AN ANALOGUE OF THE RADON-NIKODYM PROPERTY FOR NON-LOCALLY CONVEX QUASI-BANACH SPACES

by N. J. KALTON

(Received 1st November 1977)

1. Introduction

In recent years there has been considerable interest in Banach spaces with the Radon-Nikodym Property; see (1) for a summary of the main known results on this class of spaces. We may define this property as follows: a Banach space X has the Radon-Nikodym Property if whenever $T \in \mathcal{L}(L_1, X)$ (where $L_1 = L_1(0, 1)$) then T is differentiable i.e.

$$Tf = \int_0^1 f(x)g(x) \, dx$$

where $g : (0, 1) \to X$ is an essentially bounded strongly measurable function.

In this paper we examine analogues of the Radon-Nikodym Property for quasi-Banach spaces. If $0 < p < 1$, there are several possible ways of defining “differentiable” operators on L_p, but they inevitably lead to the conclusion that the only differentiable operator is zero. For example, a differentiable operator on L_1 has the Dunford-Pettis property; operators on L_1 with the Dunford-Pettis property map the unit ball of L_1 to a compact set (cf (12)). However any operator on L_p ($p < 1$) with this property is zero (4).

Thus we define a quasi-Banach space X to be p-trivial if $\mathcal{L}(L_p, X) = \{0\}$. The concept of p-triviality is then hoped to be an analogue of the Radon-Nikodym property amongst locally p-convex quasi-Banach spaces. It turns out that this hope is fulfilled to some extent. Our main results in Sections 4 and 5 demonstrate an analogue of Edgar’s theorem (2) and of the Phelps characterisation of the Radon-Nikodym Property ((1), (9)) to this setting. Precisely we show that a locally p-convex quasi-Banach space is p-trivial if and only if every closed bounded p-convex set is the closed p-convex hull of its “strongly p-extreme points”. Our analogue of Edgar’s theorem is that if C is a bounded closed p-convex subset of a p-trivial quasi-Banach space then every $x \in C$ may be represented in the form

$$x = \sum_{n=1}^{\infty} a_n u_n$$

where $a_n \geq 0$, $\sum a_n^p = 1$, and each u_n is a p-extreme point of C. We observe in this connection that a similar Choquet-type theorem for compact p-convex sets was proved in (5).

In our final Section 6 we briefly discuss the associated super-property. Here there
is a slight divergence between the Radon-Nikodym Property for Banach spaces and p-triviality for quasi-Banach spaces. A Banach space with the super-Radon-Nikodym property is super-reflexive (11); thus there is a space X such that ℓ_1 is not finitely representable in X but which fails the Radon-Nikodym Property (3). However if ℓ_p ($0 < p < 1$) is not finitely representable in a quasi-Banach space then it is p-trivial.

2. Notation

A quasi-norm on a real vector space X is a map $x \mapsto \|x\|$ such that

1. $\|x\| > 0$ if $x \neq 0$.
2. $\|tx\| = |t| \|x\|$, $t \in \mathbb{R}, x \in X$.
3. $\|x + y\| \leq k(\|x\| + \|y\|)$, $x, y \in X$.

where k is the modulus of concavity of the quasi-norm. If $k = 1$, $\| \cdot \|$ is a norm. In general the quasi-norm is r-subadditive ($0 < r \leq 1$) if

4. $\|x + y\|^r \leq \|x\|^r + \|y\|^r$, $x, y \in X$.

The sets $\{x : \|x\| < \alpha\}$ define the base of neighbourhoods for a Hausdorff vector topology on X. If X is complete, we say that X is a quasi-Banach space; if the quasi-norm is also r-subadditive then X is an r-Banach space.

The Aoki-Rolewicz theorem (10, p. 57) asserts that every quasi-norm is equivalent to a quasi-norm which is r-subadditive for some $r > 0$. Here $\| \cdot \|$ and $\| \cdot \|^*$ are equivalent if there exists $0 < m \leq M < \infty$ such that

$$m\|x\| \leq \|x\|^* \leq M\|x\|, \quad x \in X.$$

A subset C of X is p-convex (where $0 < p \leq 1$) if given $x, y \in C$ and $0 \leq a, b \leq 1$ with $a^p + b^p = 1$, then $ax + by \in C$. Observe that if $0 < p < 1$ and C is a closed p-convex set then C contains 0. We say that X is (locally) p-convex if there is a bounded p-convex neighbourhood of zero; this is equivalent to the existence of an equivalent p-subadditive quasi-norm on X.

If C is a p-convex subset of X then a point x of C is p-extreme if $x = a_1x_1 + a_2x_2$ with $x_1, x_2 \in X$ and $0 < a_1, a_2 < 1$, $a_1^p + a_2^p = 1$ implies that $x = x_1 = x_2$.

A point $x \in C$ is strongly p-extreme if whenever $y_n, z_n \in C$, $0 \leq a_n, b_n \leq 1$, $a_n^p + b_n^p = 1$ and $a_ny_n + b_nz_n \rightarrow x$ then $\max(a_n, b_n) \rightarrow 1$. According to our definition 0 is never strongly p-extreme, although it may well be p-extreme. We regard strongly p-extreme points as an analogue of denting points.

The set of p-extreme points of C is denoted ∂pC. If A is any set its p-convex hull is denoted by co_pA and its closed p-convex hull by $\text{co}_p\overline{A}$.

3. p-trivial spaces

We define a quasi-Banach space X to be p-trivial ($0 < p < 1$) if $\mathcal{L}(L_p, X) = \{0\}$, where $L_p = L_p(0, 1)$. As we observed in the introduction, this is the appropriate generalisation, to the case $p < 1$, of the Radon-Nikodym property for Banach spaces. In this section, we observe some examples of p-trivial quasi-Banach spaces.
Theorem 3.1. Suppose X satisfies either of the following conditions:
(a) For any closed infinite-dimensional subspace Y of X there exists $q > p$ and a q-convex quasi-Banach space Z such that $\mathcal{L}(Y, Z) \neq \{0\}$.
(b) For any closed infinite-dimensional subspace Y of X there exists an F-space and a non-zero compact linear operator $T : Y \to Z$.

Then X is p-trivial.

Proof. We prove only (b). Suppose $S \in \mathcal{L}(L_p, X)$ and $S \neq 0$. Then $L_p^* = \{0\}$, $Y = \overline{S(L_p)}$ is infinite-dimensional. Let $T : Y \to Z$ be a non-zero compact operator on Y. Then TS is a non-zero compact operator on L_p, contradicting the results of (4).

A quasi-Banach space X is pseudo-dual if there exists a Hausdorff vector topology τ on X such that the unit ball of x is relatively compact (cf (8)).

Theorem 3.2. Let X be a p-trivial quasi-Banach space and let Y be a closed subspace of X which is either q-convex for some $q > p$ or isomorphic to a pseudo-dual space. Then X/Y is p-trivial.

Proof. In either case a linear operator $S : L_p \to X/Y$ may be lifted to a linear operator $\tilde{S} : L_p \to X$ (see (8)).

Theorem 3.3. Let X be a quasi-Banach space, and let Y be a closed p-trivial subspace of X such that X/Y is p-trivial.

Then X is p-trivial.

Proof. Immediate.

Theorem 3.4. Let X be a quasi-Banach space which possesses no infinite-dimensional subspace isomorphic to a Hilbert space. Then X is p-trivial.

Proof. This is immediate from (4) Theorem 3.4.

The author has recently constructed a non-p-trivial space which is p-convex, but contains no copy of L_p; details will appear elsewhere.

Theorem 3.5. Suppose X is a subspace of L_p. Then X is p-trivial if and only if X has no subspace isomorphic to L_p.

Proof. By the results of (6), if $T \in \mathcal{L}(L_p, L_p)$ and $T \neq 0$, there is a subspace Y of L_p, such that $Y \subseteq L_p$ and $T|Y$ is an isomorphism.

4. Edgar's theorem for p-trivial spaces

Our first main result generalises Edgar's theorem (2) on Banach spaces with the Radon-Nikodym property.

Theorem 4.1. Suppose $0 < p < 1$ and that X is a p-trivial quasi-Banach space.
Suppose C is a closed bounded p-convex subset of X and that $x \in C$. Then there exists a sequence $u_n \in \partial pC$ and $a_n \geq 0$ such that $\sum a_n^p \leq 1$ and

$$x = \sum_{n=1}^{\infty} a_n u_n.$$

Proof. We shall assume the contrary and produce a contradiction. Let \mathcal{B} be the σ-algebra of Borel subsets of $[0,1]$. For a sub-σ-algebra \mathcal{A} of \mathcal{B} let $L_p(\mathcal{A})$ denote the closed subspace of $L_p[0,1] = L_p(\mathcal{B})$ of all \mathcal{A}-measurable functions. Let Ω denote the first uncountable ordinal. We shall construct, by transfinite induction, an increasing transfinite sequence of σ-algebras \mathcal{B}_α ($1 \leq \alpha < \Omega$) and of linear operators $T_\alpha : L_p(\mathcal{B}_\alpha) \rightarrow X$ such that

1. $\mathcal{B}_1 = \{[0,1], \emptyset\}$ and $T_1(c.1) = cx$ where 1 denotes the characteristic function of $[0,1]$.
2. If $\alpha < \beta$ and $f \in L_p(\mathcal{B}_\alpha)$ then $T_\beta f = T_\alpha f$.
3. If $f \in L_p(\mathcal{B}_\alpha)$, $f \geq 0$ and $\|f\|_p \leq 1$ then $Tf \in C$.
4. If $\epsilon_\alpha = \inf\{\sum_{n=1}^{\infty} \lambda(B_n) T_{\alpha} : B_n \in \mathcal{B}_\alpha; \bigcup_{n=1}^{\infty} B_n = [0,1]\}$ then $\{\epsilon_\alpha : 1 \leq \alpha < \Omega\}$ is strictly decreasing.

Of course if we can satisfy (1), (2), (3), (4) then we have an immediate contradiction since any well-ordered subset of \mathbb{R} is countable.

Define \mathcal{B}_1, T_1 as above. Now suppose $1 < \alpha < \Omega$ and that $\mathcal{B}_\beta, T_\beta$ have been defined for $\beta < \alpha$. If α is a limit ordinal, let \mathcal{B}_α be the σ-algebra generated by $\bigcup (\mathcal{B}_\beta : \beta < \alpha)$. Since

$$\|T_\beta\| \leq 2k \sup_{y \in \mathcal{C}} \|y\| \quad \beta < \alpha$$

we can define T_α to be the unique extension of each T_β to $L_p(\mathcal{B}_\alpha)$. Then conditions (2), (3), (4) are immediate.

Next suppose $\alpha = \gamma + 1$. Let $(B_j : j \in J)$ be a maximal family of disjoint atoms of \mathcal{B}_γ, i.e., $\lambda(B_j) > 0$ and $B \in \mathcal{B}_\gamma$, $B \subset B_j$ implies either $\gamma(B) = \lambda(B)$ or $\lambda(B) = 0$. J is at most countable; let $B^* = [0,1] \setminus \bigcup J B_j$. Since X is p-trivial we have $T_\gamma|L_p(B^*, \mathcal{B}_\gamma) = 0$.

Let $a_j = \lambda(B_j)^{1/p}$ and $v_j = a_j^{-1} T_\gamma 1_{B_j} (j \in J)$. Then

$$x = T_\gamma(1) = \sum_{j \in J} a_j v_j.$$

Hence by assumption there exists i such that $v_i \notin \partial_p C$ i.e.,

$$v_i = su + tw$$

where $u, w \in C$, $s, t > 0$ and $s^p + t^p = 1$.

Choose $A \in \mathcal{B}$ such that $A \subset B^*_j$, and $\lambda(A) = (sa_j)^p$.

Let \mathcal{B}_α be the σ-algebra generated by adjoining A to \mathcal{B}_γ. Extend T_γ by defining

$$T_\alpha 1_A = sa_\mu.$$

Then

$$T_\alpha 1_{B^*_j \setminus A} = ta_j w$$

and conditions (2), (3) follow easily. For (4), observe that
\[\epsilon_r = \sum_{j \in J} a_j \]
while
\[\epsilon_a = \sum_{j \neq i} a_j + (s + t)a_i < \epsilon_r \]

This completes the proof.

Remark. It is easy, given Theorem 4.1, to modify the representation of \(x \) so that \(\sum a_n^p = 1 \). This follows from the fact that \(0 \in C \) (see (5) for the details).

5. Geometric characterisations of \(p \)-trivial spaces

Suppose that \(C \) is a bounded \(p \)-convex set with \(0 \) as an interior point (this implies that \(X \) is \(p \)-convex). Denote by \(C_0 \) the interior of \(C \). Then if \(x \in C \) and \(0 \leq t < 1 \), \(tx \in C_0 \). Let us define a function \(\varphi : C_0 \rightarrow \mathbb{R} \) by

\[\varphi(x) = \inf \sum_{n=1}^{\infty} a_n \]

where the infimum is taken over all non-negative series \(\sum a_n \) such that \(\sum a_n^p = 1 \) and there exist \(u_n \in C_0 \) with

\[x = \sum_{n=1}^{\infty} a_n u_n \]

Let us observe that the infimum may be taken instead over all non-negative series \(\sum a_n \) such that \(\sum a_n^p \leq 1 \) and

\[x = \sum_{n=1}^{\infty} a_n u_n. \]

For if

\[x = \sum_{n=1}^{\infty} a_n u_n \]

where \(a_n \geq 0 \) and \(\sum a_n^p \leq 1 \), then for any \(N \), we may write

\[x = \sum_{n=1}^{\infty} a_n u_n + \alpha(0 + 0 + \cdots + 0) \]

where \(\alpha^p = N^{-1}(1 - \sum a_n^p) \), and there are \(N \) zero terms. Thus

\[\varphi(x) \leq \sum a_n + N\alpha \]

\[= \sum a_n + N^{1-1/p} \left(1 - \sum a_n^p \right)^{1/p}. \]

Letting \(N \to \infty \) we see that

\[\varphi(x) \leq \sum a_n \]
For $x \in C$, we define

$$\varphi^*_x(x) = \lim \inf_{y \to x} \varphi(y).$$

$$\varphi^*_x(x) = \lim \sup_{y \to x} \varphi(y).$$

Thus φ^*_x is lower-semi-continuous and φ^*_x is upper-semi-continuous on C and $\varphi^*_x \leq \varphi^*_x$. Let

$$V = \{x \in C : \varphi^*_x(x) = 1\}$$

$$W = \{x \in C : \varphi^*_x(x) = 1\}.$$

Then V is closed and W is a G_δ-set; also $W \subset V$. Clearly any member of W is strongly p-extreme for C.

The following lemmas prepare our main theorem. We assume that X is p-trivial.

Lemma 5.1. If $x \in C_0$, there exist $v_m \in V$ and $a_m \geq 0$ such that $\Sigma a_m^p \leq 1$ and $\Sigma a_n v_m = x$.

Proof. (cf. Theorem 4.1). Suppose $x \in C_0$. Let $B_1 = \{(0,1), 0\}$ and define $T_1 : L_p(\mathcal{B}_1) \to X$ by $T_1(c.1) = cx$ By induction we construct an increasing sequence of atomic sub-σ-algebras \mathcal{B}_n of \mathcal{B} and a sequence of linear operators $T_n : L_p(\mathcal{B}_n) \to X$ such that

1. $T_{n+1}|L_p(\mathcal{B}_n) = T_n$, $n \geq 2$,
2. $T_n\{f : f \in L_p(\mathcal{B}_n); f \geq 0, \|f\|_p \leq 1\} \subset C_0$.

Indeed suppose \mathcal{B}_n has atoms $(B_j^i : j \in J)$ where J is at most countable. Let $b_i = \lambda(B_j^i)^{1/p}, j \in J$ and

$$u_j = b_i^{-1}T_n1_{B_j^i}.$$

Then $u_j \in C_0$. Then write

$$u_j = \sum_{i=1}^\infty \alpha_i w_{ij}$$

where $w_{ij} \in C_0, \Sigma a_i = 1$

$$\sum_{i=1}^\infty a_{ij} \leq \frac{1}{2}(1 + \varphi(u_j))$$

(the sum may, of course, be finitely non-zero). Split each B_j^i into atoms $\{B_{ij}^i : i = 1, 2, \ldots\}$ where $\lambda(B_{ij}^i) = a_{ij} b_i^j$. Let $\mathcal{B}_{n+1} = \sigma\{B_{ij}^i : j \in J, i = 1, 2, \ldots\}$ and define T_{n+1} on $L_p(\mathcal{B}_{n+1})$ so that

$$T_{n+1}1_{B_{ij}^i} = b_j^{-1}a_{ij}^{-1}w_{ij}.$$
\[x = \sum_{j \in \mathcal{A}} a_j v_j \]

where \(a_j = \lambda(B_j)^{1/p} \) and \(v_j = a_j^{-1} T1_{B_j} \). Clearly \(v_j \in C \) and \(\sum a_j^p \leq 1 \). It remains to show that \(v_j \in V \).

For each \(n \), let \(A_j^n \) be the atom of \(\mathbb{B}_n \) including \(B_i \). Then \(\bigcap_n A_j^n = B_i \); let \(z_j^n = \lambda(A_j^n)^{-1/p} T1_{A_j^n} \).

Then \(z_j^n \in C_0 \) and \(z_j^n \to v_i \). Now for each \(n \),

\[
\frac{1}{n}(1 + \varphi(z_j^n)) \geq (\lambda(B_i)/\lambda(A_j^n))^{1/p}
\]

and hence \(\varphi(z_j^n) \to 1 \). Thus \(v_j \in V \).

Since \(X \) is necessarily \(p \)-convex we can assume that the norm on \(X \) is \(p \)-subadditive. We also choose \(\delta > 0 \) such that \(\{ x : \| x \| \leq \delta \} \) is contained in \(C \).

Lemma 5.2. Suppose \(x \in C_0 \) and \(0 \leq t < 1 \). Then

\[\varphi(tx) \leq t\varphi_*(x). \]

Proof. Suppose \(\epsilon > 0 \), and

\[\epsilon \leq \delta t^{-1}(1 - t^p)^{1/p}. \]

Then there exists \(u, \| u \| < \epsilon \) such that \(x - u \in C_0 \) and \(\varphi(x - u) < \varphi_*(x) + \epsilon \).

Hence

\[x - u = \sum_{n=1}^{\infty} a_n x_n \]

where \(x_n \in C_0, a_n \geq 0, \sum a_n^p = 1 \) and

\[\sum a_n \leq \varphi_*(x) + \epsilon. \]

Thus

\[tx = \sum_{n=1}^{\infty} ta_n x_n + \frac{t\epsilon}{\delta \left(\frac{\delta u}{\epsilon} \right)} \]

and

\[\sum t^p a_n^p + t^p \epsilon^p \delta^{-p} \leq 1. \]

By the remark at the beginning of the section,

\[\varphi(tx) \leq t \left(\sum a_n \right) + t\epsilon \delta^{-1} \]

\[\leq t(\varphi_*(x) + \epsilon) + t\epsilon \delta^{-1}. \]

Now let \(\epsilon \to 0 \),

\[\varphi(tx) \leq t\varphi_*(x). \]
Lemma 5.3. Suppose $x_n \in C$, $a_n \geq 0$ and $\sum a_n^p \leq 1$. Then

$$\varphi(x) \left(\sum_{n=1}^{\infty} a_n x_n \right) \leq \sum_{n=1}^{\infty} a_n \varphi(x_n).$$

Proof. For $\epsilon > 0$, there exist $u_n \in C_0$ such that

$$\|x_n - u_n\| \leq \epsilon.$$ and

$$u_n = \sum_{k=1}^{\infty} c_{nk} v_{nk}$$

where $v_{nk} \in C_0$, $c_{nk} \geq 0$, $\sum c_{nk}^p \leq 1$ and

$$\sum_{k} c_{nk} \leq \varphi(x_n) + \epsilon.$$ Thus

$$\left\| \sum_{n=1}^{\infty} a_n x_n - \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_n c_{nk} v_{nk} \right\| \leq \epsilon.$$ and

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_n c_{nk} \leq \sum_{n=1}^{\infty} a_n (\varphi(x_n) + \epsilon) \leq \sum_{n=1}^{\infty} a_n \varphi(x_n) + \epsilon.$$ Letting $\epsilon \to 0$ we obtain the result.

Lemma 5.4. W is dense in V.

Proof. Let

$$M = \sup_{x \in C} \|x\|.$$ Fix $n \in \mathbb{N}$ and let

$$W_n = \{ x \in C : \varphi(x) > 1 - 1/n \}.$$ Then W_n is relatively open in C. We shall show that $W_n \cap V$ is dense in V. Fix $x \in V$ and $\epsilon > 0$.

Choose $\nu > 0$ such that

$$(1 - \nu)^{\frac{1}{p}} - \nu > 1 - 1/n.$$ and

$$\nu^p + M^p [\nu^p + (1 - (1 - \nu)^{1/p})^p + (1 - (1 - \nu)^{1/p^p})] < \epsilon^p.$$ Since $x \in V$ there exists $y \in C_0$ with
\[\varphi(y) > 1 - \nu \]

and

\[\|x - y\| < \nu. \]

Since \(y \in C_0 \), there exists \(\tau, 1 < \tau < 1 + \nu \) such that \(\tau y \in C_0 \) and then we have

\[\varphi_\tau(y) > 1 - \nu \]

by Lemma 5.2.

Now by Lemma 5.1

\[\tau y = \sum_{m=1}^{\infty} a_m v_m \]

where \(v_m \in V, a_m \geq 0 \) and \(\sum a_m = 1 \). Then by Lemma 5.3

\[\sum_{m=1}^{\infty} a_m \varphi_\tau(v_m) > 1 - \nu \]

and in particular

\[\sum a_m > 1 - \nu. \]

Suppose \(a_1 \geq a_2 \geq \ldots \); then

\[a_1 > (1 - \nu)^{1/(1-p)} \]

and hence

\[\sum_{m=2}^{\infty} a_m^p < 1 - (1 - \nu)^{p/(1-p)}. \]

Thus

\[a_1 \varphi_\tau(v_1) > 1 - \nu - \sum_{m=2}^{\infty} a_m \]

\[> (1 - \nu)^{p/(1-p)} - \nu. \]

In particular

\[\varphi_\tau(v_1) > (1 - \nu)^{p/(1-p)} - \nu \]

so that \(v_1 \in W_n \); also

\[\|x - v_1\|^p \leq \|x - y\|^p + \|\tau y - y\|^p + \|\tau y - v_1\|^p \]

\[\leq \nu^p + \nu^p M^p + (1 - a_1)^p + \sum_{m=2}^{\infty} a_m^p M^p. \]

\[= \nu^p + M^p \left[\frac{\nu^p}{p} + \left(1 - (1 - \nu)^{1/(1-p)} \right)^p + 1 - (1 - \nu)^{p/(1-p)} \right] \]

\[< \varepsilon^p. \]

Thus it follows that \(W_n \cap V \) is dense in \(V \). Since \(V \) is closed in \(X \) and \(W_n \cap V \) is relatively open in \(V \), we may deduce from the Baire Category Theorem that \((\cap_{n=1}^{\infty} W_n) \cap V \) is dense in \(V \) i.e., \(W \) is dense in \(V \).
Lemma 5.5. \(C = \overline{\co_p W} \).

Proof. \(\overline{\co_p W} = \overline{\co_p V} \supseteq C_0 \) by Lemma 5.1. Since \(\overline{C_0} = C \), we have the result.

The next theorem is our main result of the section, and may be regarded as a \(p \)-convex analogue of the characterisation of the Radon-Nikodym property for Banach spaces given by Phelps (9 Theorem 5).

Theorem 5.6. Let \(X \) be a \(p \)-convex quasi-Banach space. Then \(X \) is \(p \)-trivial if and only if every closed bounded \(p \)-convex subset of \(X \) is the closed \(p \)-convex cover of its strongly \(p \)-extreme points.

Proof. Suppose \(X \) is not \(p \)-trivial and that \(T : L_p \to X \) is a bounded linear operator. Let \(U \) be the unit ball of \(L_p \) and consider \(
ach T(U) \). Suppose \(x \) is strongly \(p \)-extreme for \(T(U) \). Then there exists \(\{ f_n \} \subseteq U \) with \(T(f_n) \to x \). However for each \(f_n \) we may write (by splitting the interval)

\[
\frac{1}{2} 2^{-\frac{1}{p}} T g_n + \frac{1}{2} 2^{-\frac{1}{p}} T h_n \to x
\]

and so we have a contradiction. Hence \(\overline{T(U)} \) has no strongly \(p \)-extreme points.

Conversely suppose \(X \) is \(p \)-trivial and \(D \) is a closed bounded \(p \)-convex subset of \(X \). Let \(S \) be the set of strongly \(p \)-extreme points for \(D \).

Let \(B \) be the closed unit ball of \(X \) and for \(\delta > 0 \) let \(C = C_\delta = \overline{\co_p} (D \cup \delta B) \). Using the notation of the preceding lemmas, \(C = \overline{\co_p W} \). However \(W \) is contained in the set \(T_\delta \) of strongly \(p \)-extreme points for \(C \).

Suppose \(x \in T_\delta \) and \(\|x\| > \delta \). Then there exist \(y_n \in D \) and, \(w_n \in \delta B, 0 \leq a_n \leq 1 \), such that

\[
a_n y_n + (1 - a_n)\|w_n\| \to x.
\]

Hence \(\max(a_n, (1 - a_n)^{1/p}) \to 1 \). It is easy to see that since \(\|x\| > \delta \) we have \(a_n \to 1 \) and hence \(x \in D \). This implies that \(x \in S \).

Now suppose \(z \in D \) and \(z \notin \overline{\co_p} S \). Let

\[
\delta = \frac{1}{2} d(z, \overline{\co_p} S) = \frac{1}{2} \inf\|z - v\|: v \in \overline{\co_p} S \).
\]

Then since \(\lambda \overline{\co_p} S \subseteq \overline{\co_p} S \) for \(0 \leq \lambda \leq 1 \), we have \(z \notin \overline{\co_p} (S \cup \delta B) \).

However \(S \cup \delta B \supseteq T_\delta \) and hence \(z \notin \overline{\co_p} T_\delta \), and we have a contradiction.

Corollary 5.7. \(X \) is \(p \)-trivial if and only if every closed bounded \(p \)-convex set has a strongly \(p \)-extreme point.

6. Remarks on super-properties

For the purposes of this section we shall restrict our comments to quasi-Banach spaces \(X \) which have a quasi-norm which is \(r \)-subadditive for some \(r > 0 \). We say that a quasi-Banach \(Y \) is finitely representable in a quasi-Banach space \(X \) if given any
$\epsilon > 0$ and any finite-dimensional subspace L of Y there is a subspace M of X with
\[\dim M = \dim L \] such that there is an isomorphism $T : L \to M$ with $\|T\|\|T^{-1}\| < 1 + \epsilon$.

If (P) is a property of quasi-Banach spaces, then we say that X has the property super-\mathbb{P} if any space finitely representable in X has property (P).

Theorem 6.1. If $0 < p < 1$, the following conditions on X are equivalent:

1. X is super-p-trivial.
2. ℓ_p is not finitely representable in X.
3. X is q-convex for some $q > p$.

Proof. $(2) \Leftrightarrow (3)$ is proved in (7). $(3) \Rightarrow (1)$ is obvious. For $(1) \Rightarrow (2)$ observe that if ℓ_p is finitely representable in X then so is L_p.

The interest in the above theorem is that the analogy with the Radon-Nikodym Property breaks down at this point. Pisier (11) has shown that X has the super-Radon-Nikodym property if and only if X is super-reflexive. An example of James (3) shows that this is not the same as "ℓ_1 is not finitely representable in X" (i.e., X is B-convex).

The author is grateful to the referee for the following comments.

From our remarks in the introduction, the class of p-trivial spaces may also be regarded as a generalisation to quasi-Banach spaces of the class of Banach spaces X such that every $T \in \mathcal{L}(L_p, X)$ has the Dunford-Pettis property. This class is strictly larger than the class of spaces with the Radon-Nikodym Property.

The referee also calls our attention to a paper of W. Fischer and U. Scholer (13) who study a (different) generalisation of the Radon-Nikodym Property in quasi-Banach spaces. It is not clear at present how their work relates to the content of this paper.

REFERENCES

(3) R. C. JAMES, A nonreflexive space which is uniformly nonoctrahedral, Israel J. Math. 18 (1974), 145–155.

(6) N. J. KALTON, The endomorphisms of L_p, $0 \leq p \leq 1$, Indiana Univ. Math J. 27 (1978), 353–381.

(8) N. J. KALTON and N. T. PECK, Quotients of $L_p(0, 1)$, $0 \leq p < 1$, Studia Math. to appear.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY COLLEGE OF SWANSEA
Singleton Park
Swansea SA2 8PP

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING
MICHIGAN 48824
U.S.A.