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1. Introduction. We denote by w the space of all complex sequences with the
topology given by the semi-norms

where 8n(x) = xn. An FK-space, E, is a subspace of o) on which there exists a complete
metrizable locally convex topology T, such that the inclusion (E, T) G O) is con-
tinuous; if T is given by a single norm then E is a BK-space.

Let A = (a^ii = 1,2, ...;j = 1,2,...) be an infinite matrix; then if a;, yew are such
that

00

we write • y = Ax.

If E is a sequence space (i.e. a subspace of w) then the summability domain EA is
defined to be the set of all a; e o> such that Ax (exists and) belongs to E. If E is an FK-
space, with a fundamental sequence of semi-norms (pn), then EA is an FK-space with
the topology given^by the semi-norms

x ->• q^x) = sup
k

x-+pn(Ax) (»=1,2 , . . . ) .

We shall denote by 0 the space of all sequences eventually equal to zero. For
we write

if ^ is an FK-space containing <f> we say that
(i) E is a BS-space if (Pnx; n = 1,2,...) is bounded for each xeE,
(ii) E is an AK-space if Pnx -> x for each a; G^/.
Let Jf be a subset of the positive integers N; then the characteristic function of

M> XM> ^ given by
XMM = * ^ ^£-3^

= 0 if TO^JbT.
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We denote by w(M) the set of all complex sequences which are zero outside M and
by PM the natural projection of <o on to co(M) given by

We shall use the notation e(m) = (0,..., 0,1,0,...) where the ' one' is in the nth position;
at the same time 8<-n) will denote the coordinate map Sn(x) = xn.

In this paper we consider several problems concerning the structure of summability
domains. In section 2 we obtain some results concerning the circumstances under
which a summability domain may be a BK-space. In section 3 we consider the problem
posed by Bennett(2) of determining under what circumstances a summability domain
may be reflexive or a Montel space. Finally in section 4 we apply functional analysis
techniques to the study of simultaneous linear equations in an infinite number of
unknowns, deriving some forms of the classical Mittag-Leffler theorem on complex
functions.

2. Structure theorems for summability domains. The following lemma on subspaces
of o) is well known.

LEMMA. Every closed linear subspace of a> is either finite dimensional or isomorphic to
o), and is complemented in w.

Proof. As o) has its weak topology, a closed linear subspace E is weakly complete
and metrizable. Hence E is isomorphic to the algebraic dual of a vector space of finite
or countably infinite dimension with the weak topology; in the former case E is finite
dimensional, in the latter E is isomorphic to w.

For complementation we may restrict attention to the case where E s w; we then
select the natural basis (xn) of E with dual functionals cj>neE'. By the Hahn-Banach
theorem we may extend each <f>n to a continuous linear functional i/rn on co; then the
linear map P given by

is a continuous projection of w onto E by the Banach-Steinhaus Theorem.
The next result is of the type discussed in (6); in the language of (6) we show that the

class of space *«?(&>) consists of all locally convex spaces.

PROPOSITION 1. Let Ebea locally convex space and letT: E -> wbe a linear map with
closed graph. Then T is continuous.

Proof. Let T*: w* ->- E* be the (algebraic) adjoint map and let to' and E' be the sub-
spaces of (o* and E* consisting of all continuous linear functionals. By a result of
Ptak (see (14), p. 114) T*~X(E') n co' is <r(w', w) dense in «'. However, every linear sub-
space of o)' is cr(co', o)) closed, so that we have w' <= (T*)~l (E'), i.e. T*(co') <= E'. Hence
T is weakly continuous, and, as (o has its weak topology, it follows that T is continuous.

PROPOSITION 2. Let E be a locally convex space and let X be a closed linear subspace
of E©(0. Let S be the natural projection of E@o) on to E; then G = <S~1(0) n X is com-
plemented in X and any complement of G is isomorphic to a linear subspace of E.
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Proof. Clearly G <= (o, so that G is complemented in w by the Lemma. If Q: to ->• G is
a projection of w on to G then Po = Q(/ — 8) is a projection of QX on to £. Let P be
any continuous projection of l o n t o G and let F = P~1(0). We shall show that the
map 8: F -> 2? is an isomorphism of P on to a subspace of E.

First we note that 8 is continuous. Next we show that S is injective, for if x e X and
Sx = 0 then xeCr, i.e. Pa; = x; if, furthermore, xeF then Px = 0, i.e. x = 0. Hence
we may induce a Hausdorff topology /o on P by the map S:F -»• 2?, and p is weaker than
the original topology T.

Consider the map T: {F,p) -*• 0), where T = I — S is the complementary projection
to 8 in E@(o. Let (a;a) be a net in F such that

xa -+ x(p)

and Ta;a -> y(r)

Then

and so a;̂  =

A s r ^ p , a; = 2/ + /Sx,

i.e. y = Tx.

Thus T has a closed graph and is continuous, by Proposition 1. As T is induced by
the maps 8 and T it follows that p = T and so S is an isomorphism.

THEOREM 1. Let E be an WL-space and A an infinite matrix; then

00

where F is isomorphic to a closed subspace of n (c)i @E and & *'« either finite-dimensional
t=i

or isomorphic to 10. IfEA is a IKK-space then EA is isomorphic to a closed subspace ofc@E.

Proof. This is a simple extension of Theorem 1 of (2), where it is shown that EA is
00

isomorphic to a closed subspace of w©
The fact that F is isomorphic to a closed subspace of n (c)i®E follows from the

completeness of EA and hence of F. l=1

For the second part, we observe that only a finite number of the semi-norms
{pn, \S

n\,qn} are required to determine the topology on EA; it is thus clear that G is
finite-dimensional and F is isomorphic to a closed subspace of c©c©... ®c@E. Hence
EA is isomorphic to a subspace of E@(c®...®c@G) ^ E@c.

THEOREM 2. Let Ebea ~B>K-space and A an infinite matrix such that EA is a US-space.
Then there is a subset M of N such that the projection PM: EA -> EA is continuous and

(i) PM(EA) = <o(M).
(ii) (/ - PM) EA^ a closed subspace of E@c.

Proof. Let M = {j'.a^ = 0 for all i}; then for xeo)(M) we have Ax = OeE so that
co(M) c EA. Clearly PM: EA->a)(M) is a continuous projection. Let L = N — M;
then (I-PM)EA = (o(L) n EA.
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Now the set P(x) = (Pnx; n= 1,2,...) is bounded in EA, foTxeEA, and as the map
A: EA -=• E is continuous, the set AP(x) is bounded in E. Therefore the maps

are pointwise bounded on E and the semi-norm

Ml = sup (|| APn*||)+ H
n

(where ||. || is the norm on E) is continuous on EA. We shall show that on OJ(L) r\E,A
Illl. HI defines the topology of EA.

k
For each n 1n(.

x) = SUP 2 «n<
;

k j=\

= snp\8"(APkx)\
fc

\x\\
ii 11 iii II

so that each qn is |||. j | | continuous.
For each neL there exists a k with akn + 0; then we have

*kn\ S akj
xi

i - i

so that
akn\

Thus on CJ(L) n EA, \\\.\\\ defines the topology; we may then apply Theorem 1 to
this space which has properties BK and BS. By Theorem 1 <o(L) n EA is isomorphic
to a closed subspace of c®E.

COROLLARY. IfcA is a BS-space then cA ^ (o(M) ®X where X is isomorphic to a closed
subspace of c.

3. Montel and reflexive sum/mobility domains

PROPOSITION 3. Let E be a Montel F-space with defining semi-norms

(pn;n= 0,1,2,...)

and suppose that the topology defined by the semi-norms (pn;n = 1,2,...) is Hausdorff.
Then the semi-norms (pn; n = 1,2,...) define the original topology on E.

Proof. Let T be the original topology on E and let T0 be the topology of the semi-
norms (pn;n = 1,2,...). Then if the identity map (E,T0) -> (E, T) is not continuous
there exists a sequence xn in E with

= e > 0.
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so that we have yn -> 0(T0)

3»o(y»)=l (»=1,2 , . . . ) .

Then the set (yn) is T-bounded and so possesses a r-convergent subsequence (ynt)

Vnk ~> y{r)-

Clearly ^ -* y(r0)

so that y = 0

as T0 is Hausdorff. However, po{y) = u m Po^n*)

= 1

and so we have reached a contradiction.

PROPOSITION 4. If E is a BK-space and EA is a Montel space, then EA is a closed
subspace of (oA.

Proof. By Proposition 3, the semi-norm

may be discarded from the defining semi-norms so that the topology on EA is given by
the semi-norms {|#m|, qn}, i.e. is inherited from wA. Then EA is a closed subspace of wA.

THEOREM 3. Let E be a BK-space and let Abe a matrix whose columns are members
of E; then EA is a Montel space if and only if A has only a finite number of non-zero
columns (and thus EA = co).

Proof. As the columns of A are members of E we have <j> c EA. Now by Proposition 4
EA is a closed subspace of o)A, and wA is an AK-space; therefore EA — wA.

Thus EA is an AK-space and therefore a BS-space, and we may apply Theorem 2:

EA = a>(M)@G,

where G is a BK-space. As EA is a Montel space, G is finite-dimensional, and so
N — M = L is finite, i.e. A has only a finite number of non-zero columns. Clearly also
EA = u>.

This partially solves a problem of Bennett (2), who conjectures that the above result
is true for any matrix A for E = c,lp or m. He also conjectures that lA or cA can only
be reflexive under the same conditions. We give a similar result for the case of lA;
however, again we require (j) <= lA.

PROPOSITION 5. If lA is reflexive then lA is a closed subspace of wA.

Proof. We use an argument similar to Proposition 3. Let T0 be the topology inherited
by lA from ioA and let T be the original FK-topology. If the identity map (lA, T0) -> (lA, T)
is not continuous, then we may find a sequence x*"' e lA such that

PSP 73
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and M^(7l)||i = 1 (« = 1,2,...)

(where ||. ||x is the usual norm on I).
Then the set B = {xf-n)} is bounded in lA and hence is weakly relatively compact;

hence on B the weak topology on lA agrees with the topology of coordinatewise con-
vergence. Thus x(w) -> 0 weakly in lA.

Now the map A: lA -> I is continuous and so Aofin) -> 0 weakly in I. Henceby a well-
known property of I (see (l), p. 137) [|-4â TC*j|x ->• 0, contradicting the choice of {xM}.
Thus T0 = T and the result is proved.

THEOREM 4. If A is a matrix whose columns are members of I and such that lA is
reflexive, then only finitely many columns of A are non-zero (and lA = «).

Proof. The proof follows from Proposition 5 just as that of Theorem 3 from Proposi-
tion 4.

We remark that Theorem 4 holds if we assume that lA has a separable strong dual,
with a very similar proof; we omit the details. Using this result we may show that if
A and B are matrices such that 0 <= lA = cB then lA = to; this follows from the result
that the strong dual of cB is separable (see (16)).

4. Solutions of simultaneous linear equations. In this section we consider the problem
of solving an infinite set of simultaneous linear equations

00

S aaxj = Vi (i = I , 2 , •••)•

We obtain a necessary and sufficient condition on the matrix A so that the system has
a solution for any sequence (%). This problem has been considered by Banach(l),
pp. 51-52, Eidelheit(3,4), Polya(i3), Petersen and Baker(9,10,11,12). Banach showed
that if the system has a unique solution for any (^) then A is row-finite. Polya investi-
gated solutions satisfying

J I^1 \Xj\ < co (» = i , 2 , . . . )

and his results were extended by Petersen and Baker. Our results and approach are
most closely related to the results of Eidelheit (particularly (4), Satz 1).

We shall need an idea due to Garling(5). Let bv denote the space of sequences of
bounded variation, i.e. such that

CO

2 K-av«| < co.
<=i

Then bv is a BK-space under the norm
00

INL= 2 \Xi-xt+1\ + hm \xn\.
1 = 1 7l->00

If X is any subset of w then B*(X) is the linear span of the set {bx = {b^); b e bv,xeX}.
Let A be an infinite matrix; we shall say that A is essential if (1) the rows (a(n)) of

A are linearly independent, (2) for each n,

5*(a("...a(");e(1»...e(">) n lin («»>, o®,...)
is finite-dimensional.
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THEOREM 5. The system of equations

333

is soluble for any sequence (%) if and only if A is essential.

Proof. We first show that (1) and (2) are necessary for the system to possess a solution
for all %. I t is easily seen that (1) is necessary; now suppose that (2) fails. Then there
exists N and a sequence fin) e <p, not contained in a finite-dimensiona subset, such that

2 /["'
k=l

Therefore

Let

Then for x e OJA

CO

1 = 1

0 0

1 = 1

JV /

t = l \

N/

\

so that if 2 ai3Xj = % ̂ s soluble> then
t=i

sup
n

sup
\ m

ZJ "•) •*-;

N

N \

< 00.

This clearly contradicts the assumption that the system is always soluble, since the
sequence/(re) is not contained in any finite-dimensional subset of <j>.

Conversely suppose A is essential; we shall show that the map A: wA -> o> maps o)A

on to a dense barrelled subspace of w. I t is easy to see that (1) implies that A(OJA) is
dense in w. Now suppose (1) and (2) hold and that 0 <= ^ = a/ is pointwise bounded
on A(d)A), but not finite-dimensional. Then there exists a sequence / ( n )e C, not con-
tained in a finite-dimensional subspace, such that for x e wA

|/<%4z)| < oo.

Thus {/(rv A} is equicontinuous on o)A and so there exists r > 0 andav..ar,fix...fir such
that

1 = 1 i=1

Therefore f{n\Ax) =
t = l

where |y^n>| < 1, and
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Identifying cs' with bv we see that g^71' takes the form

g<*-n\x) =

where b&^ebv and ||&«'m>|| «g 1.
Let y^ =fto>(AefM); then

S

= 2/*">««

t = i t = i

and so 2 / ^ ow 62?*(a(1).. .a(r), e(1).. .e(r)). Since the a(i) are linearly independent, it follows
from (2) that the sequence {/(m)} is contained in a finite-dimensional subset of 0,
contradicting the assumption.

I t follows A(o)A) is barrelled in w, and so by the open mapping theorem (see (14),
p. 116) the map A: wA -*• ,4(«^)isopen. In particular it follows that A(coA) is complete
in co, and hence A(coA) = co, as required.

Suppose now that A is a matrix satisfying ank =|= 0 for all n and k. Then Polya (13) gives
the following sufficient condition for A to be essential

Mm -^ = 0 whenever n ^ m.

We recall that a sequence (xk) is Cesaro (C, 1) convergent to a; if

limc xk = x.and this we will write

LEMMA. //Kmcxfc = 0 and b = (bk)ebv then

limcbkxk = 0.

Proof.

so that

Therefore

where

Let

b1x1 + ...+bkxk= 2 (&<-bi+1) S x3. + b
t = l 3 = 1

|61a;1+...+6&a;A.| < sup

1
k

m \ / k

m

t = l

X m

k + 1
( S »
\j = l

sup

8 = sup |sn| < oo,
n

and for given e > 0, choose &0(e) such that, for & ^ k0,

\*k\ < e-
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Then let kt ^ Sk^-1 and suppose k > kx and m < k; if m > &0

m

V

m

m

Mm sup

m

msm
7. = 0

while if m < k0

Hence

and the lemma is proved.
This lemma is equivalent to Beispiel 4-2 of Zeller(15).

PROPOSITION 6. Suppose A is a matrix with ank 4= 0 for 1 s£ k < oo, 1 ^ w < oo, and
suppose that for m < n

^ = 0.
c

k-+ca ank
Then A is essential.

Proof. We first verify (2). Suppose

2 ^0®e£*(a»

i.e. 2 c4a® = S 6(%w+ 2 ^ e ^ ,
i=l t=l i=l

where 6(f) 6 6«.

Thus 2 c4«(fc = 2 ftf'att + dfc (k = 1,2,...).
t=i f=i

Suppose iV > 7i 2 Oi— = 2 6 J* )^ + A
t=l aNk i l a a

and therefore taking (G, 1) limits as k ->- oo, we obtain

2 C i K ? = S limcfe«)^+HmcA.

It now follows by the assumptions and the lemma that

cN = 0.
N

In this way we may show that 2 <>ia® £ lin (a<1)- • •a(™)), and hence (2) is proved. Now if
»=i

2 eta® = 0
i=i

N

then it follows that 2 cia
(i)Glin(a(1)) and hence that cx = c2 = ...cN = 0; thus (1) is

also proved.
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One version of the Mittag-Leffler Theorem (see (6) or (5), p. 299) states that if (zn)
is a sequence of distinct points in C with no accumulation points and vn is any sequence
of complex numbers there is an entire function / with

Polya(l3) studies this theorem by means of simultaneous linear equations and proves
also that if (mn) is any sequence of integers there is an entire function satisfying

We observe that Proposition 6 yields these results very quickly. As an example of
the application of Proposition 6 we give the following theorems.

THEOREM 6. Let (zn) be a sequence of distinct complex numbers with no accumulation
point in G; let M be any subset of N such that

l™ I 2 XM(*>) = 1.

Then for a sequence (wn) of complex numbers there is an entire function f of the form

f(z)=to+ S **«*
keM

and such that f(zn) = 7/n.

Proof. Suppose, without loss of generality, that Oe{zn}; re-order (zn) so that z0 = 0
a n d i i . I i , + „ .

Kl > K-i| (n= 1,2,...).
Then we require to solve the equations

2 %kzn = Vn-Vo (n = I .2 .---)
keM

for the variables (xk; keM). If (tk; keM) is a solution, then the function

f(z) = to+ 2 tkz
k,

keM

where t0 = v0 solves the original problem; for since 2 tkz
k converges for each zn and

keM

\zn\ -̂ - oo, it is clear the series converges for all zeC.
We write M = (m1,m2,...), where m1 ^ m2 < m3,..., and consider the matrix A

given by ank = z%*, for k > 1, n > 1.

For 1 < p < n

where I £| ^ 1 and £ + 1. By the conditions of the theorem

Now
Q mg
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and hence S i
fe=l

Therefore

i.e. .3* = o.

Hence A is essential and, by Theorem 5, the result follows.
If \zn\ > \zn_x\ for all n then the above proof is simplified since

lim S * = 0

whenever p < n; we then need no restrictions on the density of M.

COROLLARY. If \zn\ > |27l_1| for all n, then Theorem 5 is true for any infinite subset M
ofN.

However, in general, the theorem fails quite simply without some restrictions on M.
Thus if M consists of the even integers only then we can find no entire function

*«

f(n) = n ( » = 0 , ± 1 , ±2,.. .).with

In this case we only have

Finally let us observe that the same theorems and proofs apply when the open unit
disc D replaces C.

THEOREM 7. Let (zn) be any sequence in D having no accumulation point in D; if M
is a subset of N such that

and if (wk) is any sequence of complex numbers, then there is a function f, regular on D,
of the form

f '
keM

and such that f(zk) = 7jk, for k = 1,2,....
/ / \zn\ > |zn_1| for all n, then we may take for M any infinite subset of N.

The author would like to thank Professor G. Bennett for making available a pre-
print of (2), and the referee for pointing out many errors and inaccuracies in the original
draft. While carrying out this research the author was supported by an S.R.C. Research
Fellowship.
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