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-Unconditional and normalised bases

by
N. J. KALTON (Cambridge and Lehigh)

1. Introduction. A Schauder bagis (w,) of a locally convex space

1 is unconditi i 5
onal if, whenever 21‘1 o;7; converges, the convergence is uncon-

i 1=
dl'tmnal. II} [16], Pelezyriski and Singer proved that every Banach spa
w;ﬂ;ralba.}:sllsu Dossesses a conditional (i.e. not unconditional) ba,sis) Inpth(;:
gl t};Oduc :dain gax;?l"allse this theorem using the concept of normalisation
" &Afiiqz%nce‘ (#,) is regular if theve is a neighbourhood ¥ of zero with
I; o L n; a regular bounded sequence is said to be normalised.
‘1 there exists a soalar sequence (a,) with (a,s,) normalised, then (z,)
is said to be normal; otherwise (z,) is abnormal. , )
It (:1:,,.) is & Schauder basis of B, then (f,) will always denote its dual
sequence in & ;.].‘f (f,f);’f=1 is equicontinuous, then (z,) is equi-regular, and
hence regular; if E is barrelled, then any regular basis is equi-regular.

The sequence space of all a such that 2 a@; converges will be denoted

. 1=
by A, and u, is the sequence space {( f(wn;);'f;l; feE'}. It E is sequentially
comp.letlie, then (2,) is unconditional if and omly if 4, is solid (see [41)
1-3ha,t is if ael, and |6, < 1 for all n, then (6, a,) 4. It B is also barre]led’
it can be shown that the topology on E may be given by & collection of’
solid semi-norms p such that

p(2) = sup ])(Zo?ﬂ,ﬁ(w)mi).

[EHES S

A sequentially complete barrelled space with a Schauder basis is
e.omplete (see [10]); in this paper I shall restrict attention almost exclu-
sively to complete barrelled spaces.

2. Reflexivity and unconditional bases. A Schauder basis (z,) is

y-complete or boundedly-complete if whenever (j‘ gogn=1,2.) i8

i=1
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bounded, then Z a,w; converges; it is shrinking if ( (fn) is a basis for E

in its strong topoloory Tt is ghown in [20] that # is semi-reflexive if and
only if (w,) is y-complete and shrinking. The following results generalise
those of [9] and [19]:

TeEoREM 2.1. Let B be a complete barvelled space with an unconditional
Schauder basis (,); if (@,) is not y-complete, then E contains & complemented
subspace @ isomorphic to €.

» n
There exists a sequence {a,) such that (Z @), s bounded, but

=1
does mot converge; thus there exists an increasing sequence (m;) with
o = 0, and a neighbourhood V of zero such that, if

Y; =

then y,¢V. Let p be a solid semi-norm, then
n n

(> bu) < WBiler( 3 1)
=1 i=1

k]
where [l = sup |a). However, ( 3 4% =1,2,...) is bounded, and
n =1

thus
p( Y iy} < Kl

Therefore ¢, = 1,; but as (y,) is regular 1, = ¢, 80 that 1, = ¢,.
Let ¢ be a solid continuous semi-norm on & such that q(y;) = 1 for
all j; if By =Iin (&, .- < D) then there exists a linear functional
k; on B; such that k;(y;) = 1, and h;(2)] < g(@) for @ B;. Define g;eE by

ny

9;() _h( 2 fil@)w )

T 1+1

then Igf(m)| < g(@). Then (g2, is equicontinnous, and so possesses

& o(H , B) cluster point g; obviously g(z;) = 0 for all j, and so g = 0.

As zero is the sole cluster point of (g;) it follows that im g, = 0 weakly.
Let fea

%
Tyw = ggi(w)yi;

then each T is continuous and lim Ty« = T= exists for each z. Therefore

=00

by the Banach-Steinhaus Theorem for barrelled spaces, I' i3 a continuous

icm
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“projection of E onto G = lin (9;)- As @ is complemented in F, @ is barrel-

led and in (y,) IS @ SChaudel' bavSIS of ¢4 3. =
with } Coy it f()HOWS that

THEOREM 2.2
Schauder basis (a,)
subspace G =~ I

As (m,) is not shrinking, there exists fe, and a bounded block basie
sequence (y,) such that f( () =1 (see [12], Theorem 5.4). If 2‘7-13/! con-

verges, then Z’ |ay] converges, and as (y;) 18 bounded A, = I*. Let G ]m(y )
and define the norm p on @ by "

P(g;azyi) =__§lazl,

. Let E‘ be a complete barrelled space with an unconditional
)5 if (@) is not shrinking, then E has a complemented

then
2 § a) = 3 lafy) < f 1) @),

o0
where y = él ;9;. As the topology on B may be given by solid semi-norms if

a@) = 3 If(@)f (@),

then g is continuous; thus p is continuons, and @ =~ %
Tor xeF, let N

]
Z Bz

yf( 2 fil@)a, )y,;, where y; —

141 i+
for
ZI [ 3 sior)] < a0
=1 nytl
Then T is a projection of F onto @, and p(Tz) < ¢(z) so that T is
continuous.

Ag F ig semi-reflexive if and only if (m”) is shrinking and y-complete,
the following theorem is immediate: ’

TreorEM 2.3. If B is a complete barrelled space with an unconditional
Schauder basis, then B 1is reflevive if and only if B possesses no complememed
subspace isomorphic to ¢, or 1.

3..Symme1?ric bases. Two basic sequences (z,) and (y,) are said to
be equivalent if A, = 2,; it can easily be seen that if (x,) is & Schauder
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basis of E, and (y,) is & Schauder basis of ¥, and both ¥ and F are bar-
relled, then F and F are isomorphic. Suppose (z,) is a Schauder basis
of B, such that for every permutation o of the positive integers Z, (Bymy)
is a Schauder basis of ¥ equivalent to (2,); then (#,) is said to be
symmetric. Symmetric bases of Banach spaces were introduced and gtudied
by Singer [17] and. [18]; in locally convex spaces they have been studied
by Garling [6] and [7]. The definition here corresponds to condition
SB, of [7] and [18].

A symmetric basis is necessarily unconditional, as for all w<E, and

permutations a, 2 foty (@) By CODVETZES to z. The following lemma i
i=1

essentially established in [3]:

TEvMa 3.1. If (z,) is a symmetric Schauder basis of E, then either
(z,) is bounded, or (¢,) is o Hamel basis of B.

TagorEM 3.2. If B is a complete barrelled space with a symmetric Schauder
basis (@), then either B = w, or B == @ or (z,) is normalised.

(w is the space of all sequences, and ¢ is the dual sequence space
of all sequences eventually equal to zero; o has the topology f(w, @)
(= olw, @) and ¢ has the topology B (g, o). ”

Let o be a permutation of Z, and let v = ¢~'; suppose 2 a;f; con-
verges weakly to f. Let =t

In = 2 s
i=1
then

flew)fi(e) = f( Zfi(@%(i))?

n
=1

gn(m) =
a8 (,) is symmetric, im ¢, (@) = g(m) exists, and by the Banach-Steinhaus
n—+oo
Theorem, g is continuous. Obviously g{(m;) = a, and 80
- -
g = 2 ar(i)fi;
=1

as (f,) is an unconditional basis of (B, (¥, B),

g = 2 ;o
=,

and so (f,) is & symmetric basis of B’ in its weak topology.

By Lemma 3.1, either (f,) is a Hamel basis ‘of B or is bounded;
in the latter case (&,) is equi-regular. If &' has countable dimension,
then B o ¢; if E has countable dimension ¥ = ¢; otherwise (,) is regular
and bounded, ie. normalised.

icm
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Eliminating the cases of w and @, symmetric bases of complete

barrelled spaces may he treated much like symmetric bases of Banach
gpaces.

The following theorem follows from the results of Cac [3]:

THE.OREM 3.3. If E 18 @ complete barrelled space with a normalised
symmetric Schauder basis (), then the topology on B may be given by a col-
lection of symmetric norms p, salisfying

©

P(2) = sup su 0.1, .
|91~'|£1 “g) p(g{‘ 'Lf'l,(w)w‘r('l))!

where m i8 the group of all permutations of Z.
Cac’s result is essentially that for fixed =

@

{ 3 0:f(@) 293 7T, 10,1 < 1)

i=1

is a bounded set. For each sequence (§,) with [6;| <1 and velI, the map
= Z 0 (2) ooy
i=1

is continuous by an application of the Banach-Steinhaus theorem, and
50 thiz collection of maps is equicontinuons (B is barrelled). The result
then follows at once.
If (w,) is & symmetric Schauder basis of B, where B is complete and
barrelled, then a k-block is an element %(K) = > ;, where K is a subset
K

1€,
of Z with % members; two blocks u(K,) and =(K,) are disjoint if
K, n K, =@. Then the following theorems generalise results of TLin-
denstrauss and Zippin [15]:
TarorsM 3.4. If (w(K,)) is o sequence of disjoint k,-blocks, the avera-
ging projection

1o = ¥ M so)ur)

n=1 €K,

is a well-defined continuous operator on B.

TemoREM 3.5. If (k,) is « sequence with &, >1 for all n, then B pos-
sesses am unconditional Schauder basis (y,) with @& subsequence (Yy,) of
disjoint Ty-blocks.

The proofs of both these theorems are almost identical to the proofs
of the original results for Banach spaces in [15]; all the calculations may
be carried out with individual symmetric norms.
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One further property of symmetric norms will be required. Let
be a 2"-dimensional vector space and let (.901-)%:1 be a basis of ¥; then
following Pelezyriski and Singer [16], one may define the Haar system
()i of () by

3

a” B
Y = Zmi; Yoloyo = Zﬁi(krs)mﬁ
i=1 T=1

where

1 if (2s—2)2n 141 <4

Bilky ) ={—1 i

< i (@s—1)on kL
<
0  otherwise.

<
< 2s- 2n~k—1’

i (2s—1)2%F1 41 <4

The Rademacher system (#;)7., is given by
gh—1
)
o = Z Yop—1, 4
§=1
The following results are proved in [16]:
PROPOSITION 3.6. (i) (yiﬁ:1 18 a basis of B, and for any norm p which is

symmetric with respect to (x;), and any sequence (ai)f-:l

2
v/ (Zk:aiyi) <p (i’aiyi) for < 2™,
q=1 f=1

(i) (2)f_, is a block basic sequence with respect to (yi)le, and for any
symmetric p, and sequence {(a;)r_,

Dozl 5 S e
p =1 * ‘p(zi) g 8 (’L'=1 ' .

4. The existence of conditional bases. For convenience, I ghall define
a J-space as a complete barrelled space with a normalised Schauder basis,
and which has the property that any two normalised Schauder bases are
equivalent. I do not know whether any J-space exists, although it has
been shown in [16] that there is no Banach J-space. The techniques
employed in this section stem largely from those of [16].

PROPOSITION 4.1. If B is a J-space, then:

(1) any normalised Schauder basis of B is symmetric,

(ii) B 1s reflewive, )

(i) B is a J-space in its strong topology.

(i) If (#,) is & normalised Schauder bagis of X, and 6, 18 any sequence
with |6,] = 1, then (8,2,) is a normalised .Schauder basis equivalent
%0 (2,); thus aek, if and only if (6, a,)ed,; so that Az 18 solid. Thus (»,)

icm°®
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is unconditional, and for any =, a permutation of Z, (z,,,) is a basis equi-
valent to (z,).

(if) This follows from Theorem 2.3, as otherwise B = ¢, @F =~
@GP F o6, ®F or E= 1@ E, 5o that by combining a conditional.
normalised basis of ¢, or I! (see [8] and [14]) with » normalised Schauder
bagis of E, one obtains a conditional normalised Schauder bagis of B,
contradicting (i).

(iii) Let (f,) be a normalised Schander basis of B, with dual (z,)
in E; then (z,) is also normalised (see [12], Theorem 3.4). If {(g,) is any
other normalised Schauder basis of &' with dual (¥,) then 4, = 1,, and
80 Ay = pp = A =1 =y, = 4 as F is barrelled.

If a J-space ¥ exists, then cerfainly B’ is not isomorphic to B, for
if it were, A, = u, for any normalised basis (#,) of E; thus 4, = A2
and so A, =1, and F is a separable Hilbert space, and this is not
a J-space [1].

TEEOREM 4.2. Let B be a complete barrelled space with a normalised
Schauder basis; then E is a J-space if and only if every normalised Schauder
basis of E 18 unconditional.

Certainly, by Proposition 4.1, every normalised basis of a J-space
is uneonditional. Conversely suppose (z,) is8 a normalised Schauder:
basis of E, and let B, =lin (2, ), and B, = 00 (z)2,; a8 (3,)
is unconditional, by an application of the Banach-Steinhaus theorem
B =E 38,

Let (y,) be any normalised Schauder basis of By; then if 2, ; = v,
and &, = ,,, (2,) is & normalised Schauder basis of B, and is thus uncon-
ditional. Hence (¥,) is unconditional.

Let %y, = @91, a0d Uy, = 2,,+2,,_,; then (w,) is a block pertur-
bation of (z,) (see Lemma 4.4 of [13]), and is also normalised, as (z,) is.
equi-regular and bounded. Similarly, if v, = 2, and 03, = 23p_1+ Zeny
then (v,) is a normalised Schauder basis of .

The maps @: F -~ F and R: ¥— E given by

8

Q(jazui) = Zazi-1“z¢—1 and R( aﬂ’i) = 2, 0¥y
i=1 i=1 i=1 i=1
are continuous (the Banach-Steinhaus theorem),
o0 (=]
—9 ( Zm: aim“) =—4 (Zaﬁzm‘) = Zai(uzi-l—uzi)

i=1 i=1 =
‘ oo o0

=Za~£uz1:—1 = %Yz
= =1
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‘while

‘_R(Zaiyi) = R(Z“ﬁ(”zi—”zi—l)) = 2 XV = Eaiwm
i=1 =1 =1 . d==1
go that (z,,) is equivalent to (y,); as E, and F, are barrelled it follows
that B, =~ F,, and also that #, is a J-space. Further, by the Theorem
3.3, it follows that, as (y,) is symmetric, (y,) is equivalent to both (y,,_,)
and (¥,,); for if p is a symmetric norm with respect to (y,,)

k k
P(Zai%) =P(Z‘ltyzi)-
=1 1=1
Thus B, = B, ®FH, ==« B, ®E, = F, and so ¥ iz a J-space.
TaEOREM 4.3. Let B be a J-space, and let (z,) be a normalised Schauder
basis of H; then if (y,) 18 & normalised block basic sequence with respect
o (@), Ay = A, and Lin(y,) is complemented in E and isomorphic to E.
Let

Y = 2 &4 %;y

and let w;, = Yy— G, . As F is barrelled, (z,) is a simple (see [11])
Schaunder basm, and the set (u;) is bounded. Thus one can define the block
perturbation (2,) by 2; = @;,7 # n,; and 2, = a,4-u; for ¢ =3 (2,)
a normalised Schauder basis of E Suppose fei, —].z, then as (z;)

equlvalent o (2,,) Z‘ Bin, converges and similarly Z By, converges;

=1

thus 2 By converges As (y;) is bounded, and (f,) is equlcon‘omuous,

=1
8up |ay,| < oo, and so Z‘ a Bi%,, converges; therefore Z‘ B:Y; converges

7 i=1 i=1

and so A, = 4.

As (y,) is regular, there is a continuous symmetric norm p such that
2(¥;) =1 for all j. Let h; be a linear functional on lin (z, TITRTRIN ,,!)
such thati k;(y,) = 1 and |h(#)] < p(a; let g;eB' be defined by

gj(w) = hj( Z fi(m)wi).

ni_1+1

Then |g;(#)! < p(2), and so the seb (g,) is equicontinuous, and thus
strongly bounded in %’; a8 (y,) is bounded (gs) is regular, and hence is
a normalised block basic sequence with respect to (f,). As B’ is a J-space
(Proposition 4.1), 4, = A;; however, 4, = % = AJ = i, and hence 4, = 4,.
Therefore 1, = 4 = 42* 5 4, and so ]. = Ay,
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It feE’ f= Z‘f 2;)fy in B, and as 4, = 4, Z‘f ;) g; converges. For
wel, _Z‘ Fla)g; m) converges a8 F is reflexive, E is wea.kly sequentially

complete and so Z‘gt 7)@; converges. As A, = Ay, Zg‘ )y, converges.

Let T'(%) = Z 9:(®)y;; then by the Banach-Steinhaus theorem, 7T
is a continuous prOJectlon of & onto lm(y,‘).

Levwa 4.4. Let B be a J-space, and (x,) be a nmormalised Schauder
basis of E; then any sequence (v,) of 2"-blocks is abnormal.

Suppose (v,) is a normal sequence of 2"-blocks, and suppose (a;)
is a sequence such that }'|q|? = co. Then there iz a sequence n; with
7y = 0 such that

i

Z 1%[é >1 for all j;

T 1+1
let my; =0 and m; = 29"7 Mol Let By = (@, 415 -ers @), and
let  (y)mi_ 41 and  (z)5k +1 be the Haar and Rademacher systems
of E,.
If mek,
m my
%
D f@a= D g@y
my i1 mp_y+1

with each g, continuous on B. If my,_,+1 < s < my,, then for any symmetric
norm p, by Proposition 3.6,

&

p( Y s@y)<n| f fi@)m).

Mp—1+1 my_1+1

It follows that (v,) is a Schauder basis of E.

For each symmetric norm p, and each j,p(y) =p(v{1) for some
4; for (f,(y,))im, takes only the values -1 and zero, and is non-zero
on 2% values of k. As (v;) is normal, (y;) is normal; similarly, (%) is normal.
Let » be a symmetric norm such that w; = 2,{p(#;) is normalised; then
(w;) is a normalised block basic sequence with respect to (y;), and so
Ay = Ay = 4, As p is symmetric,

g
p( Z a.iwi)>-§— (Proposition 3.6).

ng—1+1
Therefore, a¢l, and i, = I%
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Now let g, = (3 fi; 1<K, be a sequence of digjoint 27-blocks with
Tespect to (f,), and let w; = () #;; i<K,). Then (u;) is normal ag for any
symmetrie p, p{#;) = p(v;). By Theorem 3.4, for any z<E,

11
St s
=1

converges; suppose (f;4;) is normalised, then it follows that

lim - ga(2) = 0

oo 21 95

so that {(1/28,)g) is bounded in B’ (weakly and strongly).
Asg

1
%;gi(ﬁfuj) =1,
it follows that ((1/2 8,)g;) is regular, and so (¢;) is normal.

By the first part applied to ', 4, < Pso that P < 4, = B, fe. A, = B
However I* is not a J-space, as already observed. This is the required
contradiction.

TeEOREM 4.5. A complete barrelled space with & Schauder basis has
either an abnormal Schauder basis or o conditional Schauder basis.

If not B is a J-space (Theorem 4.2); however, by Lemma 4.4 and
Theorem 3.4, ¥ has an abnormal Schauder basis.

With a Fréchet space, one can go slightly further, using results estab-
lished in [2] and [12].

LummMA 4.6. Let B be o Fréchet J-space, and let G be a closed non- Montel
subspace of E; then @ ~ G DE.

There exists in @ a closed bounded set 4 which is not compact, and
so using Theorem 10 of [51, 4 is not sequentially compact; however, 4
is weakly sequentially compact, since ¥ is reflexive. Thus there exists
in G a sequence y, tending to zero weakly but not strongly. By Theorem
4.3 of [12], there is a subsequence (z,) of (y,) which is & normalized Schauder
bagic sequence equivalent to a block basic sequence (u,) of (a,), where
(@,) is any normalised basis of Z. Furthermore, lin (,) is complemented
(Theorem 4.3), and, as remarked in [12], D = lin (%) 18 complemented;
and a8 4, = A, D ~ H.

Therefore

6§ =D@H=FPH =EQEQH = F ®4.

icm°®

Unconditional and normalised bases 253

TBEfJREy 4.7.-1-181‘4 E be an P-space with a normalised basts; if E has
an tnfinite-dimensional normed subspace & (i.e. @ has a norm topology),
then B has a conditional normalised basis.

) Otherwise ¥ is a J-space, and using Lemma, 4.6, @ == F ®@, so that
E is a Banach space. However, this is impossible, by the results of [16].
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