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We prove a number of results concerning isomorphisms between spaces of the 
type L,(X), where X is a separable p-Banach space and 0 < p < 1. Our results 
imply that the quotient of Lp( [0, 1 ] x [0, 11) by the subspace of functions 
depending only on the first variable is not isomorphic to L,, answering a question 
of N. T. Peck. More generally if 2e is a sub-u-algebra of the Bore1 sets of [O, 1 I, 
then L.,([O, l])/L,([O, 11, %‘,,) is isomorphic to L, if and only if L,([O, I], .$,) is 
complemented. We also show that L, has, up to isomorphism, at most one 
complemented subspace non-isomorphic to L, and classify completely those spaces 
X for which L,(X) z L,. In particular if Ip(L,,X) = (0) and LB(X) 2 L, then 
X .; I,, or is finite-dimensional. If X has trivial dual and L,(X) g L, then X z L,. 

1. INTRODUCTION 

A quasi-Banach space X is an F-space on which the topology is given by 
a quasi-norm x +-+ IIxII, which satisfies 

II-4 > 0 x # 0, x E A-. (1.0.1) 

Il~Xll = Itl llxll t E R, XEX, (1.0.2) 

llx + YII G Wxll + IIYII) x, y E x, (1.0.3) 

where k is a constant independent of x and y. If, in addition, for somep > 0, 
we have 

/Ix + YllP < llxllP + IIYllP x, Y E x, (1.0.4) 

then X is a pBanach space. If X can be equivalently re-normed to be a p- 

Banach space then X is said to be p-convex. 
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For any quasi-Banach space X we define l,(X) (0 < p < 00) to be the 
space of sequences (x,) with x, E X such that 

Il(X”>ll = ( 2 Ilxnllp)l’p < co? 
?I=1 

(1.0.5) 

l,(X) is a quasi-Banach space, which is a p-Banach space when X is a p- 
Banach space (when 0 < p < 1). Also we define Lp(X) to be the space of 
Bore1 maps f: [0, l] +X such that 

llfll = ]J’ Ilf(~IIP tfs 1 ‘lp < 03. 
0 

(1.0.6) 

Identifying, as usual, functions equal a.e., Lp(X) is also a quasi-Banach space 
which is a p-Banach space when 0 < p < 1. We remark here that [0, l] with 
Lebesque measure can be replaced with any Polish space with a diffuse 
probability measure, but for the purposes of the introduction, the above 
definition suffices. 

If X and Y are two quasi-Banach spaces then 9(X, Y) denotes the space 
of all operators T: X + Y with quasi-norm 

If X = Y we abbreviate this to 9(X). 
In the remainder of the introduction we sketch some of the problems with 

motivated this research and then summarise our results. 
This paper arises out of problems suggested by [6]. In [7] it was shown 

that if H is the subspace of L,([O, l] x [0, 11) consisting of all functions 
depending only on the second variable, then H is uncomplemented in 
L,,([O, l] x [0, 11) when 0 < p < 1. (The case p = 0 had earlier been proved 
by Berg et al. [2].) A natural question (suggested by Peck) is: 

PROBLEM 1.1. Is L,([O, l] x [O, 11)/H? L,? 

Of course if 1 < p < co, H is complemented and the answer to 
Problem 1.1 is yes. A number of problems we consider are illuminated by 
comparison with the case p = 1 in particular, and in that case one can prove 
easily the following theorem (basically due to Lindenstrauss [lo]). 

THEOREM 1.2. If X is a Banach space and N is a closed subspace such 
that N z L, and X/N E L, (or is even an Y,-space), then N is complemented 
in X. 

This suggests a companion problem to Problem 1.1. 
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PROBLEM 1.3. If X is a p-Banach space (0 < p < 1) and N is a closed 
subspace of X isomorphic to L, such that X/N 2 L,, is N complemented in 
X? What about the case X = L, ? 

Also Theorem 1.2 suggested an approach to Problem 1.1 by examining 
whether Lp( [0, 1 ] *)/H is an y,-space when 0 < p < 1. We intend to develop 
the theory of gp-spaces when p < 1 in a separate paper. For the purposes of 
resolving 1.1, however, the approach proved to be a failure, since 
L,([O, 11*/H is an yp-space (and therefore could be isomorphic to Lp). 

An alternative approach is to treat LP( (0, 11*)/H as the space L,(L,/l). 
where LJl is the quotient of L, by a subspace of dimension one [8]. As 
shown in 181, L,,/l Z$ L,, and clearly one would wish to somehow exploit 
this non-isomorphism. Thus we state a new problem: 

PROBLEM 1.4. Characterize those p-Banach spaces such that 
L,(X) z L,. 

or more generally: 

PROBLEM 1.5. If X and Y are two p-Banach spaces such that 
L,(X) z L,(Y) what can one say about X and Y? 

Again comparison with the p = 1 is in order. If p = 1 there is a natural 
projection from L,(X) onto a subspace isomorphic to X, namely, 

W(s) = 1’ f(t) dt O<s<l. 
0 

From this and the Pelczynski decomposition technique one quickly gets that 
L,(X) z L, if and only if X is isomorphic to a complemented subspace of 
L, . The problem of characterizing such X is still open. It is known (the 
Lewis-Stegall theorem [9, 141) that if X is infinite-dimensional and has the 
Radon-Nikodym property then X E I,, and it is still open whether, in 
general, X g 1, or X z L i . In Problem 1.5 one can conclude X is isomorphic 
to a complemented subspace of L,(Y) and Y to a complemented subspace of 
L,(X), and little else. 

For 0 (p ( 1, the absence of such a projection radically changes the 
problem. Clearly L,(Z,) = L, but 1, is not isomorphic to a complemented 
subspace of L, (or even more simply L,(R) z LP). Clearly one must also 
consider: 

PROBLEM 1.6. Is L, prime when 0 < p < 1 ? (if X is isomorphic to a 
complemented subspace of L, is X z L, ?). 

We now sketch the main results of this paper and how they affect 
Problems 1.1-1.6. 
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Sections 2-4 are preparatory; we gather in many more or less elementary 
lemmas and definitions which are required later. Our first major result is 
Theorem 5.2 which gives a representation theorem for operators T: 
L, --t L,(X), where X is a p-Banach space, generalizing the scalar case 
proved in [7]. We use Theorem 5.2 to then establish a lifting theorem (5.3) 
which yields the conclusion that if X is a p-Banach space and N is a closed 
subspace of X which is q-convex for some q > p (e.g., if dim N < co), then 
L,(X/N) g L, implies L,(N) is complemented in L,(X) (in its natural 
embedding). Combined with the fact from [7] (also proved in more 
generality in Section 6) that H = L,(R) is uncomplemented in L,([O, 11’) g 
JLp) we can deduce that the answer to Problem 1.1 is no (Corollary 5.4), 
i.e., Lp([O, 1 ]')/H & L,. This is not the only proof of this fact given in the 
paper, however. 

In Section 6 we consider operators T: LJX) + LJ Y), where X and Y are 
two separable p-Banach spaces. We introduce the notion of diagonal maps 
and use them to show that if X is a subspace of Y and L&X) is 
complemented in L,(Y) (in its natural embedding) then X is complemented 
in Y (this proof is valid for 0 < p < 1). Of course this gives another proof 
that H is uncomplemented in L,((O, 112). 

Our main result in Section 7 is Theorem 7.3 Here we consider the quotient 
/i&9’,,) of LJ[O, 11) (0 < p < 1) by a closed subspace LJ[O, l],A9,J, where 
A$ is some sub-u-algebra of the Bore1 sets. In [6] we gave a complete 
characterization of those A$ for which this subspace is complemented. Here 
we show that A@‘,,) g L, implies that L,([O, l],AI’,,) is complemented, 
generalizing Corollary 5.4. On the other hand, A(.%‘,,) always contains a 
complemented copy of L,. We contrast this with Example 8.7, where we 
construct a proper subspace of L,, N, say, so that N z L, but L,/N contains 
no complemented copy of L,. Thus N cannot be moved by any 
automorphism into a space L,([O, I], A?,,). This is somewhat akin to the 
recent result of Bourgain [ 31 that L, contains an uncomplemented subspace 
isomorphic to L, . 

In Section 8 we prove our main results. Here the critical assumption is 
that a p-Banach space X is p-trivial, i.e., iP(Lp, X) = {O}. This definition was 
introduced in [ 71 and it was shown to be an appropriate analogue when 
p < 1 to the assumption that X has the Radon-Nikodym property. In 
Theorem 8.3, we show that if L,,(X) is isomorphic to a complemented 
subspace of L,(Y), where Y is separable and p-trivial, then X E Xi @ X,, 
where X, is a complemented subspace of I,(Y) and X2 is a complemented 
subspace of LB(Y) (either X, or X, can be (0)). Note that in the case p = 1 
this is a trivial conclusion since X is complemented in L,(X). We then 
deduce a nice partial solution to Problem 1.5, namely, that if 0 < p < 1 and 
X and Y are two separable pBanach spaces which are p-trivial and 
L,(X) z L,(Y), then Z,(X) g f,(Y). Sp ecializing to Y = IR, we obtain that 
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L,(X) z L, with X p-trivial, implies X is finite-dimensional or X z 1,. This 
result is strikingly similar to the Lewis-Stegall theorem, which implies that if 
L,(X) 2 L, and X has the Radon-Nikodym Property then X is linite- 
dimensional or X z 1,. 

In Section 9 we use these techniques to study the dual space of Y(L,). 
The problem of determining whether Y(L,) has trivial dual was suggested to 
the author by J. H. Shapiro. We characterize operators SE Y(L,) so that 
x(S) = 0 for every x = -Y(L,)* as the small operators introduced in j7 /. 
Using this. we show that if L, has a complemented subspace Z non- 
isomorphic to L,, then L,(Z) $ L,. Hence we obtain (Theorem 9.6) that if 
L,(X) E L, and X* = (O), then X g L,. 

Finally we somewhat illuminate Problem 1.6 by showing that if L, fails to 
be prime, then there is, up to isomorphism, a unique complemented subspace 
Z & L,. In particular Z must be prime. We believe that no such Z can exist. 

We note here that we have some corresponding results for the case p = 0. 
but the techniques are completely different and we proposed to publish these 
separately. 

2. PRELIMINARIES FROM MEASURE THEORY 

Let R be a topological space, then we denote by A? (or 53’(G) where more 
precision is required) the u-algebra of Bore1 subsets of 0. 

We start by giving some essentially known results on Bore1 measurable 
maps. Suppose D and K are Polish spaces and v is a a-finite Bore1 measure 
in R. Then a Bore1 measurable map r~: Q -+ K will be called anti-inject&e if 
B E s(Q) and u 1 B is an injection then v(B) = 0. 

LEMMA 2.1. In order for a to fail to be anti-injective it is necessary and 
suflcient that there exists B E 9’(Q) with v(B) > 0, such that if C E 9(Q) 
and C c B, then there exists A E 9(K) with 

Proof If u fails to be anti-injective then there exists B E 3’(Q) with 
v(B) > 0 such that (11 B is an injection. By Lusin’s theorem we can find 
B, c B which are compact so that o[B, is continuous and injective and 
v(B\U B,) = 0. If C c B is a Bore1 set then A = a(lJ,“, (C n B,)) E S(K) 
and Cd(a-‘(A)nB)cB\U B,. 

Conversely suppose B satisfies the conditions of the lemma. Let (U,) be a 
countable base for the topology in a. For each n pick A, E 9(K) with 
V((CJ-‘(A.)nB)d(U,nB))=O. Let F=U [(a-‘(A.)nB)d(U,nB)]. 
Then v(F) = 0. If w,, w2 E B\F and w, # o2 there exists n E IV so that 
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UJ, E U, but w2 @ U,,. Hence uw, E A, but crw2 @A,, i.e., uo, # uo2. Thus 
u 1 Bw is injective. 

Now if u: R + K is a Bore1 map there is an induced measure U*V or K 
defined by 

u*v(B) = ~(a- ‘B) B E 9(K). 

Our next proposition is in reality a form of Maharam’s theorem on 
homogeneous measure algebras [ 111; but is stated in the language necessary 
for this paper. We refer also to Semadeni [ 15, pp. 471-4771. 

PROPOSITION 2.2. Suppose R and K are Polish spaces and v is a 
probability measure on LJ. Suppose u: R -+ K is an anti-injective Bore1 map. 
Then there is a compact metric space M, a dtruse probability measure 71 on 
M and a Bore1 map z: R + M such that 

(i) There is a Bore1 map p: K x M+ R with p(u X t)(m) = o 
v - a.e., w E Q, where (a x r)(o) = ((TO, zw). (2.2.1) 

(ii) (a x t>* v = u*v x 71. (2.2.2) 

Prooj Let (U,) be a base for the open sets of R, where each set is 
repeated infinitely often. Let .9,, be the sub-u-algebra of .9(n) of all sets of 
the form (a-‘B; B E 9(K)). 

We shall show how to construct a sequence of finite sets I;,, and a 
sequence of Bore1 maps <,, : 0 + F, such that (2.2.3~(2.2.5) hold: 

1 F,, ] > 2 and A c F, then v(& ‘(A)) = q,(A), (2.2.3) 

where 7~,, is the probability measure on F, defined by n,(A) = IA I/IF,1 (I Cl = 
the cardinality of C). 

If $, is the smallest sub-u-algebra of 9 such that 
03 r , ,**-, c,, are measurable with respect to 9’,,, then for 
n > 1, <, is independent of AYn-, , i.e., if A c F, and 
B E 9,,-, then 1 

(2.2.4) 

v(&‘(A) n B) = x,(A) v(B). 

There exists A E 9” with v(A AU,) < I/n, n> 1. (2.2.5) 

The argument is an easy induction. If (&: k < n - 1) have been constructed, 
where n>l, then the mapu~~,~~~~X~,-,: Q+KXF,X.*.XF,-, is 
anti-injective, by the finiteness of F, x . . . x F,-, (some obvious rewording 
is necessary when n = 1). By Lemma 2.1 this means 9’n _ , (or more exactly 
the measure algebra induced by S”-,) induces no ideal in (9, v) as defined 
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on p. 473 of Semadeni [15]. Now as in Lemmas 26.5.13 and 26.5.14 of 115, 
pp. 475,476], we can find F,, and c, to satisfy (2.2.3)--(2.2.5). 

Now let A4 be the product n,, F, with the product measure 0, x,, = 71 
which is diffuse and define t: 0 + A4 by r(o) = (&Jo)),“, , . For each open 
set U E (U,)?~ , , it is clear that there is a Bore1 set A E 9(M) with 

v((uXr)-‘(A)f-w)=O. 

Hence the same is true for every Bore1 set U c G. Now Lemma 2.1 (or more 
precisely its proof) implies that there is a Bore1 subset Q, of a with 
v(Q\Q,) = 0 such that r~ x zI.R\fi, is injective: We may suppose Q, is an F,- 
set, (a x r)(J2,) is Bore1 and (a x r)-’ 1 (a x r) 0, is Borel; this follows 
easily from applying Lusin’s theorem. Defining p = (a x 5)- ’ on (a x t) R, 
and arbitrarily (subject to being Borel) off (a x r) Q, we can satisfy (2.2.1). 

It is easy to see that (2.2.2) is automatic from the construction. 
Suppose now X is separable quasi-Banach space. Then it is easy to see 

that if Q is a Polish space, then a Bore1 map g: Q -+ X is a uniform limit of 
countably-valued Bore1 maps g, : Q --t X. 

If X and Y are separable quasi-Banach spaces then a map ~0: R -+ g(X, Y) 
is strongly (Borel) measurable if it is a Bore1 map for the strong-operator 
topology on 9(X, Y), i.e., for x E X, the map o i--, @(w)x is a Bore1 map 
into Y. From the preceding paragraph it can be shown that if g: f2 -+ X is a 
Bore1 map and @: a-+ 9(X, Y) is strongly measurable then 
o +-+ @(o)(g(Lo)) is also a Bore1 map. 

The following lemma is one that we shall require later for the special case 
X = L, when the conditions are satisfied for c = 1 + E for any E > 0 (this 
follows quickly from results of Rolewicz [ 13, pp. 253-2541. 

LEMMA 2.3. Let 0 be a Polish space and let v be a u-finite Bore1 
measure as 0. Suppose X is a separable quasi-Banach space with the 
property 

Forsomeflxedc>O,ifx,yEXwith~/x~~=~~y[~=l there 
exists an invertible TE Y(X) with /I TIl, 11 T-‘/l < c and 
TX = y. (2.3.1) 

Suppose further g: f2 -+ X is a Bore1 map such that 0 < a < I/ g(w)(I < 
/? < co for w E R. Then given u E X with 11 u 11 = 1 there exists a strongly 
measurable map w t-+ T, such that: 

IITwll<cP w E J2, (2.3.2) 

I(TJ’/l<ra” w E R, (2.3.3) 

Tw u = do> v - a.e. (2.3.4) 
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Proof: Let G c Y(X) the subset of Y(X) x U(X) of all (S, 7) with 
TS = ST = 1, ]] S ]] < CCL-’ and ]] TII < c/I. Then in the product strong-operator 
topology G is closed. For if (S,, T,)-+ (S, T) then ]]S]] < ca-1 and ]I TII < c/l 
and since S, + S uniformly as compact sets we have 

STx= lim S(T,x) 
n-cc 

= )& ~II S,(T,x) 

= Liz S,(T,x) 

= x. 

Now let V c X be the set (Tu: (S, T) E G}. Assumption (2.3.1) guarantees 
that Vx {x: a < IIx(( < p). 

Now G is a Polish space (it is bounded and closed in Y(X) X Y(X)). The 
map (S, T) I+ Tu is continuous onto V. Hence by the von Neumann 
selection theorem (Diestel [4, p. 2701; see also [ 1; 12, p. 448]), there is a 
universally measurable map d(v) = (4,(v), #2(u)), where &(v) u = u. 

Now let 

T:, = Mdw)). 

Then o t-+ T: is universally measurable and by modifying it on a set of 
measure zero we get the result of the lemma. 

Remark. Inversion is continuous on the set G so the map w I--+ T;’ is 
also strongly Bore1 measurable. 

3. ~-INTEGRAL OPERATORS 

In this section K will be a compact metric space and X ap-Banach space, 
where 0 < p < 1. We define a bounded linear operator T: C(K) --f X to be p- 
integral if for some constant c, we have 

(3.0.1) 

whenever f,,..., f, E C(K). The best constant c arising in (3.0.1) is denoted 
by rr#). In the case p = 1, this reduces to the standard definition of an 
integral operator and n,(T) is the integral or absolutely summing norm of T 
(cf. Diestel and Uhl [5, pp. 161-1691). 

Let JD(K;X) denote the subspace of Y(C(K);X) of all p-integral 
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operators. We observe that the map rrP: .^rP(K; X) -+ F? is lower-semi- 
continuous for the strong-operator topology. 

LEMMA 3.1. Suppose T: C(K) 3 X is p-integral. Then there is a unique 
positive Bore1 measure on K, which we denote by p = p(T) so that 

6) II VII < 11 If(s &(s) 1 I” f E C(K), (3.1.1) 
-K 

0;) IIPII = P(K) = ~~(0~ (3.1.2) 

(iii) If v is a positive Bore1 measure with 

II rfll < f If(s MS) 
I “K I ” f E cm 

then p < v. (3.1.3) 

Proof: Let P be the open positive cone in C(K), i.e., P = {f E C(K); 
f(s) > 0 for all s E K}. Let C be the cone of all functions of the form 

4~ $, llrf~II”-rip(T) f I.fl” i= 1 

for f, ,..., f, E C(K). By hypothesis C n P = 0 and so, as P has non-empty 
interior, the Hahn-Banach theorem implies the existence of a positive Bore1 
measure p with lIpI/ = n,(T) such that 

which quickly yields (3.1.1) and (3.1.2). 
Uniqueness will follow from proving (3.1.3). Let p = v + ,D and by the 

Radon-Nikodym theorem write dv = 9 dp and dp = w dp, where $, v are non- 
negative Bore1 functions. If v does not satisfy v > ,D then there is a compact 
subset K, of K of positive p-measure such that 

u/(s) > 4(s) sEK,. 

Let h, be any sequence of functions in C(K) satisfying 0 < h, < 1, h, I K, = 1 
and h,(s) -+ 0 for s 6 K,. Then for f E C(K) 

II Tf II’ < II T@,f >II” + II 7’C.f - h,f >II” 

< I’ Ih,fl” 4 dp + i’ If- h,f 1’ w dp; 
K K 
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and by the Dominated Convergence Theorem, 

II VII” < j 
KO 

I./-l” 4 4 + jKw, Ifl” v/ 4. 

Thus, for f, ,..., f, E C(K), 

where 

This contradiction proves the lemma. 

LEMMA 3.2. For 4 E C(K) and T E Y(C(K), X) define Tb E Y’(C(K), X) 
by 

T@(f) = TW> f E cw (3.2.1) 

Then f T E Ap(K, X), Tm E Ap(K, X) and 

MT,) = 191” QU’h (3.2.2) 

Proof: That Tm E.J(K,X) is trivial. Note that if p =,u(T) then 

II V.f>ll” < j I TV I’ dcl 

so that dp(T,) < 141” dp. If ( does not vanish, (3.2.2) now follows by 
reversing the reasoning. If $ > 0 

4(Te+o) < &VJ + a’& 

when a is a positive constant. Thus 

I~+aIPd~gd~(Tm)taPd~; 

and letting a -+ 0 we obtain (3.2.2). For general $ note that 

MT,d < I v I’ 40-J 

and apply a similar argument. 
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Now let M(K) be the dual space of C(K) (i.e., the space of finite signed 
Bore1 measures in K). 

LEMMA 3.3. The map ,u: Ap(K; X) -M(K) (where JJK, X) has the 
strong-operator topology and A(K) the weak*-topology) is Bore1 
measurable. 

ProoJ It will suffice to show that the map 

is Borel, where 4 E C(K) and $ > 0. Let d = vp, where v > 0. Then 

As T ++ T, is clearly continuous, and we have already observed that 71, is 
lower-semi-continuous the result follows. 

Now if T E Ap(K; X) and ,u = p(T), we can extend T to a linear operator 
(which we still denote by 7) T: L,(K,p) +X with /I TII = 1. In particular Tf 
can be defined uniquely for any bounded Bore1 function f and the map 
T b Tf is a Bore1 map from Ap(K;X) into X. Furthermore, in place of 
(3.0.1) we have 

(3.3.1) 

for f, ,..., f,, bounded Bore1 functions in K. 
To conclude this section we establish a lifting-type result which we need 

later. We recall [ 81 that if Y is a p-Banach space and N is a closed subspace 
of Y which is either q-convex for some q > p or a pseudo-dual space then a 
bounded linear operator S: Lp-+ Y/N can be “lifted” to an operator S, : 
L, -+ Y so that QS, = S, where Q: Y -+ Y/N is the quotient map. (Here N is 
pseudo-dual if there is a Hausdorff vector topology in N for which the unit 
ball is relatively compact.) Furthermore there is a constant c independent of 
S so that IIS,ll<cl(Sj[. Th e same conclusions for Z, are valid with no 
restriction on N and with c = 1. Applying this we have: 

LEMMA 3.4. Suppose X is a p-Banach space and N is a closed subspace 
of X which is either pseudo-dual or q-convex for some q > p. Suppose 
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T: C(K) + X/N is p-integral. Then there exists a p-integral operator 
T, : C(K) -+X and there is a constant c depending only on X and N so that 

~c,(T,) < cQ% (3.4.1) 

PO”,) < w(T). (3.4.2) 

Proof: Simply consider the induced map T: L,(K,p) -+ X/N and since 
L,(u) z I,, L,, 1, @ L,, or 1; @ L, there exists a lift T, : L,(K, ,u) + X with 
11 T, 11 < c 11 TII. Restricted to C(K), T, is p-integral and (3.4.1) and (3.4.2) are 
immediate with c replaced by 8’. 

Remark. If p is diffuse then T,is unique. 
The form that we shall require later is the following: 

LEMMA 3.5. Let R be a Polish space and v a a-Jinite Bore1 measure on 
0. Suppose K is a compact metric space. Suppose X is a separable p-Banach 
space and N is closed subspace of X which is either pseudo-dual or q-convex 
for some q > p. Let o H T, be a strongly Bore1 measurable map from a 
into Mr(K; X/N). Then there is a constant c > 0 and a strongly measurable 
map o F+ S, of R into Ar(K;X) such that 

QS, = T, v-a.e., 

cl(S,) < WV’,) v-a.e., 

(3.5.1) 

(3.5.2) 

where Q: X+X/N is the quotient map. 

ProoJ This is again an application of the von Neumann selection 
theorem. Let G be the set of S E.A$(K; X) such that p(QS) < c,u(S). It is 
readily verified that Y(C(K),X) is a Souslin spaces (for the strong-operator 
topology) and that J(K; X) is a Bore1 subset (in fact an F,-set). It follows 
easily that G also is Bore1 (use Lemma 3.3 and the fact the positive cone in 
A’(K) is a Bore1 set). 

Now the map S w QS maps G onto Mp(K;X/N) by Lemma 3.4 and so 
there is a universally measurable map 8: Ar(K, X/N) + G so that QO(S) = S 
(Theorem 2.2 of [7]). 

To complete the proof let S, = B(T,J v-a.e. simply modifying on a set of 
measure zero to ensure Bore1 measurability. 
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4. THE SPACES L,(X) 

Let R be a Polish space and let v be a u-finite measure on Q. Then if X is 
separable p-Banach space, we define L,(Q, v; X) to be the space of all Bore1 
mapsf: a + X such that 

After the usual identification of functions equal almost everywhere 
L,(Q, v; X) is a p-Banach space. We now list without proof several easy 
facts. 

FACT 4.0.1. The simple functions are dense in L,(R, v; X) and hence 
L,(R, v; X) is separable. 

FACT 4.0.2. If v0 is a finite measure having the same sets of measure 0 
as v and dv = 4” . dv,, where 4 is a positive Bore1 function, then the map 
ft, $ . f is an isometry of L,(f2, v; X) onto L,(Q, vO; X). 

FACT 4.0.3. For any two dtfluse measures v, and v2 on Polish spaces 0, 
and a,, respectively, the quasi-Banach spaces L,(Q, v, ; X) and L@,v, ; X) 
are isometric. In cases where only the isomorphism class of the space matters 
we denote this space L,(X). 

FACT 4.0.4. If N is a closed subspace of X then Lp(O, v; N) is a closed 
subspace of Lp(f2, v; X) and L,(R, v; X)/L&Q, v; N) z Lp(Ln, v; X/N) under 
the natural quotient map. 

FACT 4.0.5. Suppose 0, and Q2 are Polish spaces, v, is a dlpuse a-finite 
measure on f2, and v2 is a dtruse o-finite measure on 52,. Then L,(J2, X Q,, 
v, x v2 ; X) is naturally isometric to L,(R, , v, ; L,(R,, v2 ; X)) under the 
isomorphism 

Tf(o,)(d =fb,, d w,ER,, WzEQz. 

It is also convenient to observe that L,(R, v; X) can be interpreted as the 
p-convex tensor product of L,(R, v; R) (= L,(R, Y)) and X (Vogt [ 171). In 
fact if Q E L,(R, v) and x E X we shall write f = $ Ox, where 

f(w) = d(w) x. (4.0.6) 

A conclusion from Vogt’s results [ 171 is the following: 
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PROPOSITION 4.1. Let Z be a p-Banach space. Then there is a natural 
isometry T H T between y(L,(Q, v; X), Z) and p(X, 9(L,(J2, v), Z)) given 
by 

Qw) = w 0 xl* (4.1.1) 

We shall conclude this short introductory section by considering a very 
special class of operators on L&X) spaces. 

We define an operator T: L,(I2, v; X) + L,,(fl, v; Y) to be diagonal if for 
every B E 9(J2) if 

f(w) = 0 OJ E B, 

then 
Tf (co) = 0 o E B. 

THEOREM 4.2. Suppose X and Y are separable p-Banach spaces and T: 
Lp(O, v; X) + LJQ, v; Y) is a diagonal operator. Then there is a strongly 
Bore1 measurable map s I--+ A, (G! + 9(X, Y)) such that 

Tf (s) = AU(s)) v-a.e., (4.2.1) 

I( TI[ = v-ess. sup /lAJ. (4.2.2) 

Furthermore the map s t-+ A, is unique up to v-null sets. 
Conversely if s I+ A, is a strongly Bore1 measurable map with v-ess. 

sup IlAJ < 00, then (4.2.1) defines a bounded linear operator. 

Proof: First we observe that the converse is pretty well automatic once 
one notes that A,(f(s)) is Borel; see the remarks preceding Lemma 2.3. 

For the direct part of the theorem, choose F, to be an increasing sequence 
of finite-dimensional subspaces of X whose union F is dense in X. Let (x,) be 
any sequence dense in the unit ball of F, such that {x” : x, E Fk} is dense in 
the unit ball of Fk. 

By picking a Hamel basis of F and extending linearly we may determine 
linear maps A, : F + Y so that 

T(l, 0 x)(s) =A,@) v-a.e. x E F. 

From the diagonal property it is easy to see that 

T(l, 0 x)(s) = lids) . A,(x) v-a.e. x E F, 

and hence if ( E L,(I2, v), 

T(4 0 x)(s) = $(s)A,(x) v-a.e. x E F. 

The proof will be completed by showing llAsll < I( T/I v-a.e. and since 
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x t+ A,x is a Bore1 map for x E I;, it will follow by density that, after 
defining suitably on a set of measure zero, we have (4.2.1) and (4.2.2). 
Uniqueness is trivial, by considering T(I, @ x,). 

For each n E iN, let 

Note that the quasi-norm is Bore1 measurable on X and so 0, is a Bore1 
function. Define 

where i = i(s) is the least i such that 

llAsXill = en(s)a 

Then if B E 3’(Q) and v(B) < co, 1, @If, E L&R, v; X) and 

II 1,o f, IP < w. 
However, 

We conclude 

and hence 

e,(s) < II TI/ v-a.e., 

s;P d,(s) G II TII v-a.e., 

i.e., 

ll~sl~kll < IITII v-a.e., 

for each k (Of course A, is continuous on F,J. Thus as required 

IlAsll G II TII v-a.e. 

5. OPERATORS ON L, 

We now give a representation theorem for operators from L, into L,(X) 
which generalizes the representation theorem given in 171. We give the result 
in two parts. 
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PROPOSITION 5.1. Suppose 0 ( p < 1 and (5.1.1)-(5.1.5) hold: 

K is a compact metric space and 1 is a probability measure 
on K. (5.1.1) 

R is a Polish space and v is a o-finite Bore1 measure on R. (5.1.2) 

X is a separable p-Banach space. (5.1.3) 

w I-+ T&2 + Mp(K; X)) is a strongly Bore1 measurable 
map. (5.1.4) 

VP, = PVJ ( as in Lemma 3.1) then for some c < a, 

I /co(B) dv(w) < cpW B E 9(K). (5.1.5) 
R 

Then we conclude 

(i) Zff E L,(K; A) then v-a.e., f E L,(K,pJ. (5.1.6) 

(ii) The formula 

Tf(w)= T,f f =,K4 (5.1.7) 

defines a bounded linear operator T: L,(K, A) --, L,(Q, v; X) with I( TII < c. 

Proof. By (5.1.5) and Theorem 3.1 of [7] there is a bounded linear 
operator U: L ,(K; A) -+ L 1(sZ, v) defined by 

Uf(w)=jf@, v-a.e. 

[The extension of [7] to the u-finite case is easy.] In particular if 
f E L,(K, A) then ] f Ip is ,u,-integrable v-a.e., i.e., (5.1.6) holds. Thus the 
formula in (5.1.7) makes sense v-a.e. and in fact w w T,f is Bore1 by 
approximating by bounded simple functions. Finally 

j R II T,f II’ dv(~) 4 j- j- If I’ 9, dv(o) 

= IlYf I91 1 

<cP Ifl”dA. 
I R 

Thus ]I TII < c. 
The converse is naturally much more interesting. 
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THEOREM 5.2. Suppose we have (51.1~(51.3) and that T: L,(K, A)-+ 
L,(Q, v; X)) is a bounded linear operator. 

Then there is a strongly Bore1 measurable map o t-+ T,(R -dp(K; X)) 
such that (5.1.5) and (5.1.6) hold, with c = )I TII and 

V-(w) = Twf v-a.e., fE L,,(K, A). (5.2.1) 

Proox As in Theorem 3.1 of [7] we may suppose that K is totally 
disconnected. To do this it is necessary only to check that if u: K + K, is a 
Bore1 isomorphism onto a totally disconnected compact metric space then 
the induced map o*:J(K; X) --+dp(K,. X) is also Borel, where 

a*T(J’) = T(f 0 a) f E C(K,). 

This is clear (cf. remarks following Lemma 3.3). 
Now suppose that for each n, &” is a partitioning of K into clopen sets so 

that dn+, refines J$ for every n and if d:, = (U,,,: 1 < k < Z(n)) then 
diam U,., < n--l. Let xn,k be the characteristic function of An,k, and let E be 
the linear span of (J~,~: 1 ,< k Q f(n), 1 < n < co). E is dense in C(K) by the 
Stone-Weierstrass theorem. We may further suppose that the mapf t--+ Tf(w) 
is everywhere linear on E (by picking a Hamel basis of E and extending). 
Thus we may define T, : E --+ X by 

Twf = V-(u). 

For any n. k, 

and hence 

I(n) 

1 \‘ 
a k:l 

II Twx,.i IV’ dv G II TV’. 

Now if 

then from the Monotone Convergence Theorem, 

(4(u) dv(o) < /I TII”, 

and so d(o) < co v-a.e. Let 0, be a Bore1 set with v(G\sl,) = 0 such that 
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4(o) < co for w E Q,. Then if w E R, and f, ,..., f, E E we can find a large 
enough n so that 

fi= C CijXn,jT i = 1, 2 ,..., m. 
j=l 

Thus 

I(n) 

II Tcof;:IIp < 2 IcijIp II TwXn,jllP9 j=l 

so that 

It follows easily that T, extends to a p-integral operator, T,: C(K) + X, 
and np(TW) = #(CO). After suitable definition on L?\Q,, CO I+ T, can be 
assumed strongly Bore1 measurable (clearly f ct TJ is Bore1 for f E E). 

Now a measure ,@,, can be defined so that 

,a~(~,,,) = sup C II Lxm,~llP 
m>n U,,hCUn,k 

for w E Q,. It is clear than, first for f E E and then in general 

II T,f II’ G j If I’ 4:. 

However, Il,&ll= 4(w) = np(T,) and hence p(T,) = &, = iu,, say. Thus 

and so we obtain (51.5). 
Now it follows easily from the preceding Proposition 5.1 that T can be 

given by formula (5.2.1). 

Remark 5.2.3. The map o t+ T, is unique up to sets of v-measure zero 
given only that 

Twf = Tf v-a.e., 

for f E C(K). Simply check against a dense countable subset of C(K). 
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THEOREM 5.3. Suppose X is a separable p-Banach space and N is a 
closed subspace of X which is either pseudo-dual or q-convex for some q > p. 
Then tf T: L, -+ L,(X/N) is a bounded linear operator, there is a bounded 
operator T, : L, + LJX) so that QT, = T, where Q: L,(X) -+ L,(X/N) is the 
natural quotient map. 

Proof: Write L, = L,(K, A), where K is compact metric, and L,(X/N) = 
L,(Q, V; X/N). Then the operator T may be represented as above 

where w k-+ T,(n -.,$(K, X/N)) is a Bore1 map satisfying 

[ P(T,)IBI dv(w) < II TIIP W B E .9(K). 

By Lemma 3.5 there is a Bore1 map o c, S, of G into ,Ayp(K, X) so that 
(3.5.1) and (3.5.2) hold. (We use Q for both the quotient X*X/N and 
L,(X) --t L,(X/N).) Now if 

then by Proposition 5.1, S is a bounded linear operator from Lp(K, A) into 
L,(J2, v; X) and clearly QS = T. 

COROLLARY 5.4. L,(L,( 1) is not isomorphic to L, for 0 < p ( 1. 

Proof. If T: L, -+ L,(L, 1 1) is an isomorphism then there is a lift S: L, -+ 
Lp(Lp). Now Z - ST-IQ is a projection of Lp(Lp) onto its subspace L,(R), 
where R c L, is the space of constants. The non-existence of such a 
projection is shown in Corollary 4.5 of [7]. (Another proof will be given 
later with more general results.) 

6. DIAGONAL PROJECTIONS 

In Section 4 we introduced diagonal operators T: L,(a, v; X) -+ L#2, V: Y) 
and gave a representation theorem for them (Theorem 4.2). We now slightly 
extend our definition. Suppose K is a compact metric space and ,l is a 
probability measure on K; let R be a Polish space and v be a o-finite Bore1 
measure on a. Let cr: a + K be a Bore1 map. If X and Y are separable p- 
Banach spaces we shall show that a bounded linear operator T: 
L,(K, 1; X) -+ L,(R, v; Y) is o-elementary if, wherever B E 9(K), 

f(s) = 0 s E B, 
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implies 

Tf(w) = 0 WEC’B. 

Clearly if R = K and v = I and u is the identity we obtain by this the 
definition of a diagonal operator. Let us remark that it is possible for 
suitable u that the only u-elementary operator is T = 0. 

Now for each n E IN let {B,,l,..., B,,,Cn,} be a partitioning of K into 
disjoint Bore1 sets of diameter at most l/n. For T E .Y = V(L,(K, A; X), 
L,(.f2, v; Y)) we define 

Here, if A is a Bore1 subset of Sz, then PA : L,(Q, v; I’)+ Lp(sl, V; Y) is 
defined by 

PAf@) = f(w) wEA, 
=o W&A, 

and similarly on LJK, I; X). 
Now ZI, : Y --f Y is a projection and [IZZ, II= 1. Our main result is then 

PROPOSITION 6.1. 

(i) Forf E L,(K 4 x), 

t-2 Z7,(T)f = d,(T)f exists. (6.1.1) 

(ii) A, : Y + Ip is a projection. 114,11 ( 1 and d,(Y) is the set of u- 
elementary operators (6.1.2) 

(iii) Zf 4 E L,(K, A) and x E X then 

4(T)@ @x)(4 = ~44 %9, (e,,) v-a.e., (6.1.3) 

where T is defined by (4.1.1), 0.1 I+ F(x), is the representation of F(x) 
determined in Theorem 5.2 and if t E K 

e,(s) = 1 s = t, SEK 

=o s # t, s E K. 

Proof. For 4 E L,(K, A) and x E X 
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where w E u-‘B,,~, 1 < k < l(n). Thus k = k,(w). Letting n -+ CO we see that 
for v-a.e., w E 0, 4 . ls,,k-+ #(a~) eoW in L,(u(f(x),)). Thus 

v-a.e. (6.1.4) 

and in particular the right-hand side is Bore1 measurable (when suitably 
extended on a set of measure zero). 

Now 

for every n and 

li 12 I K I@ IP 4(W), Ww) G II %4ll” II 4 IIP 

< II UIP l141P ll4ll”. 

Thus we can employ the dominated convergence theorem to show that 

( II $(a~) W>, (e,,> - C2K4(4)(~)lip dv + 0. 
-0 

Thus we define d,(T) by 

for x E X and 4 E L,(K,A), then d,(T) is a well-defined member of Y%, 
(6.1.3) holds and 

Il4#“)ll < liF2f Iln,(9ll < II Tll. 

By a density argument we quickly obtain (6.1.1). The fact that A, is a 
projection is trivial, and we have llA,lj < 1. Clearly if T is u-elementary then 
A,(T) = T. Conversely suppose A,(T) = T and f E L,(K, A; X) satisfies 

f(s)=0 s E B, 

where B E S’(K). Then there exists a sequence of functions f, of the form 
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(where #i E L,(K, A), xi E X) such thatf, --+J In factf, . lKM -+ f and 

Now, 

=o if w E B (v-a.e.). 

Hence T is u-elementary and (6.1.2) is established. 

Remarks. Of course the projection A, defined above is independent of 
the choice of (Bn,J In the case K = 0, I = v and u(s) = s, s E K, we shall 
denote A, by simply A. A is thus a projection onto the diagonal operators. 

Let us call a subspace W of L,(K, 1; X) diagonal if for 4 E W, then 
Pr,# E W for every B E 9. Note that if T: L,(K, 1; X) + LJK, I; Y) is 
diagonal, then the range of T, 9(T), and the kernel of T, J’(T) are diagonal 
subspaces. 

PROPOSITION 6.2. Suppose W is a complemented diagonal subspace of 
LJK, 1; X). Then there is a diagonal projection onto W. 

Proof: If T: L,(K, 1; X) + W is a projection then so is IT,(T) for each n, 
where IT,,(T) is defined as in Theorem 6.1. Hence so is A(T), since 
~,GXf) -+ A(T)(f) for every f E L,(x). 

THEOREM 6.3. Let Y be a closed subspace of the separable p-Banach 
space X. Suppose L,(K,I; Y) is complemented in L,(K, 1; X). Then Y is 
complemented in X. 

Proof. By Proposition 6.2, there is a diagonal projection T: L,(K, ,I; X) + 
LJK, 1; Y). By Theorem 4.2 there is a strongly measurable map s b A, 
from K into 9(X) so that 

Tf (s) = A,(.&)) A-a.e. 

Now 

T?-(s) =&t-W A-a.e., 

and by considering a dense countable subset of X we see 

A: =A, A-a.e., 
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i.e.. A, is a projection I-a.e. Clearly we also have A-a.e., A,(X) c Y and 
A ,( ~1) = ~1 for 4’ E Y. Thus I-a.e. A, is a projection of X onto Y. 

EXAMPLE. The fact that Jam is uncomplemented in Lp(Lp) (p < 1 i 
(where R is the subspace of constants), which we used in the preceding 
section follows immediately. As noted where this is equivalent to the absence 
of a projection from Lp( [0, 1 ] X [O. I]) onto the subspace of functions 
depending only on the first variable. 

7. ELEMENTARY OPERATORS 

Again in this section we suppose 0 is a Polish space and v is a o-finite 
Bore1 measure on 0, while K is a compact metric space and A is a 
probability measure on K. X and Y will be separable p-Banach spaces. 

THEOREM 7.1. Suppose u: 0 -+ K is a Bore1 map which is and-injective 
(see Section 2), and that T: Lp(K, 1; X)+ L,(R, v; Y) is a a-elementa 
bounded linear operator. 

Then there a linear operator J: L,(R, v; Y) + L,(K, ;1; L,,(Y)) and a Bore/ 
subset A of 0 such that 

(i) J = JP, and JI L,(A, v; Y) is an isometry. (7.1.1) 

(ii) There is a Bore1 subset C of K such that 
L,(C, 4 &(Y)) = 2(J). (7.1.2) 

(iii) JT is diagonal and S(T) c L,(A, v; Y). (7.1.3) 

Proof It will be convenient to suppose v is a probability measure. The 
reduction to this case is immediate from Fact 4.0.2. 

We now appeal to Lemma 2.2, to determine a compact metric space M, a 
probability measure R on M and a Bore1 map r: R -+ M such that (2.2.1) and 
(2.2.2) are satisfied. Let p: K x &I--+ D be as in (2.2.1). 

The measure u*v may be decomposed into a part absolutely continuous 
with respect to d and a part singular with respect to A, i.e., 

d(a*v) = 8 dA + dq, 

where 6: K + R is a non-negative Bore1 map and n is singular with respect 
to A.. 

We consider the space Lp(K, 13; L,(M, IC, Y)) “= Lp(K X M, k X II, Y) 
(Fact 4.0.5). Define J: L,(R, v, y> --t Lp(K X M, 1 X 7~, Y) by 

Jf(s, t) = W)ypflp(s, t)) sEK, tEM. 
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Thus 

= I R Ilf(~)ll” No) 

= Ilf HP* 

Hence llJl[ < 1. However, IlJfll = llfll if and only if 

I KXM Ilf@(~~ 4)llP 4v x ~)(SY 4 = 0 (7.1.4) 

and Jf = 0 if and only if 

fw) f@(s, t)> = 0 (A x w)-a.e. (7.1.5) 

There exists B, E 9(K) with #I,,) = I(K\B,) = 0. Let A = o-‘(II,). Then 
(tjxn)@-‘A)=0 d an so iff = PA f = 0, then f@(s, t)) = 0 (A x z)-a.e. This 
establishes (7.1.1). 

To prove (7.1.2) let C = (s: e(s) > 0) and observe that if 
f E L,(C, 1, L,(Y)), then f = Jg, where 

g(0) = B(aw)- lb f (cm, TO) if 8(aw) > 0 

10 if 8(aw) = 0. 

Finally if f E L,(K, L; X) and B E .9’(K) then 

f(s) = 0 A-a.e. s E B 

implies 

Tf (w) = 0 v-a.e. w E o- ‘B 

so that JT is diagonal. 
We now turn to the general case. 

THEOREM 1.2. Suppose 6: Q + K is any Bore1 map and T: Lp(K, A; X) + 
L&Q, v; Y) is a a-elementary bounded linear operator. 
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Then there is a linear operator J: L,(R, v; X) -+ L,(K, I, lp( Y) @ Lp( Y)), 
and a Bore1 subset A of l2 such that: 

(i) J = JP, and JIL,(A, v; Y) is an isometry. (7.2.1 ) 

(ii) .1(J) is closed and there is a diagonal projection Q onto 
g(J). (7.2.2) 

(iii) JT is diagonal and 9(T) c L,(A, v; Y). (7.2.3 ) 

Remark. Here the direct sum is the Z,-sum. 

Proof. Choose a maximal family (0, ; n = 1,2,...) of disjoint compact 
subsets of fl of positive finite v-measure, and such that u/Q, is injective and 
continuous. Such a family is clearly at most countably infinite. Let a, = 
J?\U Q,,. Then R, is a G,-set and o/R, is anti-injective by Lusin’s 
theorem. For convenience of exposition we shall suppose (~2,)~~~ is infinite 
and 0(&J,.) > 0; only minor modifications are required for the other cases. 

By the preceding theorem there is a linear map J, : L,(R,,, v; Y) -+ 
L,(K, 2; L,(Y)) such that for some Bore1 subset A, of a,,, 

J, = J,P,, and JIL,(A,, v; Y) is an isometry. (7.2.4) 

There is a Bore1 subset C, of K such that S?(J,) = 
L,W, 3 4 L,(Y)). (7.2.5) 

J,P, T is diagonal and 9’(P, T) c LB(A,,, v; Y). (Here 
p, =&I. is the natural projection of L&G, v; Y) onto its 
subspace L,(fin,, v; Y).) (7.2.6) 

For n ( co, alR,, has a continuous inverse on o(.Q,). Let v, = v/Q,, and 
suppose 

d(u*v,) = 6, d,l + dq,, 

(as in 7.1), where 19, is a non-negative Bore1 function and 7, is singular with 
respect to A. Define 

J,, : L,(.Q,, v; Y> -+ L,(K 2, Y) 

by 

J,f(s) = 13,(s)“~f(u- ‘s) s E 4Q,> 

=o s t?J up,>. 

Then lIJ,I/ < 1, and arguing as in Theorem 7.1 we can find a subset A, of R, 
so that J = JP,” and JIL,(A,, v; I’) is an isometry. Furthermore, S’(J) = 
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L,(C, , A; Y), where C, = (s; 19,(s) > 0), 9(P,, T) c L,(A n, V; Y) and J, P, T 
is diagonal. 
Now define 

J: L&4 y; Y) -, L,(K, A, t’,(Y) 0 Lp(Y)) 

Jf(s) = ((JnP,f(s)X’= 1 J&d@)). 

Let A = l-l,“, A, and define a diagonal projection Q: Lp(K, 1; l,(Y) 0 
LpP’N -, L,K A, ~,P’> 0 L,(Y)) by 

WCs> = w,Jn(sN~= 13 PC,f&N~ 

where 

Then conditions (7.2.1)-(7.2.3) are satisfied. We omit the easy 
verification. 

THEOREM 7.3. Suppose K is a compact metric space and 1 is a dt&%se 
probability measure on K. Let 9’,, be a sub-o-algebra of 9 = 9’QC), and let 
L,(K, 90, 1) be the closed subspace of L,(K, A) of all .$,-measurable 
functions. Assume L,(K, S,,, A) is a non-trivial subspace and let A(SO) be 
the quotient space L,(K, Iz)/L,(K, 9,, , A). Then 

(i) A(9,,) contains a complemented copy of L,. (7.3.1) 

(ii) IfA(.9,,) z L,, then L,(K, 9,,, A) is complemented in L,. (7.3.2) 

Remarks. In [7] we showed that L,(K, 9,,, A) is complemented in 
L,(K, A) if and only if there exist A E 9, E > 0 such that: 

n(BnA)>d(B) BE.90. (7.3.3) 

If CcA, C E 9, then there exists B E 9,, with 
h((BnA)dC)=O. (7.3.4) 

In fact, conditions (7.3.3) and (7.3.4) imply the existence of an 
automorphism of L, taking L,,(A, A) into L,(K, 9,,, A). Precisely 
PA IL,(K, S’,,, A) is an isomorphism onto Lp(A, A) and has inverse 
V: L,(A, 1) --f L,(K, A?,,, A), say; then the automorphism is given by U = 
P,\p + VP,. In particular, if LJK, .Z&,, A) is complemented then 
A(9&LL,. 
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Proof We may assume that A?0 is generated up to sets of measure zero 
by a sequence (B,)F= i of Bore1 sets. Define o: K + 2’ = M, say, by 

(US)” = b”(S) s E K. 

Induce a probability measure z on M by 71 = o*A. Then L,(K, Zinc:,, A) = .5?(T) 
when T is the a-elementary operator 

U-(s) = f@). 

Now by Theorem 7.2 we can find a map J: L,(K, 2) -+ Lp(M, x,1, @ Lp) and 
a Bore1 subset A of K such that J = JPA , JI L,(A, A) is an isometry, S’(J) is 

complemented, JT is diagonal and 9(T) c Lp(A, 2). Since 1, E 9(T), we 
must have ,l(K\p) = 0, i.e., J is an isometric embedding. Of course by 
construction T is also an isometric embedding. 

Thus 

JV(s) = 46) g(s) rc-a.e. SEM, 

where g: M-+ 1, @ L, satisfies 11 g(s)/1 = 1, s E M. To prove (7.3.1) let us first 
assume that for some n < 00, and some Bore1 subset C of M of positive 7c- 
measure, 

I &(SI > 6 > 0, s E c. 

If we defined P: .5%‘(J) + Si’(JT) by 

W(s) = g,(s)- ‘f,(s) g(s) SEC 
=o s %s c, 

then P is a projection. J-‘PJ is clearly seen to be a projection of L,(a-‘C, A) 
onto L,(a- ‘C, 5Y0, A). Clearly L,,(o- ‘C, 1)/L,(a- ‘C, AYO, A) is isomorphic to 
a complemented subspace of ,4(9,,). Thus if A(9,,) does not contain a 
complemented copy of L,, we conclude 

L,(dC, so, /I) = L,(u-‘c, n>. 

Since M cannot be a countable family of such sets, there is a compact set 
AcMsuchthatg,(s)=O,sEA, l<n<co andn(A)>O. 

This means 11 g,(s)11 = 1, s EA. By observing the form of the projection 
onto .9(J) we note that A(,W,) contains a complemented copy of 
L,(A, 72; L,)/9(JTP,). 

NOW by Lemma 2.3 we can find a strongly measurable map s F-+ V, 
(A --t Y(L,)) such that V,g,(s) = 1, (where L, = L,(Q)) and j/ V,I/, 
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1) Vsp’II < 2. [Here V;’ is constructed in Lemma 2.3.1 Using this we construct 
an automorphism 

v: L,(A, ;rr; L&J + L,(A, 7r; Lp) 

v-(s) = v&t- SEA, 

and conclude 

LJA, n; L,)/.%‘(JTP,) E L,(A, n; L&l). 

As L,] 1 EL, @L,] 1 [8], (7.3.1) follows. 
Now we turn to (7.3.2). First we embed lp @L, isometrically in L, by an 

isometry U, say, and thus induce a diagonal isometry 

0: L&w 71, lp 0 Lp) + L,W, 71, L,), 

@-(s) = w-(s)) SEM. 

Let h = Z?g. As above we find a diagonal automorphism V of LJM, 71, LP) so 
that ]I VI], I( V-II] < 2 and I%(s)= 1, for all s. Thus S(V&ZT)= 
L,(M, TL, IR . lo). Now /1(9,,) z 9(.Z)/.5?(.ZZ’) E 9( VirJ)I9(V~JZJ and so 
we have an embedding 

where RQ, = Q, V0.Z if Q, : L,(K, A) +/i(9,,) and Q2 : LP(M, 71, LP) + 
L,(M, rr; L,J/&P( YOJT) are the quotient maps. 

Now L,(M, 71; LP)/9( ?@.ZT) z L,,(M, n; L, I 1) and so by Theorem 5.3, 
there is a lift Z?‘: A(BO)+ L,(M, z; LP) so that Q$ = R. Since 9(Q$) c 
%‘(Q2 V&Z) we conclude 9(R”) c 9’( V0.Z) and can define S = (VOJ))’ R’. 
S: li(.9J + LJK, 1) is an embedding and RQ, S = Q,R’= R so that Q, S = Z 
on li($,). Hence LJK, .9,,, A) is complemented. 

8. ~OMORPHISMS BETWEEN L,(X)-SPACES 

We recall that a p-Banach space X is p-trivial [6] if Y(L,, X) = {0} when 
0 < p < 1. As shown in [6], p-triviality is an appropriate non-locally convex 
analogue of the Radon-Nikodym Property for Banach spaces. Note that, for 
example, if X has a separating dual or is q-convex for some q > p, then X is 
p-trivial. 

THEOREM 8.1. Suppose K is an infinite compact metric space and I is a 
probability measure on K. Suppose X and Y are separable p-Banach spaces, 
where 0 < p < 1, and that Y is p-trivial. Then if T: L,(K, 1; X) -+ L,(K, A; Y) 
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is a bounded linear operator, we can find a Polish space R and a u-finite 
Bore1 measure v on R so that T = ST,, where 

(i) S: L,(B, v; Y) -+ L,(K, I, Y) is a bounded linear surjection. (8.1.1) 

(ii) TO: Lp(K, A; X) -+ L,(R, v; Y) is an elementary operator. (8.1.2) 

ProoJ: For let {x,} be a dense countable subset of X. For each n 
consider V,, : L,(K, A)-+ L,(K, A; Y) given by V, = ?(x,) as in 
Proposition 4.1. Now there is a strongly Bore1 measurable map s k+ V,~\ 
(Q --t &(K; Y)) so that 

~,.,f= VJ-(s) A-a.e., s E K, 

and if&,, =lu(v,.,) then s ++ &,, is also a Bore1 map (K --) .A(K)) and V,l.V : 
L,(K, ,u”.,) -+ Y is continuous. But Y is p-trivia1 and so 

where cl”,,, is the purely atomic part of the measure pu,,,. By definition of 
,u(V,,,) we conclude that ,u:,, =,u~,~ (s E K). 

Now applying Theorem 2.10 of [7] there are universally measurable maps 
a,, ,i : K + IF?, t,,j : K--f K so that 

P F a Cs) 6(rn.j(s))3 n,s = i-1 n.j 
j-1 

(8.1.3) 

where for every s E K, and fixed n E N, r,,j(s) = r,,k(s) implies j = k. 
For convenience we can redefine a,,i, 7,,,i on a set of k-measure zero so 

that they are Bore1 and (8.1.3) holds I-a.e. Now let {t,* : n E N} be any 
sequential ordering of the maps (r,,j ; n E N, j E N}, and define inductively 
u, = rT, and if n > 1, 

where k is the least index such that Q(s) r$ {o,(s),..., (I,_ r(s)}. This process 
defines a sequence {a,} of Bore1 maps u,: K + K such that on(s) = u,(s) 
implies n = m and for any fixed k, {t,,Js)}~f , c {uj(s)}j”, , . 

Now for each j = 1, 2,... let 
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so that dj(T): Lp(K, 1; X) + Lp(K, 1; Y) is uj-elementary. Let R = K X N 
with v the product of 1 and counting measure on N and define 

We must first check that T,, is a bounded linear operator. This is most 
easily done by checking its behavior on elements 4 Ox, and appealing to 
Proposition 4.1, to produce a bounded linear operator Tb agreeing with r,, on 
such elements. Then it is trivial that F, = TO. 

Now for fixed n, 

To@ 0 xM9 n) = ~,m(4 0 x)(s) 
= eJ&)> ms eunw 

by (6.1.3). Hence 

A-a.e. 

and 

G II mll” J I d@)lP W)* 
K 

This last step follows from (5.1.5) (with c = I( F(x)II). Thus 

II To@ 0 XIII < II Tll lldll IIxII* 

as so r,, is a bounded linear operator. 
Note that ?“, is u-elementary, where 
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Next define S: L,(R, V; Y) --P LJK, 1; Y) by 

w-(s)= f fh n> s E K. 
n=l 

Here the series converges A-a.e. for any f E L,(Q, V, Y) since 

then S is an operator of norm one. 
Now forjE N 

sTO(d 0 xj) = i-: d(ons) Vj,,(eons) 
n=l 

A-a.e. 

For A-almost every s, ,u~,, is supported on {a,~)~~“,, and $ E L,(,u~.,). Thus 

sTo(4 0 xj> = vj.s 2 $(uns) eons 
n=1 

= vj,s(4> 

= T(4 0 xj> 

and by a density argument ST, = T. 

THEOREM 8.2. Under the same hypotheses as Theorem 8.1, there exist a 
diagonal operator 

D: L,(K, A; X) --t Lp(K k l,(Y) 0 L,(Y)) 

and a bounded linear operator 

R : L,(K, A, Z,(Y) @ Lp(Y)) + L,(K, A; Y) so that T = RD. 

ProoJ We write T = ST, as in 8.1. Now by Theorem 7.2 we can find 

J: L,(.Q, v; Y) --+ L,(K, II, l,(Y) 0 L,(Y)) 

and a Bore1 subset A of 0 such that (i) 9(T,) c L,(A, v; Y), 
(ii> JIL,W, v; r) is an isometry onto 9(J), (iii) 9(J) is complemented by a 
projection Q and (iv) JT,, is diagonal. 

Let D = JT, and R = SJ-‘Q, where J-l: 9’(J)-+ L&4, v; Y), is the inverse 
of J. 

THEOREM 8.3. Suppose X and Y are separable p-Banach spaces with Y 
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p-trivial, and such that L,(X) is isomorphic to a complemented subspace of 
L,,(Y). Then X z X, 0 X, , where X, is isomorphic to a complemented 
subspace of LJY) and X2 is isomorphic to a complemented subspace of l,(Y) 
(X, = (0) or X, = (0) are possibilities here]. 

Remarks. The converse of Theorem 8.3 is trivial. 

Proof: Let T be an operator mapping LJK, 1; X) isomorphically onto a 
complemented subspace of L,(K, 1; u). Let T = RD as in Theorem 8.2. 

Here D and R /.2’(D) must be embeddings. If Q is a projection on A?(T) 
then R-‘QR is a projection on 9(D), where R-l: 9(T) + 9(D). However, 
9(D) is a diagonal subspace. Hence there is a diagonal projection P onto 
S’(D) (by 6.2). 

Now since D is embedding we can define an operator E = D- ‘P (where 
D-‘: 9(D) + L,(K, 1; X)) and E is also diagonal. Recalling Theorem 4.2, 
we get strongly Bore1 measurable maps s F-+ D, (K --t 9(X, l,(Y) 0 Lp( Y)), 
s I+ E, (K + Y(I,( I’) @ L,(Y), X)) so that 

Df(s) = D,df(s)> A-a.e., 

W(s) = E,(f(s)) A-a.e. 

Since ED is the identity on L,(K, L;X), by the uniqueness of such a 
representation 

E,D, = I I-a.e. 

This implies, a.e., that D, maps X isomorphically onto a complemented 
subspace of /,( I’) @ Lp( Y). 

To complete the proof suppose W is a complemented subspace of 
l,(Y) @ L,(Y). Since 5F(Lt,, I’) = 0 we have y(L,(Y), I,(Y)) = 0. Thus if Q 
is a projection onto W and P, , P, are the canonical projections onto I,( I’) 
and L,(Y), respectively, we must have P, QP, = 0. 

It follows that QP2 is a projection. Indeed QP2 QP2 = Q*P, = QP2 : W, = 
S(QP,). Then W, is a complemented subspace of Lp( Y) and W = W, @ W,, 
where W, = S’(QP,Q). However, since QPI is on W a projection, W, z 
9(P,QP,), and P,QP, is a projection. Hence W, is isomorphic to a 
complemented subspace of l,(Y). This will complete the proof. 

THEOREM 8.4. Suppose X and Y are p-trivial separable p-Banach 
spaces, with LJX) FZ L,(Y). Then lp(X) z Z,(Y). 

Proof: We have X z X, OX,, where X, is complemented in l,(Y) and X, 
is complemented in L,(Y). If X is p-trivial, X, = {0}, i.e., X is isomorphic to 
a complemented subspace of I,(Y). Thus I,(X) is isomorphic to a 
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complemented subspace of l,(Y). Reversing the reasoning and applying the 
Pelczynski decomposition technique gives the result. 

Remark. Of course l,(X) z l,(Y) always implies L,(X) g L,(Y) as 
L,(X) z L,,(~p(X)). 

COROLLARY 8.5. If X is p-trivial and L,(X) 2 L, then X is finite- 
dimensional or X z lP. 

This follows from a theorem of Stiles that every complemented infinite 
dimensional subspace of 1, is isomorphic to 1, [ 161. 

COROLLARY 8.6. If X is p-trivial and L,(X) contains a complemented 
cops of L, then X* # (0). 

EXAMPLE 8.7. Let (e,) be the cananical basis vectors of 1, and let U, = 
2 ‘!P(ezn , f e,,), n = 1, 2 ,... . Then (u,) is the basis for a subspace N, 
isomorphic to 1,. If 21p”p < c < 1, let T: N,-+ 1, be defined so that 
Tu,=ce,,. As /]r]]=c< 1, Z-EN, -+ 1, is an isomorphism of N, onto a 
closed subspace N of lP also isomorphic to I,, with (u, - Tu,,) as a basis. By 
considering e,, for example, it is not difficult to show N is a proper 
subspace. On the other hand, N is weakly dense. Indeed 

u, - Tu, = c(Se, - e,), 

where Se, = c ’ 2- ““(ez, _, + ezn) so that S is bounded linear operator on 1, 
with //S]], < 1. Thus (I - S) is an automorphism of I, and (u, - Tu,) is a 
weak basis of I,. 

Now 1,/N is p-trivial since NE 1, by appealing to the lifting theorems of 
18 ] (N is pseudo-dual). Thus L&,/N) does not contain a complemented 
copy of L,. However, L,(l,IN) z L,(l,,,)/L,(N). Hence we have found a 
subspace of L, isomorphic to L, but which cannot be moved by any 
automorphism into a subspace LJK, 90, A) for some sub-u-algebra (use 
Theorem 7.3). 

THEOREM 8.8. Suppose X and Y are separable p-Banach spaces Y is p- 
trivial and 9(X, Y) = 0. Then if LB(X). is isomorphic to a complemented 
subspace of L,(Y), X is also isomorphic to a complemented subspace of 
Lp( 0. 

The proof of Theorem 8.8 employs techniques similar to those of the proof 
of Theorem 8.4 and we omit it. Theorem 8.6 provides yet another proof that 
L,(L, 1 1) 2 L,, for L,J 1 is not isomorphic to a complemented subspace of 
L, (since. e.g., L, is a K-space and L,J 1 is not 181). 
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9. THE COMPLEMENTED SUBSPACE PROBLEM FOR L, 

Suppose K is a compact metric space and A is a diffuse measure on K. 
Then by Theorem 3.2 of [7] every T E Y(L,(K, A)) has a representation of 
the form 

T,‘-(s) = 5 a,(s>f(~,s) I-a.e., s E K, (9.0.1) 
II=1 

where a n : K + R and D,, : K + K are Bore1 maps satisfying 

o,(s) # fJ”(S) sEK, m#n, 

2 /a,(~)~ < co A-a.e., s E K, 
II=1 

(9.0.2) 

(9.0.3) 

(9.0.4) 

(9.05) 

Conversely if a,, u,, satisfy (9.0.2~(9.05) then (9.0.1) defines a bounded 
linear operator. Of course this result also would follow from Theorem 5.2. 

In [7], T was called small if each u, is anti-injective on the set 
{s: la,,(s)] > 0). This definition does not depend on the precise form of the 
representation (9.0.1) as long as (9.0.2) is satisfied. 

If T is not small, it is called large and large operators were characterized 
as follows (Theorem 5.6 of [7]) 

PROPOSITION 9.1. The following conditions are equivalent: 

(i) T is large (9.1.1) 

(ii) There is a Bore1 subset of K with A(B) > 0 such that 
TIL,(B, A) is an isomorphism and T(LJB, A)) is 
complemented in L,(K, A) (9.1.2) 

(iii) There exist S,, S, E Y(L,(K, A)) such that S, TS, = I (9.1.3) 

COROLLARY 9.2. If T is a large projection &F(T) Z L,. 

Proof: By (9.1), &Z(T) contains a complemented copy of L,. Hence 
A’(T) z L, by the Pelczynski decomposition technique. 

Now if T is small, returning to (9.0.1) it is possible to alter each (T, to be 
anti-injective on K without changing T (simply redefine u, on (s: a,(s) = 0)). 
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PROPOSITION 9.3. Let U: LJK, 2) -+ L,(K, 2; L,(K, A)) be defined by 

v-(s) =m> . 1,. 

Then if’ T is small there exists a bounded linear operator S: L,(K, 1”. 
L,(K, 2)) --t LJK, A) such that T = SU. 

Proof: Clearly T= S,E, where E: L,(K, A) -+ L,(K x i%:, y) (y is the 
product of /1 and counting measure) is defined by 

Ef(s, n> = a,(s)f(~,,s) 
and S, : L,(K x N, y) -+ LJK, A) is given by 

S&f(s) = fy f(& n), sEK, nEiN. 
n=l 

Now E is o-elementary, where CT is anti-injective. We now argue as in 
Theorem 8.2, but using Theorem 7.1 in place of Theorem 7.2 to write 
T= S, V, where V: L,(K, A) -+ L,(K, A; Lp) is diagonal and S, : 
L,(K, 2; L,) -+ L,(K, 1). It will be convenient to note L,(K, A; Lp) z 
L,(K, A: L,(K, A)). Thus 

v-(s) = f(s) g(s) A-a.e., 

where g: K -+ L, is a Bore1 map with /I g(s)/1 < /( VII I-a.e. By Lemma 2.3 
there is a strongly Bore1 measurable map s t--+ R, of K into Y(L,) so that 
ilR,l] < 2 and R, 1, = g(s). If R: LJK, 2; Lp) --t L,(K, 2; Lp) is given by 

W-(s) = R,U-(s)) s E K, 

then T = S, R U as required. 

THEOREM 9.4. Let T E 4p(L,); then T is small if and only if x(T) = 0 
for every x E ip(L,)*. 

Proof: Suppose x(T) = 0 for every x E p(L,)*. If T is large then 
I = S, TS, for some S,, S, E 4p(L,) and so x(I) = 0 for every x E Y(LJ*. 
However, the diagonal projection A maps Y(L,) into a subspace (of 
diagonal operators) isomorphic to L, and d(I) = I. This is a contradiction. 

Conversely suppose T is small. Then T= SU as in 9.3. For each 
o E L,(K, A), define U, : L,(K, A) -+ L,(K, A, L,(K, A)) by 

U,“m) = S(s> $2 s E K. 

Then 4 ++ U, is linear and 1) U, 1) = (14 I/. H ence there is a bounded linear map 
6 I+ SU, of L, into ip(L,) with 1 -+ T. Thus x(2’) = 0 for every x E g(L,,)*. 



334 N.J. KALTON 

Remarks. If P is small projection with range Z, say, then g(Z)* = {O), 
since if x E Y(Z)*, S E P(Z) T-+ X(SPT(Z) is a linear functional as 4p(L,) 
and D -+ x(S). Hence x(S) = 0. 

COROLLARY 9.5. If Z is a complemented subspace of L, with Z G& L, 
then L,(Z) is also isomorphic to a complemented subspace of L,, and 
L,(Z) si L,. 

Proof: Clearly L,(Z) is also isomorphic to a complemented subspace of 
Lp(Lp) = L, * Additionally if Y(L,(Z))* # {0}, then there exists 
x E Y(L,,(Z))* with x(I) # 0. However, there is a natural injection Y(Z) + 
~&7Gm sending I, to ILpcz) using diagonal operators. Hence 
Y(L,(Z))* = {0} and so L,(Z) k L,. 

THEOREM 9.6. Suppose X is a p-Banach space with trivial dual such 
that L,,(X) z L,. Then X z L,. 

ProoJ By 8.3, X is isomorphic to a complemented subspace of L, and 
by Corollary 9.5, X 2 L,. 

Our final result shows a complemented subspace of L, must belong to one 
of at most two isomorphism classes. In fact, we strongly suspect L, is prime. 

PROPOSITION 9.1. Suppose there is a complemented subspace Z of L, 
with Z & L,. Then 

(i) Z r L,(Z). (9.7.1) 

(ii) Every complemented subspace of L, is isomorphic either 
to L, or to Z. (9.7.2) 

(iii) Z is prime. (9.7.3) 

ProoJ: Let us define yF9 to be the collection of all operators T E Y(L,) 
with the following property: 

There is a constant c < co and a Bore1 subset B of K with 
A(B) > 0 such that whenever A c B is a Bore1 set of positive 
measure, there exist operators S, : Z + L,, R, : L, + Z with 
R,TP,S, =I on Z, and (IRA/I IIS,II cc. 

Two properties of S’ are easy to establish and we omit the proofs. 

&’ is open (for the norm topology on .Y(L,)). (9.7.5) 

If STE& then T E &. (9.7.6) 
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The proof depends on the fact that a small enough perturbation of the 
identity on Z is invertible. 

Let Q: L, + Z be any projection. Q is certainly a small operator and so 
may be written Q = SU, where U: L,(K, 2) + L,(K, ,I. L,(K, ,I)) is given by 

by-(s) =f(s) * 1,. 

We shall here identify U as an endomorphism of L,, using the fact that 
L,(K, 1; Lp) is isometric to L p; equally we may treat S as an endomorphism 
of L,. Now U(Z) is also complemented in L, by the projection UQS, and is 
isomorphic to Z. Hence there exist operators R, : Z -+ L,, R, : L, + Z such 
that R z UR , = I. Now for any Bore1 subset A of K, with positive l-measure 
there are isometries V, : L, + L,(A, A), V, : L,(A, 1; L,,) --) L,(K, ,I, LJ such 
that V,UV, = U. Hence R,V,P,UP, V,R, = 1 and j!RzVzP,/I. /) V,R,ll< 
;I R , // . /I R z I/. Thus U E d, withc=lIR,jlllR,lI andB=K. 

The next step is that if V: L,(K, A) -+ L,(K, A; Lp) is a non-zero diagonal 
operator then V E &‘. Indeed 

u-(s) = S(s) g(s)9 

where g: K -+ L, is a bounded Bore1 map. If for some 6 > 0 and B E 9 of 
positive measure ]) g(s)/] > 6, s c B, then it is easy to show (via Lemma 2.3) 
that UP, = SV and so by (9.7.6), V E &‘. Appealing to Theorem 7.1 and 
(9.7.6), this shows that every non-zero a-elementary operator for anti- 
injective 0 is in &. 

Next we show that every non-zero small operator belongs to .59. Suppose 
T E Y(L,j is small; then we may write 

v-(s)= f %(s)“mns> 2 - a.e. 
n-1 

as in (9.0.1)-(9.0.5). Let 

W(s) = a,(s)f(o,s) A-a.e. 

S is small and elementary and also non-zero (if Sl = 0 then a, = 0 and 
hence T = 0). 

We now repeat an argument from p. 371 of [ 71. For each n, let (Bn,k : 1 < 
k & I(n)) be partitioning of K into Bore1 sets of diameter at most l/n. Let 

Then as on p. 371 of 171, t9,(T,, - S)-+ 0 and by Lemma 5.2 we can find a 
set A of positive A-measure with SP, + 0 and jl(T, - S) PA ]I-+ 0. Hence for 
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large enough n, T,,P, E L-/. Find B c A so that (9.7.4) is satisfies for T,,P, 
and choose k so that A(B n Bn.k) > 0. Then 

Hence TPsne, ~ E&andsoTE&‘. 
Now any small projection is in J./ and in particular it follows that if W is 

a complemented subspace of L,, which is not isomorphic to L,, then W 
contains a subspace isomorphic to Z and complemented in it, In particular Z 
contains a complemented copy of L,(Z); but the reasoning may be reversed 
to get a complemented copy of Z in L,(Z). The Pelczynski decomposition 
technique now yields (9.7.1) and (9.7.2). Statement (9.7.3) follows since Z 
cannot contain a complemented copy of L, (again the Pelczynski 
technique!). 

COROLLARY 9.8. L, has a prime complemented subspace. 

Proof: Either Z exists or it does not! 

Remarks. We now finally state that L,,(X) r L, with X infinite- 
dimensional implies that X is one of the spaces lp, L,, L, @ IR” (n > l), 
L, 0 I,, Z @ IR” (n > l), Z @ Zp provided Z exists. Otherwise the list is 
reduced by omitting those involving Z. 

10. OPEN PROBLEMS 

We list now the major problems left open in this paper. 

Problem 10.1 (= Problem 1.6). Is L, prime for 0 < p < l? 
Two related problems are: 

Problem 10.2. Does there exist a quasi-Banach space X such that 
p(X)* = {O)? Does there exist a quasi-Banach algebra with identity and a 
trivial dual? 

We remark here that results of Zelazko [18] show that a commutative 
quasi-Banach algebra with identity has non-trivial dual. 

Problem 10.3. If 0 < p ( 1, and X is a quasi-Banach space can there be 
a projection from LJX) onto its subspace of constant functions? 

One can show that Z would have the above property; in fact there is a 
clear relationship with Problem 10.2. 

Problem 10.4. If 1 < p ( co and X is a quasi-Banach space such that 
there is a projection from LJX) into the subspace of constant functions, is X 
locally convex? 
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The author has a number of partial results on this problem which will be 
published elsewhere. In particular the answer to 10.4 is yes when X has a 
basis. 

Problem 10.5 (= Problem 1.3). Let X be a closed subspace of L, so that 
X z L,/X s L,. Is X complemented? 

Problem 10.6 (See Theorem 7.3). If for two sub-a-algebras C90, 9, of .9 
we have A (, 8,,) z A (.A?,), what can one deduce about S’0 and ,.9, ? 

Problem 10.7. If X and Y are Banach space with the Radon-Nikodym 
property and L,(X)z L,(Y) is I,(X)= f,(Y)? 
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