Isomorphisms between L_p -Function Spaces when p < 1

N. J. KALTON*

Department of Mathematics, University of Missouri. Columbia, Missouri 65211

Communicated by the Editors

Received August 30, 1980; revised February 24, 1981

We prove a number of results concerning isomorphisms between spaces of the type $L_p(X)$, where X is a separable p-Banach space and $0 . Our results imply that the quotient of <math>L_p([0, 1] \times [0, 1])$ by the subspace of functions depending only on the first variable is not isomorphic to L_p , answering a question of N. T. Peck. More generally if \mathscr{B}_0 is a sub- σ -algebra of the Borel sets of [0, 1], then $L_p([0, 1])/L_p([0, 1], \mathscr{B}_0)$ is isomorphic to L_p if and only if $L_p([0, 1], \mathscr{B}_0)$ is complemented. We also show that L_p has, up to isomorphism, at most one complemented subspace non-isomorphic to L_p and classify completely those spaces X for which $L_p(X) \cong L_p$. In particular if $\mathscr{L}(L_p, X) = \{0\}$ and $L_p(X) \cong L_p$ then $X \cong l_p$ or is finite-dimensional. If X has trivial dual and $L_p(X) \cong L_p$ then $X \cong L_p$.

1. INTRODUCTION

A quasi-Banach space X is an F-space on which the topology is given by a quasi-norm $x \mapsto ||x||$, which satisfies

$$||x|| > 0 \qquad x \neq 0, \quad x \in X,$$
 (1.0.1)

$$||tx|| = |t| ||x||$$
 $t \in \mathbb{R}, x \in X,$ (1.0.2)

$$||x + y|| \le k(||x|| + ||y||) \qquad x, y \in X, \tag{1.0.3}$$

where k is a constant independent of x and y. If, in addition, for some p > 0, we have

$$\|x + y\|^{p} \leq \|x\|^{p} + \|y\|^{p} \qquad x, y \in X,$$
(1.0.4)

then X is a p-Banach space. If X can be equivalently re-normed to be a p-Banach space then X is said to be p-convex.

* Research supported in part by NSF Grant MCS-8001852.

0022-1236/81/090299-39\$02.00/0 Copyright ^c 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. For any quasi-Banach space X we define $l_p(X)$ $(0 to be the space of sequences <math>(x_n)$ with $x_n \in X$ such that

$$\|(x_n)\| = \left(\sum_{n=1}^{\infty} \|x_n\|^p\right)^{1/p} < \infty,$$
 (1.0.5)

 $l_p(X)$ is a quasi-Banach space, which is a *p*-Banach space when X is a *p*-Banach space (when $0). Also we define <math>L_p(X)$ to be the space of Borel maps $f: [0, 1] \to X$ such that

$$||f|| = \left\{ \int_0^1 ||f(s)||^p \, ds \right\}^{1/p} < \infty.$$
 (1.0.6)

Identifying, as usual, functions equal a.e., $L_p(X)$ is also a quasi-Banach space which is a p-Banach space when 0 . We remark here that <math>[0, 1] with Lebesque measure can be replaced with any Polish space with a diffuse probability measure, but for the purposes of the introduction, the above definition suffices.

If X and Y are two quasi-Banach spaces then $\mathcal{L}(X, Y)$ denotes the space of all operators $T: X \to Y$ with quasi-norm

$$||T|| = \sup_{||x|| \leq 1} ||Tx||.$$

If X = Y we abbreviate this to $\mathcal{L}(X)$.

In the remainder of the introduction we sketch some of the problems with motivated this research and then summarise our results.

This paper arises out of problems suggested by [6]. In [7] it was shown that if H is the subspace of $L_p([0, 1] \times [0, 1])$ consisting of all functions depending only on the second variable, then H is uncomplemented in $L_p([0, 1] \times [0, 1])$ when 0 . (The case <math>p = 0 had earlier been proved by Berg *et al.* [2].) A natural question (suggested by Peck) is:

PROBLEM 1.1. Is $L_p([0, 1] \times [0, 1])/H \cong L_p$?

Of course if $1 \le p < \infty$, *H* is complemented and the answer to Problem 1.1 is yes. A number of problems we consider are illuminated by comparison with the case p = 1 in particular, and in that case one can prove easily the following theorem (basically due to Lindenstrauss [10]).

THEOREM 1.2. If X is a Banach space and N is a closed subspace such that $N \cong L_1$ and $X/N \cong L_1$ (or is even an \mathcal{L}_1 -space), then N is complemented in X.

This suggests a companion problem to Problem 1.1.

PROBLEM 1.3. If X is a p-Banach space $(0 and N is a closed subspace of X isomorphic to <math>L_p$ such that $X/N \cong L_p$, is N complemented in X? What about the case $X = L_p$?

Also Theorem 1.2 suggested an approach to Problem 1.1 by examining whether $L_p([0, 1]^2)/H$ is an \mathcal{L}_p -space when $0 . We intend to develop the theory of <math>\mathcal{L}_p$ -spaces when p < 1 in a separate paper. For the purposes of resolving 1.1, however, the approach proved to be a failure, since $L_p([0, 1]^2/H$ is an \mathcal{L}_p -space (and therefore could be isomorphic to L_p).

An alternative approach is to treat $L_p([0, 1]^2)/H$ as the space $L_p(L_p/1)$, where $L_p/1$ is the quotient of L_p by a subspace of dimension one [8]. As shown in [8], $L_p/1 \not\cong L_p$, and clearly one would wish to somehow exploit this non-isomorphism. Thus we state a new problem:

PROBLEM 1.4. Characterize those p-Banach spaces such that $L_p(X) \cong L_p$.

or more generally:

PROBLEM 1.5. If X and Y are two p-Banach spaces such that $L_p(X) \cong L_p(Y)$ what can one say about X and Y?

Again comparison with the p = 1 is in order. If p = 1 there is a natural projection from $L_1(X)$ onto a subspace isomorphic to X, namely,

$$Pf(s) = \int_0^1 f(t) \, dt \qquad 0 \leqslant s \leqslant 1.$$

From this and the Pelczynski decomposition technique one quickly gets that $L_1(X) \cong L_1$ if and only if X is isomorphic to a complemented subspace of L_1 . The problem of characterizing such X is still open. It is known (the Lewis-Stegall theorem [9, 14]) that if X is infinite-dimensional and has the Radon-Nikodym property then $X \cong l_1$, and it is still open whether, in general, $X \cong l_1$ or $X \cong L_1$. In Problem 1.5 one can conclude X is isomorphic to a complemented subspace of $L_1(X)$, and little else.

For $0 , the absence of such a projection radically changes the problem. Clearly <math>L_p(l_p) = L_p$ but l_p is not isomorphic to a complemented subspace of L_p (or even more simply $L_p(\mathbb{R}) \cong L_p$). Clearly one must also consider:

PROBLEM 1.6. Is L_p prime when $0 ? (if X is isomorphic to a complemented subspace of <math>L_p$ is $X \cong L_p$?).

We now sketch the main results of this paper and how they affect Problems 1.1-1.6.

580/42/3-3

Sections 2-4 are preparatory; we gather in many more or less elementary lemmas and definitions which are required later. Our first major result is Theorem 5.2 which gives a representation theorem for operators T: $L_p \rightarrow L_p(X)$, where X is a p-Banach space, generalizing the scalar case proved in [7]. We use Theorem 5.2 to then establish a lifting theorem (5.3) which yields the conclusion that if X is a p-Banach space and N is a closed subspace of X which is q-convex for some q > p (e.g., if dim $N < \infty$), then $L_p(X/N) \cong L_p$ implies $L_p(N)$ is complemented in $L_p(X)$ (in its natural embedding). Combined with the fact from [7] (also proved in more generality in Section 6) that $H = L_p(\mathbb{R})$ is uncomplemented in $L_p([0, 1]^2) \cong$ $_p(L_p)$ we can deduce that the answer to Problem 1.1 is no (Corollary 5.4), i.e., $L_p([0, 1]^2)/H \not\cong L_p$. This is not the only proof of this fact given in the paper, however.

In Section 6 we consider operators $T: L_p(X) \to L_p(Y)$, where X and Y are two separable p-Banach spaces. We introduce the notion of diagonal maps and use them to show that if X is a subspace of Y and $L_p(X)$ is complemented in $L_p(Y)$ (in its natural embedding) then X is complemented in Y (this proof is valid for 0). Of course this gives another proof $that H is uncomplemented in <math>L_p([0, 1]^2)$.

Our main result in Section 7 is Theorem 7.3 Here we consider the quotient $\Lambda(\mathscr{B}_0)$ of $L_p([0,1])$ $(0 by a closed subspace <math>L_p([0,1], \mathscr{B}_0)$, where \mathscr{B}_0 is some sub- σ -algebra of the Borel sets. In [6] we gave a complete characterization of those \mathscr{B}_0 for which this subspace is complemented. Here we show that $\Lambda(\mathscr{B}_0) \cong L_p$ implies that $L_p([0,1], \mathscr{B}_0)$ is complemented, generalizing Corollary 5.4. On the other hand, $\Lambda(\mathscr{B}_0)$ always contains a complemented copy of L_p . We contrast this with Example 8.7, where we construct a proper subspace of L_p . N, say, so that $N \cong L_p$ but L_p/N contains no complemented copy of L_p . Thus N cannot be moved by any automorphism into a space $L_p([0,1], \mathscr{B}_0)$. This is somewhat akin to the recent result of Bourgain [3] that L_1 contains an uncomplemented subspace isomorphic to L_1 .

In Section 8 we prove our main results. Here the critical assumption is that a p-Banach space X is p-trivial, i.e., $\mathscr{L}(L_p, X) = \{0\}$. This definition was introduced in [7] and it was shown to be an appropriate analogue when p < 1 to the assumption that X has the Radon-Nikodym property. In Theorem 8.3, we show that if $L_p(X)$ is isomorphic to a complemented subspace of $L_p(Y)$, where Y is separable and p-trivial, then $X \cong X_1 \oplus X_2$, where X_1 is a complemented subspace of $l_p(Y)$ and X_2 is a complemented subspace of $L_p(Y)$ (either X_1 or X_2 can be $\{0\}$). Note that in the case p = 1this is a trivial conclusion since X is complemented in $L_1(X)$. We then deduce a nice partial solution to Problem 1.5, namely, that if 0 andX and Y are two separable p-Banach spaces which are p-trivial and $<math>L_p(X) \cong L_p(Y)$, then $l_p(X) \cong l_p(Y)$. Specializing to $Y = \mathbb{R}$, we obtain that $L_p(X) \cong L_p$ with X p-trivial, implies X is finite-dimensional or $X \cong l_p$. This result is strikingly similar to the Lewis-Stegall theorem, which implies that if $L_1(X) \cong L_1$ and X has the Radon-Nikodym Property then X is finite-dimensional or $X \cong l_1$.

In Section 9 we use these techniques to study the dual space of $\mathscr{L}(L_p)$. The problem of determining whether $\mathscr{L}(L_p)$ has trivial dual was suggested to the author by J. H. Shapiro. We characterize operators $S \in \mathscr{L}(L_p)$ so that $\chi(S) = 0$ for every $\chi = \mathscr{L}(L_p)^*$ as the small operators introduced in [7]. Using this, we show that if L_p has a complemented subspace Z nonisomorphic to L_p , then $L_p(Z) \not\cong L_p$. Hence we obtain (Theorem 9.6) that if $L_p(X) \cong L_p$ and $X^* = \{0\}$, then $X \cong L_p$.

Finally we somewhat illuminate Problem 1.6 by showing that if L_p fails to be prime, then there is, up to isomorphism, a unique complemented subspace $Z \not\cong L_p$. In particular Z must be prime. We believe that no such Z can exist.

We note here that we have some corresponding results for the case p = 0, but the techniques are completely different and we proposed to publish these separately.

2. PRELIMINARIES FROM MEASURE THEORY

Let Ω be a topological space, then we denote by \mathscr{B} (or $\mathscr{B}(\Omega)$ where more precision is required) the σ -algebra of Borel subsets of Ω .

We start by giving some essentially known results on Borel measurable maps. Suppose Ω and K are Polish spaces and v is a σ -finite Borel measure in Ω . Then a Borel measurable map $\sigma: \Omega \to K$ will be called *anti-injective* if $B \in \mathscr{R}(\Omega)$ and $\sigma | B$ is an injection then v(B) = 0.

LEMMA 2.1. In order for σ to fail to be anti-injective it is necessary and sufficient that there exists $B \in \mathscr{B}(\Omega)$ with v(B) > 0, such that if $C \in \mathscr{B}(\Omega)$ and $C \subset B$, then there exists $A \in \mathscr{B}(K)$ with

$$v([\sigma^{-1}(A) \cap B] \Delta C) = 0.$$

Proof. If σ fails to be anti-injective then there exists $B \in \mathscr{B}(\Omega)$ with v(B) > 0 such that $\sigma | B$ is an injection. By Lusin's theorem we can find $B_n \subset B$ which are compact so that $\sigma | B_n$ is continuous and injective and $v(B \setminus \bigcup B_n) = 0$. If $C \subset B$ is a Borel set then $A = \sigma(\bigcup_{n=1}^{\infty} (C \cap B_n)) \in \mathscr{B}(K)$ and $C\Delta(\sigma^{-1}(A) \cap B) \subset B \setminus \bigcup B_n$.

Conversely suppose B satisfies the conditions of the lemma. Let (U_n) be a countable base for the topology in Ω . For each n pick $A_n \in \mathscr{B}(K)$ with $\nu((\sigma^{-1}(A_n) \cap B) \Delta(U_n \cap B)) = 0$. Let $F = \bigcup [(\sigma^{-1}(A_n) \cap B) \Delta(U_n \cap B)]$. Then $\nu(F) = 0$. If $\omega_1, \omega_2 \in B \setminus F$ and $\omega_1 \neq \omega_2$ there exists $n \in N$ so that

 $\omega_1 \in U_n$ but $\omega_2 \notin U_n$. Hence $\sigma \omega_1 \in A_n$ but $\sigma \omega_2 \notin A_n$, i.e., $\sigma \omega_1 \neq \sigma \omega_2$. Thus $\sigma | B \setminus F$ is injective.

Now if $\sigma: \Omega \to K$ is a Borel map there is an induced measure $\sigma^* v$ or K defined by

$$\sigma^* v(B) = v(\sigma^{-1}B) \qquad B \in \mathscr{B}(K).$$

Our next proposition is in reality a form of Maharam's theorem on homogeneous measure algebras [11]; but is stated in the language necessary for this paper. We refer also to Semadeni [15, pp. 471–477].

PROPOSITION 2.2. Suppose Ω and K are Polish spaces and v is a probability measure on Ω . Suppose $\sigma: \Omega \to K$ is an anti-injective Borel map. Then there is a compact metric space M, a diffuse probability measure π on M and a Borel map $\tau: \Omega \to M$ such that

(i) There is a Borel map
$$\rho: K \times M \to \Omega$$
 with $\rho(\sigma \times \tau)(\omega) = \omega$
 $\nu - \text{a.e.}, \omega \in \Omega$, where $(\sigma \times \tau)(\omega) = (\sigma\omega, \tau\omega)$. (2.2.1)

(ii)
$$(\sigma \times \tau)^* v = \sigma^* v \times \pi.$$
 (2.2.2)

Proof. Let (U_n) be a base for the open sets of Ω , where each set is repeated infinitely often. Let \mathscr{B}_0 be the sub- σ -algebra of $\mathscr{B}(\Omega)$ of all sets of the form $(\sigma^{-1}B; B \in \mathscr{B}(K))$.

We shall show how to construct a sequence of finite sets F_n and a sequence of Borel maps $\xi_n: \Omega \to F_n$ such that (2.2.3)-(2.2.5) hold:

$$|F_n| \ge 2$$
 and $A \subset F_n$ then $v(\xi_n^{-1}(A)) = \pi_n(A)$, (2.2.3)

where π_n is the probability measure on F_n defined by $\pi_n(A) = |A|/|F_n|$ (|C| = the cardinality of C).

If \mathscr{B}_n is the smallest sub- σ -algebra of \mathscr{B} such that $\sigma, \xi_1, ..., \xi_n$ are measurable with respect to \mathscr{B}_n , then for $n \ge 1, \xi_n$ is independent of \mathscr{B}_{n-1} , i.e., if $A \subset F_n$ and $B \in \mathscr{B}_{n-1}$ then $(1-1)(A) \cap B$

$$v(\zeta_n \cap B) = \pi_n(A) v(B).$$

There exists $A \in \mathscr{B}_n$ with $v(A \Delta U_n) < 1/n$, $n \ge 1$. (2.2.5)

The argument is an easy induction. If $(\xi_k : k \le n-1)$ have been constructed, where $n \ge 1$, then the map $\sigma \times \xi_1 \times \cdots \times \xi_{n-1} : \Omega \to K \times F_1 \times \cdots \times F_{n-1}$ is anti-injective, by the finiteness of $F_1 \times \cdots \times F_{n-1}$ (some obvious rewording is necessary when n = 1). By Lemma 2.1 this means \mathscr{P}_{n-1} (or more exactly the measure algebra induced by \mathscr{P}_{n-1}) induces no ideal in (\mathscr{B}, v) as defined

on p. 473 of Semadeni [15]. Now as in Lemmas 26.5.13 and 26.5.14 of [15, pp. 475, 476], we can find F_n and ξ_n to satisfy (2.2.3)–(2.2.5).

Now let M be the product $\prod_n F_n$ with the product measure $\bigotimes_n \pi_n = \pi$ which is diffuse and define $\tau: \Omega \to M$ by $\tau(\omega) = (\xi_n(\omega))_{n=1}^{\infty}$. For each open set $U \in (U_n)_{n=1}^{\infty}$, it is clear that there is a Borel set $A \in \mathscr{B}(M)$ with

$$v((\sigma \times \tau)^{-1}(A) \cap U) = 0.$$

Hence the same is true for every Borel set $U \subset \Omega$. Now Lemma 2.1 (or more precisely its proof) implies that there is a Borel subset Ω_0 of Ω with $v(\Omega \setminus \Omega_0) = 0$ such that $\sigma \times \tau | \Omega \setminus \Omega_0$ is injective: We may suppose Ω_0 is an F_{σ} -set, $(\sigma \times \tau)(\Omega_0)$ is Borel and $(\sigma \times \tau)^{-1} | (\sigma \times \tau) \Omega_0$ is Borel; this follows easily from applying Lusin's theorem. Defining $\rho = (\sigma \times \tau)^{-1}$ on $(\sigma \times \tau) \Omega_0$ and arbitrarily (subject to being Borel) off $(\sigma \times \tau) \Omega_0$ we can satisfy (2.2.1).

It is easy to see that (2.2.2) is automatic from the construction.

Suppose now X is separable quasi-Banach space. Then it is easy to see that if Ω is a Polish space, then a Borel map $g: \Omega \to X$ is a uniform limit of countably-valued Borel maps $g_n: \Omega \to X$.

If X and Y are separable quasi-Banach spaces then a map $\Phi: \Omega \to \mathscr{L}(X, Y)$ is strongly (Borel) measurable if it is a Borel map for the strong-operator topology on $\mathscr{L}(X, Y)$, i.e., for $x \in X$, the map $\omega \mapsto \Phi(\omega) x$ is a Borel map into Y. From the preceding paragraph it can be shown that if $g: \Omega \to X$ is a Borel map and $\Phi: \Omega \to \mathscr{L}(X, Y)$ is strongly measurable then $\omega \mapsto \Phi(\omega)(g(\omega))$ is also a Borel map.

The following lemma is one that we shall require later for the special case $X = L_p$ when the conditions are satisfied for $c = 1 + \varepsilon$ for any $\varepsilon > 0$ (this follows quickly from results of Rolewicz [13, pp. 253-254].

LEMMA 2.3. Let Ω be a Polish space and let v be a σ -finite Borel measure as Ω . Suppose X is a separable quasi-Banach space with the property

For some fixed
$$c > 0$$
, if $x, y \in X$ with $||x|| = ||y|| = 1$ there
exists an invertible $T \in \mathcal{L}(X)$ with $||T||$, $||T^{-1}|| \leq c$ and
 $Tx = y$. (2.3.1)

Suppose further g: $\Omega \to X$ is a Borel map such that $0 < \alpha \leq ||g(\omega)|| \leq \beta < \infty$ for $\omega \in \Omega$. Then given $u \in X$ with ||u|| = 1 there exists a strongly measurable map $\omega \mapsto T_{\omega}$ such that:

$$\|T_{\omega}\| \leqslant c\beta \qquad \omega \in \Omega, \tag{2.3.2}$$

- $\|T_{\omega}^{-1}\| \leqslant c \alpha^{-1} \qquad \omega \in \Omega, \tag{2.3.3}$
 - $T_{\omega}u = g(\omega) \qquad v \text{a.e.} \tag{2.3.4}$

Proof. Let $G \subset \mathscr{L}(X)$ the subset of $\mathscr{L}(X) \times \mathscr{L}(X)$ of all (S, T) with TS = ST = I, $||S|| \leq c\alpha^{-1}$ and $||T|| \leq c\beta$. Then in the product strong-operator topology G is closed. For if $(S_n, T_n) \to (S, T)$ then $||S|| \leq c\alpha^{-1}$ and $||T|| \leq c\beta$ and since $S_n \to S$ uniformly as compact sets we have

$$STx = \lim_{n \to \infty} S(T_n x)$$
$$= \lim_{m \to \infty} \lim_{n \to \infty} S_m(T_n x)$$
$$= \lim_{n \to \infty} S_n(T_n x)$$
$$= x.$$

Now let $V \subset X$ be the set $\{Tu: (S, T) \in G\}$. Assumption (2.3.1) guarantees that $V \supset \{x: \alpha \leq ||x|| \leq \beta\}$.

Now G is a Polish space (it is bounded and closed in $\mathscr{L}(X) \times \mathscr{L}(X)$). The map $(S, T) \mapsto Tu$ is continuous onto V. Hence by the von Neumann selection theorem (Diestel [4, p. 270]; see also [1; 12, p. 448]), there is a universally measurable map $\phi(v) = (\phi_1(v), \phi_2(v))$, where $\phi_2(v) u = v$.

Now let

$$T'_{\omega} = \phi_2(g(\omega)).$$

Then $\omega \mapsto T'_{\omega}$ is universally measurable and by modifying it on a set of measure zero we get the result of the lemma.

Remark. Inversion is continuous on the set G so the map $\omega \mapsto T_{\omega}^{-1}$ is also strongly Borel measurable.

3. *p*-Integral Operators

In this section K will be a compact metric space and X a p-Banach space, where $0 . We define a bounded linear operator T: <math>C(K) \rightarrow X$ to be pintegral if for some constant c, we have

$$\sum_{i=1}^{n} \|Tf_i\|^p \leq c \max_{s \in K} \sum_{i=1}^{n} |f_i(s)|^p$$
(3.0.1)

whenever $f_1, ..., f_n \in C(K)$. The best constant c arising in (3.0.1) is denoted by $\pi_p(T)$. In the case p = 1, this reduces to the standard definition of an integral operator and $\pi_1(T)$ is the integral or absolutely summing norm of T (cf. Diestel and Uhl [5, pp. 161–169]).

Let $\mathcal{M}_p(K; X)$ denote the subspace of $\mathcal{L}(C(K); X)$ of all p-integral

operators. We observe that the map $\pi_p: \mathscr{M}_p(K; X) \to \mathbb{R}$ is lower-semicontinuous for the strong-operator topology.

LEMMA 3.1. Suppose T: $C(K) \rightarrow X$ is p-integral. Then there is a unique positive Borel measure on K, which we denote by $\mu = \mu(T)$ so that

(i)
$$||Tf|| \leq \left\{ \int_{K} |f(s)|^{p} d\mu(s) \right\}^{1/p} \quad f \in C(K),$$
 (3.1.1)

(ii)
$$\|\mu\| = \mu(K) = \pi_p(T),$$
 (3.1.2)

(iii) If v is a positive Borel measure with

$$\|Tf\| \leq \left\{ \int_{K} |f(s)|^{p} dv(s) \right\}^{v_{p}} \quad f \in C(K),$$

then $\mu \leq v$. (3.1.3)

Proof. Let P be the open positive cone in C(K), i.e., $P = \{f \in C(K); f(s) > 0 \text{ for all } s \in K\}$. Let C be the cone of all functions of the form

$$\phi = \sum_{i=1}^{n} \|Tf_i\|^p - \pi_p(T) \sum_{i=1}^{n} |f_i|^p$$

for $f_1, ..., f_n \in C(K)$. By hypothesis $C \cap P = \emptyset$ and so, as P has non-empty interior, the Hahn-Banach theorem implies the existence of a positive Borel measure μ with $\|\mu\| = \pi_n(T)$ such that

$$\int \phi \, d\mu \leqslant 0 \qquad \phi \in C.$$

which quickly yields (3.1.1) and (3.1.2).

Uniqueness will follow from proving (3.1.3). Let $\rho = v + \mu$ and by the Radon-Nikodym theorem write $dv = \phi \, d\rho$ and $d\mu = \psi \, d\rho$, where ϕ, ψ are non-negative Borel functions. If v does not satisfy $v \ge \mu$ then there is a compact subset K_0 of K of positive μ -measure such that

$$\psi(s) > \phi(s) \qquad s \in K_0.$$

Let h_n be any sequence of functions in C(K) satisfying $0 \le h_n \le 1$, $h_n | K_0 = 1$ and $h_n(s) \to 0$ for $s \notin K_0$. Then for $f \in C(K)$

$$\|Tf\|^{p} \leq \|T(h_{n}f)\|^{p} + \|T(f-h_{n}f)\|^{p}$$
$$\leq \int_{K} |h_{n}f|^{p} \phi \, d\rho + \int_{K} |f-h_{n}f|^{p} \psi \, d\rho;$$

and by the Dominated Convergence Theorem,

$$\|Tf\|^{p} \leqslant \int_{K_{0}} |f|^{p} \phi \, d\rho + \int_{K\setminus K_{0}} |f|^{p} \psi \, d\rho.$$

Thus, for $f_1, ..., f_n \in C(K)$,

$$\sum_{i=1}^n \|Tf_i\|^p \leqslant c \max_{s \in K} \sum_{i=1}^n |f_i(s)|^p,$$

where

$$c = \int_{K_0} \phi \, d\rho + \int_{K \setminus K_0} \psi \, d\rho$$
$$< \int_K \psi \, d\rho = \|\mu\| = \pi_p(T)$$

This contradiction proves the lemma.

LEMMA 3.2. For $\phi \in C(K)$ and $T \in \mathscr{L}(C(K), X)$ define $T_{\phi} \in \mathscr{L}(C(K), X)$ by

$$T_{\phi}(f) = T(\phi f) \qquad f \in C(K). \tag{3.2.1}$$

Then if $T \in \mathscr{M}_p(K, X)$, $T_{\phi} \in \mathscr{M}_p(K, X)$ and

$$d\mu(T_{\phi}) = |\phi|^{p} d\mu(T).$$
 (3.2.2)

Proof. That $T_{\phi} \in \mathscr{M}_{p}(K, X)$ is trivial. Note that if $\mu = \mu(T)$ then

$$\|T_{\phi}(f)\|^{p} \leq \int |\phi f|^{p} d\mu$$

so that $d\mu(T_{\phi}) \leq |\phi|^p d\mu$. If ϕ does not vanish, (3.2.2) now follows by reversing the reasoning. If $\phi \geq 0$

$$d\mu(T_{\phi+\alpha}) \leqslant d\mu(T_{\phi}) + \alpha^p \, d\mu$$

when α is a positive constant. Thus

$$|\phi + \alpha|^p d\mu \leq d\mu(T_\phi) + \alpha^p d\mu$$

and letting $\alpha \to 0$ we obtain (3.2.2). For general ϕ note that

$$d\mu(T_{\varphi^2}) \leqslant |\varphi|^p \, d\mu(T_{\varphi})$$

and apply a similar argument.

Now let $\mathcal{M}(K)$ be the dual space of C(K) (i.e., the space of finite signed Borel measures in K).

LEMMA 3.3. The map $\mu: \mathscr{M}_p(K; X) \to \mathscr{M}(K)$ (where $\mathscr{M}_p(K, X)$ has the strong-operator topology and $\mathscr{M}(K)$ the weak*-topology) is Borel measurable.

Proof. It will suffice to show that the map

$$T\longmapsto \int_{K}\phi\ d\mu(T)$$

is Borel, where $\phi \in C(K)$ and $\phi \ge 0$. Let $\phi = \psi^p$, where $\psi \ge 0$. Then

$$\int \phi \, d\mu(T) = \int \psi^p \, d\mu(T)$$
$$= \pi_p(T_{\psi}).$$

As $T \mapsto T_{\psi}$ is clearly continuous, and we have already observed that π_p is lower-semi-continuous the result follows.

Now if $T \in \mathscr{M}_p(K; X)$ and $\mu = \mu(T)$, we can extend T to a linear operator (which we still denote by T) T: $L_p(K, \mu) \to X$ with ||T|| = 1. In particular Tf can be defined uniquely for any bounded Borel function f and the map $T \mapsto Tf$ is a Borel map from $\mathscr{M}_p(K; X)$ into X. Furthermore, in place of (3.0.1) we have

$$\sum_{i=1}^{n} \|Tf_i\|^p \leq \pi_p(T) \sup_{s \in K} \sum_{i=1}^{n} |f_i(s)|^p$$
(3.3.1)

for $f_1, ..., f_n$ bounded Borel functions in K.

To conclude this section we establish a lifting-type result which we need later. We recall [8] that if Y is a p-Banach space and N is a closed subspace of Y which is either q-convex for some q > p or a pseudo-dual space then a bounded linear operator S: $L_p \rightarrow Y/N$ can be "lifted" to an operator S_1 : $L_p \rightarrow Y$ so that $QS_1 = S$, where Q: $Y \rightarrow Y/N$ is the quotient map. (Here N is pseudo-dual if there is a Hausdorff vector topology in N for which the unit ball is relatively compact.) Furthermore there is a constant c independent of S so that $||S_1|| \leq c ||S||$. The same conclusions for l_p are valid with no restriction on N and with c = 1. Applying this we have:

LEMMA 3.4. Suppose X is a p-Banach space and N is a closed subspace of X which is either pseudo-dual or q-convex for some q > p. Suppose $T: C(K) \rightarrow X/N$ is p-integral. Then there exists a p-integral operator $T_1: C(K) \rightarrow X$ and there is a constant c depending only on X and N so that

$$\pi_p(T_1) \leqslant c\pi_p(T), \tag{3.4.1}$$

$$\mu(T_1) \leqslant c\mu(T). \tag{3.4.2}$$

Proof. Simply consider the induced map $T: L_p(K, \mu) \to X/N$ and since $L_p(\mu) \cong l_p, L_p, l_p \oplus L_p$, or $l_p^n \oplus L_p$ there exists a lift $T_1: L_p(K, \mu) \to X$ with $||T_1|| \leq c ||T||$. Restricted to $C(K), T_1$ is *p*-integral and (3.4.1) and (3.4.2) are immediate with *c* replaced by c^p .

Remark. If μ is diffuse then T_1 is unique. The form that we shall require later is the following:

LEMMA 3.5. Let Ω be a Polish space and v a σ -finite Borel measure on Ω . Suppose K is a compact metric space. Suppose X is a separable p-Banach space and N is closed subspace of X which is either pseudo-dual or q-convex for some q > p. Let $\omega \mapsto T_{\omega}$ be a strongly Borel measurable map from Ω into $\mathscr{M}_p(K; X/N)$. Then there is a constant c > 0 and a strongly measurable map $\omega \mapsto S_{\omega}$ of Ω into $\mathscr{M}_p(K; X)$ such that

$$QS_{\omega} = T_{\omega} \qquad \text{v-a.e.,} \qquad (3.5.1)$$

$$\mu(S_{\omega}) \leqslant c\mu(T_{\omega}) \qquad \text{v-a.e.}, \tag{3.5.2}$$

where $Q: X \rightarrow X/N$ is the quotient map.

Proof. This is again an application of the von Neumann selection theorem. Let G be the set of $S \in \mathscr{M}_p(K; X)$ such that $\mu(QS) \leq c\mu(S)$. It is readily verified that $\mathscr{L}(C(K), X)$ is a Souslin spaces (for the strong-operator topology) and that $\mathscr{M}_p(K; X)$ is a Borel subset (in fact an F_{σ} -set). It follows easily that G also is Borel (use Lemma 3.3 and the fact the positive cone in $\mathscr{M}(K)$ is a Borel set).

Now the map $S \mapsto QS$ maps G onto $\mathscr{M}_p(K; X/N)$ by Lemma 3.4 and so there is a universally measurable map $\theta: \mathscr{M}_p(K, X/N) \to G$ so that $Q\theta(S) = S$ (Theorem 2.2 of [7]).

To complete the proof let $S_{\omega} = \theta(T_{\omega})$ v-a.e. simply modifying on a set of measure zero to ensure Borel measurability.

L_n -FUNCTION SPACES

4. The spaces $L_p(X)$

Let Ω be a Polish space and let v be a σ -finite measure on Ω . Then if X is separable p-Banach space, we define $L_p(\Omega, v; X)$ to be the space of all Borel maps $f: \Omega \to X$ such that

$$||f|| = \left\{ \int_{\Omega} ||f(\omega)||^p \, d\nu(\omega) \right\}^{1/p} < \infty.$$

After the usual identification of functions equal almost everywhere $L_p(\Omega, v; X)$ is a p-Banach space. We now list without proof several easy facts.

FACT 4.0.1. The simple functions are dense in $L_p(\Omega, v; X)$ and hence $L_p(\Omega, v; X)$ is separable.

FACT 4.0.2. If v_0 is a finite measure having the same sets of measure 0 as v and $dv = \phi^P \cdot dv_0$, where ϕ is a positive Borel function, then the map $f \mapsto \phi \cdot f$ is an isometry of $L_p(\Omega, v; X)$ onto $L_p(\Omega, v_0; X)$.

FACT 4.0.3. For any two diffuse measures v_1 and v_2 on Polish spaces Ω_1 and Ω_2 , respectively, the quasi-Banach spaces $L_p(\Omega_1 v_1; X)$ and $L_p(\Omega_2 v_2; X)$ are isometric. In cases where only the isomorphism class of the space matters we denote this space $L_p(X)$.

FACT 4.0.4. If N is a closed subspace of X then $L_p(\Omega, v; N)$ is a closed subspace of $L_p(\Omega, v; X)$ and $L_p(\Omega, v; X)/L_p(\Omega, v; N) \cong L_p(\Omega, v; X/N)$ under the natural quotient map.

FACT 4.0.5. Suppose Ω_1 and Ω_2 are Polish spaces, v_1 is a diffuse σ -finite measure on Ω_1 and v_2 is a diffuse σ -finite measure on Ω_2 . Then $L_p(\Omega_1 \times \Omega_2, v_1 \times v_2; X)$ is naturally isometric to $L_p(\Omega_1, v_1; L_p(\Omega_2, v_2; X))$ under the isomorphism

$$Tf(\omega_1)(\omega_2) = f(\omega_1, \omega_2) \qquad \omega_1 \in \Omega_1, \quad \omega_2 \in \Omega_2.$$

It is also convenient to observe that $L_p(\Omega, \nu; X)$ can be interpreted as the *p*-convex tensor product of $L_p(\Omega, \nu; \mathbb{R})$ (= $L_p(\Omega, \nu)$) and X (Vogt [17]). In fact if $\phi \in L_p(\Omega, \nu)$ and $x \in X$ we shall write $f = \phi \otimes x$, where

$$f(\omega) = \phi(\omega) x. \tag{4.0.6}$$

A conclusion from Vogt's results [17] is the following:

PROPOSITION 4.1. Let Z be a p-Banach space. Then there is a natural isometry $T \mapsto \hat{T}$ between $\mathcal{L}(L_p(\Omega, v; X), Z)$ and $\mathcal{L}(X, \mathcal{L}(L_p(\Omega, v), Z))$ given by

$$\hat{T}(x)(\phi) = T(\phi \otimes x). \tag{4.1.1}$$

We shall conclude this short introductory section by considering a very special class of operators on $L_n(X)$ spaces.

We define an operator $T: L_p(\Omega, \nu; X) \to L_p(\Omega, \nu; Y)$ to be diagonal if for every $B \in \mathscr{B}(\Omega)$ if

$$f(\omega)=0\qquad \omega\in B,$$

then

$$Tf(\omega) = 0 \qquad \omega \in B.$$

THEOREM 4.2. Suppose X and Y are separable p-Banach spaces and T: $L_p(\Omega, v; X) \rightarrow L_p(\Omega, v; Y)$ is a diagonal operator. Then there is a strongly Borel measurable map $s \mapsto A_s$ $(\Omega \rightarrow \mathcal{L}(X, Y))$ such that

$$Tf(s) = A_s(f(s))$$
 v-a.e., (4.2.1)

$$||T|| = v$$
-ess. sup $||A_s||$. (4.2.2)

Furthermore the map $s \mapsto A_s$ is unique up to v-null sets.

Conversely if $s \mapsto A_s$ is a strongly Borel measurable map with v-ess. sup $||A_s|| < \infty$, then (4.2.1) defines a bounded linear operator.

Proof. First we observe that the converse is pretty well automatic once one notes that $A_s(f(s))$ is Borel; see the remarks preceding Lemma 2.3.

For the direct part of the theorem, choose F_n to be an increasing sequence of finite-dimensional subspaces of X whose union F is dense in X. Let (x_n) be any sequence dense in the unit ball of F, such that $\{x_n : x_n \in F_k\}$ is dense in the unit ball of F_k .

By picking a Hamel basis of F and extending linearly we may determine linear maps $A_s: F \to Y$ so that

$$T(1_{\alpha} \otimes x)(s) = A_{s}(x)$$
 v-a.e. $x \in F$.

From the diagonal property it is easy to see that

$$T(1_B \otimes x)(s) = 1_B(s) \cdot A_s(x)$$
 v-a.e. $x \in F$,

and hence if $\phi \in L_p(\Omega, v)$,

$$T(\phi \otimes x)(s) = \phi(s) A_s(x)$$
 v-a.e. $x \in F$.

The proof will be completed by showing $||A_s|| \leq ||T||$ v-a.e. and since

 $x \mapsto A_s x$ is a Borel map for $x \in F$, it will follow by density that, after defining suitably on a set of measure zero, we have (4.2.1) and (4.2.2). Uniqueness is trivial, by considering $T(1_{\Omega} \otimes x_n)$.

For each $n \in \mathbb{N}$, let

$$\theta_n(s) = \max_{1 \leq i \leq n} \|A_s x_i\|.$$

Note that the quasi-norm is Borel measurable on X and so θ_n is a Borel function. Define

$$f_n(s) = x_i,$$

where i = i(s) is the least *i* such that

$$\|A_s x_i\| = \theta_n(s).$$

Then if $B \in \mathscr{B}(\Omega)$ and $v(B) < \infty$, $1_B \otimes f_n \in L_p(\Omega, v; X)$ and

 $\|\mathbf{1}_B \otimes f_n\|^p \leqslant v(B).$

However,

$$\|T(\mathbf{1}_B\otimes f_n)\|^p = \int_B \theta_n(s)^p \, dv(s).$$

We conclude

$$\theta_n(s) \leq ||T||$$
 v-a.e.,

and hence

$$\sup_{n} \theta_{n}(s) \leq ||T|| \qquad v-a.e.,$$

i.e.,

$$\|A_s|F_k\| \leq \|T\| \qquad \text{v-a.e.},$$

for each k (Of course A_s is continuous on F_k). Thus as required

$$\|A_s\| \leq \|T\| \qquad \text{v-a.e.}$$

5. Operators on L_p

We now give a representation theorem for operators from L_p into $L_p(X)$ which generalizes the representation theorem given in [7]. We give the result in two parts.

PROPOSITION 5.1. Suppose 0 and <math>(5.1.1)-(5.1.5) hold:

K is a compact metric space and
$$\lambda$$
 is a probability measure
on K. (5.1.1)

 Ω is a Polish space and v is a σ -finite Borel measure on Ω . (5.1.2)

 $\omega \mapsto T_{\omega}(\Omega \to \mathscr{M}_{p}(K; X)) \text{ is a strongly Borel measurable}$ map. (5.1.4)

If $\mu_{\omega} = \mu(T_{\omega})$ (as in Lemma 3.1) then for some $c < \infty$,

$$\int_{\Omega} \mu_{\omega}(B) \, d\nu(\omega) \leqslant c^{p} \lambda(B) \qquad B \in \mathscr{B}(K). \tag{5.1.5}$$

Then we conclude

- (i) If $f \in L_p(K; \lambda)$ then v-a.e., $f \in L_p(K, \mu_{\omega})$. (5.1.6)
- (ii) The formula

$$Tf(\omega) = T_{\omega}f \qquad f \in L_{p}(K,\lambda)$$
(5.1.7)

defines a bounded linear operator $T: L_p(K, \lambda) \to L_p(\Omega, \nu; X)$ with $||T|| \leq c$.

Proof. By (5.1.5) and Theorem 3.1 of [7] there is a bounded linear operator $U: L_1(K; \lambda) \to L_1(\Omega, \nu)$ defined by

$$Uf(\omega) = \int f d\mu_{\omega}$$
 v-a.e.

[The extension of [7] to the σ -finite case is easy.] In particular if $f \in L_p(K, \lambda)$ then $|f|^p$ is μ_{ω} -integrable v-a.e., i.e., (5.1.6) holds. Thus the formula in (5.1.7) makes sense v-a.e. and in fact $\omega \mapsto T_{\omega}f$ is Borel by approximating by bounded simple functions. Finally

$$\int_{\Omega} \|T_{\omega}f\|^{p} d\nu(\omega) \leq \int_{\Omega} \int_{K} |f|^{p} d\mu_{\omega} d\nu(\omega)$$
$$= \|U(|f|^{p})\|_{1}$$
$$\leq c^{p} \int_{\Omega} |f|^{p} d\lambda.$$

Thus $||T|| \leq c$.

The converse is naturally much more interesting.

THEOREM 5.2. Suppose we have (5.1.1)–(5.1.3) and that $T: L_p(K, \lambda) \rightarrow L_p(\Omega, v; X)$ is a bounded linear operator.

Then there is a strongly Borel measurable map $\omega \mapsto T_{\omega}(\Omega \to \mathscr{M}_{p}(K; X))$ such that (5.1.5) and (5.1.6) hold, with c = ||T|| and

$$Tf(\omega) = T_{\omega}f$$
 v-a.e., $f \in L_p(K, \lambda)$. (5.2.1)

Proof. As in Theorem 3.1 of [7] we may suppose that K is totally disconnected. To do this it is necessary only to check that if $\sigma: K \to K_1$ is a Borel isomorphism onto a totally disconnected compact metric space then the induced map $\sigma^*: \mathscr{M}_p(K; X) \to \mathscr{M}_p(K_1, X)$ is also Borel, where

$$\sigma^*T(f) = T(f \circ \sigma) \qquad f \in C(K_1).$$

This is clear (cf. remarks following Lemma 3.3).

Now suppose that for each n, \mathscr{A}_n is a partitioning of K into clopen sets so that \mathscr{A}_{n+1} refines \mathscr{A}_n for every n and if $\mathscr{A}_n = (U_{n,k}: 1 \le k \le l(n))$ then diam $U_{n,k} \le n^{-1}$. Let $\chi_{n,k}$ be the characteristic function of $A_{n,k}$, and let E be the linear span of $(\chi_{n,k}: 1 \le k \le l(n), 1 \le n < \infty)$. E is dense in C(K) by the Stone-Weierstrass theorem. We may further suppose that the map $f \mapsto Tf(\omega)$ is everywhere linear on E (by picking a Hamel basis of E and extending). Thus we may define $T_{\omega}: E \to X$ by

$$T_{\omega}f = Tf(\omega).$$

For any n, k,

$$\int_{\Omega} \|T_{\omega}\chi_{n,k}\|^{\rho} \, dv \leq \|T\|^{\rho} \, \lambda(U_{n,k}).$$

and hence

$$\int_{\Omega} \sum_{k=1}^{\ell(n)} \|T_{\omega}\chi_{n,k}\|^p \, dv \leqslant \|T\|^p$$

Now if

$$\phi(\omega) = \sup_{n} \sum_{k=1}^{l(n)} \|T_{\omega}\chi_{n,k}\|^{p},$$

then from the Monotone Convergence Theorem,

$$\int \phi(\omega) \, d\nu(\omega) \leqslant \|T\|^p,$$

and so $\phi(\omega) < \infty$ v-a.e. Let Ω_0 be a Borel set with $v(\Omega \setminus \Omega_0) = 0$ such that

 $\phi(\omega) < \infty$ for $\omega \in \Omega_0$. Then if $\omega \in \Omega_0$ and $f_1, ..., f_m \in E$ we can find a large enough n so that

$$f_i = \sum_{j=1}^{l(n)} c_{ij} \chi_{n,j}, \qquad i = 1, 2, ..., m.$$

Thus

$$||T_{\omega}f_{i}||^{p} \leq \sum_{j=1}^{l(n)} |c_{ij}|^{p} ||T_{\omega}\chi_{n,j}||^{p},$$

so that

$$\sum_{i=1}^{m} \|T_{\omega}f_i\|^p \leq \sum_{j=1}^{l(n)} \left(\sum_{i=1}^{m} |c_{ij}|^p\right) \|T_{\omega}\chi_{n,j}\|^p$$
$$\leq \phi(\omega) \max_{s \in K} \sum_{i=1}^{m} |f_i(s)|^p.$$

It follows easily that T_{ω} extends to a *p*-integral operator, $T_{\omega}: C(K) \to X$, and $\pi_p(T_{\omega}) = \phi(\omega)$. After suitable definition on $\Omega \setminus \Omega_0$, $\omega \mapsto T_{\omega}$ can be assumed strongly Borel measurable (clearly $f \mapsto T_{\omega} f$ is Borel for $f \in E$).

Now a measure μ'_{ω} can be defined so that

i

$$\mu'_{\omega}(U_{n,k}) = \sup_{m > n} \sum_{U_{m,h} \subset U_{n,k}} \|T_{\omega}\chi_{m,h}\|^p$$

for $\omega \in \Omega_0$. It is clear than, first for $f \in E$ and then in general

$$\|T_{\omega}f\|^{p} \leqslant \int |f|^{p} d\mu_{\omega}'$$

However, $\|\mu'_{\omega}\| = \phi(\omega) = \pi_p(T_{\omega})$ and hence $\mu(T_{\omega}) = \mu'_{\omega} = \mu_{\omega}$, say. Thus

$$\int \mu_{\omega}(U_{n,k})\,dv \leqslant \|T\|^p\,\lambda(U_{n,k}),$$

and so we obtain (5.1.5).

Now it follows easily from the preceding Proposition 5.1 that T can be given by formula (5.2.1).

Remark 5.2.3. The map $\omega \mapsto T_{\omega}$ is unique up to sets of v-measure zero given only that

$$T_{\omega}f = Tf$$
 v-a.e.,

for $f \in C(K)$. Simply check against a dense countable subset of C(K).

THEOREM 5.3. Suppose X is a separable p-Banach space and N is a closed subspace of X which is either pseudo-dual or q-convex for some q > p. Then if $T: L_p \to L_p(X/N)$ is a bounded linear operator, there is a bounded operator $T_1: L_p \to L_p(X)$ so that $QT_1 = T$, where $Q: L_p(X) \to L_p(X/N)$ is the natural quotient map.

Proof. Write $L_p = L_p(K, \lambda)$, where K is compact metric, and $L_p(X/N) = L_p(\Omega, v; X/N)$. Then the operator T may be represented as above

$$Tf(\omega) = T_{\omega}f,$$

where $\omega \mapsto T_{\omega}(\Omega \to \mathscr{M}_p(K, X/N))$ is a Borel map satisfying

$$\int \mu(T_{\omega})|B] dv(\omega) \leq ||T||^p \lambda(B) \qquad B \in \mathscr{B}(K).$$

By Lemma 3.5 there is a Borel map $\omega \mapsto S_{\omega}$ of Ω into $\mathscr{M}_p(K, X)$ so that (3.5.1) and (3.5.2) hold. (We use Q for both the quotient $X \to X/N$ and $L_p(X) \to L_p(X/N)$.) Now if

$$Sf(\omega) = S_{\omega}f$$

then by Proposition 5.1, S is a bounded linear operator from $L_p(K, \lambda)$ into $L_p(\Omega, v; X)$ and clearly QS = T.

COROLLARY 5.4. $L_p(L_p|1)$ is not isomorphic to L_p for 0 .

Proof. If $T: L_p \to L_p(L_p|1)$ is an isomorphism then there is a lift $S: L_p \to L_p(L_p)$. Now $I - ST^{-1}Q$ is a projection of $L_p(L_p)$ onto its subspace $L_p(\mathbb{R})$, where $\mathbb{R} \subset L_p$ is the space of constants. The non-existence of such a projection is shown in Corollary 4.5 of [7]. (Another proof will be given later with more general results.)

6. DIAGONAL PROJECTIONS

In Section 4 we introduced diagonal operators $T: L_p(\Omega, \nu; X) \to L_p(\Omega, \nu; Y)$ and gave a representation theorem for them (Theorem 4.2). We now slightly extend our definition. Suppose K is a compact metric space and λ is a probability measure on K; let Ω be a Polish space and ν be a σ -finite Borel measure on Ω . Let $\sigma: \Omega \to K$ be a Borel map. If X and Y are separable p-Banach spaces we shall show that a bounded linear operator T: $L_p(K, \lambda; X) \to L_p(\Omega, \nu; Y)$ is σ -elementary if, wherever $B \in \mathscr{B}(K)$,

$$f(s)=0 \qquad s\in B,$$

implies

$$Tf(\omega) = 0$$
 $\omega \in \sigma^{-1}B$

Clearly if $\Omega = K$ and $v = \lambda$ and σ is the identity we obtain by this the definition of a diagonal operator. Let us remark that it is possible for suitable σ that the only σ -elementary operator is T = 0.

Now for each $n \in \mathbb{N}$ let $\{B_{n,1},...,B_{n,l(n)}\}\$ be a partitioning of K into disjoint Borel sets of diameter at most 1/n. For $T \in \mathscr{L} = \mathscr{L}(L_{\rho}(K,\lambda;X), L_{\rho}(\Omega, \nu; Y))$ we define

$$\Pi_{n}(T) = \sum_{k=1}^{l(n)} P_{\sigma^{-1}(B_{n,k})} T P_{B_{n,k}}.$$

Here, if A is a Borel subset of Ω , then $P_A: L_p(\Omega, v; Y) \to L_p(\Omega, v; Y)$ is defined by

$$P_A f(\omega) = f(\omega) \qquad \omega \in A,$$
$$= 0 \qquad \omega \notin A,$$

and similarly on $L_p(K, \lambda; X)$.

Now $\Pi_n: \mathscr{L} \to \mathscr{L}$ is a projection and $\|\Pi_n\| = 1$. Our main result is then

PROPOSITION 6.1.

(i) For
$$f \in L_p(K, \lambda; X)$$
,

$$\lim_{n \to \infty} \Pi_n(T) f = \Delta_o(T) f \quad exists. \tag{6.1.1}$$

(ii) $\Delta_{\sigma}: \mathcal{L} \to \mathcal{L}$ is a projection. $\|\Delta_{\sigma}\| \leq 1$ and $\Delta_{\sigma}(\mathcal{L})$ is the set of σ -elementary operators (6.1.2)

(iii) If $\phi \in L_p(K, \lambda)$ and $x \in X$ then

$$\Delta_{\sigma}(T)(\phi \otimes x)(\omega) = \phi(\sigma \omega) T(x)_{\omega} (e_{\sigma \omega}) \qquad \text{v-a.e.}, \qquad (6.1.3)$$

where \hat{T} is defined by (4.1.1), $\omega \mapsto \hat{T}(x)_{\omega}$ is the representation of $\hat{T}(x)$ determined in Theorem 5.2 and if $t \in K$

$$e_t(s) = 1$$
 $s = t, s \in K$
= 0 $s \neq t, s \in K$.

Proof. For $\phi \in L_p(K, \lambda)$ and $x \in X$

$$\widehat{\Pi_n(T)}(x)(\phi)(\omega) = \widehat{T}(x)_{\omega} (\phi \cdot 1_{B_{n,k}}),$$

where $\omega \in \sigma^{-1}B_{n,k}$, $1 \leq k \leq l(n)$. Thus $k = k_n(\omega)$. Letting $n \to \infty$ we see that for v-a.e., $\omega \in \Omega$, $\phi \cdot 1_{B_{n,k}} \to \phi(\sigma \omega) e_{\sigma \omega}$ in $L_p(\mu(\hat{T}(x)_{\omega}))$. Thus

$$\lim_{n\to\infty} \widehat{\Pi_n(T)}(x)(\phi)(\omega) = \phi(\sigma\omega) \ \widehat{T}(x)_{\omega} \ (e_{\sigma\omega}) \qquad v\text{-a.e.} \qquad (6.1.4)$$

and in particular the right-hand side is Borel measurable (when suitably extended on a set of measure zero).

Now

$$\|\widehat{\Pi_n(T)}(x)(\phi)(\omega)\|^p \leqslant \int_K |\phi|^p \, d\mu(\widehat{T}(x)_\omega)$$

for every n and

$$\int_{\Omega} \int_{K} |\phi|^{p} d\mu(\hat{T}(x))_{\omega} d\nu(\omega) \leq \|\hat{T}(x)\|^{p} \|\phi\|^{p}$$
$$\leq \|T\|^{p} \|x\|^{p} \|\phi\|^{p}.$$

Thus we can employ the dominated convergence theorem to show that

$$\int_{\Omega} \|\phi(\sigma\omega) \ \hat{T}(x)_{\omega} \ (e_{\sigma\omega}) - \widehat{\Pi_n(T)}(x)(\phi)(\omega)\|^p \ dv \to 0.$$

Thus we define $\Delta_{\sigma}(T)$ by

$$\widehat{\Delta_{\sigma}(T)}(x)(\phi) = \lim_{n \to \infty} \widehat{\Pi_n(T)}(x)(\phi),$$

for $x \in X$ and $\phi \in L_p(K, \lambda)$, then $\Delta_{\sigma}(T)$ is a well-defined member of \mathcal{L} , (6.1.3) holds and

$$\|\varDelta_{\sigma}(T)\| \leq \liminf_{n \to \infty} \|\Pi_{n}(T)\| \leq \|T\|.$$

By a density argument we quickly obtain (6.1.1). The fact that Δ_{σ} is a projection is trivial, and we have $||\Delta_{\sigma}|| \leq 1$. Clearly if T is σ -elementary then $\Delta_{\sigma}(T) = T$. Conversely suppose $\Delta_{\sigma}(T) = T$ and $f \in L_{\rho}(K, \lambda; X)$ satisfies

$$f(s)=0 \qquad s\in B,$$

where $B \in \mathscr{B}(K)$. Then there exists a sequence of functions f_n of the form

$$f_n = \sum_{i=1}^m \phi_i \otimes x_i$$

(where $\phi_i \in L_p(K, \lambda), x_i \in X$) such that $f_n \to f$. In fact $f_n \cdot 1_{K \setminus B} \to f$ and

$$f_n \cdot \mathbf{1}_{K \setminus B} = \sum_{i=1}^m \phi_i \cdot \mathbf{1}_{K \setminus B} \otimes x_i.$$

Now,

$$\Delta_{\sigma}(T)(f_n \cdot \mathbf{1}_{K \setminus B})(\omega) = \sum_{i=1}^{m} \phi_i(\omega) \mathbf{1}_{K \setminus B}(\omega) \hat{T}(x_i)_{\omega} (e_{\sigma \omega})$$
$$= 0 \quad \text{if} \quad \omega \in B \text{ (v-a.e.)}.$$

Hence T is σ -elementary and (6.1.2) is established.

Remarks. Of course the projection Δ_{σ} defined above is independent of the choice of $(B_{n,k})$. In the case $K = \Omega$, $\lambda = v$ and $\sigma(s) = s$, $s \in K$, we shall denote Δ_{σ} by simply Δ . Δ is thus a projection onto the diagonal operators.

Let us call a subspace W of $L_p(K, \lambda; X)$ diagonal if for $\phi \in W$, then $P_B \phi \in W$ for every $B \in \mathscr{B}$. Note that if $T: L_p(K, \lambda; X) \to L_p(K, \lambda; Y)$ is diagonal, then the range of $T, \mathscr{R}(T)$, and the kernel of $T, \mathscr{N}(T)$ are diagonal subspaces.

PROPOSITION 6.2. Suppose W is a complemented diagonal subspace of $L_p(K, \lambda; X)$. Then there is a diagonal projection onto W.

Proof. If $T: L_p(K, \lambda; X) \to W$ is a projection then so is $\Pi_n(T)$ for each *n*, where $\Pi_n(T)$ is defined as in Theorem 6.1. Hence so is $\Delta(T)$, since $\Pi_n(T)(f) \to \Delta(T)(f)$ for every $f \in L_p(X)$.

THEOREM 6.3. Let Y be a closed subspace of the separable p-Banach space X. Suppose $L_p(K, \lambda; Y)$ is complemented in $L_p(K, \lambda; X)$. Then Y is complemented in X.

Proof. By Proposition 6.2, there is a diagonal projection $T: L_p(K, \lambda; X) \rightarrow L_p(K, \lambda; Y)$. By Theorem 4.2 there is a strongly measurable map $s \mapsto A_s$ from K into $\mathscr{L}(X)$ so that

$$Tf(s) = A_s(f(s))$$
 λ -a.e.

Now

$$T^2_f(s) = A^2_s(f(s))$$
 λ -a.e.,

and by considering a dense countable subset of X we see

$$A_s^2 = A_s \qquad \lambda$$
-a.e.,

i.e., A_s is a projection λ -a.e. Clearly we also have λ -a.e., $A_s(X) \subset Y$ and $A_s(y) = y$ for $y \in Y$. Thus λ -a.e. A_s is a projection of X onto Y.

EXAMPLE. The fact that $L_p(\mathbb{R})$ is uncomplemented in $L_p(L_p)$ (p < 1) (where \mathbb{R} is the subspace of constants), which we used in the preceding section follows immediately. As noted where this is equivalent to the absence of a projection from $L_p([0, 1] \times [0, 1])$ onto the subspace of functions depending only on the first variable.

7. Elementary operators

Again in this section we suppose Ω is a Polish space and ν is a σ -finite Borel measure on Ω , while K is a compact metric space and λ is a probability measure on K. X and Y will be separable p-Banach spaces.

THEOREM 7.1. Suppose $\sigma: \Omega \to K$ is a Borel map which is anti-injective (see Section 2), and that $T: L_p(K, \lambda; X) \to L_p(\Omega, v; Y)$ is a σ -elementary bounded linear operator.

Then there a linear operator J: $L_p(\Omega, v; Y) \rightarrow L_p(K, \lambda; L_p(Y))$ and a Borel subset A of Ω such that

(i)
$$J = JP_A$$
 and $J|L_p(A, v; Y)$ is an isometry. (7.1.1)

(ii) There is a Borel subset C of K such that
$$L_p(C, \lambda, L_p(Y)) = \mathscr{R}(J).$$
 (7.1.2)

(iii) JT is diagonal and
$$\mathscr{R}(T) \subset L_p(A, v; Y)$$
. (7.1.3)

Proof. It will be convenient to suppose v is a probability measure. The reduction to this case is immediate from Fact 4.0.2.

We now appeal to Lemma 2.2, to determine a compact metric space M, a probability measure π on M and a Borel map $\tau: \Omega \to M$ such that (2.2.1) and (2.2.2) are satisfied. Let $\rho: K \times M \to \Omega$ be as in (2.2.1).

The measure $\sigma^* v$ may be decomposed into a part absolutely continuous with respect to λ and a part singular with respect to λ , i.e.,

$$d(\sigma^* v) = \theta \, d\lambda + d\eta,$$

where $\theta: K \to \mathbb{R}$ is a non-negative Borel map and η is singular with respect to λ .

We consider the space $L_p(K, \lambda; L_p(M, \pi, Y)) \cong L_p(K \times M, \lambda \times \pi, Y)$ (Fact 4.0.5). Define $J: L_p(\Omega, \nu, Y) \to L_p(K \times M, \lambda \times \pi, Y)$ by

$$Jf(s,t) = \theta(s)^{1/p} f(\rho(s,t)) \qquad s \in K, \quad t \in M.$$

Thus

$$\|Jf\|^{p} = \int_{K \times M} \theta(s) \|f(\rho(s, t))\|^{p} d(\lambda \times \pi)(s, t)$$
$$\leq \int_{K \times M} \|f(\rho(s, t))\|^{p} d(\sigma^{*}v \times \pi)(s, t)$$
$$= \int_{\Omega} \|f(\omega)\|^{p} dv(\omega)$$
$$= \|f\|^{p}.$$

Hence $||J|| \leq 1$. However, ||Jf|| = ||f|| if and only if

$$\int_{K \times M} \|f(\rho(s,t))\|^p \, d(\eta \times \pi)(s,t) = 0 \tag{7.1.4}$$

and Jf = 0 if and only if

$$\theta(s) f(\rho(s,t)) = 0 \qquad (\lambda \times \pi) \text{-a.e.} \tag{7.1.5}$$

There exists $B_0 \in \mathscr{B}(K)$ with $\eta(B_0) = \lambda(K \setminus B_0) = 0$. Let $A = \sigma^{-1}(B_0)$. Then $(\eta \times \pi)(\rho^{-1}A) = 0$ and so if $f = P_A f = 0$, then $f(\rho(s, t)) = 0$ ($\lambda \times \pi$)-a.e. This establishes (7.1.1).

To prove (7.1.2) let $C = \{s: \theta(s) > 0\}$ and observe that if $f \in L_p(C, \lambda, L_p(Y))$, then f = Jg, where

$$g(\omega) = \theta(\sigma\omega)^{-1/p} f(\sigma\omega, \tau\omega) \quad \text{if} \quad \theta(\sigma\omega) > 0$$
$$= 0 \quad \text{if} \quad \theta(\sigma\omega) = 0.$$

Finally if $f \in L_p(K, \lambda; X)$ and $B \in \mathscr{B}(K)$ then

$$f(s) = 0$$
 λ -a.e. $s \in B$

implies

$$Tf(\omega) = 0 \qquad v\text{-a.e.} \ \omega \in \sigma^{-1}B$$

so that JT is diagonal.

We now turn to the general case.

THEOREM 7.2. Suppose $\sigma: \Omega \to K$ is any Borel map and $T: L_p(K, \lambda; X) \to L_p(\Omega, v; Y)$ is a σ -elementary bounded linear operator.

Then there is a linear operator J: $L_p(\Omega, v; X) \rightarrow L_p(K, \lambda, l_p(Y) \oplus L_p(Y))$, and a Borel subset A of Ω such that:

- (i) $J = JP_A$ and $J|L_p(A, v; Y)$ is an isometry. (7.2.1)
- (ii) $\mathscr{R}(J)$ is closed and there is a diagonal projection Q onto $\mathscr{R}(J)$. (7.2.2)

(iii) JT is diagonal and
$$\mathscr{R}(T) \subset L_p(A, v; Y)$$
. (7.2.3)

Remark. Here the direct sum is the l_p -sum.

Proof. Choose a maximal family $(\Omega_n; n = 1, 2,...)$ of disjoint compact subsets of Ω of positive finite v-measure, and such that $\sigma | \Omega_n$ is injective and continuous. Such a family is clearly at most countably infinite. Let $\Omega_{\infty} = \Omega \setminus \bigcup \Omega_n$. Then Ω_{∞} is a G_{σ} -set and $\sigma | \Omega_{\infty}$ is anti-injective by Lusin's theorem. For convenience of exposition we shall suppose $(\Omega_n)_{n=1}^{\infty}$ is infinite and $v(\Omega_{\infty}) > 0$; only minor modifications are required for the other cases.

By the preceding theorem there is a linear map $J_{\infty}: L_p(\Omega_{\infty}, v; Y) \rightarrow L_p(K, \lambda; L_p(Y))$ such that for some Borel subset A_{∞} of Ω_{∞} ,

$$J_{\infty} = J_{\infty} P_{A_{\infty}}$$
 and $J | L_p(A_{\infty}, v; Y)$ is an isometry. (7.2.4)

There is a Borel subset C_{∞} of K such that $\mathscr{R}(J_{\infty}) = L_p(C_{\infty}, \lambda, L_p(Y)).$ (7.2.5)

 $J_{\infty}P_{\infty}T$ is diagonal and $\mathscr{R}(P_{\infty}T) \subset L_p(A_{\infty}, v; Y)$. (Here $P_{\infty} = P_{\Omega_{\infty}}$ is the natural projection of $L_p(\Omega, v; Y)$ onto its subspace $L_p(\Omega_{\infty}, v; Y)$.) (7.2.6)

For $n < \infty$, $\sigma | \Omega_n$ has a continuous inverse on $\sigma(\Omega_n)$. Let $v_n = v | \Omega_n$ and suppose

$$d(\sigma^* v_n) = \theta_n \, d\lambda + d\eta_n$$

(as in 7.1), where θ_n is a non-negative Borel function and η_n is singular with respect to λ . Define

$$J_n: L_p(\Omega_n, v; Y) \to L_p(K, \lambda, Y)$$

by

$$J_n f(s) = \theta_n(s)^{1/p} f(\sigma^{-1}s) \qquad s \in \sigma(\Omega_n)$$
$$= 0 \qquad s \notin \sigma(\Omega_n).$$

Then $||J_n|| \leq 1$, and arguing as in Theorem 7.1 we can find a subset A_n of Ω_n so that $J = JP_{A_n}$ and $J|L_p(A_n, v; Y)$ is an isometry. Furthermore, $\mathcal{R}(J) =$

 $L_p(C_n, \lambda; Y)$, where $C_n = (s; \theta_n(s) > 0)$, $\mathscr{R}(P_nT) \subset L_p(A_n, v; Y)$ and J_nP_nT is diagonal. Now define

$$J: L_p(\Omega, v; Y) \to L_p(K, \lambda, l_p(Y) \oplus L_p(Y))$$

by

$$Jf(s) = ((J_n P_n f(s))_{n=1}^{\infty} J_{\infty} P_{\infty} f(s)).$$

Let $A = \bigcup_{n=1}^{\infty} A_n$ and define a diagonal projection $Q: L_p(K, \lambda; l_p(Y) \oplus L_p(Y)) \to L_p(K, \lambda, l_p(Y) \oplus L_p(Y))$ by

$$Qf(s) = ((P_{C_n}f_n(s))_{n=1}^{\infty}, P_{C_{\infty}}f_{\infty}(s)),$$

where

$$f(s) = ((f_n(s))_{n=1}^{\infty}, f_{\infty}(s)).$$

Then conditions (7.2.1)–(7.2.3) are satisfied. We omit the easy verification.

THEOREM 7.3. Suppose K is a compact metric space and λ is a diffuse probability measure on K. Let \mathscr{B}_0 be a sub- σ -algebra of $\mathscr{B} = \mathscr{B}(K)$, and let $L_p(K, \mathscr{B}_0, \lambda)$ be the closed subspace of $L_p(K, \lambda)$ of all \mathscr{B}_0 -measurable functions. Assume $L_p(K, \mathscr{B}_0, \lambda)$ is a non-trivial subspace and let $\Lambda(\mathscr{B}_0)$ be the quotient space $L_p(K, \lambda)/L_p(K, \mathscr{B}_0, \lambda)$. Then

- (i) $\Lambda(\mathscr{B}_0)$ contains a complemented copy of L_p . (7.3.1)
- (ii) If $\Lambda(\mathscr{B}_0) \cong L_p$, then $L_p(K, \mathscr{B}_0, \lambda)$ is complemented in L_p . (7.3.2)

Remarks. In [7] we showed that $L_p(K, \mathscr{B}_0, \lambda)$ is complemented in $L_p(K, \lambda)$ if and only if there exist $A \in \mathscr{B}$, $\varepsilon > 0$ such that:

$$\lambda(B \cap A) \ge \varepsilon \lambda(B) \qquad B \in \mathscr{B}_0. \tag{7.3.3}$$

If $C \subset A$, $C \in \mathscr{B}$, then there exists $B \in \mathscr{B}_0$ with $\lambda((B \cap A) \Delta C) = 0.$ (7.3.4)

In fact, conditions (7.3.3) and (7.3.4) imply the existence of an automorphism of L_p taking $L_p(A, \lambda)$ into $L_p(K, \mathscr{B}_0, \lambda)$. Precisely $P_A | L_p(K, \mathscr{B}_0, \lambda)$ is an isomorphism onto $L_p(A, \lambda)$ and has inverse $V: L_p(A, \lambda) \to L_p(K, \mathscr{B}_0, \lambda)$, say; then the automorphism is given by $U = P_{K \setminus A} + VP_A$. In particular, if $L_p(K, \mathscr{B}_0, \lambda)$ is complemented then $\Lambda(\mathscr{B}_0) \cong L_p$.

Proof. We may assume that \mathscr{B}_0 is generated up to sets of measure zero by a sequence $(B_n)_{n=1}^{\infty}$ of Borel sets. Define $\sigma: K \to 2^{\mathbb{N}} = M$, say, by

$$(\sigma s)_n = 1_{B_n}(s) \qquad s \in K$$

Induce a probability measure π on M by $\pi = \sigma^* \lambda$. Then $L_p(K, \mathscr{B}_0, \lambda) = \mathscr{R}(T)$ when T is the σ -elementary operator

$$Tf(s) = f(\sigma s).$$

Now by Theorem 7.2 we can find a map $J: L_p(K, \lambda) \to L_p(M, \pi, l_p \oplus L_p)$ and a Borel subset A of K such that $J = JP_A$, $J|L_p(A, \lambda)$ is an isometry, $\mathscr{R}(J)$ is complemented, JT is diagonal and $\mathscr{R}(T) \subset L_p(A, \lambda)$. Since $1_K \in \mathscr{R}(T)$, we must have $\lambda(K \setminus A) = 0$, i.e., J is an isometric embedding. Of course by construction T is also an isometric embedding.

Thus

$$JT\phi(s) = \phi(s) g(s)$$
 π -a.e. $s \in M$,

where $g: M \to l_p \oplus L_p$ satisfies ||g(s)|| = 1, $s \in M$. To prove (7.3.1) let us first assume that for some $n < \infty$, and some Borel subset C of M of positive π -measure,

$$|g_n(s)| \ge \delta > 0, \qquad s \in C.$$

If we defined $P: \mathscr{R}(J) \to \mathscr{R}(JT)$ by

$$Pf(s) = g_n(s)^{-1} f_n(s) g(s) \qquad s \in C$$
$$= 0 \qquad s \notin C,$$

then P is a projection. $J^{-1}PJ$ is clearly seen to be a projection of $L_p(\sigma^{-1}C, \lambda)$ onto $L_p(\sigma^{-1}C, \mathscr{B}_0, \lambda)$. Clearly $L_p(\sigma^{-1}C, \lambda)/L_p(\sigma^{-1}C, \mathscr{B}_0, \lambda)$ is isomorphic to a complemented subspace of $\Lambda(\mathscr{B}_0)$. Thus if $\Lambda(\mathscr{B}_0)$ does not contain a complemented copy of L_p , we conclude

$$L_p(\sigma^{-1}C, \mathscr{B}_0, \lambda) = L_p(\sigma^{-1}C, \lambda).$$

Since M cannot be a countable family of such sets, there is a compact set $A \subset M$ such that $g_n(s) = 0$, $s \in A$, $1 \leq n < \infty$ and $\pi(A) > 0$.

This means $||g_{\infty}(s)|| = 1$, $s \in A$. By observing the form of the projection onto $\mathscr{R}(J)$ we note that $\Lambda(\mathscr{R}_0)$ contains a complemented copy of $L_p(A, \pi; L_p)/\mathscr{R}(JTP_A)$.

Now by Lemma 2.3 we can find a strongly measurable map $s \mapsto V_s$ $(A \to \mathscr{L}(L_p))$ such that $V_s g_{\infty}(s) = 1_{\Omega}$ (where $L_p = L_p(\Omega)$) and $||V_s||$, $||V_s^{-1}|| \leq 2$. [Here V_s^{-1} is constructed in Lemma 2.3.] Using this we construct an automorphism

$$V: L_p(A, \pi; L_p) \to L_p(A, \pi; L_p)$$
$$Vf(s) = V_s f \qquad s \in A$$

and conclude

$$L_p(A, \pi; L_p)/\mathscr{R}(JTP_A) \cong L_p(A, \pi; L_p|1).$$

As $L_p | 1 \cong L_p \oplus L_p | 1$ [8], (7.3.1) follows.

Now we turn to (7.3.2). First we embed $l_p \oplus L_p$ isometrically in L_p by an isometry U, say, and thus induce a diagonal isometry

$$\hat{U}: L_p(M, \pi, l_p \oplus L_p) \to L_p(M, \pi, L_p),$$
$$\hat{U}f(s) = U(f(s)) \qquad s \in M$$

Let $h = \hat{U}g$. As above we find a diagonal automorphism V of $L_p(M, \pi, L_p)$ so that $||V||, ||V^{-1}|| \leq 2$ and $Vh(s) = 1_{\Omega}$ for all s. Thus $\mathscr{R}(V\hat{U}JT) = L_p(M, \pi, \mathbb{R} \cdot 1_{\Omega})$. Now $\Lambda(\mathscr{R}_0) \cong \mathscr{R}(J)/\mathscr{R}(JT) \cong \mathscr{R}(V\hat{U}J)/\mathscr{R}(V\hat{U}JT)$ and so we have an embedding

$$R: \Lambda(\mathscr{B}_0) \to L_p(M, \pi, L_p)/\mathscr{R}(V\hat{U}JT),$$

where $RQ_1 = Q_2 V \hat{U} J$ if $Q_1 : L_p(K, \lambda) \to \Lambda(\mathscr{B}_0)$ and $Q_2 : L_p(M, \pi, L_p) \to L_p(M, \pi; L_p)/\mathscr{R}(V \hat{U} J T)$ are the quotient maps.

Now $L_p(M, \pi; L_p)/\mathscr{R}(V\hat{U}JT) \cong L_p(M, \pi; L_p|1)$ and so by Theorem 5.3, there is a lift $\tilde{R}: \Lambda(\mathscr{B}_0) \to L_p(M, \pi; L_p)$ so that $Q_2\tilde{R} = R$. Since $\mathscr{R}(Q_2\tilde{R}) \subset \mathscr{R}(Q_2V\hat{U}J)$ we conclude $\mathscr{R}(\tilde{R}) \subset \mathscr{R}(V\hat{U}J)$ and can define $S = (V\hat{U}J)^{-1}\tilde{R}$. $S: \Lambda(\mathscr{B}_0) \to L_p(K, \lambda)$ is an embedding and $RQ_1S = Q_2\tilde{R} = R$ so that $Q_1S = I$ on $\Lambda(\mathscr{B}_0)$. Hence $L_p(K, \mathscr{B}_0, \lambda)$ is complemented.

8. ISOMORPHISMS BETWEEN $L_p(X)$ -Spaces

We recall that a p-Banach space X is p-trivial [6] if $\mathcal{L}(L_p, X) = \{0\}$ when 0 . As shown in [6], p-triviality is an appropriate non-locally convex analogue of the Radon-Nikodym Property for Banach spaces. Note that, for example, if X has a separating dual or is q-convex for some <math>q > p, then X is p-trivial.

THEOREM 8.1. Suppose K is an infinite compact metric space and λ is a probability measure on K. Suppose X and Y are separable p-Banach spaces, where $0 , and that Y is p-trivial. Then if <math>T: L_p(K, \lambda; X) \rightarrow L_p(K, \lambda; Y)$

is a bounded linear operator, we can find a Polish space Ω and a σ -finite Borel measure v on Ω so that $T = ST_0$, where

- (i) S: $L_p(\Omega, v; Y) \rightarrow L_p(K, \lambda, Y)$ is a bounded linear surjection. (8.1.1)
- (ii) $T_0: L_p(K, \lambda; X) \to L_p(\Omega, \nu; Y)$ is an elementary operator. (8.1.2)

Proof. For let $\{x_n\}$ be a dense countable subset of X. For each n consider V_n : $L_p(K, \lambda) \rightarrow L_p(K, \lambda; Y)$ given by $V_n = \hat{T}(x_n)$ as in Proposition 4.1. Now there is a strongly Borel measurable map $s \mapsto V_{n,s}$ $(\Omega \rightarrow \mathcal{M}_p(K; Y))$ so that

$$V_{n,s}f = V_n f(s)$$
 λ -a.e., $s \in K$,

and if $\mu_{n,s} = \mu(V_{n,s})$ then $s \mapsto \mu_{n,s}$ is also a Borel map $(K \to \mathscr{M}(K))$ and $V_{n,s}$: $L_p(K, \mu_{n,s}) \to Y$ is continuous. But Y is p-trivial and so

$$\|V_{n,s}f\|^{p} \leqslant \int_{K} |f(s)|^{p} d\mu_{n,s}^{a}.$$

where $\mu_{n,s}^a$ is the purely atomic part of the measure $\mu_{n,s}$. By definition of $\mu(V_{n,s})$ we conclude that $\mu_{n,s}^a = \mu_{n,s}$ ($s \in K$).

Now applying Theorem 2.10 of [7] there are universally measurable maps $a_{n,j}: K \to \mathbb{R}, t_{n,j}: K \to K$ so that

$$\mu_{n,s} = \sum_{j=1}^{\infty} a_{n,j}(s) \,\delta(\tau_{n,j}(s)), \qquad (8.1.3)$$

where for every $s \in K$, and fixed $n \in \mathbb{N}$, $\tau_{n,i}(s) = \tau_{n,k}(s)$ implies j = k.

For convenience we can redefine $a_{n,j}$, $\tau_{n,j}$ on a set of λ -measure zero so that they are Borel and (8.1.3) holds λ -a.e. Now let $\{\tau_n^*: n \in \mathbb{N}\}$ be any sequential ordering of the maps $\{\tau_{n,j}; n \in \mathbb{N}, j \in N\}$, and define inductively $\sigma_1 = \tau_1^*$, and if n > 1,

$$\sigma_n(s) = \tau_k^*(s),$$

where k is the least index such that $\tau_k^*(s) \notin \{\sigma_1(s),...,\sigma_{n-1}(s)\}$. This process defines a sequence $\{\sigma_n\}$ of Borel maps $\sigma_n: K \to K$ such that $\sigma_n(s) = \sigma_m(s)$ implies n = m and for any fixed k, $\{\tau_{k,j}(s)\}_{j=1}^{\infty} \subset \{\sigma_j(s)\}_{j=1}^{\infty}$.

Now for each $j = 1, 2, \dots$ let

$$\Delta_i(t) = \Delta_{\sigma_i}(T)$$

so that $\Delta_j(T)$: $L_p(K, \lambda; X) \to L_p(K, \lambda; Y)$ is σ_j -elementary. Let $\Omega = K \times \mathbb{N}$ with v the product of λ and counting measure on \mathbb{N} and define

$$T_0: L_p(K,\lambda;X) \to L_p(\Omega,\nu;Y)$$

by

$$T_0 f(s, n) = \Delta_n(T) f(s) \qquad s \in K, \quad n \in \mathbb{N}.$$

We must first check that T_0 is a bounded linear operator. This is most easily done by checking its behavior on elements $\phi \otimes x$, and appealing to Proposition 4.1, to produce a bounded linear operator T'_0 agreeing with T_0 on such elements. Then it is trivial that $T'_0 = T_0$.

Now for fixed n,

$$T_0(\phi \otimes x)(s, n) = \Delta_n(T)(\phi \otimes x)(s)$$

= $\phi(\sigma_n(s)) \hat{T}(x)_s e_{\sigma_n(s)} \qquad \lambda$ -a.e.

by (6.1.3). Hence

$$||T_0(\phi \otimes x)(s,n)||^p \leq |\phi(\sigma_n(s))|^p \,\mu(\hat{T}(x)_s)\{\sigma_n(s)\},$$

and

$$\int \|T_0(\phi \otimes x)(\omega)\|^p \, d\nu(\omega) = \sum_{n=1}^{\infty} \int_K \|T_0(\phi \otimes x)(s,n)\|^p \, d\lambda(s)$$
$$= \int_K \sum_{n=1}^{\infty} |\phi(\sigma_n(s))|^p \, \mu(T(x))_s \, \{\sigma_n(s)\} \, d\lambda(s)$$
$$\leqslant \int_K \int_K |\phi(t)|^p \, d\mu(\hat{T}(x))_s \, d\lambda(s)$$
$$\leqslant \|\hat{T}(x)\|^p \int_K |\phi(s)|^p \, d\lambda(s).$$

This last step follows from (5.1.5) (with $c = ||\hat{T}(x)||$). Thus

$$\|T_{\mathbf{0}}(\boldsymbol{\phi} \otimes \boldsymbol{x})\| \leq \|T\| \|\boldsymbol{\phi}\| \|\boldsymbol{x}\|.$$

as so T_0 is a bounded linear operator.

Note that T_0 is σ -elementary, where

$$\sigma(s,n) = \sigma_n(s) \qquad (s,n) \in \Omega.$$

Next define $S: L_p(\Omega, \nu; Y) \rightarrow L_p(K, \lambda; Y)$ by

$$Sf(s) = \sum_{n=1}^{\infty} f(s, n) \qquad s \in K.$$

Here the series converges λ -a.e. for any $f \in L_p(\Omega, v, Y)$ since

$$\int_K \sum_{n=1}^{\infty} \|f(s,n)\|^p \, d\lambda(s) = \|f\|^p$$

then S is an operator of norm one.

Now for $j \in \mathbb{N}$

$$ST_0(\phi \otimes x_j) = \sum_{n=1}^{\infty} \phi(\sigma_n s) V_{j,s}(e_{\sigma_n s}) \qquad \lambda$$
-a.e.

For λ -almost every s, $\mu_{i,s}$ is supported on $\{\sigma_n s\}_{n=1}^{\infty}$ and $\phi \in L_p(\mu_{i,s})$. Thus

$$ST_0(\phi \otimes x_j) = V_{j,s} \sum_{n=1}^{\infty} \phi(\sigma_n s) e_{\sigma_n s}$$
$$= V_{j,s}(\phi)$$
$$= T(\phi \otimes x_j)$$

and by a density argument $ST_0 = T$.

THEOREM 8.2. Under the same hypotheses as Theorem 8.1, there exist a diagonal operator

$$D: L_p(K,\lambda;X) \to L_p(K,\lambda;l_p(Y) \oplus L_p(Y))$$

and a bounded linear operator

$$R: L_p(K, \lambda, l_p(Y) \oplus L_p(Y)) \rightarrow L_p(K, \lambda; Y)$$
 so that $T = RD$.

Proof. We write $T = ST_0$ as in 8.1. Now by Theorem 7.2 we can find

$$J: L_p(\Omega, \nu; Y) \to L_p(K, \lambda, l_p(Y) \oplus L_p(Y))$$

and a Borel subset A of Ω such that (i) $\mathscr{R}(T_0) \subset L_p(A, v; Y)$, (ii) $J|L_p(A, v; Y)$ is an isometry onto $\mathscr{R}(J)$, (iii) $\mathscr{R}(J)$ is complemented by a projection Q and (iv) JT_0 is diagonal.

Let $D = JT_0$ and $R = SJ^{-1}Q$, where $J^{-1}: \mathscr{R}(J) \to L_p(A, v; Y)$, is the inverse of J.

THEOREM 8.3. Suppose X and Y are separable p-Banach spaces with Y

p-trivial, and such that $L_p(X)$ is isomorphic to a complemented subspace of $L_p(Y)$. Then $X \cong X_1 \oplus X_2$, where X_1 is isomorphic to a complemented subspace of $L_p(Y)$ and X_2 is isomorphic to a complemented subspace of $l_p(Y)$ $|X_1 = \{0\}$ or $X_2 = \{0\}$ are possibilities here].

Remarks. The converse of Theorem 8.3 is trivial.

Proof. Let T be an operator mapping $L_p(K, \lambda; X)$ isomorphically onto a complemented subspace of $L_p(K, \lambda; Y)$. Let T = RD as in Theorem 8.2.

Here D and $R|\mathscr{R}(D)$ must be embeddings. If Q is a projection on $\mathscr{R}(T)$ then $R^{-1}QR$ is a projection on $\mathscr{R}(D)$, where $R^{-1}:\mathscr{R}(T) \to \mathscr{R}(D)$. However, $\mathscr{R}(D)$ is a diagonal subspace. Hence there is a diagonal projection P onto $\mathscr{R}(D)$ (by 6.2).

Now since D is embedding we can define an operator $E = D^{-1}P$ (where $D^{-1}: \mathscr{R}(D) \to L_p(K, \lambda; X)$) and E is also diagonal. Recalling Theorem 4.2, we get strongly Borel measurable maps $s \mapsto D_s$ $(K \to \mathscr{L}(X, l_p(Y) \oplus L_p(Y)), s \mapsto E_s$ $(K \to \mathscr{L}(l_p(Y) \oplus L_p(Y), X))$ so that

$$Df(s) = D_s(f(s))$$
 λ -a.e.,
 $Ef(s) = E_s(f(s))$ λ -a.e.

Since ED is the identity on $L_p(K, \lambda; X)$, by the uniqueness of such a representation

$$E, D, = I \qquad \lambda$$
-a.e.

This implies, a.e., that D_s maps X isomorphically onto a complemented subspace of $l_p(Y) \oplus L_p(Y)$.

To complete the proof suppose W is a complemented subspace of $l_p(Y) \oplus L_p(Y)$. Since $\mathscr{L}(L_p, Y) = 0$ we have $\mathscr{L}(L_p(Y), l_p(Y)) = 0$. Thus if Q is a projection onto W and P_1, P_2 are the canonical projections onto $l_p(Y)$ and $L_p(Y)$, respectively, we must have $P_1QP_2 = 0$.

It follows that QP_2 is a projection. Indeed $QP_2QP_2 = Q^2P_2 = QP_2$: $W_2 = \mathscr{R}(QP_2)$. Then W_2 is a complemented subspace of $L_p(Y)$ and $W = W_1 \oplus W_2$, where $W_1 = \mathscr{R}(QP_1Q)$. However, since QP_1 is on W a projection, $W_1 \cong \mathscr{R}(P_1QP_1)$, and P_1QP_1 is a projection. Hence W_1 is isomorphic to a complemented subspace of $l_p(Y)$. This will complete the proof.

THEOREM 8.4. Suppose X and Y are p-trivial separable p-Banach spaces, with $L_p(X) \cong L_p(Y)$. Then $l_p(X) \cong l_p(Y)$.

Proof. We have $X \cong X_1 \oplus X_2$, where X_1 is complemented in $l_p(Y)$ and X_2 is complemented in $L_p(Y)$. If X is p-trivial, $X_2 = \{0\}$, i.e., X is isomorphic to a complemented subspace of $l_p(Y)$. Thus $l_p(X)$ is isomorphic to a

complemented subspace of $l_p(Y)$. Reversing the reasoning and applying the Pelczynski decomposition technique gives the result.

Remark. Of course $l_p(X) \cong l_p(Y)$ always implies $L_p(X) \cong L_p(Y)$ as $L_p(X) \cong L_p(l_p(X))$.

COROLLARY 8.5. If X is p-trivial and $L_p(X) \cong L_p$ then X is finitedimensional or $X \cong l_p$.

This follows from a theorem of Stiles that every complemented infinite dimensional subspace of l_p is isomorphic to l_p [16].

COROLLARY 8.6. If X is p-trivial and $L_p(X)$ contains a complemented copy of L_p then $X^* \neq \{0\}$.

EXAMPLE 8.7. Let (e_n) be the cananical basis vectors of l_p and let $u_n = 2^{-1/p}(e_{2n-1} + e_{2n})$, n = 1, 2,... Then (u_n) is the basis for a subspace N_0 isomorphic to l_p . If $2^{1-1/p} < c < 1$, let $T: N_0 \rightarrow l_p$ be defined so that $Tu_n = ce_n$. As ||T|| = c < 1, $I - T: N_0 \rightarrow l_p$ is an isomorphism of N_0 onto a closed subspace N of l_p also isomorphic to l_p , with $(u_n - Tu_n)$ as a basis. By considering e_1 , for example, it is not difficult to show N is a proper subspace. On the other hand, N is weakly dense. Indeed

$$u_n - Tu_n = c(Se_n - e_n),$$

where $Se_n = c^{-1} 2^{-1/p} (e_{2n-1} + e_{2n})$ so that S is bounded linear operator on l_1 with $||S||_1 < 1$. Thus (I - S) is an automorphism of l_1 and $(u_n - Tu_n)$ is a weak basis of l_p .

Now l_p/N is p-trivial since $N \cong l_p$ by appealing to the lifting theorems of [8] (N is pseudo-dual). Thus $L_p(l_p/N)$ does not contain a complemented copy of L_p . However, $L_p(l_p/N) \cong L_p(l_p)/L_p(N)$. Hence we have found a subspace of L_p isomorphic to L_p but which cannot be moved by any automorphism into a subspace $L_p(K, \mathscr{B}_0, \lambda)$ for some sub- σ -algebra (use Theorem 7.3).

THEOREM 8.8. Suppose X and Y are separable p-Banach spaces Y is ptrivial and $\mathcal{L}(X, Y) = 0$. Then if $L_p(X)$ is isomorphic to a complemented subspace of $L_p(Y)$, X is also isomorphic to a complemented subspace of $L_p(Y)$.

The proof of Theorem 8.8 employs techniques similar to those of the proof of Theorem 8.4 and we omit it. Theorem 8.6 provides yet another proof that $L_p(L_p|1) \cong L_p$, for $L_p|1$ is not isomorphic to a complemented subspace of L_p (since, e.g., L_p is a K-space and $L_p|1$ is not [8]).

9. The Complemented Subspace Problem for L_p

Suppose K is a compact metric space and λ is a diffuse measure on K. Then by Theorem 3.2 of [7] every $T \in \mathscr{L}(L_p(K, \lambda))$ has a representation of the form

$$Tf(s) = \sum_{n=1}^{\infty} a_n(s) f(\sigma_n s) \qquad \lambda \text{-a.e.}, \quad s \in K, \tag{9.0.1}$$

where $a_n: K \to \mathbb{R}$ and $\sigma_n: K \to K$ are Borel maps satisfying

$$\sigma_m(s) \neq \sigma_n(s) \qquad s \in K, \quad m \neq n, \tag{9.0.2}$$

$$\sum_{n=1}^{\infty} |a_n(s)|^p < \infty \qquad \lambda \text{-a.e.}, \quad s \in K, \tag{9.0.3}$$

$$\sum_{n=1}^{\infty} \int_{\sigma_n^{-1}B} |a_n(s)|^p \, d\lambda(s) \leqslant ||T||^p \, \lambda(B), \qquad B \in \mathscr{B}, \tag{9.0.4}$$

$$|a_n(s)| \ge |a_{n+1}(s)|$$
 $s \in K, n = 1, 2,$ (9.0.5)

Conversely if a_n , σ_n satisfy (9.0.2)-(9.0.5) then (9.0.1) defines a bounded linear operator. Of course this result also would follow from Theorem 5.2.

In [7], T was called *small* if each σ_n is anti-injective on the set $\{s: |a_n(s)| > 0\}$. This definition does not depend on the precise form of the representation (9.0.1) as long as (9.0.2) is satisfied.

If T is not small, it is called large and large operators were characterized as follows (Theorem 5.6 of [7])

PROPOSITION 9.1. The following conditions are equivalent:

(i) T is large (9.1.1)

- (ii) There is a Borel subset of K with $\lambda(B) > 0$ such that $T|L_p(B,\lambda)$ is an isomorphism and $T(L_p(B,\lambda))$ is complemented in $L_p(K,\lambda)$ (9.1.2)
- (iii) There exist $S_1, S_2 \in \mathscr{L}(L_p(K, \lambda))$ such that $S_1 T S_2 = I$ (9.1.3)

COROLLARY 9.2. If T is a large projection $\mathscr{R}(T) \cong L_p$.

Proof. By (9.1), $\mathscr{R}(T)$ contains a complemented copy of L_p . Hence $\mathscr{R}(T) \cong L_p$ by the Pelczynski decomposition technique.

Now if T is small, returning to (9.0.1) it is possible to alter each σ_n to be anti-injective on K without changing T (simply redefine σ_n on $(s: a_n(s) = 0)$).

PROPOSITION 9.3. Let $U: L_p(K, \lambda) \to L_p(K, \lambda; L_p(K, \lambda))$ be defined by

$$Uf(s) = f(s) \cdot \mathbf{1}_k.$$

Then if T is small there exists a bounded linear operator $S: L_p(K, \lambda)$. $L_p(K, \lambda)) \rightarrow L_p(K, \lambda)$ such that T = SU.

Proof. Clearly $T = S_0 E$, where $E: L_p(K, \lambda) \to L_p(K \times \mathbb{N}, \gamma)$ (γ is the product of λ and counting measure) is defined by

$$Ef(s, n) = a_n(s) f(\sigma_n s)$$

and $S_0: L_p(K \times \mathbb{N}, \gamma) \to L_p(K, \lambda)$ is given by

$$S_0f(s) = \sum_{n=1}^{\infty} f(s, n), \quad s \in K, \quad n \in \mathbb{N}.$$

Now E is σ -elementary, where σ is anti-injective. We now argue as in Theorem 8.2, but using Theorem 7.1 in place of Theorem 7.2 to write $T = S_1 V$, where $V: L_p(K, \lambda) \to L_p(K, \lambda; L_p)$ is diagonal and $S_1: L_p(K, \lambda; L_p) \to L_p(K, \lambda)$. It will be convenient to note $L_p(K, \lambda; L_p) \cong L_p(K, \lambda; L_p(K, \lambda))$. Thus

$$Vf(s) = f(s) g(s)$$
 λ -a.e.,

where $g: K \to L_p$ is a Borel map with $||g(s)|| \leq ||V|| \lambda$ -a.e. By Lemma 2.3 there is a strongly Borel measurable map $s \mapsto R_s$ of K into $\mathscr{L}(L_p)$ so that $||R_s|| \leq 2$ and $R_s 1_K = g(s)$. If $R: L_p(K, \lambda; L_p) \to L_p(K, \lambda; L_p)$ is given by

$$Rf(s) = R_s(f(s))$$
 $s \in K$

then $T = S_1 R U$ as required.

THEOREM 9.4. Let $T \in \mathscr{L}(L_p)$; then T is small if and only if $\chi(T) = 0$ for every $\chi \in \mathscr{L}(L_p)^*$.

Proof. Suppose $\chi(T) = 0$ for every $\chi \in \mathscr{L}(L_p)^*$. If T is large then $l = S_1 T S_2$ for some $S_1, S_2 \in \mathscr{L}(L_p)$ and so $\chi(I) = 0$ for every $\chi \in \mathscr{L}(L_p)^*$. However, the diagonal projection Δ maps $\mathscr{L}(L_p)$ into a subspace (of diagonal operators) isomorphic to L_∞ and $\Delta(I) = I$. This is a contradiction.

Conversely suppose T is small. Then T = SU as in 9.3. For each $\phi \in L_p(K, \lambda)$, define $U_{\phi}: L_p(K, \lambda) \to L_p(K, \lambda, L_p(K, \lambda))$ by

$$U_{\phi}f(s) = f(s)\phi, \quad s \in K.$$

Then $\phi \mapsto U_{\phi}$ is linear and $||U_{\phi}|| = ||\phi||$. Hence there is a bounded linear map $\phi \mapsto SU_{\phi}$ of L_p into $\mathscr{L}(L_p)$ with $1 \to T$. Thus $\chi(T) = 0$ for every $\chi \in \mathscr{L}(L_p)^*$.

580 42 3 5

Remarks. If P is small projection with range Z, say, then $\mathcal{L}(Z)^* = \{0\}$, since if $\chi \in \mathcal{L}(Z)^*$, $S \in \mathcal{L}(Z) T \to \chi(SPT|Z)$ is a linear functional as $\mathcal{L}(L_p)$ and $D \to \chi(S)$. Hence $\chi(S) = 0$.

COROLLARY 9.5. If Z is a complemented subspace of L_p with $Z \not\cong L_p$ then $L_p(Z)$ is also isomorphic to a complemented subspace of L_p , and $L_p(Z) \not\cong L_p$.

Proof. Clearly $L_p(Z)$ is also isomorphic to a complemented subspace of $L_p(L_p) = L_p$. Additionally if $\mathscr{L}(L_p(Z))^* \neq \{0\}$, then there exists $\chi \in \mathscr{L}(L_p(Z))^*$ with $\chi(I) \neq 0$. However, there is a natural injection $\mathscr{L}(Z) \rightarrow \mathscr{L}(L_p(Z))$, sending I_Z to $I_{L_p(Z)}$ using diagonal operators. Hence $\mathscr{L}(L_p(Z))^* = \{0\}$ and so $L_p(Z) \not\cong L_p$.

THEOREM 9.6. Suppose X is a p-Banach space with trivial dual such that $L_p(X) \cong L_p$. Then $X \cong L_p$.

Proof. By 8.3, X is isomorphic to a complemented subspace of L_p and by Corollary 9.5, $X \cong L_p$.

Our final result shows a complemented subspace of L_p must belong to one of at most two isomorphism classes. In fact, we strongly suspect L_p is prime.

PROPOSITION 9.7. Suppose there is a complemented subspace Z of L_p with $Z \not\cong L_p$. Then

- (i) $Z \cong L_p(Z)$. (9.7.1)
- (ii) Every complemented subspace of L_p is isomorphic either to L_p or to Z. (9.7.2)
- (iii) Z is prime. (9.7.3)

Proof. Let us define \mathscr{A} to be the collection of all operators $T \in \mathscr{L}(L_p)$ with the following property:

There is a constant $c < \infty$ and a Borel subset *B* of *K* with $\lambda(B) > 0$ such that whenever $A \subset B$ is a Borel set of positive measure, there exist operators $S_A: Z \to L_p, R_A: L_p \to Z$ with $R_A TP_A S_A = I$ on *Z*, and $||R_A|| ||S_A|| < c$. (9.7.4)

Two properties of \mathscr{A} are easy to establish and we omit the proofs.

$$\mathscr{A}$$
 is open (for the norm topology on $\mathscr{L}(L_p)$). (9.7.5)

If
$$ST \in \mathscr{A}$$
 then $T \in \mathscr{A}$. (9.7.6)

The proof depends on the fact that a small enough perturbation of the identity on Z is invertible.

Let $Q: L_p \to Z$ be any projection. Q is certainly a small operator and so may be written Q = SU, where $U: L_p(K, \lambda) \to L_p(K, \lambda, L_p(K, \lambda))$ is given by

$$Uf(s) = f(s) \cdot 1_{K}$$

We shall here identify U as an endomorphism of L_p , using the fact that $L_p(K, \lambda; L_p)$ is isometric to L_p ; equally we may treat S as an endomorphism of L_p . Now U(Z) is also complemented in L_p by the projection UQS, and is isomorphic to Z. Hence there exist operators $R_1: Z \to L_p$, $R_2: L_p \to Z$ such that $R_2UR_1 = I$. Now for any Borel subset A of K, with positive λ -measure there are isometries $V_1: L_p \to L_p(A, \lambda)$, $V_2: L_p(A, \lambda; L_p) \to L_p(K, \lambda, L_p)$ such that $V_2UV_1 = U$. Hence $R_2V_2P_AUP_AV_1R_1 = 1$ and $||R_2V_2P_A|| \cdot ||V_1R_1|| \leq ||R_1|| \cdot ||R_2||$. Thus $U \in \mathscr{A}$, with $c = ||R_1|| ||R_2||$ and B = K.

The next step is that if $V: L_p(K, \lambda) \to L_p(K, \lambda; L_p)$ is a non-zero diagonal operator then $V \in \mathscr{A}$. Indeed

$$Vf(s) = f(s) g(s),$$

where $g: K \to L_p$ is a bounded Borel map. If for some $\delta > 0$ and $B \in \mathscr{B}$ of positive measure $||g(s)|| \ge \delta$, $s \subset B$, then it is easy to show (via Lemma 2.3) that $UP_B = SV$ and so by (9.7.6), $V \in \mathscr{A}$. Appealing to Theorem 7.1 and (9.7.6), this shows that every non-zero σ -elementary operator for anti-injective σ is in \mathscr{A} .

Next we show that every non-zero small operator belongs to \mathscr{A} . Suppose $T \in \mathscr{L}(L_p)$ is small; then we may write

$$Tf(s) = \sum_{n=1}^{\infty} a_n(s) f(\sigma_n s) \qquad \lambda - a.e.$$

as in (9.0.1)–(9.0.5). Let

$$Sf(s) = a_1(s) f(\sigma_1 s)$$
 λ -a.e.

S is small and elementary and also non-zero (if S1 = 0 then $a_1 \equiv 0$ and hence T = 0).

We now repeat an argument from p. 371 of [7]. For each n, let $(B_{n,k}: 1 \le k \le l(n))$ be partitioning of K into Borel sets of diameter at most 1/n. Let

$$T_{n} = \sum_{k=1}^{l(n)} P_{\sigma_{1}^{-1}B_{n,k}} T P_{B_{n,k}}.$$

Then as on p. 371 of [7], $\theta_p(T_n - S) \to 0$ and by Lemma 5.2 we can find a set A of positive λ -measure with $SP_B \neq 0$ and $||(T_n - S)P_A|| \to 0$. Hence for

large enough *n*, $T_n P_A \in \mathscr{A}$. Find $B \subset A$ so that (9.7.4) is satisfies for $T_n P_A$ and choose k so that $\lambda(B \cap B_{n,k}) > 0$. Then

$$T_n P_{B \cap B_{n,k}} \in \mathscr{A}, \quad \text{i.e.,} \quad P_{\sigma_1^{-1} B_{n,k}} T P_{B \cap B_{nk}} \in \mathscr{A}.$$

Hence $TP_{B \cap B_{n,k}} \in \mathscr{A}$ and so $T \in \mathscr{A}$.

Now any small projection is in \mathscr{A} and in particular it follows that if W is a complemented subspace of L_p , which is not isomorphic to L_p , then Wcontains a subspace isomorphic to Z and complemented in it. In particular Zcontains a complemented copy of $L_p(Z)$; but the reasoning may be reversed to get a complemented copy of Z in $L_p(Z)$. The Pelczynski decomposition technique now yields (9.7.1) and (9.7.2). Statement (9.7.3) follows since Zcannot contain a complemented copy of L_p (again the Pelczynski technique!).

COROLLARY 9.8. L_p has a prime complemented subspace.

Proof. Either Z exists or it does not!

Remarks. We now finally state that $L_p(X) \cong L_p$ with X infinitedimensional implies that X is one of the spaces l_p , L_p , $L_p \oplus \mathbb{R}^n$ $(n \ge 1)$, $L_p \oplus l_p$, $Z \oplus \mathbb{R}^n$ $(n \ge 1)$, $Z \oplus l_p$ provided Z exists. Otherwise the list is reduced by omitting those involving Z.

10. OPEN PROBLEMS

We list now the major problems left open in this paper.

Problem 10.1 (= Problem 1.6). Is L_p prime for 0 ?Two related problems are:

Problem 10.2. Does there exist a quasi-Banach space X such that $\mathscr{L}(X)^* = \{0\}$? Does there exist a quasi-Banach algebra with identity and a trivial dual?

We remark here that results of Zelazko [18] show that a commutative quasi-Banach algebra with identity has non-trivial dual.

Problem 10.3. If $0 , and X is a quasi-Banach space can there be a projection from <math>L_p(X)$ onto its subspace of constant functions?

One can show that Z would have the above property; in fact there is a clear relationship with Problem 10.2.

Problem 10.4. If $1 \le p < \infty$ and X is a quasi-Banach space such that there is a projection from $L_p(X)$ into the subspace of constant functions, is X locally convex?

The author has a number of partial results on this problem which will be published elsewhere. In particular the answer to 10.4 is yes when X has a basis.

Problem 10.5 (= Problem 1.3). Let X be a closed subspace of L_p so that $X \cong L_p/X \cong L_p$. Is X complemented?

Problem 10.6 (See Theorem 7.3). If for two sub- σ -algebras $\mathscr{B}_0, \mathscr{B}_1$ of \mathscr{B} we have $\Lambda(\mathscr{B}_0) \cong \Lambda(\mathscr{B}_1)$, what can one deduce about \mathscr{B}_0 and \mathscr{B}_1 ?

Problem 10.7. If X and Y are Banach space with the Radon-Nikodym property and $L_1(X) \cong L_1(Y)$ is $l_1(X) \cong l_1(Y)$?

References

- I. I. W. BAGGETT AND A. RAMSEY, A functional analytic proof of a selection lemma. *Canad. J. Math.* 32 (1980), 441-448.
- I. D. BERG, N. T. PECK, AND H. PORTA, There is no continuous projection from the measurable functions on the square onto the measurable functions on the interval, *Israel J. Math.* 14 (1973), 199-204.
- 3. J. BOURGAIN, A counterexample to a complementation problem, *Comp. Math.* 43 (1981), 133-144.
- J. DIESTEL, "Geometry of Banach Spaces--Selected Topics," Lecture Notes in Mathematics No. 485, Springer-Verlag, Berlin, 1975.
- J. DIESTEL AND J. J. UHL, "Vector Measures," Mathematical Surveys No. 15, Amer. Math. Soc., Providence, R. I., 1977.
- N. J. KALTON, An analogue of the Radon-Nikodym property for non-locally convex quasi-Banach spaces, Proc. Edinburgh Math. Soc. 22 (1979), 49-60.
- 7. N. J. KALTON. The endomorphisms for L_p ($0 \le p \le 1$), Indiana Univ. Math. J. 27 (1978), 353–381.
- 8. N. J. KALTON AND N. T. PECK, Quotients of $L_p(0, 1)$ for $0 \le p < 1$, Studia Math. 64 (1979), 65-75.
- D. R. LEWIS AND C. STEGALL, Banach spaces whose duals are isomorphic to l₁(Γ), J. Funct. Anal. 12 (1973), 177-187.
- J. LINDENSTRAUSS, On a certain subspace of l₁, Bull. Acad. Polon. Sci. 12 (1964), 539-542.
- D. MAHARAM, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111.
- 12. J. VON NEUMANN, On rings of operators, reduction theory, Ann. Math. 30 (1949). 401-485.
- 13. S. ROLEWICZ, "Metric Linear Spaces," PWN, Warsaw, 1972.
- 14. H. P. ROSENTHAL, The Banach spaces C(K) and $L_p(u)$, Bull. Amer. Math. Soc. 81 (1975), 763-781.
- 15. Z. SEMADENI, "Banach Spaces of Continuous Functions," Vol. I, PWN, Warsaw, 1971.
- 16. W. J. STILES, Some properties of l_p , 0 , Studia Math. 42 (1972), 109-119.
- 17. D. Vogt, Integrations theorie in p-normierten Raümen, Math. Ann. 173 (1967), 219-237.
- 18. W. ZELAZKO, On the radicals of p-normed algebras, Studia Math. 21 (1962), 203-206.