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In this paper we shall establish some forms of the closed, graph theorem for locally
convex spaces, using the approach of Ptak(l7). Our interest is in classifying pairs of
locally convex spaces (E, F) which have the property that every closed graph linear
mapping T: E -> F is continuous; if (E,F) has this property then we shall say that
(E, F) is in the class *&. \is# is a particular class of locally convex spaces then ^(si)
is the class of all E such that (E, F)&<g for all F estf'.

The first result of this type was obtained by Mahowald(l3), (see also Bourbaki(5)
Ch. 6, § 1, no. 4, Proposition 11) who showed that if«s/ is the class of all Banach spaces,
then ̂ f (,£/) is the class of all barrelled spaces. I t follows immediately that one can replace
JI/ by the class of all jBr-complete spaces in this statement. In this paper we will de-
termine #(£) where £ is the class of all separable incomplete spaces.

1. Metrizable subsets of locally convex spaces. In this section we list some elementary
results concerning metrizable subsets of locally convex spaces. If (E, Fy is a dual pair
then we denote the weak, Mackey and strong topologies on E by cr(E, F), T(E, F) and
fi(E,F). In particular if (E,T) is a locally convex space, then the associated weak,
Mackey and strong topologies are denoted by a(E, E'), T(E, E') and fi(E, E').

LEMMA 1-1. IfEis a separable locally convex space and U <= E' is equicontinuous then
U is a(E', E) metrizable.

Proof. See Kothe(ll) (§21.3, p. 259).
The following lemma is a result from general topology, which is difficult to trace

in the literature. The only reference we know is Bourbaki(4) Fascicule des Eesultats
p. 47, where it is given without proof.

LEMMA 1-2. Let M be a compact metric space and let N be a continuous Hausdorff
image of M; then N is compact metrizable.

Proof. I t is clear that N is compact; now consider the Banach space G(N) of all con-
tinuous real-valued functions on N with the usual norm and the map T: O(N) -> G(M)

where 6: M -> N is a continuous map of M onto N. Clearly T is an isometric embedding
of O(N) into G(M). As C(M) is separable, C(N) is separable and hence the closed unit
ball B of O(N)' is metrizable in a((0(N))', C(N)) (Lemma 1-1). There is a natural
injection of N into B continuous for cr(C(N)', C(N)) and so, as N is compact, N is
homeomorphic to a subset of B; thus N is metrizable.
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The following proposition could be derived from Kothe(ll) § 28.5 (3).

PROPOSITION 1-3. Let V be an absolutely convex subset of a locally convex space
(E, T) : then V is r-metrizable if and only if the uniformity induced on V by the i-uniformity
on E is metrizable.

Proof. Suppose F is r-metrizable; then there is a sequence Un of T-closed absolutely
convex neighbourhoods of zero in E such that the sequence (Un n F; n = 1,2,...) is a
base of r-neighbourhoods of zero in F.

Let U be any r-neighbourhood of zero in E, and let V be the vicinity induced by U;
i.e. U cz E x E and

V = {(x,y);x-yeU}.
We show that there exists n such that

*7nn(FxF)c Vn(VxV).
We choose n such that Un n V <= (|£7) n V

since (Un n F) is a base of neighbourhoods of zero.
Then if (x,y)eUn n (Fx F), we have xeV and yeV, so that, as V is absolutely

convex, \{x-y)eV. However, \{x — y)e^Un c Un so that \{x — y)sVn n F; hence
l(x — y)e \U and sox-yeU, i.e. (x,y)eU n (Fx F).

Thus when considering absolutely convex subsets of a locally convex space, it is
unnecessary to distinguish between uniform metrizability and topological metriz-
ability. We note that a uniform space is metrizable if and only if its completion is
metrizable; this fact is used in Theorem 1-4.

THEOREM 1-4. Let (E, T) be a locally convex space and let V be aprecompact r-uniformly
metrizable subset of E; then the closed absolutely convex cover of V, A(F), is T-metrizable.

Proof. Let (E, f) be the completion of (E, T), and consider F c | ; then F is compact
and f-(uniformly) metrizable. Consider the map T: E'{ = E') -> C(V) where O(V) is the
separable Banach space of all continuous functions on F; let T* denote the adjoint
map [C( F)]' -> (E')*. Then T* is <r([C( V)]', G{ V)) -+ <r((E')*, E') continuous. Let B be
the closed unit ball of [G(F)]'; then by (1-1), B is cr([C(F)]',C(F))-compact and
metrizable, and by (1*2), T*(B) is cr((£')*, .fi')-compact and metrizable. Identifying
E as a subspace of (E')*, T*{B) n E is a{E, ̂ /')-closed, absolutely convex and metriz-
able; clearly if xe V, then SxeB where 8x(<j)) = <j>{x), and T*SX = x.

Let W be the closed absolutely convex cover of F in E; then W is f-compact, and
by the remarks above W <= T*(B) (]E.0nW,f = o-{E,E') (as W is compact) and so
W is f-metrizable; hence W 0 E = K(V)is r-metrizable.

COROLLARY. / / (xn) is a T-Cauchy sequence, then the closed absolutely convex cover of
{xTC}™=1 is r-metrizable.

Proof. We may assume {xn} is a sequence of distinct elements; then the completion
F of {xn} in the r-uniformity is isomorphic topologically with the one-point compacti-
fication of the integers. As V is compact there is a unique uniformity (see Kelley(lO),
p. 197-8) on F inducing this topology, and this is metrizable; it follows that {xn} is
T-uniformly metrizable.
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2. The closed graph theorem in separable spaces. We recall that a locally convex space
E is Incomplete (see (17)), if, given a dense subspace V of (Er, o-(E', E)) such that
V n A is closed in A for every equicontinuous set A in W, then V = E'.

Let £ denote the collection of all separable incomplete locally convex spaces and
let £B be the collection of separable Banach spaces; in this section we identify #(£)
and ^(^B) with a certain class of locally convex spaces.

Let T: E -»• F be a linear map; then we shall denote by LT the subspace of F' of all
/such tha t /o T is a continuous linear map on E. Thus if T*: F* -> E* is the algebraic
adjoint of T, then LT = (T*)-1 (E1) n F'. Lemma 2-1 is due to Ptak(l7).

LEMMA 2-1 T has closed graph if and only if LT is cr(F', ̂ ")-dense in F'.

LEMMA 2-2. If (E',o-(E',E)) is sequentially complete then LT is o~(F",F)-sequentially
closed.

Proof. SupposefneLT and/n-+f<r(F',F); then T*fn-+T*fo-(E*,E),and so T*/»
is a ar(E', J?)-Cauchy sequence. Hence T *fn converges in E', and T *feE', i.e. feLT.

We pause in the logical development of this section to give an application of
Lemma 2-2 to derive an extension of a recent theorem of Me Williams (15) (see also
Civin and Yood(6)).

THEOREM 2-3. Let E be a locally convex space which is sequentially dense in
E"( = (E', fi(E', E))') in the topology cr(E", E'); suppose F is weakly sequentially complete
and that T: E -*• F is continuous. Then T maps bounded sets into weakly relatively
compact sets.

Proof. Consider T'\ (F',<r(F',F))-> (E',<T(E',E")); then by Lemma 2-2 LT, c E"
is a(E", i?')-sequentially closed. However E <= LT (in the natural embedding of E in
E") and so LT. = E", i.e. T' is continuous. Let T denote the adjoint map f: E" -> F;
then T is o~(E", E') ->• cr(F, F') continuous and its restriction to E is T. Now suppose
B <= E is bounded; then B is /?(-£?', i?)-equicontinuous and so B c (E", a(E", E')) is
o-(E",E')-com$a,ct; hence T{B) is a{F, .F')-compact, i.e. T(B) is CT(F,F')-relatively
compact.

COBOLLARY. If E satisfies the conditions of the theorem every continuous map
T.E^-l1 maps bounded sets into relatively compact sets.

We observe that E satisfies the conditions of the theorem if (E', fi(E',E)) is separable.
The next theorem characterises Mackey spaces which belong to

THEOREM 2-4. Let Ebea Mackey space; then the following are equivalent:

(i)
(ii)
(iii) (E', a(E', E)) is sequentially complete.

Proof, (i) => (ii). Immediate.
(ii) => (iii). Let fneE' be o-(E',.E)-Cauchy and define the map T:E-*c (where c is

the space of convergent sequences) by Tx = (/re(a;))™=i. Then T has closed graph and
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a s c s c0, it follows that T is continuous; hence lim/n(a;) is a continuous linear functional
n—»-oo

on E, so that lim/n = feE'.
71—*00

(iii) => (i). Let F be separable and incomplete and let T: E -*• F have a closed graph;
then by (2-1), LT <= F' is a(F',F)-dense, while by (2-2), i y is cr(F', ./^-sequentially
closed. Let U be a cr(.F',.F)-closed equicontinuous subset of F'; then £7 is <r(F',F)-
metrizable and U n LT is sequentially closed in U. Thus C/ n LT is closed in [7 for all
such U, and thus LT = J", as F is incomplete. In particular T is weakly continuous
and therefore Mackey continuous.

COROLLARY. If Jl is the class of Mackey spaces then J( n #(£) <= &(&) where 01 is the
class of reflexive Banach spaces.
Proof. This follows from Theorem 2-4 and Theorem 1 (iii) of Mclntosh(i4).

We now consider the class #(£) in general; we shall require the following lemma.
Suppose E is a locally convex space and F <= E' is bounded and absolutely convex;
then we may form a Banach space Er by completing the quotient space E\ F x with
the norm induced by V.

LEMMA 2-5. (i) The natural quotient map T: E -> Er has closed graph.
(ii) If V is o-(E', E) metrizable then Er is separable.

Proof, (i) This is proved in (13).
(ii) Consider the adjoint map T*\ EV->E* which is o-(Ev,Ev) -> a(E*,E) con-

tinuous; let B be the closed unit ball of E'v, so that B <= Ev <= Ev. Then T*(B) <= F00

(polars taken with respect to the duality (E,E*}); however, F00 is the a(E*,E)-
closure of F and is complete. By the remarks preceding Theorem 1-4, F00 is cr(E*, E)-
metrizable. Now T* is injective and B is cr(E*, i?F)-coinpact, so that T*: B ->• T*(B)
is a homeomorphism for the topologies <r(Ev, EV) and a(E*, E). Hence B is cr(Ev, Er)-
metrizable and therefore Er is separable (see Dunford and Schwartz(7), p. 426).

THEOKBM 2-6. If E is a locally convex space then the following conditions on E are
equivalent:

(i)
(ii)
(iii)
(iv) Every a(E'', E) bounded metrizable, absolutely convex set in E' is equicontinuous.
Proof, (i) => (ii). Immediate.
(ii) => (iii). By the Banach—Mazur Theorem every separable Banach space may be

embedded isometrically in O[0,1] (see (2)).
(iii) => (iv). If F is cr(E',E) bounded metrizable and absolutely convex in E', the

map T: E -*• Ev has closed graph (Lemma 2-5) and is continuous. Hence

feV

is a continuous semi-norm on E, i.e. F is equicontinuous.
(iv) => (i). By the Corollary to Theorem 1-4, every a(E',E) Cauchy sequence is

equicontinuous, and hence convergent in E'. By Theorem 2-4, (E, T{E,E'))e<g(Q.
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Let T: E -»• F be a closed graph linear map where F is separable and incomplete;
then T is (E, T(E, E')) -+ F continuous, and so has an adjoint T':F'^ W. Let V <= F'
be cr(F', _F)-closed absolutely convex and equicontinuous; then V is cr(F', .F)-metrizable
(1-1) and cr(F', .^-compact and so by Lemma 1-2, T'( V) is <r(E', E^-bounded absolutely
convex and metrizable. Hence T'( V) is equicontinuous and so T' maps equicontinuous
sets into equicontinuous sets; thus T is continuous.

COROLLARY. If Ee^(Q, and V is a a(E', E)-compact metrizable set, then the closed
absolutely convex cover of V is cr{E', E)-compact.

Proof. As there is precisely one uniformity inducing a given topology on a compact
set (see (10), p. 197) we may conclude that any metric on V inducing the topology
o~(E', E), also induces the uniformity; thus V is uniformly metrizable. By Theorem 1-4
A( V) is uniformly metrizable and hence equicontinuous; it is therefore weakly compact.

The reader may compare this corollary with the well-known result that if E is
barrelled, then the closed absolutely convex cover of any o-(E', ^-compact set is
o~(E', i?)-compact.

We now give an example of a Mackey space in ^(Q which is not barrelled. Let V°
be the space of all bounded sequences, and I1 the space of all absolutely convergent
series, under the usual duality; then the space (Z00, T(?C0, I1)) is not barrelled (as the
unit ball of the Banach space I1 is not weakly compact). However a(P-, Z00) is
sequentially complete (see Dunford and Schwartz(7), p. 290) and therefore

(Z»,T(Z« **))£<<?(£).

Now consider the set {e(n)} in I1 where e(7V) = (0,..., 0,1,0,...) with the one in the nth.
position. Then the set {e(n)} is discrete in the topology ^{l1, Z00), and therefore is
bounded and metrizable. However, the semi-norm

sup|a;n| = sup \{x,

is not continuous on (Z™, r(Z°°, I1)), so that {e(?l)} is not equicontinuous.

3. OnVlcJandViG).

THEOREM 3-1. E e ̂ (c0) if and only if every a(E', E) Cauchy sequence is equicontinuous.

Proof. If Ee&(c0) then for a a(E',E)-Ca,uchy sequence ( /J in E' define T: E -* c by

Tx = (

T has closed graph and as c ^ c0, T is continuous; thus (fn)n=i is cr(E',E) equicon-
tinuous.

Conversely if every o-(E', E) Cauchy sequence is equicontinuous, it follows that
{E',o-(E',E)) is sequentially complete, i.e. (E^lE^E'^e^ifi^) by Theorem 2-4; hence
if T: E ->- c0 has closed graph then T is weakly continuous. Thus if <j>n(x) = (Tx)n

then <j>n^E' and <j>n-+0 o-(E',E). Hence ||ya;|| =sup|^n(a;)| is a continuous semi-
n

norm on E.
We remark that ^(c0) #= "£'(£); for let E be a separable Banach space and let r0

be the topology on E of uniform convergence on cr(E', i£)-null sequences. I t is clear that
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(E, T0) e^(c0); however if (E, T0) e^(Q then T0 must be the norm topology; then there
is a cr{E', E) null sequence (/„) in E' with

for all xe E, i.e. E is isomorphic to a subspace of c0.
In (18), Webb introduces the notion of sequentially barrelled spaces; E is sequentially

barrelled, if, whenever/„ ->- 0 cr(E', E) then (/„)£= x is equicontinuous. We remark that
(I1, T(P, C0)) is sequentially barrelled (for it can be easily shown that the absolutely
convex cover of weakly null sequence in c0 is relatively weakly compact); however
(I1, T(Z1, C0)) does not belong to ^(c0) or equivalently ^{Q (by Theorem 2-4), since
the identity map (I1, T(Z1, C0)) H» (I1, /HI1, c0)) has closed graph but is not continuous.

A locally convex space E is a Mazur space (see Wilansky(l9), p. 50) if every sequen-
tially continuous linear functional on E is continuous; it is clear that any semi-
bornological space (i.e. a space in which every bounded linear functional is continuous,
(19), p. 51) is a Mazur space, but the converse is false (the space (Z1, cr(Zx, c0)) is a
Mazur space but not semi-bornological). Further results concerning Mazur spaces are
given in (9) and (16).

THEOREM 3-2. / / E is a Mazur space then (E, r(E, E'))is sequentially barrelled if and
only if every weakly bounded set in E is strongly bounded.

Proof. If (E,T(E,E')) is sequentially barrelled then by (18) Proposition 4-1, every
weakly bounded set in E is strongly bounded. Conversely let /„ -»• 0 a(E',E); then
define T: E -* c0 by Tx = (fn(x))%=1.

If xk -> 0 in E, then as every weakly bounded set in E is strongly bounded,

supsupl/JzJl < co,
n k

i.e. sup||!Tx&|| < co.
k

Considering c0 as a subspace of Z00, (Txk) is bounded in I00 and (Txk)n ->• 0 each n;
as the closed unit ball of ZOT is er(£°, Z^-compact, it follows that

k00

= 0,2 ajn(xk)
ft->-oo|n=l

whenever 2 \an\ < 1.
oo

Thus, as E is a Mazur space £ anfneE', and so 21 is continuous

Thus T is Mackey-continuous and so sup |/n(a;)| is a continuous semi-norm on
n

(E, r(E, E')), i.e. E is r(E, E') sequentially barrelled.
THEOREM 3-3. If E is a Mackey Mazur space then Ee^(C) (i.e. cr(E',E) is

sequentially complete) if and only if every weakly bounded set in E is strongly bounded.
Proof. If (E', cr(E', E)) is sequentially complete then every weakly bounded set in

E is strongly bounded (see Kothe(n), §20.11 (8) or Mackey(l2), p. 194, Lemma).
The converse follows from Corollary 4-5 of (18) and Theorem 3-2.
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A class of Mackey Mazur spaces is examined in (3). I t follows from the next theorem
that not every Mackey space in $'(£) is a Mazur space.

THEOREM 3-4. Every sequentially complete DF-space belongs to

Proof. If E is a ZXF-space and V <= E' is cr(E', E) bounded absolutely convex and
o~(E',E) metrizable, then V is a(E',E) separable (for V is <T(E', J?)-precompact).
Hence V is equicontinuous, for it is strongly bounded and contained in the closure of
a countable set.

Webb (18), p. 361 gives an example of a DF-space which is not a Mazur space
(following an example of Grothendieck(8)).

We recall that an example of a non-barrelled space in &(£) is (Z00, T(ZC0, Z1)); in this
case the strong topology /?(Z°°, I1) is inseparable. The next Proposition shows that
this is not coincidental.

PROPOSITION 3-5. //2? e •<?(£) and (E,/S(E,E')) is separable then E is barrelled.

Proof. If V <= E' is cr(E', E) bounded and absolutely convex, then V is fi(E, E')
equicontinuous, and hence by Lemma 1 • 1 is a(E', E) metrizable. Therefore by Theorem
2-6, V is equicontinuous.

From this we may derive the following result of Webb (19) (which may also be
derived directly).

COROLLARY. / / E is a Mackey space with a(E', E) sequentially complete, then if
(E,fi(E, E')) is separable, E is barrelled.

Further applications of Theorems 2-4 and 2-6 are given in (3); in particular we
observe that Theorem 1 of Bachelis and Rosenthal(l), may be deduced quickly from
Theorem 2-4.

The author is extremely grateful to the referee for many interesting and very
valuable comments.
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