
Math. Ann. (2008) 341:223–237
DOI 10.1007/s00208-007-0190-3 Mathematische Annalen

The coarse Lipschitz geometry of � p ⊕ �q

Nigel J. Kalton · N. Lovasoa Randrianarivony

Received: 2 May 2007 / Revised: 19 September 2007 / Published online: 1 December 2007
© Springer-Verlag 2007

Abstract We show that for 1 < p < ∞ with p �= 2 the space L p(0, 1) is not
uniformly homeomorphic to �p ⊕ �2. We also show that if 1 < p < 2 < q < ∞
the space �p ⊕ �q has unique uniform structure, answering a question of Johnson,
Lindenstrauss and Schechtman (Geom. Funct. Anal. 6:430–470, 1996).
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1 Introduction

In this note we study some problems raised ten years ago in [11]. In [11] it was shown
that �p has unique uniform structure for 1 < p < ∞ in the sense that if X is a Banach
space uniformly homeomorphic to �p then X is linearly isomorphic to �p. It is not
known if the same result can be proved for the function spaces L p = L p(0, 1) for
1 < p < ∞ with p �= 2 (see [11, p. 465]) It is known, however ([2, Theorem 10.5],
[8]) that any Banach space X uniformly homeomorphic to L p (1 < p < ∞, p �= 2)
must be a Lp−space (i.e. a complemented subspace of L p not isomorphic to a Hilbert
space). The simplest candidate space is �p ⊕ �2, and the question whether �p ⊕ �2 has
unique uniform structure was raised in [11, p. 465].
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224 N. J. Kalton, N. L. Randrianarivony

Here we show that �p ⊕�2 is not uniformly homeomorphic to L p; this question was
raised originally by Bill Johnson. In fact we show that if 1 ≤ p < 2 it is not uniformly
homeomorphic to any Banach space containing a copy of �r where p < r < 2. We
also show that for 1 ≤ p < ∞ and p �= 2, �p ⊕ �2 is not uniformly homeomorphic
to any Banach space containing

(∑
�2

)
�p

.
A related problem is the question of the uniqueness of uniform structure of �p ⊕ �q

when 1 < p < q < ∞. In the case p < q < 2 and 2 < p < q this is established in
[11]. We show uniqueness for the case p < 2 < q , answering Problem 1(e) of [11].

Our results depend on the use of two basic techniques. The first is the midpoint
principle which is a classical technique in nonlinear theory [2, p. 229]. The second tech-
nique is new and depends on asymptotic smoothness ideas (see Sects. 4, 6). Roughly
speaking midpoint principles can be applied to maps from �p to �q when q < p
(corresponding to the case when all linear operators are compact) and asymptotic
smoothness techniques apply when q > p (corresponding to the case when all linear
operators are strictly singular).

2 Coarse Lipschitz maps and embeddings

Let M1 and M2 be unbounded metric spaces and suppose f : M1 → M2 is any map.
We define

ω f (t) = sup{d( f (x), f (y)) : d(x, y) ≤ t}, t > 0.

Then f is said to be uniformly continuous if limt→0 ω f (t) = 0. We say that f is
coarsely continuous if we have ω f (t) < ∞ for some t > 0.

We will also define

Lips( f ) = sup
t≥s

ω f (t)

t
, s > 0

and then

Lip( f ) = sup
s>0

Lips( f ), Lip∞( f ) = inf
s>0

Lips( f ).

f is a Lipschitz map if Lip( f ) < ∞ (and then f is uniformly continuous) and is a
coarse Lipschitz map if Lip∞( f ) < ∞ (and then f is coarsely continuous).

If f is bijective then f is a uniform homeomorphism, (respectively, coarse homeo-
morphism, Lipschitz homeomorphism, coarse Lipschitz homeomorphism) if f, f −1 are
uniformly continuous, (respectively, coarsely continuous, Lipschitz, coarse Lipschitz).
Coarse Lipschitz homeomorphisms are essentially the same as homeomorphisms
between nets as discussed in [2,11].

If X and Y are Banach spaces, then any coarsely continuous map is automatically
coarse Lipschitz since ω f is subadditive. This leads us to the following well-known
principle (known to specialists as the “Lipschitz for large distances” principle):
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The coarse Lipschitz geometry of �p ⊕ �q 225

Proposition 2.1 Suppose X and Y are uniformly homeomorphic or more generally
coarsely homeomorphic Banach spaces. Then X and Y are coarse Lipschitz homeo-
morphic and there is a bijection f : X →Y such that 0<Lip∞( f ), Lip∞( f −1)<∞.

Proof We only need to prove the last statement in view of the remarks above. This
follows from the following lemma. ��
Lemma 2.2 Let X, Y and Z be Banach spaces and suppose f : X → Y and g :
Y → Z are coarse Lipschitz maps. Then g ◦ f is coarse Lipschitz and Lip∞(g ◦ f ) ≤
Lip∞( f )Lip∞(g).

Proof Let α = Lip∞( f ) and β = Lip∞(g). Thus if α′ > α, β ′ > β there are
constants a, b such that

‖ f (x1) − f (x2)‖ ≤ α′‖x1 − x2‖ + a, x1, x2 ∈ X

and

‖g(y1) − g(y2)‖ ≤ β ′‖y1 − y2‖ + b, y1, y2 ∈ Y.

Thus

‖g ◦ f (x1) − g ◦ f (x2)‖ ≤ α′β ′‖x1 − x2‖ + β ′a + b, x1, x2 ∈ X.

This proves that Lip∞(g ◦ f ) ≤ αβ. ��
If X and Y are Banach spaces and f : X → Y is a coarse Lipschitz homeomor-

phism onto f (X) then we say that f is a coarse Lipschitz embedding. The basic idea
of the arguments in this paper is to investigate spaces which can be coarse Lipschitz
embedded into a direct sum �p ⊕ �q where 1 ≤ p < q < ∞. This will enable us
to prove results on uniform homeomorphisms (or more generally coarse homeomor-
phisms), because if X is uniformly homeomorphic to �p ⊕�q then any closed subspace
Y of X coarse Lipschitz embeds into �p ⊕ �q .

Let us also note here one very well-known result, which we restate in this language:

Proposition 2.3 If there is a coarse Lipschitz embedding of a Banach space X into a
Banach space Y then X is crudely finitely representable in Y.

See Corollary 10.2 of [2] (these ideas go back to [8,16]).

3 The midpoint technique

Given a metric space X , two points x, y ∈ X , and δ > 0, the approximate metric
midpoint between x and y with error δ is the set:

Mid(x, y, δ) =
{

z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + δ)
d(x, y)

2

}
.
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226 N. J. Kalton, N. L. Randrianarivony

The use of metric midpoints in the study of nonlinear geometry was first introduced
by Enflo in an unpublished paper where he showed that L1 and �1 are not uniformly
homeomorphic. It has since been used elsewhere, for example to complete the study
of the uniform structure of �p for 1 < p < ∞ (see e.g. [3,6,11]).

Proposition 3.1 Let X be a Banach space and suppose M is a metric space. Let
f : X → M be a coarse Lipschitz map. If Lip∞( f ) > 0 then for any t, ε > 0 and
any 0 < δ < 1 there exist x, y ∈ X with ‖x − y‖ > t and

f (Mid(x, y, δ)) ⊂ Mid( f (x), f (y), (1 + ε)δ).

Proof This is well-known (see e.g. [2, Lemma 10.11]) but we include the proof for
completeness. Notice that since X is a Banach space, Lip∞( f ) = infs>0 Rs( f ) where

Rs( f ) = sup

{
d( f (x), f (y))

d(x, y)
: d(x, y) ≥ s

}
.

Suppose t, δ, ε are given. For any ν > 0 we may find s > t so that Rs( f ) <

(1 + ν)Lip∞( f ). Suppose x, y are chosen so that ‖x − y‖ ≥ 2s(1 − δ)−1 and
d( f (x), f (y)) > (1−ν)Lip∞( f )‖x − y‖. Let u ∈ Mid(x, y, δ). Then ‖x −u‖, ‖y −
u‖ > s and so

max(d( f (x), f (u)), d( f (y), f (u))) ≤ 1

2
(1 + ν)(1 + δ)Lip∞( f )‖x − y‖.

But this implies

max(d( f (x), f (u)), d( f (y), f (u))) ≤ 1

2

1 + ν

1 − ν
(1 + δ)d( f (x), f (y)).

By appropriate choice of ν > 0 we obtain the proposition. ��
The next lemma is also very well-known.

Lemma 3.2 Suppose 1 ≤ p < ∞ and let (X j )
∞
j=1 be a sequence of Banach spaces.

Suppose x, y ∈
(∑∞

j=1 X j

)

�p
. Let u = 1

2 (x + y) and v = 1
2 (x − y). Then for

0 < δ < 1, there is a closed subspace E of the form E = {w = (w j )
∞
j=1 : w j =

0, 1 ≤ j ≤ N } so that

u + δ1/p‖v‖BE ⊂ Mid(x, y, δ).

Proof For p = 1 this is trivial; we suppose p > 1. Write v=(v j )
∞
j=1 ∈

(∑∞
j=1 X j

)

�p
.

Suppose 0 < ν < (((1 + δ)p − 1)1/p − δ1/p)‖v‖. Pick N so that
∑

j>N ‖v j‖p < ν p.

Let E = [X j ] j>N . If z ∈ E and ‖z‖ < ((1 + δ)p − 1)1/p‖v‖ − ν then u + z ∈
Mid(x, y, δ). ��
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The coarse Lipschitz geometry of �p ⊕ �q 227

Lemma 3.3 Suppose 1 ≤ p < ∞ and that x, y ∈ �p. Let u = 1
2 (x + y) and

v = 1
2 (x − y). Then for 0 < δ < 1, there is a compact set K so that

Mid(x, y, δ) ⊂ K + 2δ1/p‖v‖B�p .

Proof Suppose ν > 0. Let v = (v j )
∞
j=1 ∈ �p. Pick N so that

∑
j>N |v j |p < ν p. Let

E = [e j ] j>N . If u + z ∈ Mid(x, y, δ) write z = z′ + z′′ where z′ ∈ [e j ] j≤N and
z′′ ∈ [e j ] j>N . Then ‖z′‖ ≤ (1 + δ)‖v‖ so that u + z′ ∈ K := u + (1 + δ)‖v‖B[e j ]N

j=1
.

Now

1

2
(‖v + z‖p + ‖v − z‖p) ≥ ‖v‖p − ν p + ‖z′′‖p

so that

‖z′′‖p ≤ ((1 + δ)p − 1)‖v‖p + ν p.

Observe that (1 + δ)p − 1 < 2pδ for 0 < δ < 1. For an appropriate choice of ν we
obtain the conclusion. ��

It is clear that Lemma 3.3 has a simple generalization to finite direct sums:

Lemma 3.4 Suppose 1 ≤ p1 < p2, . . . < pn < ∞ and that x, y ∈ X = (�p1 ⊕ �p2

⊕ · · · ⊕ �pn )�pn
. Let u = 1

2 (x + y) and v = 1
2 (x − y). Then for 0 < δ < 1, there is a

compact set K so that

Mid(x, y, δ) ⊂ K + 2δ1/pn ‖v‖BX .

Proposition 3.5 Suppose (X j )
∞
j=1 is a sequence of Banach spaces and 1 ≤ p < r <

∞. Suppose f :
(∑∞

j=1 X j

)

�r
→ �p is any coarse Lipschitz map. Then for any t > 0,

δ > 0 there exist x ∈
(∑∞

j=1 X j

)

�r
, τ > t and a subspace E ⊂

(∑∞
j=1 X j

)

�r
of the

form E = {w = (w j )
∞
j=1 ∈

(∑∞
j=1 X j

)

�r
: w1 = . . . = wN = 0} for some N, so

that for some compact set K ⊂ �p we have f (x + τ BE ) ⊂ K + δτ B�p .

Proof If Lip∞( f ) = 0 the conclusion is trivial: for any t we can find τ > t so
that Lipτ ( f ) < δ and then we may take x = 0 and K = { f (0)}. We therefore
assume that 0 < Lips( f ) = C < ∞ for some s. Let 1 > ν > 0 be chosen so

that 4Cν1/p−1/r < δ. We first use Proposition 3.1 to find u, v ∈
(∑∞

j=1 X j

)

�r
so

that ‖u − v‖ > max(s, 2tν−1/r ) and f (Mid(u, v, ν)) ⊂ Mid( f (u), f (v), 2ν). Let
x = 1

2 (u + v) and let τ = ν1/r‖ 1
2 (u − v)‖. Then by Lemma 3.2, for some closed sub-

space E = {w = (w j )
∞
j=1 ∈:

(∑∞
j=1 X j

)

�r
: w1 = . . . = wN = 0} in

(∑∞
j=1 X j

)

�r
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228 N. J. Kalton, N. L. Randrianarivony

we have x + τ BE ⊂ Mid(u, v, ν). However, by Lemma 3.3, Mid( f (u), f (v), 2ν) ⊂
K + 21/pν1/p‖ f (u) − f (v)‖B�p for a suitable compact set K ⊂ �p. Now

21/pν1/p‖ f (u) − f (v)‖ ≤ 4Cν1/p−1/r τ < δτ.

��
Notice that the conclusion of Proposition 3.5 holds for any equivalent norm on(∑∞

j=1 X j

)

�r
. We can also replace the range by a finite direct sum of �p’s using

Lemma 3.4:

Proposition 3.6 Suppose 1 ≤ p1, p2, . . . , pn < r < ∞ and (X j )
∞
j=1 is a sequence

of Banach spaces. Suppose f :
(∑∞

j=1 X j

)

�r
→ Z :=

(∑n
j=1 �p j

)

�pn

is any coarse

Lipschitz map. Then for any t > 0, δ > 0 there exist x ∈
(∑∞

j=1 X j

)

�r
, τ > t and

a subspace E ⊂
(∑∞

j=1 X j

)

�r
of the form E = {w = (w j )

∞
j=1 ∈

(∑∞
j=1 X j

)

�r
:

w1 = . . . = wN = 0} for some N, so that for some compact set K ⊂ Z we have
f (x + τ BE ) ⊂ K + δτ BZ .

4 Asymptotic smoothness arguments

Let M be any infinite subset of N and suppose m ∈ N. Let Gk(M) be the set of all
k-subsets of M. We now define a distance on Gk(M) by setting

d((n1, . . . , nk), (m1, . . . , mk)) = |{ j : n j �= m j }|

where n1 < n2 < · · · < nk and m1 < m2 < · · · < mk . We note that the diameter
of this metric space, diamGk(M), is k. The aim of this section is to show a quantita-
tive version of the fact that Gk(M) cannot be well Lipschitz embedded into �p when
1 < p < ∞.

We remark that it is also possible for our purposes to use the (different) distance

d ′(A, B) = 1

2
|A	B|

where A = {n1, . . . , nk} and B = {m1, . . . , mk} in this context, but this form of the
distance does not allow the generalizations we consider in the last section.

Lemma 4.1 Suppose X is a Banach space and f : Gk(M) → X is any map with the
property that for some compact set K and some δ > 0 we have f (Gk(M)) ⊂ K +δBX .

Then for any ε > 0 there is an infinite subset M
′ of M so that diam f (Gk(M

′)) ≤
2δ + ε.

Proof We can write f = g + h where g : Gk(M) → K and h : Gk(M) → δBX . By
standard Ramsey theory we can then find M

′ so that diam g(Gk(M
′)) < ε and the

lemma follows. ��

123



The coarse Lipschitz geometry of �p ⊕ �q 229

Theorem 4.2 Suppose 1 < p < ∞. Let X be a reflexive Banach space with the
property that if x ∈ X and (xn)∞n=1 is a weakly null sequence in X we have

lim sup ‖x + xn‖p ≤ ‖x‖p + lim sup ‖xn‖p. (4.1)

Then if M is an infinite subset of N, ε > 0 and f : Gk(M) → X is a bounded map,
there exists an infinite subset M

′ of M so that

diam f (Gk(M
′)) < 2Lip( f )k1/p + ε.

Proof We show by induction on k that given any bounded f : Gk(M) → X and
ε > 0, there exist an infinite M

′ ⊂ M and u ∈ X so that

‖ f (n1, . . . , nk) − u‖ < Lip( f )k1/p + ε/2, {n1, . . . , nk} ∈ Gk(M
′).

In the case k = 1 we pass to a subsequence M0 of M so that

lim
n∈M0

f (n) = u

exists weakly. Then

lim
n∈M0

‖ f (n) − u‖ ≤ lim
n∈M0

lim
m∈M0

‖ f (n) − f (m)‖ ≤ Lip( f ).

We obtain the inductive statement by discarding finitely many points from M0.

Now assume the theorem is proved for k − 1 and f : Gk(M) → X is bounded. We
may then find an infinite subset M0 so that

lim
nk∈M0

f (n1, . . . , nk) = f̃ (n1, . . . , nk−1)

exists weakly for (n1, . . . , nk−1) ∈ Gk−1(M). The map f̃ : Gk−1(M) → X satisfies
Lip( f̃ ) ≤ Lip( f ). By the inductive hypothesis we can find an infinite M1 ⊂ M0 and
u ∈ X so that for all (n1, . . . , nk−1) ∈ Gk−1(M1),

‖ f̃ (n1, . . . , nk−1) − u‖ < Lip( f̃ )(k − 1)1/p + ε/4.

Thus, writing n = (n1, . . . , nk−1),

lim sup
nk∈M1

‖ f (n, nk) − u‖p ≤ (Lip( f̃ )(k − 1)1/p + ε/4)p

+ lim sup
nk∈M1

‖ f (n, nk) − f̃ (n)‖p.

123



230 N. J. Kalton, N. L. Randrianarivony

Now

lim sup
nk∈M1

‖ f (n, nk) − f̃ (n)‖p ≤ lim sup
nk∈M1

lim sup
n′

k∈M1

‖ f (n, nk) − f (n, n′
k)‖p

≤ (Lip( f ))p.

Thus it follows that

lim sup
nk∈M1

‖ f (n1, . . . , nk) − u‖ ≤ Lip( f )k1/p + ε/4, (n1, . . . , nk) ∈ Gk(M1).

Now we pass to a further infinite subset M
′ so that

∣
∣‖ f (n) − u‖ − ‖ f (n′) − u‖∣∣ < ε/4, n, n′ ∈ Gk(M

′)

and hence

‖ f (n1, . . . , nk) − u‖ < Lip( f )k1/p + ε/2, (n1, . . . , nk) ∈ Gk(M
′).

This completes the inductive argument and the theorem follows immediately. ��
The assumption that X is reflexive in Theorem 4.2 is important. Note that the non-

reflexive space c0 satisfies the condition (4.1) for any p (and indeed for p = ∞)
but every separable metric space can be Lipschitz embedded into c0 by a result of
Aharoni [1].

5 The main results

Theorem 5.1 Suppose 1 ≤ p1 < p2 < · · · < pn < ∞. If r /∈ {p1, . . . , pn}
(1 ≤ r < ∞) then �r does not coarse Lipschitz embed into �p1 ⊕ · · · ⊕ �pn .

Proof Let f : �r → �p1 ⊕ · · · ⊕ �pn be a coarse embedding. It follows from Proposi-
tion 2.3 that p1 < r ≤ 2, although, strictly speaking our proof works without this fact.
We will only consider the case when r < pn (the case r > pn is easier and follows
from applying only the midpoint principle).

Suppose pm < r < pm+1 and let X = (�p1 ⊕ · · · ⊕ �pm )�pm
and Y = (�pm+1

⊕ · · · ⊕ �pn )�∞ . Consider f as map into X ⊕∞ Y and assume that

‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ C‖x − y‖, ‖x − y‖ ≥ 1.

Let f (x) = (g(x), h(x)). Suppose k ∈ N and δ > 0. Then, by Proposition 3.6, we can
find τ > k, x ∈ �r and N ∈ N so that if E = [e j ] j>N then g(x + τ BE ) ⊂ K + δτ BX

for some compact subset K of X.

Let M = {n ∈ N : n > N }. Define ϕ : Gk(M) → �r by

ϕ(n1, . . . , nk) = x + τk−1/r (en1 + · · · + enk ).
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The coarse Lipschitz geometry of �p ⊕ �q 231

Then g ◦ ϕ(Gk(M)) ⊂ K + δτ BX . Thus by Lemma 4.1 we can find an infinite subset
M0 of M so that

diam(g ◦ ϕ(Gk(M0))) ≤ 3δτ.

On the other hand, Lip(h ◦ ϕ) ≤ 21/r Cτk−1/r and so by Theorem 4.2 we can pass to
an infinite subset M

′ of M0 so that

diam(h ◦ ϕ(Gk(M
′))) ≤ 3 · 21/r Cτk1/pm+1−1/r .

Thus

diam( f ◦ ϕ(Gk(M
′))) ≤ 3 · 21/rτ(Ck1/pm+1−1/r + δ).

However

diam(ϕ(Gk(M
′))) > τ

and this implies that

diam( f ◦ ϕ(Gk(M
′))) > τ.

Hence

1 < 3 · 21/r (Ck1/pm+1−1/r + δ).

Since δ > 0 and k ∈ N are arbitrary this is a contradiction. ��
The following result answers a question of Bill Johnson for the case 1 < p < 2.

We will prove the same result in the case 2 < p < ∞ below by a slightly different
technique (Theorem 5.6).

Theorem 5.2 If 1 ≤ p < 2, L p is not coarsely (or uniformly) homeomorphic to
�p ⊕ �2.

Proof �r isometrically embeds into L p if p < r < 2. The result follows from Theo-
rem 5.1. ��

The following theorem solves a problem in [11] where the same result is established
for 1 < p < q < 2 or 2 < p < q < ∞.

Theorem 5.3 If 1 < p < 2 < q < ∞ and X is uniformly homeomorphic to �p ⊕ �q

then X is linearly isomorphic to �p ⊕ �q .

Proof Classical nonlinear theory ([8,11] or [2]) allows us to deduce that X is linearly
isomorphic to a complemented subspace of L p ⊕ Lq . Let J : X → L p ⊕ Lq be a
linear embedding and let (x, y) → Sx + T y be a left-inverse of J where S : L p → X
and T : Lq → X are bounded operators.
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232 N. J. Kalton, N. L. Randrianarivony

By Theorem 5.1 the space �2 does not embed into X. Therefore by a result of
Johnson [9] T factors through �q . This implies that X is linearly isomorphic to a com-
plemented subspace of L p ⊕�q . The spaces L p and �q are totally incomparable so that
by the results of Edelstein and Wojtaszczyk ([4] or [18]) X is linearly isomorphic to
E ⊕ F where E is a Lp-space and F is complemented in �q . Since E contains no copy
of �2, E is isomorphic to �p or is finite-dimensional (see [12]). And F is isomorphic
to �q or is finite-dimensional as well (see [15]). Since �p and �q have unique uniform
structure [11] both E and F are infinite-dimensional. ��

Of course this argument works equally well for arbitrary finite sums (combining
the arguments of [11]).

Theorem 5.4 If 1 < p1, . . . , pn < ∞ with 2 /∈ {p1, . . . , pn} and X is uniformly
homeomorphic to �p1 ⊕ · · · ⊕ �pn then X is linearly isomorphic to �p1 ⊕ · · · ⊕ �pn .

Unfortunately we do not know if �p ⊕�2 has unique uniform structure when p �= 2.

If p > 2 we do not know if the Rosenthal space X p [17] is uniformly homeomorphic
to �p ⊕ �2; since each embeds linearly into the other, our techniques do not appear
fine enough to distinguish these spaces.

Theorem 5.5 If 2 < p < ∞, there is no coarse Lipschitz embedding of
(∑

�2
)
�p

into �p ⊕ �2.

Proof As in Theorem 5.1 we suppose f : (∑
�2

)
�p

→ �2 ⊕∞ �p is a coarse Lipschitz
embedding so that

‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ C‖x − y‖, ‖x − y‖ ≥ 1.

Write f (x) = (g(x), h(x)). For each i let (ei j )
∞
j=1 be the canonical basis of the i th.

co-ordinate space �2.

We proceed similarly to Theorem 5.1. Suppose k ∈ N and δ > 0. Then, since
p > 2, by Proposition 3.5, we can find τ > k, x ∈ (∑

�2
)
�p

and N ∈ N so that if

E = [ei j ]i>N , j≥1 then g(x + τ BE ) ⊂ K + δτ B�2 for some compact subset K of �2.

Define ϕ : Gk(N) → (∑
�2

)
�p

by

ϕ(n1, . . . , nk) = x + τk−1/2(eN+1,n1 + · · · + eN+1,nk ).

Then g ◦ ϕ(Gk(N)) ⊂ K + δτ B�2 . Thus by Lemma 4.1 we can find an infinite subset
M0 of N so that

diam(g ◦ ϕ(Gk(M0))) ≤ 3δτ.

On the other hand, Lip(h ◦ ϕ) ≤ C
√

2τk−1/2 and so by Theorem 4.2 we can pass to
an infinite subset M of M0 so that

diam(h ◦ ϕ(Gk(M))) ≤ 3
√

2Cτk1/p−1/2.
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Thus

diam( f ◦ ϕ(Gk(M))) ≤ 3
√

2τ(Ck1/p−1/2 + δ).

However

diam(ϕ(Gk(M))) > τ

and this implies that

diam( f ◦ ϕ(Gk(M))) > τ.

Hence

1 < 3
√

2(Ck1/p−1/2 + δ).

Since δ > 0 and k ∈ N are arbitrary this is a contradiction. ��
Haydon, Odell and Schlumprecht recently proved [7] that a subspace of L p, p > 2,

that does not contain an isomorphic copy of
(∑

�2
)
�p

is isomorphically contained in

�p ⊕�2. It thus follows from Theorem 5.5 that a Banach space coarsely homeomorphic
to �p ⊕ �2 is a Lp space which linearly embeds into �p ⊕ �2. A result of Johnson and
Odell [13] then implies that it is isomorphic to a complemented subspace of X p. We
thank the referee for pointing this out to us.

The other half of Theorem 5.2 is now immediate:

Theorem 5.6 If 2 < p < ∞, L p is not coarsely (or uniformly) homeomorphic to
�p ⊕ �2.

Finally we show that Theorem 5.5 holds in the case 1 ≤ p < 2.

Theorem 5.7 If 1 ≤ p < 2, there is no coarse Lipschitz embedding of
(∑

�2
)
�p

into

�p ⊕ �2.

Proof We suppose f : (∑
�2

)
�p

→ �p ⊕∞ �2 is a coarse Lipschitz embedding such
that

‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ C‖x − y‖, ‖x − y‖ ≥ 1.

Let f (x) = (g(x), h(x)) as usual. Suppose k ∈ N and δ > 0.

Consider the space Y = [ei j ]i≤k, j≥1. Thus Y is linearly isomorphic to �2 and we
can apply Proposition 3.5. As observed earlier, Proposition 3.5 holds for any equiva-
lent norm on the domain space; therefore we can apply to Y with the subspace norm
inherited from

(∑
�2

)
�p

. Thus there exist y ∈ Y , τ > k, a compact subset K of �p and

N so that if E = [ei j ]i≤k, j>N then g(y +τ BE ) ⊂ K +δτ B�p . Let M = { j : j > N }.
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234 N. J. Kalton, N. L. Randrianarivony

Define ϕ : Gk(M) → y + τ BE by

ϕ(n1, . . . , nk) = y + τk−1/p
k∑

i=1

ei,ni .

Then Lip(ϕ) = √
2τk−1/p.

From Lemma 4.1 we deduce that there is an infinite subset M0 of M so that diam(g◦
ϕ(Gk(M0))) < 3δτ. From Theorem 4.2 we obtain an infinite subset M

′ of M0 so that
diam(h ◦ ϕ(Gk(M

′)) < 3
√

2Cτk1/2−1/p.

Thus

1 ≤ τ−1diam( f ◦ ϕ(Gk(M
′)))

≤ 3(
√

2Ck1/2−1/p + δ).

Since k ∈ N and δ > 0 are arbitrary this is a contradiction. ��

6 Concluding remarks

It is clear that Theorem 4.2 is capable of considerable generalization. The correct con-
cept here is asymptotic smoothness introduced by Milman [14] and studied in [5,10].
Let X be a Banach space. If t > 0 we define ρX (t) (the modulus of asymptotic
smoothness of X ) by

ρX (t) = sup
‖x‖=1

inf
dim X/E<∞ sup

y∈BE

(‖x + t y‖ − 1).

If x ∈ X with ‖x‖ = 1 and (xn)∞n=1 is any weakly null sequence we have

lim sup ‖x + xn‖ ≤ 1 + ρX (lim sup ‖xn‖).

If X has separable dual this formula may also be used to define ρX . Notice that ρX is
a convex function which satisfies the inequality

ρX (t) ≥ max(t − 1, 0).

Thus ρX is an Orlicz function and we can define the Orlicz sequence space �ρX which
we equip with the Luxemburg norm:

‖ξ‖�ρX
= inf

⎧
⎨

⎩
λ :

∞∑

j=1

ρX (|ξ j |/λ) ≤ 1

⎫
⎬

⎭
.

Now assume k ∈ N and that a1, . . . , ak > 0. For any infinite subset M of N we
define the metric space Gk(M; a1, . . . , ak) to be space of all k-subsets (n1, n2, . . . , nk)
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with n1 < n2 < . . . < nk with the metric

d((n1, . . . , nk), (m1, . . . , mk)) =
∑

n j �=m j

a j .

Theorem 6.1 Let X be a reflexive Banach space with modulus of asymptotic smooth-
ness ρX . Then if M is an infinite subset of N, ε > 0 and f : Gk(M; a1, . . . , ak) → X
is a bounded map, there exists an infinite subset M

′ of M so that

diam f (Gk(M
′)) < 2eLip( f )‖(a1, . . . , ak)‖�ρX

+ ε.

Proof Let us define a norm on R
2 by

N2(ξ, η) =
{ |ξ |ρX (|η|/|ξ |) + |ξ |, ξ �= 0

|η|, ξ = 0.

Thus we can give N2 an alternative definition:

N2(ξ, η) = sup
‖x‖=1

inf
dim X/E<∞ sup

y∈BE

‖ξ x + ηy‖

and from this formula it is clear that N2(0, 1) = N2(1, 0) = 1 and N2 is an absolute
norm, i.e.

N2(ξ1, η1) ≤ N2(ξ2, η2) if |ξ1| ≤ |ξ2|, |η1| ≤ |η2|.

Then define by induction a norm Nk on R
k so that

Nk(ξ1, . . . , ξk) = N2(Nk−1(ξ1, . . . , ξk−1), ξk).

We now prove by induction that given M an infinite subset of N, ε > 0 and
f : Gk(M; a1, . . . , ak) → X a bounded map, there exists an infinite subset M

′ of M

and u ∈ X so that

‖ f (n1, . . . , nk) − u‖ < Nk(a1, . . . , ak)Lip( f ) + ε, (n1, . . . , nk) ∈ Gk(M
′).

As in Theorem 4.2 this is elementary for k = 1. We pass to a subset M0 so that
limn∈M0 f (n) = u exists weakly. Then

lim sup
n∈M0

‖ f (n) − u‖ ≤ lim sup
n∈M0

‖ f (n) − f (m)‖ ≤ Lip( f )a1.

Thus passing to some further infinite subset M
′ gives the result.

Assume the result is proved for k −1. Then we pass to a subset M0 so that for every
n ∈ Gk−1(M) the limit f̃ (n) = limnk∈M0 f (n, nk) exists weakly.
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By the inductive hypothesis we can pass to a further infinite subset M1 so that for
some u ∈ X we have

‖ f̃ (n) − u‖ ≤ Lip( f̃ )Nk−1(a1, . . . , ak−1) + ε/2, n ∈ Gk−1(M1).

Note that Lip( f̃ ) ≤ Lip( f ).

We pass to a further infinite subset M
′ of M1 so that

∣
∣‖ f (n) − u‖ − ‖ f (n′) − u‖∣∣ < ε/2, n, n′ ∈ Gk(M

′; a1, . . . , ak).

Then note that for any n ∈ Gk−1(M
′), we have

lim sup
nk∈M′

‖ f (n, nk) − u‖ ≤ N2

(

‖ f̃ (n) − u‖, lim sup
nk∈M′

‖ f (n, nk) − f̃ (n)‖
)

.

Now

lim sup
nk∈M′

‖ f (n, nk) − f̃ (n)‖ ≤ lim sup
nk∈M′

lim sup
n′

k∈M′
‖ f (n, nk) − f (n, n′

k)‖

≤ Lip( f )ak .

Hence

lim sup
nk∈M′

‖ f (n, nk) − u‖ ≤ N2(Nk−1(a1, . . . , ak−1) + ε/2, ak)

≤ Nk(a1, . . . , ak) + ε/2.

Recalling the selection of the set M
′ this proves the inductive hypothesis.

To complete the proof we show that Nk(ξ1, . . . , ξk) ≤ e‖(ξ1, . . . , ξk)‖�ρX
for all

ξ1, . . . , ξk .

Assume ‖(ξ1, ξ2, . . . , ξk)‖�ρX
≤ 1. We define N1(t) = |t |. Assume that Nk(ξ1, . . . ,

ξk) > 1. Then there is a least r with 1 ≤ r ≤ k so that Nr (ξ1, . . . , ξr ) > 1. Then we
have

N j (ξ1, . . . , ξ j ) = N2(N j−1(ξ1, . . . , ξ j−1), ξ j )

≤ (1 + ρX (|ξ j |))N j−1(ξ1, . . . , ξ j−1), j > r.

If r > 1 we have

Nr (ξ1, . . . , ξr ) ≤ N2(1, ξr ) = 1 + ρX (|ξr |).

If r = 1 then

N1(ξ1) = |ξ1| ≤ 1 + ρX (|ξ1|).
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Thus

Nk(ξ1, . . . , ξk) ≤
k∏

j=r

(1 + ρX (|ξ j |)) ≤ e.

��
We believe that Theorem 6.1 may well have other applications in nonlinear theory.

The connections between asymptotic smoothness and uniform homeomorphisms is
explored in [5], but the results obtained there depend on the fact that one has a uniform
homeomorphism between two spaces and the Gorelik principle can be applied.
Theorem 6.1 allows us to still get information when one only has a coarse Lipschitz
embedding, as long as the spaces are reflexive.
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