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Lo-VALUED VECTOR MEASURES ARE BOUNDED 

N. J. KALTON1, N. T. PECK AND JAMES W. ROBERTS2 

ABSTRACT. Every vector measure taking values in Lo(O, 1) has bounded 
range. 

The question of whether every vector measure taking values in the space Lo(O, 1) 
is bounded was first raised by Turpin [17]. Turpin showed the existence of an 
unbounded vector measure with range in a certain nonlocally convex F-space. 
Shortly afterwards, Fischer and Scholer [3, 4] and Labuda [9] demonstrated that 
a vector measure taking values in an Orlicz space L, with X unbounded will be 
necessarily bounded. The purpose of this note is to show every Lo-valued measure 
is bounded. This result has applications to stochastic integrals [1, 13, 14, 18]. 

We shall denote by I the unit interval (0,1) and B is the family of Borel subsets 
of I. X will denote Lebesgue measure on B. The space Lo = Lo(I; B, X) consists of 
all real Borel functions on I with functions agreeing almost everywhere identified. 
This space is equipped with convergence in measure, which is F-normed by 

Ilfil = 1 f=(t) dX(t). 1' + if (t) 
A base of neighborhoods for 0 is given by sets of the form V(E, M) for E > 0, 

M > 0 where 

V(E, M) = {f E Lo: X(jf I > M) < E}. 

Let (S, E) be any measurable space. Then a (continuous) submeasure v: E - R+ 
is a set-function satisfying 

v(A) < v(A U B) < v(A) + v(B), A,B e E 

,(A,) l 0, wheneverAn 4 0. 

It is an unsolved problem (Maharam [10]) whether every continuous submeasure 
has an equivalent measure, i.e. a measure giving the same null sets. A continuous 
submeasure u induces a pseudo-metric d on E given by d(A, B) = k(AAB). We 
say E is ,-separable if (E, d) is separable; if v is a measure on a a-algebra E' then 
a map h: E -- E' is continuous if it is continuous with respect to the induced 
psuedo-metrics. 

If X is an F-space and 0: E -- X is a vector measure, then a continuous 
submeasure , is said to be a control submeamure for X if it is equivalent to the 
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submeasure 

Illll(A) = up(IJO(B)II: B e E, B C A) 
for A E E. Maharam's problem is equivalent to the problem of whether every vector 
measure with values in an F-space has a control measure (cf. [2, p. 14]). 

Some further notation will be required. If A e E (or B) then 1A denotes the 
indicator function of A, i.e. 

fi ) {, sCEA, l()10, sEOA. 

If 9 is a partition of a set A E E into sets from E, then E(9) denotes the family 
of all unions of sets from 9. 

Note. Shortly after the preparation of this paper, the authors learned that 
the same results have been obtained independently and somewhat earlier by M. 
Talagrand [19]. Talagrand's proof of Theorem 1 is slightly different in character 
although it has some ideas in common. 

THEOREM 1. Every vector measure taking values in Lo is bounded. 

PROOF. The proof will be accomplished via several reductions of the problem. 
We shall start from the assumption that there exists an unbounded vector measure 

-: E * Lo defined on some measurable space (S, E), and derive a contradiction. 
The idea of the argument is to show that we can assume certain properties and 
these eventually lead to a contradiction. 

We denote a control submeasure for X by ,u: E -+ R+. Our first simplifying 
assumption is 

(Al) is ,u-separable and has no i-atoms. 
Clearly (Al) is justified by the fact that if X is unbounded it is also unbounded on 
some /z-separable sub-a-algebra; atoms can be discarded. 

We shall also define a set function 0: E -_ R by setting 0(A) to be the supremum 
of all a > 0 such that if M > 0 there exists B E E, B C A with 

X{t: I0(B;t)I > M} > a. 

(Here 4(B; t) = 0(B)(t).) Note that 0(S) > 0. 

LEMMA 1. If A, B E E are disjoint then 

0(A U B) < @(A) + @(B). 

PROOF. If a < 0(A U B) and M > 0 there exists C e E with C C A U B and 
X{10(C)I > 2M} > a. Hence 

X\{I(AnC)l > M}+X{10(BnC)l > M} > a. 

By letting M - oo, we see that 0(A) + 0(B) > a and the lemma follows. 

LEMMA 2. Let E C B consist of all Borel sets E such that the set {lE * 0(A): A e 
E} is bounded in Lo. Then E is a a-ideal of B; in particular if En E E (n e N) then 
UE, E E. 
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PROOF. If En E E then there exist 0 < cn < 2-n such that 

liCn * lEn * O(A)II < 2-nX A eE, n e N. 

Thus E??=l Cn q 5En * +(A) converges uniformly to h * 0(A) where h Cn * 1En 
It follows easily that {h q5(A): A E E} is also bounded. Finally if g(t) - h(t)-1 
for h(t) > 0 and g(t) = 0 otherwise, then {gh * +(A): A E E} is bounded. However 
gh = UEn 

In view of Lemma 2 we can find a set F E E of maximal measure and if E E E 
then X(E\F) = 0. We call F, which is unique up to sets of measure zero, the 
bounded support of q, and let I\F be the unbounded support of q. For each A E , 
let A* be the unbounded support of the measure B -_ q(A n B). We observe some 
simple properties of the map A -_ A* (E -_ B). 

LEMMA 3. (a) X(A*) = 0 if and only if {X(B): B C A} is bounded. 
(b) (A U B)* = A* U B* up to sets of X-measure zero for A, B E E. 
(c) O(A) < X(A*), A e E. 
(d) If p(AAB) = 0 then X(A*AB*) =0, A,B E E. 

The proofs of these statements are almost immediate. 
The next lemma is, however, crucial in the development of the proof of the 

theorem. 

LEMMA 4. Givenc > 0 there exists S > 0 such that,s(A) < implies X(A*) < E. 
Hence, if A, B E E and ,u(AAB) < 6 then X(A*AB*) < E. 

PROOF. Given E > 0 choose 6 > 0 such that ,u(A) < 6 implies 0(A) E 
V(E/256,1). Fix any A E E with ,u(A) < 6 and let 9 {B,..., Bn} be any 
partition of A. 

Let fi = q(Bi) (1 < i < n) and let {gj: 1 < j < 2n} be some ordering of 
the functions En 1 aifi over all choices of signs ai = +1. We consider the map 
T: 11 -_ L0 defined by 

2n 

T(() E (igi for E (ti) C 11. 

The set K = {T((): 1111 < 1} is exactly the absolutely convex hull of the set 

If h E K then h = En cjfj where -1 < cj < 1. Now by a lemma 
of Musial, Wojczyiiski and Ryll-Nardzewski [15] (essentially the same lemma is 
originally found in Maurey-Pisier [12]), there is a probability measure P on the set 
Q { -1, +1}n so that for any xi, . . ., xn E R 

p{ w 1: Xi(W)xi > iCcixi} >?A 

where Xi: Q -_ {-1, +1} is the ith coordinate map. 
Let E ={t: I E cifi(t)I > 16}. Then for t E E 

P{w: E IEXifi(t) > 2} > A 

and so P0 X{(w, t): I E Xif I > 2} > kX(E). 
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However for each w E Q2, >jXifi E V(e/128,2) and hence kX(E) < e/128 or 
X(E) < e/16. Thus h E V(e/16, 16). 

We now apply Niki?in's theorem [16] to the operator T. By examining the proof 
given in [5] it can be seen that there is a Borel set E with X(E) > 1 - e and 

X[(IT I > r) nE] < 1024/er, 0 < r < oo. 

(An alternative approach to this step may be obtained from results in a forthcoming 
paper [6].) 

Let d9 - 1E. Then for B E E(9) 

f d9I(B; t)1l/2dt = Jk(B; t)11/2dt < 2048/e. 

Consider dg E Loo(O, 1) as a net over all partitions of A ordered by refinement. 
Then {dg} has a cluster point a, 0 < a < 1, a.e. f a(t)10(B; t)j1/2 dt < 2048/c for 
B E E with B C A. Now f a(t)dt > 1 -e and so, if b(t) = a(t)-1 for a(t) > 0 
and b(t) = 0 otherwise, b. a = 1F where X(F) > 1 - e. The set {1F * +(B): B E 
, B C A} is thus bounded in Lo and so I\F D A*, i.e. X(A*) < c. 

We now come to our second reduction of the problem. We can assume 
(A2) p is a probability measure on E. 
Jwtification of (A2). For each partition 9 of S, 9 - {B1, ... , B4 define 

{Ci: I < i < n} in B by Ci =B!*\ Uj<i Bj*. Define for A E E 

V9 (A) = {ZX(Ci): Bi nfA# 0}. 

Then vg is additive on E(9), monotone and v,g(S) = X(S*) > 0. Denote by v any 
pointwise cluster point of the net {fv} of set functions on E. Then v(S) =(S*), 
v is additive and monotone and v(B) < X(B*), B E E. Hence by Lemma 4, v is 
,u-continuous. It follows that v is countably additive and there is a subset A E E so 
that v(A) > 0, and if B C A with B E E then v(B) = 0 if and only if u(B) = 0, 
i.e. v and it are equivalent on E n A. 

We now achieve our reduction by replacing q by its restriction to A and tu by 
v(A)-1v. The new 5 is still unbounded since X(A*) > v(A) > 0, and of course 
assumption (Al) remains in force. 

Our third reduction is that we can assume 
(A3) X(A* n B*) = 0 whenever An B 0. 
The justification of (A3) is partially based on an argument of Kwapien [8]. 
Justification of (A3). Let {B,l,k: 1 < k < 2n} be, for each n, a partitioning of 

S into sets of M-measure 2-n so that 

Bn,k = Bn+1,2k-1 U Bn+k,2k, 1 < k < 2n, n E N, 

and {Bn,k: 1 < k < 2n, n E N} is it-dense in E. 
For given e > 0 there exists 6 so that ,u(A) < 6 implies X(A*) < e. For each n 

let m = m(n) = [E * 2n]. 
Let O/bn E Lo be defined by 

2n 

lPn = Xn,k, where Xn,k = Bnk 

k=1 
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Then {4'n} is monotone increasing in Lo and integer-valued. 
For any m-subset J of {1,2, ..., 2n}, 

Jmaj Xn, i(t)dt < K 

and summing over all such sets, 

| max X,i (t) dt < ( El 

or 
j (2) (2f 1Pn(t))dt 2n 

om m J-mJ 
(2n f-n(t) )2n) 2n rm 2n - M n(t) + 1 

< m km 2n 2n n(t) + 1 

< ( )( m)n( < (2) 2'ii)nt 

whenever 2n > 6'. Thus 
inr1 ( O )bn(t) 

Applying this to every e > 0 we conclude that sup On = 4' < 00 a.e. 
Of course, since 4 is unbounded, we must have 4'> 0. Hence there exists Fo E B 

with X(Fo) > 0 and n E N so that 

On(t) = OW > O, t E Fo. 
Now there exists k, 1 < k < 2n with X(B*,k n Fo) > 0. Let F = B*,k f Fo. 

Since for m > n, 2`1 Xm,j = m = On on F, we must have (for fixed m), 

E Xm,j(t) 1 t E F 
Bm,nj C B,k 

so that the sets {B fl nF: Bm,j C Bn,k} intersect only in sets of X-measure zero. 
It follows quickly from the s-X-continuity of the map A -+ A* that if A1, A2 E E 

with A1 n A2 0 and A1, A2 C Bn,k then 

X(FnA; nA,4) =?. 

Now we achieve our reduction by replacing 0 by the measure O', restricted to 
Bn,k n F, q'(A) = 1F * O(A), A E E, A C Bn,k n F. It is again clear that 4' is 
unbounded and we can obtain (A2) by renormalizing It. It is not difficult to see 
that our procedure replaces (for A C Bn,k), A* by F n A* (up to sets of measure 
zero) and so (A3) now holds. 

Under the assumptions (A1)-(A3) we now prove 

LEMMA 5. Given any e > 0, disjoint sets Al.. *An E E and M > 0, there exist 

Bi C A, Bi E E 80 that for every subset J of (1, 2, ..., n} 

i0 U BI U U (Ai\B.)) > M 
ioJ i si 

on a set of measure at least I:n= 1 (A,) -. 
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PROOF. We may choose a constant K so large that 
(i) 1IA4A-O(Ci) E V(E/4n2, K), Ci C A, 
(ii) k(Ai) E V(E/4n, K), 1 < i < n. 
Choose Bi C A, Bi E E so that X{kk(Bi)l > nK + M} > 6(Aj) - E/4n. 

For J C {1, 2, ...,2n}, let C = UiEJBi U Ui,J(Az\Bi). Then for each i let 

Ei= {t: Ik(Bi; t)I > nK + M, t E A*}. Then X(Ei) > 9(A,) - E/4n - E/4n2 > 

6(A) -E/2n. If t E Ei and i E J then 

kk(C; t)I > k(Bi; t) -(n -1)K > M 

except on a set of measure at most (n - 1)E/4n2 < c/4n. (Here we use the fact 
that the sets A: are almost disjoint and (i)). 

If t E Ei and i 0 J then 

Ik(C;t)I > [(Bi;t) (n -1)K I-(Ai;t)I ? M 

except on a set of measure at most E/4n. Hence X{10(C)I > M} > En 9(Ai) -E 

as the sets {Ei: 1 < i < n} are almost disjoint. 

LEMMA 6. 9 is a measure on E which is A-continuous. 

REMARK. Of course (A1)-(A3) are in force here. 
PROOF. By Lemma 1, 9(A U B) < 9(A) + 9(B) and by Lemma 5, 9(A U B) > 

9(A) + 9(B) for disjoint A, B. As 9(A) < X(A*) and by Lemma 4, A -+ A* is 
continuous, we must have that 9 is ts-continuous and countably additive. 

We now make a further reduction; we may assume 
(A4) There is a constant p, 0 < p < 1, so that 9(A) = pL(A), A E E. 
Justification of (A4). Since 9 is A-continuous and nonzero (k is unbounded), there 

is a subset B E E so that 9(B) > 0 and 9 and A are equivalent on E n B. Restrict 

0 to B and redefine A(A) as 9(B)-1'(A) for A E E n B. Let p = 9(B) and (A4) wiRl 

hold. Of course since 9(B) > 0, 4 is stil unbounded. 
Under assumptions (A1)-(A4) we now prove 

LEMMA 7. Let Eo be a finite subalgebra of E and suppose E, M > 0. Then there 
is a set C E E independent of Eo with l.(C) = so that 

X{1I(C)I 2 M} p -E. 

PROOF. Let Al, ... ,An be the atoms of Eo. Choose N sufficiently large so 
that 1.(B) < n/N implies q(B) E V(E/2, 1). Subdivide each A, into N disjoint sets 

(Aj: 1 < j < N) of ts-measure A(4A)/N. Now use Lemma 5 to produce Bij C Aj 
so that for any subset J of L = {(i, j): 1 < i < n, 1 < j < N}, 

x{ (u Bij U U (AIj\Bij)) M + 1} > P-2 

By appropriate choice of J we may suppose that if D = UJ Bij U UL\J(Aij\Bij), 
then 

JA(A4) < s(D n A.) < JA(A-) + N-1 

for each fixed i. Choose Di E E, Di C D n A, so that s(Di) = iJ(Ai). Let 
C = UDi. Then lA(D\C) < n/N, and X{10(C)l 2 M} 2 p - E as required. 
Clearly C n A, Di 



Lo-VALUED VECTOR MEASURES 581 

We now are in position for the final step in the theorem. Assumptions (A1)-(A4) 
remain in force. First we determine 6 > 0 so that /s(A) < 6 implies that +(A) E 
V(p/50, 1). Next select an integer r so that (1 - 6/2)t < 9/25. Select a further 
integer N so that 2N > 6b- and N > 2r+2/p and a constant K, K > 2N+2. 

We select, by induction, a sequence {Cn: 1 < n < N} of sets in E and an 
increasing sequence of constants {Mn: 1 < n < N} so that 

(i) ji(Cn) = i, 1 < n < N, 
(ii) Cn is independent of the algebra generated by {C1, ... , Cn-1} for n > 2, 

(iii) X{l0(Cn)1 > Mn} < p/16N, 
(iv) X{I4(Cn+1)1 > Mn + K} > ip, n > 1, 
(v) X{10(Cl)l > K} > ip. 
Clearly Lemma 7 implies we can make such a construction. Set Mo = 0 for 

convenience and 

En { t: I40(Cn; t)l > Mn-, + K}, n= 1,2, ... ., N. 

Then EN X(En) > iNp. Hence the set of t which belongs to at least iNp of 
the sets En has measure at least ip. Now use (iii) as well to produce a set F C I 
with X(F) > 3p/16 such that if t E F, then t E En for at least iNp sets En and 
O(Cn; t) I < Mn for all n, 1 < n < N. 

Let A1,... , A2N be the atoms of the finite algebra generated by {C1, ,CN} 
so that u(Ai) 2-N. Let fi = 4(Ai). Let ui(t) (t E I) be the decreasing 
rearrangement of the finite sequence {lfi(t)l, 1f2(t)I,..., If2N(t)I}. 

For fixed t E F, let il, . . ., ir be chosen to be distinct and so that Ifik(t)lI Uk(t), 

1 < k < r. Since * Np > 2T there are two distinct indices m and n such that 
Aik C Cm if and only if A,k C Cn (for 1 < k < r), and t e Em n En . Hence 

2N 

k/(Cn; t) - b(Cm; t)l < E: Uk(t) < 2Nu,(t). 
i=Tr+1 

However, if n > m, I4O(Cn; t)I > Mm + K and IO(Cm; t)I < Mm so that we 
conclude 

uT(t) > K/2 > 4 t E F. 

Now choose q E N so that i6 < q 2-N < 6; this is possible since 2N > 6-1. 

We introduce two sets of random variables {X1,...,X2N}, {Y1,..., Y2N} defined 
on some (finite) probability space 0. The joint distribution of {Xi: i < 2 } is such 
that a q-subset of {1, 2, ... , 2N} is chosen at random and Xi = 1 or 0 according as i 
belongs to this subset or i fails to belong to the subset. {Y1, ... , Y2N} are mutually 
independent and independent of {XI, . . . , X2N} with P(Yi = 1) = P(Yi = -1) 

1:N For any w e 0l, i=i Xi(w)Yi(w)O(Ai) E V(p/25, 2). For fixed t e (0,1), suppose 
as above i1,. . . ,i are distinct indices so that Uk(t) = Ifik(t)I, 1 < k < r. Let Qk 

(1 < k < r) be the event that Xi = .= Xi,, =O but Xik 1. Then by 
symmetry P{w E Qk: I> EXiYifi(t)1 > Uk(t)} > JP(0k). Hence 

P{IJXiYifi(t)| > Ur(t)} > (P U Qk) 
q 

- (1 q)7) 

>2t1-1- 2 J>25' 
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Now P 0 X{(w, t): I EXiYifiI > 2} < p/25 and hence X{t: ur(t) > 2} < p/8. 
Thus X(F) < p/8. However we originally showed X(F) > 3p/16 so that we have 
arrived at the desired contradiction and the proof of the theorem is complete. 
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