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Bounded operators with no non-trivial closed invariant subspace have been con-
structed by P. Enflo [6]. In fact, there exist bounded operators on the space ¢,
with no non-trivial closed invariant subset [ 12]. It is still unknown, however, if such
operators exist on reflexive Banach spaces, or on the separable Hilbert space. The
main result of this note (Theorem 1) asserts that the existence of an invariant non-
trivial closed subset for the image of an algebra under the exponential map implies
the existence of an invariant non-trivial closed subspace for the operators in the al-
gebra. The proof relies on a simple differentiation argument. Several consequences
of the main result are gathered.

This work relies in part on the Note [4]. However, Corollary 2 and Corollary 5
are the only statements of this work which go back to [4].

NOTATION 1. We denote by X a separable real Banach space, of dimension
greater than one. We say that a closed subset F' of a Banach space X is non-trivial
if it is different from the singleton {0} and the whole space X. If S is a subset of the
algebra L(X) of bounded operators on the space X and x € X, we denote

S(x)={T(x);TeS).

A subalgebra A of L(X) is transitive if for every x#0 in X, the subspace A(x)
is dense in X. Equivalently, the algebra A is not transitive if there is a non-
trivial closed .A-invariant subspace, that is, a non-trivial closed linear subspace
M such that T(M) C M for every T € A (see [11]). We denote by Exp the usual
exponential map from L(X) to the group GL(X) of invertible elements of L(X).
The algebra of real polynomials is denoted R[£].

We now state and prove our main result.

THEOREM 1. Let A be a subalgebra of L(X). If there exists a non-trivial closed
subset F of X such that Exp(T)(F) CF for every T € A, then the algebra A is
not transitive.
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Proof. Since X is separable, there exists a Lipschitz and Gateaux smooth bump
function on X. Following [4], an application of the smooth variational principle
from [5] provides a Gateaux smooth and Lipschitz function H and a point w#0
in F such that

(i) H(w)=min{H(x);x€F}
(i) H'(w)#0

Pick any T € A and consider the following real function

b1 (s)=H (Exp(sT)w).

It follows from our assumptions that the function ¢ attains its minimum at s =0,
and thus its derivative vanishes at s =0. Since H is Gateaux smooth and Lipschitz,
we may apply that chain rule and thus

<H'(w),T(w)>=0. (1)

If T(w)=0 for every T €A, then the one-dimensional space generated by w
is a non-trivial closed .A-invariant subspace. If not, then by (1) and since A is
a subalgebra, the closure of the space A(w) is a non-trivial closed .A-invariant
subspace.

REMARKS 1. (1) Up to the notation, Theorem 1 is in fact a special case of [4, The-
orem 2] where only exponential functions are considered. However, if an operator
A satisfies the assumptions of [4, Theorem 2], then in the notation used there we
have Exp(sA)(F) CF for every s €R, since for every x€ X,

lim [, (s/m)]" (x) =Exp(s4) (x).

Hence there is no loss of generality to only consider the exponential function in
Theorem 1 instead of a general differentiable function as in [4, Theorem 2].
(2) The converse to Theorem 1 is clearly true: if A is not transitive, let M be a non-
trivial closed .A-invariant subspace. Then Exp(T)(M)CM for every T € A.
(3) The proof of Theorem 1 works as well for any Banach space X on which there
is a Lipschitz Gateaux smooth bump. In particular, it works for every reflexive
Banach space and every space L!(v), where v denotes a probability measure.

COROLLARY 1. The following assertions are equivalent:
(i) There is a commutative transitive subalgebra A of L(X).
(it) There is a commutative subgroup G of GL(X) such that G(x) spans a
dense linear subspace of X for every x € X\{0}.
(iii) There is a commutative subgroup G of GL(X) such that G(x) is a dense
subset of X for every x € X\{0}.
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Proof. The implication (iii) implies (ii) is obvious. If G satisfies (ii), then the
algebra A generated by G clearly satisfies (i). Finally, if A satisfies (i), then the set

G={Exp(T);T e A}
is a group, which satisfies (iii) by Theorem 1 since the algebra A is transitive.

It is not known whether the Hilbert space X =[*(N) satisfies the above equivalent
conditions. We can reformulate the equivalence between (ii) and (iii) by saying that
if there is an irreducible representation of a commutative group on X, then there is
a ‘hyper-irreducible’ representation of a commutative group on X. Note also that
if G={Exp(T); T € A}, where A is a commutative algebra, then every nonzero
vector is G-cyclic if and only if every nonzero vector is G-hypercyclic.

If L(X) contains an operator with no nontrivial closed invariant subspace, then
X satisfies the equivalent conditions of Corollary 1. Indeed we have:

COROLLARY 1. If T € L(X) has no non-trivial closed invariant subspace, then
for every x € X\{0}, the set

E(x) ={Exp(P(T))(x); P €R[£]}

is dense in X.

Proof. We consider the algebra A={P(T); P eR[£]}. For every xe X\{0},
we call F(x) the closure of the set E(x). It is clear that Exp(S)(F(x)) C F(x) for
every S €. A. The conclusion follows from Theorem 1 since by assumption the
algebra A is transitive.

Let C C X be a non-trivial closed convex cone. We denote by <. the correspond-
ing ordering on L(X) defined by T<.S if (S—T)(C)CC. We say that T is
C-order bounded if there exists A >0 such that

—M< TS

We denote by A the set of C-order bounded operators. It is easy to check that A,
is a subalgebra of L(X). With this notation, the following holds.

COROLLARY 2. [4, Cor. 6]. The algebra A, is not transitive.
Proof. Pick any T € A.. There is A €R such that (T4 AI)(C) C C, and thus
Exp(T+AI)(C)CC
since C is a closed convex cone. But since
Exp(T +AI)=e"Exp(T)

it follows that Exp(7)(C) C C and Theorem 1 concludes the proof.
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EXAMPLE 1. In this notation of the proof of Corollary 5 in [4], the operators A,
and B, are F-order bounded [3], and [4, Corollary 5] follows since the algebra
they generate is contained in A.

EXAMPLE 2. [7], see [8, p. 267]. If C is a non-trivial closed convex cone with
non-empty interior, then every operator 7" such that 7 >0 has a non-trivial
invariant subspace. Indeed, if V=CN(—C)#{0}, then V is such a sub-
space. Assume now that CN(—C)={0}, and pick xe€ C\{0}. We claim that
Exp(P(T))(x)¢ (—C) for every PeR[{]. Indeed, write P=P,—P,, where
P, and P, have positive coefficients. If Exp(P(T))(x) € (—C), then since P, has
positive coefficients, one has

Exp(P,(T))Exp(P(T))(x) € (=C)

but this means that
Exp(P(T))(x) € (=C)

and since we also have Exp(P,(T))(x) € C because P, has positive coefficients,
it follows that Exp(P,(7T))(x)=0, but this contradicts x#0 since the operator
Exp(P,(T)) is invertible. We found a vector, namely x, such that E(x) is not dense
since C has non empty interior, and Corollary 1 concludes the proof.

It is easily seen that the following Corollary 3 generalizes the above Example
2.

COROLLARY 3. Let T € L(X) be such that there exists a scalar a>0 and a
vector x, € X such that for all polynomials P and Q with positive coefficients, one
has:

@) |P(T)+Q(T)[|Za|P(T)].
(i) [P(T)(xo) [ = allP(T)]|.
Then T has a non-trivial closed invariant subspace.
Proof. Pick €€(0,a®). If T=0, there is nothing to prove. If not, then
necessarily x,7#0, and by Corollary 1 there is a polynomial Pe€R[£] such

that
IExp(P(T))(xo) +xo || <€.

We write P=Q — R, where Q and R have positive coefficients. We have
IExp(Q(T)) (xo) +Exp(R(T))(xo) || = [Exp(R(T))[Exp(P(T))(x,) + o]l
<€|Exp(R(T))]|.

On the other hand,

IExp(Q(T)) (x0) +Exp(R(T))(x,) | = al[Exp(Q(T)) +Exp(R(T)) |
>a’|Exp(R(T))|
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and this contradicts the choice of € since Exp(R(T)) #0.

COROLLARY 4. If X is a Banach lattice and T € L(X) is a positive operator,
then T has a non-trivial closed invariant subspace provided there exists x,€ X
such that (it) holds for every polynomial P with positive coefficients.

Indeed, in this case (i) is clearly satisfied. It is not known if every positive
operator on a Banach lattice has a non-trivial invariant subspace (see [1]).

We say that an operator 7 has a moment sequence (see [2]) if there exists
xo€ X\{0},x5 € X*\{0} and a positive measure w on R such that for every
n =0, one has

<x5,T"(x) >=/ u"dp(u). (2)
With this notation, one has

COROLLARY 5. [4, Cor. 4]. If T € L(X) has a moment sequence, then T has a
non-trivial closed invariant subspace.

Proof. Tt follows from the spectral radius formula that if . satisfies (2) then its
support is bounded. If Q € R[£], we have therefore

<3, EXp(Q(T)) (x0) >= [ €2 da(w).

It follows that E(x,)C{x;<xj,x>>0}, and the conclusion follows from
Corollary 1.

Our next application relies on a recent result of Lomonosov [10]. We denote by
K (X) the space of compact operators on X, and |||T||| is the essential norm of the
operator 7, that is, the quotient norm of 7 in L(X)/K (X). We denote S(X) the set
of operators 7' such that there is a compact subset L of R with

[IP(T)I| < sup{|P(x)

;xeL) 3)

for every P e R[£]. For instance, it is easily seen that multiplication operators by
bounded functions on L? spaces belong to S(L?). Every self-adjoint operator S on
the Hilbert space belong to S(L?), and we can take L to be the spectrum of S. We
also observe that if T satisfies (3), then T+ K satisfies it too for every K € K (X).
Therefore one has S(X)+K(X)=S(X). We now prove:

PROPOSITION 1. If T € S(X), then the conjugate operator T*€ L(X*) has a
non-trivial closed invariant subspace.

Proof. We apply Lomonosov’s theorem ([10]; see [8] fo a short proof of the
related result [9]), which easily works in the real case for commutative algebras,
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and reads as follows: if R is a proper weakly closed subalgebra of L(X), there
exist nonzero vectors xj € X* and x;* € X** such that <xj*, x5 >>0 and

| <x5% B xg > [ < IIBI| <x5", x5 >
for every B € R. We apply this theorem to the weakly closed subalgebra generated
by 7. It then follows form (3) that for every polynomial P € R[£], we have

| <x5*, P(T*)xy> | <sup{|P(x)|;xeL} <x;",x5> 4

It easily follows from (4) that the operator 7% has a moment sequence, with a
positive measure w supported by L. The conclusion follows by Corollary 10.

We recall that an operator A on a Hilbert space is called essentially self-adjoint
if A=S+K, where S is self-adjoint and K is a compact operator. We observe
that such an operator has the form A=T", where T satisfies the assumptions of
Proposition 11. Therefore we have:

COROLLARY 6. [14]. An essentially self-adjoint operator A on a real Hilbert
space has a non-trivial invariant subspace.
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