$

The following results are proved in [16]:

PROPOSITION 3.6. (i)  $(y_i)_{i=1}^{2^n}$  is a basis of E, and for any norm p which is symmetric with respect to  $(x_i)$ , and any sequence  $(a_i)_{i=1}^{2^n}$ 

$$p\left(\sum_{i=1}^k a_i y_i\right) \leqslant p\left(\sum_{i=1}^{2^n} a_i y_i\right) \quad for \ k \leqslant 2^n.$$

(ii)  $(z_i)_{i=1}^n$  is a block basic sequence with respect to  $(y_i)_{i=1}^{2n}$ , and for any symmetric p, and sequence  $(a_i)_{i=1}^n$ 

$$p\left(\sum_{i=1}^n a_i \, \frac{z_i}{p\left(\dot{z}_i\right)}\right) \geqslant \frac{1}{8} \left(\sum_{i=1}^n \, |a_i|^2\right)^{1/2}.$$

4. The existence of conditional bases. For convenience, I shall define a J-space as a complete barrelled space with a normalised Schauder basis, and which has the property that any two normalised Schauder bases are equivalent. I do not know whether any J-space exists, although it has been shown in [16] that there is no Banach J-space. The techniques employed in this section stem largely from those of [16].

PROPOSITION 4.1. If E is a J-space, then:

- (i) any normalised Schauder basis of E is symmetric,
- (ii) E is reflexive,
- (iii) E' is a J-space in its strong topology.
- (i) If  $(x_n)$  is a normalised Schauder basis of E, and  $\theta_n$  is any sequence with  $|\theta_n| = 1$ , then  $(\theta_n x_n)$  is a normalised Schauder basis equivalent to  $(x_n)$ ; thus  $\alpha \in \lambda_x$  if and only if  $(\theta_n \alpha_n) \in \lambda_x$ ; so that  $\lambda_x$  is solid. Thus  $(x_n)$

is unconditional, and for any  $\pi$ , a permutation of Z,  $(x_{\pi(n)})$  is a basis equivalent to  $(x_n)$ .

- (ii) This follows from Theorem 2.3, as otherwise  $E = c_0 \oplus F \cong c_0 \oplus F \oplus E$  or  $E \cong l^1 \oplus E$ , so that by combining a conditional normalised basis of  $c_0$  or  $l^1$  (see [8] and [14]) with a normalised Schauder basis of E, one obtains a conditional normalised Schauder basis of E, the contradicting (i).
- (iii) Let  $(f_n)$  be a normalised Schauder basis of E', with dual  $(x_n)$  in E; then  $(x_n)$  is also normalised (see [12], Theorem 3.4). If  $(g_n)$  is any other normalised Schauder basis of E' with dual  $(y_n)$  then  $\lambda_x = \lambda_y$ , and so  $\lambda_f = \mu_x = \lambda_y^{\beta} = \lambda_y^{\beta} = \mu_y = \lambda_g$  as E is barrelled.

If a *J*-space E exists, then certainly E' is not isomorphic to E, for if it were,  $\lambda_x = \mu_x$  for any normalised basis  $(x_n)$  of E; thus  $\lambda_x = \lambda_x^{\beta}$  and so  $\lambda_x = l^2$ , and E is a separable Hilbert space, and this is not a *J*-space [1].

THEOREM 4.2. Let E be a complete barrelled space with a normalised Schauder basis; then E is a J-space if and only if every normalised Schauder basis of E is unconditional.

Certainly, by Proposition 4.1, every normalised basis of a J-space is unconditional. Conversely suppose  $(x_n)$  is a normalised Schauder basis of E, and let  $E_1 = \overline{\lim} (x_{2n-1})_{n=1}^{\infty}$  and  $E_2 = \overline{\lim} (x_{2n})_{n=1}^{\infty}$ ; as  $(x_n)$  is unconditional, by an application of the Banach-Steinhaus theorem  $E = E_1 \oplus E_2$ .

Let  $(y_n)$  be any normalised Schauder basis of  $E_1$ ; then if  $z_{2n-1} = y_n$  and  $z_{2n} = x_{2n}$ ,  $(z_n)$  is a normalised Schauder basis of E, and is thus unconditional. Hence  $(y_n)$  is unconditional.

Let  $u_{2n-1}=z_{2n-1}$ , and  $u_{2n}=z_{2n}+z_{2n-1}$ ; then  $(u_n)$  is a block perturbation of  $(z_n)$  (see Lemma 4.4 of [13]), and is also normalised, as  $(z_n)$  is equi-regular and bounded. Similarly, if  $v_{2n}=z_{2n}$  and  $v_{2n-1}=z_{2n-1}+z_{2n}$ , then  $(v_n)$  is a normalised Schauder basis of E.

The maps  $Q: E \to E$  and  $R: E \to E$  given by

$$Q\left(\sum_{i=1}^{\infty}a_{i}u_{i}\right)=\sum_{i=1}^{\infty}a_{2i-1}u_{2i-1}\quad\text{ and }\quad R\left(\sum_{i=1}^{\infty}a_{i}v_{i}\right)=\sum_{i=1}^{\infty}a_{2i}v_{2i}$$

are continuous (the Banach-Steinhaus theorem),

$$\begin{split} -Q\left(\sum_{i=1}^{\infty}a_{i}x_{2i}\right) &= -Q\left(\sum_{i=1}^{\infty}a_{i}z_{2i}\right) = \sum_{i=1}^{\infty}a_{i}(u_{2i-1} - u_{2i}) \\ &= \sum_{i=1}^{\infty}a_{i}u_{2i-1} = \sum_{i=1}^{\infty}a_{i}y_{i}, \end{split}$$

while

$$-R\left(\sum_{i=1}^{\infty}a_{i}y_{i}\right)=R\left(\sum_{i=1}^{\infty}a_{i}(v_{2i}-v_{2i-1})\right)=\sum_{i=1}^{\infty}a_{i}v_{2i}=\sum_{i=1}^{\infty}a_{i}x_{2i},$$

so that  $(x_{2n})$  is equivalent to  $(y_n)$ ; as  $E_1$  and  $E_2$  are barrelled it follows that  $E_1 \cong E_2$ , and also that  $E_1$  is a J-space. Further, by the Theorem 3.3, it follows that, as  $(y_n)$  is symmetric,  $(y_n)$  is equivalent to both  $(y_{2n-1})$  and  $(y_{2n})$ ; for if p is a symmetric norm with respect to  $(y_n)$ 

$$p\left(\sum_{i=1}^k a_i y_i\right) = p\left(\sum_{i=1}^k a_i y_{2i}\right).$$

Thus  $E_1 \cong E_1 \oplus E_1 \cong E_1 \oplus E_2 \cong E$ , and so E is a J-space.

THEOREM 4.3. Let E be a J-space, and let  $(x_n)$  be a normalised Schauder basis of E; then if  $(y_n)$  is a normalised block basic sequence with respect to  $(x_n)$ ,  $\lambda_y = \lambda_x$  and  $\overline{\lim} (y_n)$  is complemented in E and isomorphic to E. Let

$$y_j = \sum_{n_{j-1}+1}^{n_j} a_i x_i,$$

and let  $u_j = y_j - \alpha_{n_j} x_{n_j}$ . As E is barrelled,  $(x_n)$  is a simple (see [11]) Schauder basis, and the set  $(u_j)$  is bounded. Thus one can define the block perturbation  $(z_n)$  by  $z_i = x_i, i \neq n_j$  and  $z_i = x_i + u_j$  for  $i = n_j$ ;  $(z_n)$  is a normalised Schauder basis of E. Suppose  $\beta \in \lambda_x = \lambda_x$ ; then as  $(z_i)$  is equivalent to  $(z_{n_i}), \sum_{i=1}^{\infty} \beta_i z_{n_i}$  converges and similarly  $\sum_{i=1}^{\infty} \beta_i x_{n_i}$  converges; thus  $\sum_{i=1}^{\infty} \beta_i u_i$  converges. As  $(y_j)$  is bounded, and  $(f_n)$  is equicontinuous,  $\sup_{j} |\alpha_{n_j}| < \infty$ , and so  $\sum_{i=1}^{\infty} \alpha_{n_i} \beta_i x_{n_i}$  converges; therefore  $\sum_{i=1}^{\infty} \beta_i y_i$  converges and so  $\lambda_x \in \lambda_y$ .

As  $(y_n)$  is regular, there is a continuous symmetric norm p such that  $p(y_j) \ge 1$  for all j. Let  $h_j$  be a linear functional on  $\lim_{n \ge 1} (x_{n_{j-1}+1}, \dots x_{n_j})$  such that  $h_j(y_j) = 1$  and  $|h_j(x)| \le p(x)$ ; let  $g_j \in E'$  be defined by

$$g_j(x) = h_j \left( \sum_{n_{j-1}+1}^{n_j} f_i(x) x_i \right).$$

Then  $|g_j(x)| \leq p(x)$ , and so the set  $(g_j)$  is equicontinuous, and thus strongly bounded in E'; as  $(y_j)$  is bounded  $(g_j)$  is regular, and hence is a normalised block basic sequence with respect to  $(f_n)$ . As E' is a J-space (Proposition 4.1),  $\lambda_g \subset \lambda_f$ ; however,  $\lambda_g \subset \lambda_g^\beta \subset \lambda_x^\beta = \lambda_f$  and hence  $\lambda_f = \lambda_g$ . Therefore  $\lambda_x = \lambda_f^\beta = \lambda_g^{\beta\beta} \supset \lambda_g$  and so  $\lambda_x = \lambda_g$ .

If  $f \in E'$ ,  $f = \sum_{i=1}^{\infty} f(x_i) f_i$  in E', and as  $\lambda_f = \lambda_g$ ,  $\sum_{i=1}^{\infty} f(x_i) g_i$  converges. For  $x \in E$ ,  $\sum_{i=1}^{\infty} f(x_i) g_i(x)$  converges; as E is reflexive, E is weakly sequentially complete and so  $\sum_{i=1}^{\infty} g_i(x) x_i$  converges. As  $\lambda_x = \lambda_y$ ,  $\sum_{i=1}^{\infty} g_i(x) y_i$  converges.

Let  $T(x) = \sum_{i=1}^{n} g_i(x)y_i$ ; then by the Banach-Steinhaus theorem, T is a continuous projection of E onto  $\overline{\lim}(y_n)$ .

LEMMA 4.4. Let E be a J-space, and  $(x_n)$  be a normalised Schauder basis of E; then any sequence  $(v_n)$  of  $2^n$ -blocks is abnormal.

Suppose  $(v_n)$  is a normal sequence of  $2^n$ -blocks, and suppose  $(a_i)$  is a sequence such that  $\sum |a_i|^2 = \infty$ . Then there is a sequence  $n_j$  with  $n_0 = 0$  such that

$$\sum_{n_{j-1}+1}^{n_j} |a_i|^2 > 1 \quad \text{for all } j;$$

let  $m_0=0$  and  $m_j=\sum\limits_{i=1}^j2^{n_j-n_{i-1}}$ . Let  $E_k=\lim(x_{m_{k-1}+1},\,\ldots,\,x_{m_k})$ , and let  $(y_j)_{m_{k-1}+1}^{m_k}$  and  $(z_j)_{n_{k-1}+1}^{n_k}$  be the Haar and Rademacher systems of  $E_k$ .

If  $x\in E$ ,

$$\sum_{m_{k-1}+1}^{m_k} f_i(x) x_j = \sum_{m_{k-1}+1}^{m_k} g_i(x) y_i$$

with each  $g_i$  continuous on E. If  $m_{k-1}+1 \leq s \leq m_k$ , then for any symmetric norm p, by Proposition 3.6,

$$p\left(\sum_{m_{k-1}+1}^{s}g_{i}(x)y_{i}\right) \leqslant p\left(\sum_{m_{k-1}+1}^{m_{k}}f_{i}(x)x_{i}\right).$$

It follows that  $(y_i)$  is a Schauder basis of E.

For each symmetric norm p, and each  $j, p(y_j) = p(v_{i_j})$  for some  $t_j$ ; for  $(f_k(y_j))_{k=1}^{\infty}$  takes only the values  $\pm 1$  and zero, and is non-zero on  $2^{t_j}$  values of k. As  $(v_j)$  is normal,  $(y_j)$  is normal; similarly,  $(z_j)$  is normal. Let p be a symmetric norm such that  $w_j = z_j/p(z_j)$  is normalised; then  $(w_j)$  is a normalised block basic sequence with respect to  $(y_j)$ , and so  $\lambda_w = \lambda_y = \lambda_z$ . As p is symmetric,

$$p\left(\sum_{n_{k-1}+1}^{n_k} a_i w_i\right) \geqslant \frac{1}{8}$$
 (Proposition 3.6).

Therefore,  $\alpha \notin \lambda_x$  and  $\lambda_x \subset l^2$ .

Now let  $g_i = (\sum f_i; i \in K_j)$  be a sequence of disjoint  $2^j$ -blocks with respect to  $(f_n)$ , and let  $u_j = (\sum x_i; i \in K_j)$ . Then  $(u_i)$  is normal as for any symmetric p,  $p(u_i) = p(v_j)$ . By Theorem 3.4, for any  $x \in E$ ,

$$\sum_{j=1}^{\infty} \frac{1}{2^j} g_j(x) u_j$$

converges; suppose  $(\beta_j u_j)$  is normalised, then it follows that

$$\lim_{j\to\infty}\frac{1}{2^j\beta_j}\,g_j(x)\,=\,0$$

so that  $((1/2^j\beta_i)g_i)$  is bounded in E' (weakly and strongly). As

$$\frac{1}{2^j\beta_i}g_j(\beta_ju_j)=1,$$

it follows that  $((1/2^j\beta_j)g_j)$  is regular, and so  $(g_i)$  is normal.

By the first part applied to E',  $\lambda_f \subset l^2$  so that  $l^2 \subset \lambda_x \subset l^2$ , i.e.  $\lambda_x = l^2$ . However  $l^2$  is not a J-space, as already observed. This is the required contradiction.

THEOREM 4.5. A complete barrelled space with a Schauder basis has either an abnormal Schauder basis or a conditional Schauder basis.

If not E is a J-space (Theorem 4.2); however, by Lemma 4.4 and Theorem 3.4, E has an abnormal Schauder basis.

With a Fréchet space, one can go slightly further, using results established in [2] and [12].

LEMMA 4.6. Let E be a Fréchet J-space, and let G be a closed non-Montel subspace of E; then  $G \cong G \oplus E$ .

There exists in G a closed bounded set A which is not compact, and so using Theorem 10 of [5], A is not sequentially compact; however, A is weakly sequentially compact, since E is reflexive. Thus there exists in G a sequence  $y_n$  tending to zero weakly but not strongly. By Theorem 4.3 of [12], there is a subsequence  $(z_n)$  of  $(y_n)$  which is a normalised Schauder basic sequence equivalent to a block basic sequence  $(u_n)$  of  $(u_n)$ , where  $(x_n)$  is any normalised basis of E. Furthermore,  $\overline{\lim}(u_n)$  is complemented (Theorem 4.3), and, as remarked in [12],  $D = \overline{\lim}(z_n)$  is complemented, and as  $\lambda_x = \lambda_x$ ,  $D \cong E$ .

Therefore

 $G = D \oplus H \cong E \oplus H \cong E \oplus E \oplus H \cong E \oplus G$ .

THEOREM 4.7. Let E be an F-space with a normalised basis; if E has an infinite-dimensional normed subspace G (i.e. G has a norm topology), then E has a conditional normalised basis.

Otherwise E is a J-space, and using Lemma 4.6,  $\overline{G} \cong E \oplus \overline{G}$ , so that E is a Banach space. However, this is impossible, by the results of [16].

## References

- K. I. Babenko, On conjugate functions, Dokl. Akad. Nauk. SSSR 62 (1948),
   p. 157-160 (in Russian).
- [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Stud. Math. 17 (1958), p. 151-164.
- [3] N. P. Cac, On symmetric Schauder bases in Fréchet spaces, ibidem 22 (1969), p. 95-98.
- [4] M. M. Day, Normed linear spaces, Berlin 1962.
- [5] D. J. H. Garling, On topological sequence spaces, Proc. Camb. Philos. Soc. 63 (1967), p. 997-1019.
- [6] On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966),
   p. 85-106.
- [7] Symmetric bases of locally convex spaces, Stud. Math. 30 (1968), p. 163-181.
- [8] B. Gelbaum, Expansions in Banach spaces, Duke Math. Jour. 17 (1950) p. 187-196.
- [9] R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), p. 518-527.
- [10] N. J. Kalton, Schauder decompositions and completeness, Bull. London Math. Soc. 2 (1970), p. 34-36.
- [11] Schauder decompositions of locally convex spaces, to be published in Proc. Camb. Philos. Soc.
- [1 2] Normalisation properties of Schauder bases, to be published in Proc. London Math. Soc.
- [13] Schauder bases and reflexivity, Stud. Math. 38 (1970), p. 255-266.
- [14] S. Karlin, Bases in Banach spaces, Duke Math. Jour. 15 (1948) p. 971-985.
- [16] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis J. Functional Analysis 3 (1969), p. 115-125.
- [16] A. Pełczyński and I. Singer, On non-equivalent and conditional bases in Banach spaces, Stud. Math. 25 (1964), p. 5-25.
- [17] I. Singer, On Banach spaces with symmetric bases, Rev. Math. Pures et Appl. 6 (1961), p. 159-166 (in Russian).
- [18] Some characterisations of symmetric bases in Banach spaces, Bull. Acad. Pol. Sci., Ser. sci. math. astr. et phys., 10 (1962), p. 185-192.
- [19] A. Sobozyk, Projections of the space m onto its subspace c<sub>0</sub>, Bull. Amer. Math. Soc. 47 (1941), p. 938-947.
- [20] T. A. Cook, Schauder decompositions and semi-reflexive spaces, Math. Ann. (182) 1969, p. 232 - 235.