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ABSTRACT. We are interested in the question when a Banach space X with an 
unconditional basis is isomorphic (as a Banach space) to an order-continuous 
nonatomic Banach lattice. We show that this is the case if and only if X is 
isomorphic as a Banach space with X(i2). This and results of Bourgain are 
used to show that spaces HI (Tn) are not isomorphic to nonatomic Banach 
lattices. We also show that tent spaces introduced by Coifman, Meyer, and 
Stein are isomorphic to Rad HI . 

1. INTRODUCTION 

There is a natural distinction between sequence spaces and function spaces in 
functional analysis; as an example, let us point out the subtitles of two volumes 
of [15] and [16]. In this paper we use the term sequence space to indicate 
a space with the structure of an atomic Banach lattice and the term function 
space to indicate a space with the structure of a nonatomic Banach lattice. 
Many classical function spaces (e.g., the spaces Lp[O, 1] for 1 < p < 00 [22] 
or [16]) have unconditional bases and hence are isomorphic as Banach spaces 
to sequence spaces (atomic Banach lattices). On the other hand, LI [0, 1] has 
no unconditional basis ([22] or [16]) and in the other direction the sequence 
spaces 4p for p : 2 are not isomorphic to any nonatomic Banach lattice [1]. 
In this note we discuss a general criterion for deciding whether a Banach space 
with an unconditional basis (i.e., a sequence space) can be isomorphic to a 
nonatomic Banach lattice (i.e., a function space). Our main result (Theorem 
2.4) gives a simple necessary and sufficient condition for an atomic Banach 
lattice X to be isomorphic to an order-continuous nonatomic Banach lattice; 
of course, if X contains no copy of c0, every Banach lattice structure on X is 
order-continuous. 

Our main motivation is to study the Hardy space H1 (T). After the discovery 
that the space HI (T) has an unconditional basis [17] it becomes natural to 
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investigate if HI (T) is isomorphic to a nonatomic Banach lattice. Applying 
Theorem 2.4 to HI and using some previous results of Bourgain [2, 3] we show 
that HI is not isomorphic to any nonatomic Banach lattice and furthermore 
that HI (Tn) is not isomorphic to a nonatomic Banach lattice for any natural 
number n. 

We conclude by showing that the space Rad HI or H (e2) is isomorphic to 
the tent spaces T' introduced by Coifman, Meyer, and Stein [4]. 

2. LATTICES WITH UNCONDITIONAL BASES 

Our terminology about Banach lattices will agree with [16]; we also refer the 
reader to [9, 10] for the isomorphic theory of nonatomic Banach lattices. 

A (real) Banach lattice X is called order-continuous if every order-bounded 
increasing sequence of positive elements is norm convergent. Any Banach lattice 
not containing c0 is automatically order-continuous. 

For any order-continuous Banach lattice X we can define an associated Ba- 
nach lattice X(e2) (using the Krivine calculus [16, pp. 40-42]) as the space of 
sequences (xz)n??=l in X such that (Zn=lI IXk 12)1/2 is order-bounded (and hence 
is a convergent sequence) in X. X(e2) becomes an order-continuous Banach 
lattice when normed by II (xn) II = II(E0=1 lXn 12)1/2I1. 

If X has nontrivial cotype then X(e2) is naturally isomorphic to the space 
RadX which is the subspace of L2([0, 1]; X) of functions of the form 
E'1 xI nrn where (rn) is the sequence of Rademacher functions. The space 
Rad X is clearly an isomorphic invariant of X; so if two Banach lattices X 
and Y with nontrivial cotype are isomorphic, it follows easily that X(e2) and 
Y(e2) are isomorphic. However, this result holds in general by a result of Kriv- 
ine [13] or [16, Theorem l.f.14]. 

Theorem 2.1. If X, Y are order-continuous Banach lattices and T: X - Y 
is a bounded linear operator, then if (Xn) E X(e2) we have (Txn) E Y(e2) and 

II(T(Xn))IIYv(2) < KGIITIIII(Xn)IIx(12)- 

Here, as usual, KG denotes the Grothendieck constant. 

Proof. Essentially this is Krivine's theorem, but we do need to show that if 
(xn) E X(e2) then (Txn) E Y(e2). To see this we show that (En= IITxkI2)1/2 
is norm-Cauchy. In fact, if m > n then 

( Txk 2 ) 1- (1Txk2) ? (k EITxk)1/2 

k=1 k=1 ~~y kn y 

k=n+ I x k=n+ I x 

which converges to zero as n -x oc by the order-continuity of X. 0 

Corollary 2.2. If two order-continuous Banach lattices X and Y are isomorphic 
as Banach spaces, then X(e2) and Y(e2) are isomorphic as Banach spaces. 

If X is a separable order-continuous nonatomic Banach lattice then X can 
be represented as (i.e., is linearly and order isomorphic with) a Kothe function 
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space on [0, 1] in such a way that LOO[, 10] c X c LI[O, 1] and inclusions are 
continuous. It will then follow that Loo is dense in X, and the dual of X can 
be represented as a space of functions, namely, X* = { fE L f Ilfgl dt < 
ox for every g EX}. 

Now we are ready to state our main result. Let us observe that for re- 
arrangement invariant function spaces on [0, 1] this result was proved in [9] 
(cf. also [16, 2.d]) by a quite different technique. 

Theorem 2.3. Let X be an order-continuous, nonatomic Banach lattice with an 
unconditional basis. Then X is isomorphic as a Banach space to X(e2) . 

Proof. We will represent X as a Kothe function space on [0, 1] as described 
above. Suppose (q$)n=l is a normalized unconditional basis of X. Then there 
is an order-continuous atomic Banach lattice Y which we identify as a sequence 
space and operators U: X . Y and V: Y ) X such that UV = Iy, 
VU = Ix, and U(MO) = en for n = 1, 2, ... , where en denotes the canonical 
basis vectors in Y. We can regard Y* as a space of sequences and further 
suppose that IIe, II y- = IIe, IIy = 1. We will identify Y(e2) as a space of double 
sequences with canonical unconditional basis (emn)?, On= 1; thus for any finitely 
nonzero sequence we have II am,nemn,ly(e2) = || Zm(Zn lamn12)1/2emIIy. 

Let rn denote the Rademacher functions and for each fixed f E X note that 
(rnf) converges weakly to zero, since for g E X* we have limn.oc f rnfg dt = 
0. In particular, we have for each m E N that (rnq$m) converges weakly to 
zero. It follows by a standard gliding hump technique that if I = (211 UII I VI)- 
then we can find for each (m, n) E N2 an integer k(m, n) and disjoint subsets 
(Amn) of N so that | U(q$mrk(m, n))XAmn - U(qOmrk(m, n))IIY < 1 

Identifying Y* as a sequence space, we let q/m = U* (em) and then define 
Vm,n = XAmnU(Gmrk(m,n)) E Y and v*, = XAmnV*(ymrk(m,n)) E Y * Now 
suppose (amn) is a finitely nonzero double sequence. Then 

1/2 
amnVmn < ( amnz 121U(IOmrkrk(m,n))) 

1 

< KGIIUII ( amn 121Xmrk(m, n12) 

-KGIIUII (z (zIamn12) I2)12 x 

- KGIIUII (z (z IamnI2) IVein 2) 1/ 
= KG 11 Ull 11Vl(E( amn 1 

)0 mi ) 

= KG|IIUII|| Z| Vem amne1n 
m,n Y(12) 
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Here we have used Krivine's theorem twice. It follows that we can define a 
linear operator S: Y(e2) -` Y by Semn = vmn and then IISII < KGUII UIII VII. 

Similar calculations yield that for any finitely nonzero double sequence (bmn ) 
we have 

/ ~~~1/2 

Zbmnvn |< KII Ull 11 VII S (ZIbmnI2) em 
m, n Y.m nY 

Suppose then y E Y and set amn = (y, vmn). Let F be a finite subset of N2. 
Let am = (En XF(m, n)Iamn 12)1/2, and suppose the finitely nonzero sequence 
(fim) is chosen so that 11 1:/mem 1y. = 1 and Z/Jmam = II EcamemIIy. Then, 
with the convention that 0/0 = 0, 

E amnemn = E /lm(m 
(m, n)EF Y(e2) m 

=Jmo!marlamn I2= PY c ima amnv*) 
(m, n)EF (m, n)EF 

? IIYIIY Z firnomrn1arnnV7<n ? KGIIUIIIIVIIIIyIIy. 
(m, n)EF Y. 

Thus for each F the map TF: Y ` Y(i2) given by 

TFY = Z (y, Vm*n)emn 
(m, n)EF 

has norm at most KG II UII II VII. More generally, we have 

|| TFYII < KGII11UllIIIVII IIXAFYII 
where AF = U(m, n)EF Amn- 

It follows that for each y E Y the series Zm,n(Y, Vm*n)emn converges (un- 
conditionally) in Y(e2). We can thus define an operator T: Y -) Y(e2) by 
Ty = Em,n(Y, Vmn)emn and 11TIh < KG 1Ull11 VII. 

Now notice that TS(emn) = cmnemn where Cmn = (Vmn , Vm7n). But 

(Vmn, Vmn) = (Vmn, V*q /m rk(m, n)) 

> (U(Omrk(m,n)) V* (/mrk(m,n))) - 'ill ViII m lIxI 

= (Om Y '/m) - 111 VIIk Vmllx- > 1 -II VUIIUll > 1/2. 

Thus TS is invertible, so it follows that Y(i2) is isomorphic to a complemented 
subspace of Y. It then follows from the Pelczyfiski decomposition technique 
that Y Y(V2); more precisely, Y Y(e2) e W for some W and so Y 
Y(e2)E(Y(e2)eW) Y(e2)eY Y(e2). The conclusion follows from Corollary 
2.2. 0 

Remark. The order continuity of the Banach lattice X is essential. In [14] 
a nonatomic Banach lattice X (actually an M-space) was constructed which 
is isomorphic to co. In particular, X has an unconditional basis but is not 
isomorphic to X(V2)- 
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Theorem 2.4. Let Y be a Banach space with an unconditional basis. Then Y 
is isomorphic to an order-continuous nonatomic Banach lattice if and only if 
Y r Y2). 

Remark. Here again we regard Y as an order-continuous Banach lattice. 

Proof. One direction follows immediately from Theorem 2.3 and Corollary 
2.2. For the other direction, it is only necessary to show that if Y - Y(2) 
then Y is isomorphic to order-continuous nonatomic Banach lattice. To this 
end we introduce the space Y(L2); this is the space of sequences of functions 
(fn) in L2[0, 1] such that EIIfn lj2en converges in Y. We set II(fn)IIY(L2) = 
11 E IIfn II2en 1Iy. It is clear that Y(L2) is an order-continuous Banach lattice. 
Now if (gn) is an orthonormal basis of L2, we define W: Y(e2) -k Y(L2) 
by W(Zmnamnemn) = (Enamngn)m=I and it is easy to see that W is an 
isometric isomorphism. O] 

Proposition 2.5. If X is a nonatomic order-continuous Banach lattice with un- 
conditional basis, then X - X e X and X - X E) R. 

Proof. Both facts follow from Theorem 2.3. o 

Note that for spaces with unconditional basis both properties do not hold in 
general (see [5, 6]). 

Proposition 2.6. Let X be an order continuous nonatomic Banach lattice with 
an unconditional basis, and let Y be a complemented subspace of X. Assume 
that Y contains a complemented subspace isomorphic to X. Then X Y. 
Proof. The proof is a repetition of the proof of Proposition 2.d.5. of [16]. 0 

3. HARDY SPACES 

We recall that HI (Tn) is defined to be the space of boundary values of func- 
tions f holomorphic in the unit disk D and such that 

S j If(reitl , reit2, ..., reitn )dtldt2. dtn < xc. 
O<r< 1IT 

The basic theory of such spaces is explained in [18]. 
Let us consider first the case n = 1 . Then RH, is defined be the space of real 

functions f E L1 (T) such that for some F e HI (T) we have RF = f. RH1 is 
normed by JlfJII + min{lIFIH, : RF = f}. Then HI is isomorphic to the com- 
plexification of RH, and, further, when considered as a real space is isomorphic 
to RHI. Further it was shown in [ 17] that RH, has an unconditional basis and 
is isomorphic to a space of martingales HI (3). To define the space HI (3) let 
(h,)n>l be the usual enumeration of the Haar functions on I = [0, 1] normal- 
ized so that llhnl oo = 1. Then suppose f E L1 is of the form f = ,anhn . We 
define Ilf II*H () = f(n an a2hn2)112dt and H1(a) = {f: IIfIiH1(3) < oo}. 

These considerations can be extended to the case n > 1. In a similar way, 
H1 (Tn) is isomorphic to the complexification of, and is also real-isomorphic 
to, a martingale space H1 (3n). Here we define for al E X = Nn the function 
ha E L1(In) by ha(tl, ... * tn) = IJhak (tk). Then HI (3) consists of all f = 

ZaE.*' a,,h, such that IIfIIH1(3n) = f(E Ia.12h2)1/2dt < 00. 
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It is clear from the definition that the system (h,) , E, is an unconditional 
basis of H1(3n). We can thus define a space H1(3n, t2) = H(6n))(t2) as in 
? 1; since HI (3n) has cotype two, this space is isomorphic to Rad HI (3n). The 
following theorem is due to Bourgain [2]: 

Theorem 3.1. HI (3, ?2) is not isomorphic to a complemented subspace of HI (3). 

In a subsequent paper [3] Bourgain implicitly extended this result to higher 
dimensions. 

Theorem 3.2. For every n = 1, 2, ... the space HI (3nf, ?2) is not isomorphic 
to any complemented subspace of H1 (3n) . 

Sketch of proof. For n = 1 this theorem is proved in detail in [2]. The sub- 
sequent paper [3] states only the weaker fact that HI (3n) is not isomorphic to 
HI (3n+l). His proof, however, gives Theorem 3.2 as well. All that is needed 
is to change in ?3 of [3] condition (m+1) and Lemma 4. Before we formu- 
late the appropriate condition we need some further notation. By BMO(3n) 
we will denote the dual of HI (3n) and by BMO(3n, t2) we will denote the 
dual of HI (3nf, t2) . The space H1 (3nf, ?2) has an unconditional basis given by 
(hcf ? ek)aE-eA, kEN . In our notation from ?2 ha ? ek is a sequence of HI(3n)- 
functions which consists of zero functions except at the kth place where there 
is hc, . The same element can be treated as an element of the dual space. Note 
that the natural duality gives 

finlh,l when a= a' and k=k', 
(h aek, a ?ek') = { O otherwise. 

Now we are ready to state the new condition (m + 1): 
Let D1: HI( n, ?2) - HI(3n) and 4): BMO(3n, ?2) - BMO(6n) be 
bounded linear operators (note that (Dx is not the adjoint of (D). Then for 
every e > 0 there exists a set A c A' such that EA Iha l = 1 and integers 
kc, for a E A such that 

E I)(hct (s ekJI - {?Dx (hc, (8 ek,,) I < 
aEA 

With this condition one can repeat the proof from [3] and obtain the theo- 
rem. 0 

Corollary 3.3. We have 

?2 cHI() C HI(, ?2)6 H1(22)H(2,?2) . 

where X c Y means that X is isomorphic to a complemented subspace of Y 
but Y is not isomorphic to a complemented subspace of X. 
Proof. It is well known and easy to check that the map hc,ek @ 4 hc (t, I *, tn) 

rk(tn+I) where rk is the kth Rademacher function gives the desired comple- 
mented embedding. That no smaller space is isomorphic to a complemented 
subspace of a bigger one is the above theorem of Bourgain. Lu 

Corollary 3.4. The spaces H1(3fn) is not isomorphic to a nonatomic Banach 
lattice for n = 1, 2, .... The spaces HI (3nf, t2) are each isomorphic to a 
nonatomic Banach lattice. 
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Proof. The first claim follows directly from Theorems 3.1, 3.2, and 2.3. We only 
have to observe that (since HI (3) does not contain any subspace isomorphic 
to c0 and indeed has cotype two) any Banach lattice isomorphic as a Banach 
space to HI (3) is order continuous (see [16, Theorem l.c.4]). The second 
claim follows from Corollary 2.4. 0 

Remark. For Hp(Tn) with 0 < p < xo we have the following situation. When 
1 < p < x the orthogonal projection from Lp(Tn) onto Hp(Tn) is bounded 
so then Hp(Tn) is isomorphic to Lp (Tn) . This implies in particular that these 
spaces are isomorphic to nonatomic lattices. When 0 < p < 1 then Hp (Tn) 
admit only purely atomic orders as a p-Banach lattices. To see this observe 
that if X is not a purely atomic p-Banach lattice then its Banach envelope 
(for definition and properties see [11]) is a Banach lattice which is not purely 
atomic. On the other hand it is known that the Banach envelope of Hp (Tn) 
is isomorphic to ? 1. For n = 1 this can be found in [11, Theorem 3.9], for 
n > 1 the proof uses [ 19, Theorem 2 ' ] but otherwise is the same; alternatively 
see [1 1, Theorem 3.5] for a proof using bases. When we compare it with the 
observation from [1] mentioned in the Introduction, that El is not isomorphic 
to any nonatomic Banach lattice, we conclude that the spaces Hp (Tn) cannot 
be isomorphic to any nonatomic p-Banach lattice. 

Remark. For the dual spaces HI (Tn)* = BMO(Tn) the situation is rather dif- 
ferent. We first observe the following proposition: 

Proposition 3.5. For any Banach space X the spaces i (X)*(= 4oc(X*)) and 
L1 ([O, 1], X)* are isomorphic. 

Proof. Clearly 1 (X)* is isomorphic to a one-complemented subspace of 
LI(X)*. Now let Xn,k = X((k-1)2-n,k2-n) for 1 < k < 2n and n = 0, 1, .... Let 
T: El(X) - L1(X) be defined by T((Xn)) = XnXm,k where n = 2m + k - 1. 
Let L1 ('9N, X) be the subspace of all functions measurable with respect to the 
finite algebra generated by the sets ((k - 1)2-N, k2N-N) for 1 < k < 2N, and 
define SN: L1 (RN; X) -+ eI (X) by setting S((X ?XN, k) to be the element with 
x in position 2N + k - 1 and zero elsewhere. Then applying [22, II.E, Exercise 
7] (cf. [8, Proposition 1]), we obtain that L1 (X)* is isomorphic to a comple- 
mented subspace of El (X)*. Then by the Pelczyfiski decomposition technique 
we obtain the proposition. 0 

Now from Proposition 3.5, observe that, since H1 (Tn) - El (H1 (Tn)) , we have 
L1 (HI (Tn))* - BMO(Tn), and clearly this isomorphism induces a nonatomic 
(but not order-continuous) lattice structure on BMO(Tn). (It is easy to see that 
a space which contains a copy of 4O, cannot have an order-continuous lattice 
structure, because it fails the separable complementation property.) 

4. Rad HI AND TENT SPACES 

The space H1 (3, t2) is, as observed in ?2, isomorphic to RadHI and has a 
structure as a nonatomic Banach lattice. The complex space Rad HI is easily 
seen to be isomorphic to the vector-valued space H1 (T, t2) consisting of the 
boundary values of the space of all functions F analytic in the unit disk D 
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with values in a Hilbert space ?2 and such that 

sup j IIF(re" )IId = lFIl < o. 
O<r< I 27 

To see this isomorphism just note that HI (T, ?2) can be identified with the 
space of sequences (fn) in H1 such that 

1I(fn)ll = j ( I fn (e)i) 1/2 < 

This is in turn easily seen to be equivalent to the norm of E rnfn in 
L2([O, 1]; H1) (see [16, Theorem l.d.6]). 

We now show that a nonatomic Banach lattice isomorphic to Rad H1 arises 
naturally in in harmonic analysis. More precisely we will show that tent space 
T1, which was introduced and studied by Coifman, Meyer, and Stein in [4], is 
isomorphic to Rad H1 . Tent spaces are useful in some questions of harmonic 
analysis (cf. [7] or [21]). They can be defined over Rn, but for the sake of 
simplicity we will consider them only over R. 

Let us fix a > 0. For x E R we define 

Fa(X) = {(y, t) E R x R+: Ix - yl < at}. 

Given a function f(y, t) defined on R x R+ we put 

lIfI | 1(1 If(y, t)I2t-2dydt) dx. 
R e(x) 

It was shown in [4, Proposition 4] that for different a 's the norms 11 * Il are 
equivalent; i.e., for 0 < a < , < oc there is a C = C(a, ,6) such that for every 
f we have 

(4.1) lIflI, < llfllfi < ClIfl>. 

This implies that the space T' = {f(y, t): IlfIla < oo} does not depend on a. 
Observe that T1 is clearly a nonatomic Banach lattice. 

The main result of this section is 

Theorem 4.1. The space T' is lattice-isomorphic to H1 (3, L2) and, hence, iso- 
morphic to Rad H1. 

Actually for the proof of this theorem it is natural to work with the dyadic HI 
space on R. This space, which we denote HI (6,), can be defined as follows: 

Let Ink = [k-2n, (k+ 1)-2n] for n, k=O, ?1, ?2... andlet hnk bethe 
function which is equal to 1 on the left-hand half of Ink, -1 on the right-hand 
half of Ink, and zero outside Ink . In other words, hnk is the Haar system on 
R. The system {hnk}n,k=O,?i,?2,... is a complete orthogonal system. For a 
function f = En k ankhnk we define its H1 (3O,)-norm by 

/ \ ~~~~1/2 

(4.2) 

IlfII 

= 
l 

(zank l2l1 

hnk 
12 

dt. 
\n,k 

That this space is isomorphic to the space H1 (3) follows from the work of 
Sjolin and Stromberg [20]. However, slightly more is true: 
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Lemma 4.2. The atomic Banach lattices H1 (3) and H1 (63) are lattice-isomor- 
phic (or, equivalently the natural normalized unconditional bases of these spaces 
are permutatively equivalent). 
Proof. For any subset V of z2 write Hsl for the closed linear span of {hnk: 
(n, k) E S'} in HI(3o). For m E Z let sfm = {(n, k): Ink c [2-m-1, 2-m]} 
and Rm = {(n, k): Ink C [-2-m, -2-m-1]. Let 0 = UmEZ(S/m U m) and 
0+ = Um>c ?m . Then it is clear that Hq and Hq, are each lattice isomorphic 
to i (HI (3)). Now HI (&,) is lattice isomorphic to Hg e Hg' where g = 
{(m, 0), (mi, -1) m E Z}. It is easy to show that Hg' is lattice isomorphic 
to L . Similarly H1 (3) is lattice-isomorphic to H1 (2+) EL , and this completes 
the proof of the lemma. 0 

Remark. Note also that HI (3) is lattice-isomorphic to i I(HI (3)). 

Proof of Theorem 4.1. We will prove that Tl is lattice-isomorphic to 
HI (3., L2). Let us introduce squares Ank c R x R+ defined as Ank = 
Ink x [2nf, 2n+l 1] for n, k = 0, ? 1, ?2 .... It is geometrically clear that squares 
{Ank}n,k=O,?1,?2,... are essentially disjoint and that they cover R x R+ . For 
j = O, 1, 2 we define 

AJk = [(k + j/3)2n% (k + (j + 1)/3)2n] x [2n 2n+11 

Note that in this way we divide each Ank into three essentially disjoint rect- 
angles. Let Di = Un, k,nk . Let T7 be the subspace of TI consisting of all 
functions whose support is contained in Di. Clearly Tl = TO e3 Tl' e T21 so it 
is enough to show that T} is lattice-isomorphic to HI (3o, L2). 

We write fi E T] as fj = En, kfnjk where fnjk = fj X XAJ . We start with 

j = 1. For any a > 0 we have 

llfl= 1 (1 IfI (y, t)I2t2dydt) dx 

(4.3) (J(X)Z ynk(y t)1 t)2 dy dt) dx 

= J| ( |J ) Ifk(y t)2t2 dydt) dx. 

If we now take a =2 we have IF(x) D AIk for all x E Ink, so from (4.3) we 
get 

(4.4) lIf'IIe j (z XInk(X)L Ifnk(Y t)n t2dYdt) dx. 

On the other hand, when we take a = 1 we have F(x)fnAnk = 0 for all 6 n 
X 0 Ink, so from (4.3) we get 

/ \ ~~~~~~~~~~~1/2 
{A 4; || { || /* |v vr YA ^ f k. y1 tA 12t -2 t 
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For each (n, k) the subspace of T' consisting of functions supported on Alk 
is easily seen to be isometric to the Hilbert space. If we fix an isometry between 
this space and ?2, we obtain from (4.2)-(4.4) that Tl is lattice-isomorphic to 
HI (3o, L2). In order to complete the proof of Theorem 4.1 it is enough to 
show that To and T2' are lattice-isomorphic to T,' . This isomorphism can be 
given by Znk f,jk Z Enk fnk * The fact that this map is really an isomorphism 
follows from 

Lemma 4.3. Let O(t) be a uniformly bounded measurable function on R+. For 
a function f defined on R x R+ we define 

A,O(f)(y, t) = f(y + to(t), t). 

Then AO : T' - T' is a continuous linear operator. 
Proof of Lemma 4.3. Since 

J|(X IA (f)(y, t)12t-2dydt=j (t-2 JAO(f)(y, t)12dy) dt 
,(x) R+ x-t 

X+cat-to(t) 
t-2 lf(y, t)12dy dt 

< a/ tI2I lf(y(, t)f2dy dt 

te ff(y, t)l2t-2dydt. 
r+l,l0OO(X) 

the lemma follows. O1 
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