The Endomorphisms of L, (0 = p =< 1)

N.J. KALTON

1. Introduction. In [12] Kwapieni gives a representation theorem for the
endomorphisms of the F-space Lo(= Ly(0, 1)) of all real (or complex) measur-
able functions on (0, 1) with the topology of convergence in measure; this fol-
lowed an earlier paper of Berg, Peck and Porta [1] on the complemented sub-
spaces of L,. We first state Kwapien’s theorem for future reference. The ver-
sion given below is a slight modification of Kwapiefi’s original statement.

Theorem 1.1. (Kwapie)) Let K be a Polish space and let X be a probability
measure defined on the Borel subsets B of K. Let (X, 3., u) be a measure space

with u(X) = 1. Let T : L(K, B, \) = Ly(X, 3, u) be a continuous linear oper-
ator; then T takes the form

(1.1.1) Tf(x) = 21 a,(X)flox) prae.  fE LK)
where

(i) {a,}is a sequence of elements of Ly(X, 2., u) such that u{x : a,(x) # 0for
infinitely many n} = 0.

(ii) o, : X — K is a sequence of 2. — B measurable mappings satisfying the
condition that if N(A) = 0 then w(o;2(A) N {x : a,(x) # 0) = 0.

Conversely if {a,} and {o,.} satisfy (i) and (ii), then (1.1.1) defines an operator
Jrom Ly(K) into Ly(X).

We have modified Kwapién’s statement to the extent that we assume each o,
3 -measurable and not merely measurable with respect to the completion of 3.
This is permissible since K is Polish.

Let us now state Theorem 1.1 in a different form.

Theorem 1.2. Let K be a compact metric space and let \ be a probability
measure on K. Let (X, 2., u) be a measure space with u(X) = 1. Let T: Lo(K, 9,
N) = Ly(X, X, w) be a continuous linear operator, then T takes the form

(1.2.1) Tf(x) = L Sdv, (1) w-a.e., fE€ Ly(K)
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where x | > v, is a mapping of X into the space M(K) of all regular Borel mea-
sures on K which is 3-measurable for the weak*-Borel sets of M(K), and satis-
fies the conditions:

(i) If N(A) = Othen |y |(A) = 0 u-ae.
(ii) v, is of finite support u-a.e.

Conversely if x | > v, satisfies these conditions then (1.2.1) defines an oper-
ator from Lo(K) into Ly(X).

If T is a continuous linear operator then v, is obtained by letting

o

Ve = z a,,(x)S(o-,,x)
n=1
(where 8(¢) is the Dirac measure at the point t € k). The converse is easy to
verify.

The purpose of this paper is to investigate similar representation theorems
for the spaces L, (0 < p < 1). These spaces are locally bounded and our tech-
niques are rather different from those of Kwapién. We prove a theorem of the
type of 1.2 and deduce the analogue to 1.1, rather than conversely. At least
some of the argument can be applied to the case p = 1, where we obtain a
representation theorem for the endomorphisms of L; which seems to be essen-
tially different from the known representation theorems to be found in Dunford
and Schwartz ([3] p. 505) and Grothendieck ([5] p. 62).

In Section 2, we collect together all the measurability results that we require.
In Section 3 we prove our main representation theorems. Sections 4, 5 and 6
are devoted to applications of these theorems. Thus in Section 4, we consider
the problem: if 0 < p < 1, and L,(X, 3, u) is separable, what conditions on a
sub-g-algebra 3, of 3, ensure that L,(X, 3, u) is complemented in L,(X, 2., u)?
If p = 0, then Berg, Peck and Porta [1] showed that the subspace of L,([0, 1] x
[0, 1]) of functions constant on horizontal lines is not complemented. Here we
give necessary and sufficient conditions on 3, for L, (X, 3, u) to be com-
plemented and extend the Berg-Peck-Porta theorem to all p, 0 < p < 1. Of
course if p = 1, every L (X, 3,, ) is complemented by a conditional ex-
pectation operator.

In Section 5, we show that every non-zero endomorphism of L,(0, 1) (0 < p
< 1) is an isomorphism on some L,(B) where B C (0, 1) is a subset of positive
measure. We also identify the unique maximal two-sided ideal in the algebra
Z(L,) of all endomorphisms of L,. In Section 6, we show that every com-
plemented subspace of Ly(0, 1) is isomorphic to L,, and that if (X, is an uncon-
ditional Schauder decomposition of L, (0 < p =< 1) then at least one X, is iso-
morphic to L,. For p = 1, this result has been obtained independently by T.
Starbird, and extends a result of Enflo ([4],[16], {22] and [23]) that L, is primary
(fe. if L= X® Ytheneither X=L,or Y= L).
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Finally in Section 7 we construct for each p, 0 < p < 1 a quotient of L, which
admits no linear operators into L,,.

Throughout this paper, we concentrate on the case of real scalars, although
for complex scalars only minor modifications are necessary. In Section 7, we
do have occasion to consider the case of complex scalars. We also note that if
K is a Polish space and A is any continuous probability measure on K, then
L,(K, \) is isomorphic to L,(0, 1). Thus most of our results could be stated for
the special case K = (0, 1) without much loss of generality. However there
seems no great advantage in doing this.

We also note that operators on L,(G) (G a locally compact group) which
commute with translation have been characterized recently by Oberlin [17],
[18]. For the metric case, these results follow from our main representation
theorems.

2. Preliminary measurability results. We recall that a Polish space is a topo-
logical space which is homeomorphic to a separable complete metric space and
that a continuous image of a Polish space is called a Souslin space. For any
topological space K we denote the o-algebra of Borel sets (i.e. the smallest o-
algebra generated by the open sets) by %B(K), or simply % when no confusion
can arise. If A is a (finite) Borel measure on K, then 3, is the A-completion of .
We denote by U = U(K), the o-algebra of universally measurable sets, i.e. the
intersection of all %,.

In this section we gather together a number of known or essentially known
results on measurable mappings which we require later.

Theorem 2.1. (Kuratowski [10]) Suppose K, and K, are two Polish spaces
of the same cardinality. Then there is a Borel isomorphism ¢ : K, — K, (i.e. ¢is
a bijection and ¢ and ¢ are Borel maps).

Theorem 2.2. Let K be a Souslin space and let M be a metric space. Sup-
pose ¢ : K — M is a continuous surjection (so that M is Souslin space). Then
there is a map ¢ : M — K which is UM) — B(K) measurable (i.e. y(B) €
UM) for B € B(K)) and o(Y(x)) = x for x € M.

Proof. This is a consequence of the Kuratowski-Ryll-Nardzewski selection
theorem (see [11], [2] p. 268). Suppose P is a Polish spaceand 9 : P - K is a
continuous surjection. By Corollary 2, p. 270 of [2], there is a U(M) — B(P)
measurable map 7 : M — P such that g7 (x) = x (x € M). Let ¢y = 67.

If (X, 3) is a measurable space and u is a positive measure on 2, we denote
by 2, the completion of 3.

The following theorem follows easily from the fact that a Polish space has a
countable base of open sets.

Theorem 2.3. Let (X, X, ) be a measure space and let K be a Polish space.
Suppose o : X = Kis 2, — B measurable. Then there exists a 3 — B measur-
able map ¢ : X — K such that ¢(x) = o(x) p-a.e.
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Theorem 2.4. (Lusin) Suppose K, and K, are compact metric spaces and
that o : K, = K, is a Borel measurable map. Then for any positive Borel mea-
sure A on K, and € > 0 there is a closed subset E of K, such that o | Eis
continuous and MK, \E) < e.

For the remainder of this section we fix K as an infinite compact metric
space. We denote by C(K) the separable Banach space of all real-valued (or
complex-valued) continuous functions on K. The dual of C(K), which we de-
note by #(K), is the space of signed Borel measures on K with norm

N[ = MK A€ MK

where A| is the total variation of A; i.e.

A|(B)=sup > |\B)) BESB

i=1

where the supremum is taken over all disjoint sequences (B;) in % with
U Bi = B.
For 0 < p < 1, we define, similarly

A|o(B) = sup Z \B)F BE B

Then |Alp is a positive, but not necessarily finite Borel measure on 8. We define
[INle = (MoK}
Proposition 2.5. ([8], [17]) If 0 < p < 1, then |||, < « if and only if

o

A= 2 a;8(%)

i=1
where t; € K are distinct and

hd 1/p
Mo =( > |ai\p) < o,

We denote the weak*-Borel sets of #(K) by #*. Since C(K) is separable,
there is a metrizable topology on #(K), v say, which agrees with the weak*-
topology on bounded sets and is weaker than the weak*-topology. Then v de-
fines the same Borel sets as the weak*-topology. Using this observation the
following lemma is easy.

Lemma 2.6. Let (X, 3) be a measurable space and let ¢ : X — M(K) be a

map such that for f € C(K), the map x |- dego(x) is 3-measurable. Then pis 3,
— B* measurable.

Now the next proposition follows from Lemma 2.6.

Proposition 2.7. Let (X, 3) be a measurable space and suppose ¢, :
X — M(K) is a sequence of 3, — RB* measurable maps. Suppose lim ¢,(x) =
o(x) (x € X). Then ¢ is 3 — B* measurable.
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Lemma 2.8. Suppose 0 <p < 1.
(i) Suppose U C K is open; then the map \ |~ |\[,(U) is weak*-lower-semi-
continuous.
(ii) Suppose B € %; then the map \ | |\|(B) is B*-measurable.
(iti) The map X |- \| is B* — B* measurable.

Proof. (i) For p = 1 thisis well-known. For p < 1, we use Lemma 2.1 (i) of
[8] which implies that the map A |— |\|,(K) is weak*-lower-semi-continuous.
Suppose A, is a net such that A, — A, weak*. Let po = Aq | U and v, = A, |
KN\NU.If

lim sup |Ay|,(U) < o
then
lim sup ||juol| = lim sup ||juofjp < .

Hence there is a subnet u; of (u,) Which converges to some u weak*. Hence
vg—> A — p and suppA — w) C K\ U.
Thus

A = wlp(D) = 0

and so

NW(D) = h(D) + ) — (D)
= |l~‘~|p(U)
= (&)

= lim sup |pqlp(K)

lim sup [Aqfp(U)-

This proves (i). Parts (ii) and (iii) follow trivially.

Lemma 2.9. The set M. (K) of continuous Borel measures on K is a weak*-
Borel subset of M(K).

Proof. Forn € IN,let U,,, * + * Upnm be a covering of K by open sets of
diameter less than n~!. Then A € #.(K) if and only if

lim sup M(Uni) = 0,

n—o 1=k=mmn

and so /(K) € RB*.
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Our next result is the main one of the section.

Theorem 2.10. There exist maps
b,: M(K) > R n=12---
h,: M(K)—> K n=1,2---
¢ MK) —> M(K)

such that
(2.10.1) b, is U*(=U(M(K)))-measurable (n € IN)
(2.10.2) h, is U* — PB-measurable (n e IN)
(2.10.3) ¢ is U* — B*-measurable
(2.10.4) |ba(V)| = |by + 1(N))] (n € IN), A € MK).
(2.10.5) ha(\) # hy(N) m # n, A € M(K)
(2.10.6) A= mz b,(M)8(h,(N)) + () A € M(K).

n=1

Proof. Consider the space €, X K™ which, in its natural topology is Polish.
Let Y C ¢; X K™ be the subset of (&, &, « - - ; ty, ts, - - -) such that |&,| =
|€n + 1| (n € IN) and 1, # 1; ( # j). Then Yis a Borel subset of ¢; X K™, and so Y
x M(K) is a Souslin space ([21], p. 96). Let Z be the subset of ¥ X #(K) of all
(&1, €250 ¢ 7 5 by, La, + + 3 A) such that A — 3¢£,68(¢) € M (K). Then Z is also a
Borel subset of ¥ X #(K) and hence is Souslin.

Define ¢ : Z — M(K) by

W€y, Eay o m st tyy t  t 3 A) = AL

Then y is continuous, and so by equipping #(K) with its metrizable topology v,
introduced before Lemma 2.6, we can deduce from Theorem 2.2 that there is a
map 6 : M(K) — Z such that y(6(A)) = A A € M(K)) and 0 is U* — B(Z) mea-
surable. Now let

6(\) = (b1(A), ba(N), « - - 5 BN), (M), - - - 5 N)
and

o) = A — 2 BaW)8(ha(M)-

To conclude the section we quote one further consequence of Lemma 2.6
which will be required later.

Lemma 2.11. Let K, and K, be compact metric spaces and suppose
¢ . Ki — K, is a Borel map. Then the map ¢* : M(K,) — M(K,) defined by
o*uw(B) = ule'(B)) BER

is B* — B* measurable.
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3. The main representation theorems. If (X, 3, u) is a measure space, then
for0 < p < o, L,(X, X, w) denotes the (complete, locally bounded) F-space of
all real- (or complex-) valued 3-measurable functions satisfying

=1 [, 1reopauc]” <o

Theorem 3.1. Let K be a compact metric space and let \ be a probability
measure on K. Suppose (X, 3., p) is a measure space and that 0 < p < 1.
(a) Suppose x|— v isa 3 — B* measurable map of Xinto M(K) satisfying

1
3.1.1 su —_—
( ) A(B)I>)0 A(B) L

Then, if f€ L(K, B, \), fis |v,|-integrable p-a.e. (x € X), and there is a
bounded linear operator T : L,(K, B, \) —> L, (X, 3, u) satisfying

ol (Bldp() = M < .

(3.1.2) If(x) = J f®dv, (6 p-a.e. xEX
and
(.13 |7 = sup([zy| : £ = 1 = M.

(b) Conversely if T : L,(K, B, \) = L,(X, 3, u) is a bounded linear oper-
ator, then there is a 2 — B* measurable map x |—> v, of X into M(K) satisfying
(3.1.1), (3.1.2) and (3.1.3) with M = ||T\|P. Furthermore this map is unique up to
sets of u-measure zero.

Proof. (a) By Lemma 2.8 (iii), the map x = |ve| is also 3, — %* measurable
and satisfies condition (3.1.1). For any simple function f € L,(K, 8B, A) we de-
fine

Sof(x) = j F@dp)()

Tof(x) = j Fdva(0).

Then if f = a;1p, + azlp, + + + - + a,lp, (Where 1, denotes the characteristic
function of A and B,, - - - , B, € %), we have

1) = 3 avalB).

Hence

ITufp = | Tuf o

= j S e Bopduto)
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n

= 3 jap j el (B (x)

=1
n
=M Z |ai|”)\(Bi)
i=1

= Ml

Hence T,, and similarly §,, extend to bounded linear operators T, § : L,(K)
— L,(X) with ||T]|, ||S]| = M*?. Now suppose f € L,(K, %, \) and f = 0. Then
we may choose a sequence (f,) of simple Borel functions such that 0 < f, < f
and lim f,(x) = f(x) (x € K). Thus ||f — fu|l, = 0 and hence ||Sf — Sf|l, > 0
and ||If — 1If,||, = 0. By selection of a subsequence we may suppose that
Sfa — Sf (u-a.e.) and Tf, — Tf (n-a.e.).

Sf(x) = lim JK fn(t)d|v,](t) m-a.e.

n—ow

[ C—

Hence for n-a.e. x € X, fis |v,]-integrable. Now by the Lebesgue dominated
convergence theorem

Tf(x)

n-—w

lim J fDdva(t)  u-ae.

JK f()dv (1) u-a.e.

Clearly this establishes (3.1.2) for any f € L,(K). We also have ||T]| = M'*.
Equation (3.1.3) will follow from (b).

(b) By Theorem 2.1 and Lemma 2.11 it is sufficient to establish (b) when K is
totally disconnected. Forn € IN, let o, = {A,;, - - * , Ay} D€ a covering of
K of disjoint non-empty clopen sets so that &f,,, refines &, and diam
A =nforl =k = €(n). Let xf = 14,,.

By the Stone-Weierstrass theorem, the functions {y}: k < é(n), n € IN}
span a dense subspace of C(K). Fix 1 € A, , and let

bi(x) = Txk(x).
For each x € K, define v € #(K) by

&(n)

e = k; bi(x)8(rp).

Then x |- v} is & — B* measurable. As

Mx)= > bitix)  pu-ae.

Ans 10 C Anp
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we have
(3.1.4) p(K) = p2* 1, (K)  nEN  pae.
(315) V;+ 1(fln,k) = Vg(An,k) l=k= f(n), ne IN’ pm-a.e.

However

o“n)y
L 2, (K)du ) j S bpPdu)

(n)
= 3 |TIPAARD
=7

Thus, by the Monotone Convergence Theorem,

L’ SUP|V;|p(K)dV«(x) = (7]

and
sup ||pg|, < ® m-a.e.
n

As ||v3|| = ||villo» We deduce that there exists X, € % with u(X\X,) = 0 and
such that (3.1.4), (3.1.5) and (3.1.6) hold for x € X, where

(3.1.6) sup ||v;|| < 0,

Hence if x € X, {v7} has weak*-cluster point v,. This point is unique since if
m=n

Ve(Ank) = vi(Anx) = bR(x)

and hence
V.r(An,k) = bﬁ(x)

It thus follows that v} — v, weak* (x € X,). Let us define v, = 0 (x € X,);
then the map x |- v, is & — %* measurable by Proposition 2.7.
Now suppose m = nand 1 = k < €(n),

[, Pobndut = [ S prrauco

md C An

=|7F 2 MAw)

mi C Ang

= HTI 'p)\ (An)-
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Hence

n— x

| o adut = | tim inf o (4.0t
(by Lemma 2.8 (i)
= [|T)PMAng)-
It now follows easily that for all Borel sets B
L vao(B)du(x) < || T][PA(B).

Thus (3.1.1) holds with M = ||7]|”. Hence there is a bounded linear operator
S : L,(K) = L,(X) defined by

SF(x) = j Fdvs(t)  peace.

and ||S|| = MY?. As Sx} = Tx} (n-a.e.), it is clear that § = T and hence ||T]| =
MI/P.

Finally, if x |— v; is any other 3, — 9%* measurable map satisfying
J Xidvy = J Xhdv, u-a.e.
for 1 = k = €(n), n € IN, there is a set X, € 3 with u(X\ X,) = 0 and
J Xkdv, = J Xrdv, x € X,

for all n, k. For x € X, v, = v,, and this establishes the uniqueness of the map
X | va.

Remark. %(L,(K), L,(X))is an ordered locally bounded F-space if we define
T = 0 whenever Tf = 0 for f = 0. It is then a lattice and if T is defined by (3.1.2)
then |77 is defined by

TFR) = jf(r)d\vxm)
and| |7} | = |7

For the case p = 1, this is observed by Starbird [21].

Theorem 3.2. Let K be an infinite Polish space and let \ be a probability
measure on K. Let (X, 3, u) be a measure space and suppose 0 < p < 1.

(a) Let T: L,(K, B, \) = L,(X, 3, n) be a bounded linear operator. Then
there is a sequence {a,} of real-valued Borel functions on X and a sequence o, :
X — K of 3 — B measurable maps such that

(3.2.1) guix) # o.(x) m#n xeX
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(3.2.2) z |an(x)[P < e p-a.e. xEeEX
n=1

©

(3.2.3) Zl J_I(B) |an(x)Pdu(x) = ||T)|°PA(B) Be %
(3.2.4) |an(x)| = |a, + 1(x)| p-a.e. xEX

©

325 TIf(x) = z a,(x) f(ox) p-a.e. x EX.

n=1

(b) Conversely {a,}is a sequence of Borel functions on Kand o, : X— Kisa
sequence of % — B measurable maps satisfying

©

(3.2.6) sup TIB)— ; J“w) |an()Pdp(x) = M < o

ABY> 0
then (3.2.5) defines a bounded linear operator T with ||T|| = M"".

Proof. (a) This follows almost immediately from Theorems 3.1 and 2.10.

Define G,(x) = hy(v;) and a,(x) = by(v,). Since |v,|,(K) < = a.e. we deduce from
2.5 that

©

Vp = z t_ln(X)S(O_'n(X)) un-a.c.

=1
If B € %, h,;'(B) € U*. Define a measure y on %* by
y(C) = plx : vy € C} = pu(p'0).
Then /,1(B) is y-measurable; i.e. there exist C,, C, € $B* with
C, C i,'(B) C G,

and
v(Cy \ Cy) = 0.
Hence
v C; C a,'(B) Cv G,
and

p@1C, v ICy) = 0.

Thus ¢;'(B) € 3,; i.e. &, is 2, — % measurable. Similarly each a, is 3,-
measurable. By Proposition 2.3, we may define o, : X —» K (n € IN) and a, :
X — R (n € IN) which are 3, — 2 and X-measurable respectively and such that
p-a.e. gu(x) = g,(x) and a,(x) = a,(x) (n € IN). Now (3.2.1), (3.2.2), (3.2.4) and
(3.2.5) are trivial. For (3.2.3) we observe that

MS

n

1 [

J_I(B) a0 dpalx) = L Va|p(B)dp(x).
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(b) This is quite trivial from (a) of (3.1) if we define

MB

Ve = an(x)s(o'nx)

n

1

Remarks. In the case p = 1, we can use the same argument to represent any
bounded linear operator T : L(K) — L.(X) in the form

T = Y alfiow) + | e

where the map x |— p, satisfies the condition of Theorem 3.1 and p, is almost
everywhere a continuous measure. We can then separate off the ‘‘atomic part”’
Teof T

T = S a0 o)

n=1

and the ‘‘continuous part” T¢,

TS (x) = J F($)dpa(s)

7° is thus obtained by taking the atomic part of v, for each x if

T = J F(s)dva(s).

4. Projections onto subspaces generated by sub-o-algebras. Suppose K and
M are compact metric spaces and ¢ : K — M is a continuous surjection. Sup-
pose A is a probability measure on K and let u = ¢*\ be the induced probability
measure on M. The map S, : L,(M, u) — L,(K, \) defined by

Sef(s) =fles) s€K feL,M)
is an isometric embedding of L,(M) into L,(K) (0 < p < ).

Proposition 4.1. Suppose 0 < p < 1and there exists a bounded linear oper-
ator T : L,(K) — L,(M) such that TS, is the identity on L,(M). Then there is a
Borel map 8 : M — K and € > 0 such that o8 = iy (identity map on M) and

MB) = eu(67'B) B € %B(K).

Proof. Let

TF () = J fo)dvls) fELLK) 1EM

where ¢ |— v, satisfies the conditions of Theorem 3.1. As in Theorem 3.2 we
may write

]

Ve = Z an(t)s(o-nt)

n=1
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where a, and o, satisfy the conditions of 3.2. For t € K, let

Xn(t)

1 if o) =t
=0 if o) # 1.
Then each x, is Borel measurable. If

5 = 2 xnDatn(8( )

then 7 |- , defines an operator V : L,(K) — L,(M) (by Theorem 3.1) and ||V|| <
|7]|- For f € C(M), f = TSsf so that almost everywhere,

) = J Flos)dvis)

= |, f6demns)
M
and by the uniqueness of the representation

8(1) = ¢*v; a.e.

©

81 = > a)t)dlpa,t)  ae.

n=1

Hence we also have
5(1) = o*p,
and also VS, f = ffor f € L,(M). Now write

©

VI = 2 e Dan@)font) = S an(t) flpal)

n=1

where (a,) and (p,) satisfy the conditions (3.2.1)-(3.2.5) (of course, this is an

alternative representation for 7-terms which were zero have now been elimi-
nated).

For C € B(M), let B = ¢"1(C) € B(K). Then for all n, p;1(B) = C, relative to
the set {¢ : a,(¢f) # 0} and up to sets of A-measure zero,

and hence

L Zl loe(1) P (t) =< ||V|[PA(B)

= [VP(©).
Hence almost everywhere

0

2 Jealdf = [[VIP.

n=1
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As o*p, = 8(1), we have

©

z a,(t) =1 a.e.

n=1

Thus as |ay(1)] = |a,(0)] ¥n,

oD% Y jeaP =1 ae.
n=1
so that

)| = V[ ae.

where g = p(1 — p)~.
Define § : M — K by 6t = p,t. Then ¢ = iy, and if B € B(K)

AB) = V7 | (7o)
= ||V]|"%u(67'B).

Letting € = V= the proof is complete.
We also observe the analogous result for the case p = 0, which has a very
similar proof, which we omit.

Proposition 4.2. Suppose T : Ly(K) — Ly(M) is such that TS, is the identity
on LyM). Then there is a Borel map 0 : M — K such that ¢ = iyyand \(B) =0
implies w(07'B) = 0 for B € B(K).

Lemma 4.3. Let Xbe an F-space and Y a closed subspace of X. Suppose T
€ Z(X) has the properties (i) T|Y is a homeomorphism and (ii) T(Y) is com-
plemented in X. Then Y is complemented in X.

Proof. Let P:X — T(Y)beaprojectionand let U: T(Y) — Y be the inverse
of T1Y. Then UPT is a projection of X onto Y.

We now come to our main theorem of the section. In this we classify exactly,
for a separable measure space (X, 2, u), those sub-o-algebras 3, of X such that
L,(X, 3, u) is complemented in L,(X, 3, x) where 0 =< p < 1. Of course if
p = 1there is no restriction on such sub-g-algebras. For p = 0, Berg, Peck and
Porta [1] gave an example of a non-atomic sub-g-algebra X, such that
Ly(X, 3,, p) is uncomplemented.

Theorem 4.4. Let (X, 3, \) be a separable probability measure space and
let 3. be a sub-a-algebra of 3., which contains the sets of \-measure zero.

(a) If 0 < p < 1, L,(X, 2, \) is complemented in L,(X, 3, \) if and only if
there exists A € 3 and € > 0 such that

4.4.1) A(B N A) = e\(B) Be3,
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and (4.4.2) for C C A and C € 3, there exists BE Sywith BN A = C.
(b) LoX, %y, \) is complemented in Ly(X, %, ) if and only if there exists
A € X satisfying (4.4.2) and:

4.4.3) If BE3, and MBNA)=0, then AB)=0.

Proof. (a) Suppose first that L,(X, X, A) is complemented in L,(X, %, A).
Let &%, be a countable algebra dense in 3, and suppose ¥ D %, is a countable
dense algebra in %. Let K and M be the Stone spaces of ¥ and %, respectively;
thus K and M are compact metric spaces. There is then a naturally induced
continuous surjection ¢ : K — M. Let %% and %° be the g-algebras generated
by %, and #. Then L,(X, %°, \) identifies naturally with L,(K, %, X) (wWhere X
is the Borel measure induced on K by A) and its subspace L,(X, %%, A) is then
identified with S,(L,(M, B, n)) where u = @*\. It is easily seen that it is only
necessary to establish (4.4.1) and (4.4.2) for the sub-o-algebra %, = {¢ (B) :
B € B(M)} of B = B(K).

By Proposition 4.1, there exists a Borel map § : M — K and € > 0 such that
b = iyyand ew(6~B) = A(B) (B € B(K)). Suppose (E, : n € IN) is a sequence of
closed subsets of M such that u(U E,) = 1 and 8|E, is continuous for each n.
Let(UE, = A; Aisan F,setandso A € #. If B € %,

AMB N A) = eu(01(B N A))
€un(6~1B)
eA(B).

IfCC Aand C € %, then ¢71671(C) € B and ¢~ 071(C) N A = C.
Conversely, suppose the conditions are satisfied and let P, be the natural
projection of L,(X, %, A) onto L,(A, %, A). From (4.4.1) if f € L,(X, 2, A)

1Paflls = €|\ f]ls

and from (4.4.2) P, maps L,(X, %, A) onto L,(A). Hence by Lemma 4.3,
L,(X, %, \) is complemented in L,(X, X, \).
The case p = 0 is similar.

Corollary 4.5. If there is a non-atomic o-algebra A C %, independent of 2.,
then there is no projection of L,(X, %, A) onto L,(X, 24, M) forany p,0=p < 1.

Proof. Suppose (4.4.2) and (4.4.3) are satisfied (or the stronger condition
(4.4.1)). We can define a measure » on 3, by

v(C) = A(B) CEX

where B € 3,and B N A = C N A. In fact up to sets of A-measure zero, B is
uniquely determined. For if BB N A =CNA then (BFAB)NA = and
hence A(B’ A B) = 0. Similar checks show that v is indeed a measure, and is A-

continuous. Hence given € > 0, there exists 8(e) > 0 such that A(C) < 8(¢) im-
plies »(C) < e.
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Fore>0,let X=E, U---UE,where E; N E; = i #J), E,€ A and
ME) =8(¢). For i=1,2,---,n, E =B, NA where B, EZX;. As
E.NB,NA=E NAwe have

V(EiﬂBi)=V(Ei) ISlS_n
and hence
Vl: U (E1 ﬂBl):l = V(X) = 1.
i=1

However

| U snsl= 5 aenm =0

i=1 i=1
Letting ¢ — 0 we obtain a contradiction.
In particular there is no projection onto L, [[0, 1] x [0, 1]] onto its subspace

of all functions constant on horizontal lines if 0 < p < 1, generalizing the result
of Berg, Peck and Porta [1].

5. The endomorphisms of L, Suppose now that X is a fixed compact metric
space and that A is a nonatomic probability measure on K; let L, = L,(K, %, \).
Suppose T € ¥(L,) (0 = p < 1); then T may be represented in the form of
Theorem 3.2 and hence is decomposed into operators of the form

Sf(x) = alx)f(ox) a.e,
where a : K — R and o : K — K are Borel maps. Our first lemma summarizes
the obvious properties of such an operator.
Lemma 5.1. (a) Suppose S € ¥(L,) (0 = p = 1) takes the form
Sf(x) = alx)f(ox) a.e.

If § # 0, there is a Borel subset B of K such that \(B) > 0 and S|L,(B) is an
isomorphism.

(b) If p = 1, then B may be chosen in (a) so that S(L,(B)) is complemented in
L

-
(c) If 0 < p < 1 and there exists a Borel subset C of K such that \(C) > 0
and

(5.1.D alx) #0 xecC
(5.1.2) a|C is an injection,
then B may be chosen in (a) such that S(L,(B)) is complemented in L,.

Proof. (a) Since § # 0, we may choose a closed subset E of K such that
AME)> 0, o|E is continuous and 0 < o = la(x)| (x € E). Let F = o(E) so that F
is closed, and, since S1y = Pga, A(F) > 0.

Let v = o*\ be the measure on K induced by A and o; i.e.

v(A) = AoT'A).
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IfACF,and p > 0,
[IS|PA(A) = [|S14i3
= [ |a(x)|PdA(x)
o=l
= aPr(A).
Hence v|F is A-continuous, and has Radon-Nikodym derivative u, say. Since
v(F) = A(E) > 0, u # 0 and so there exists ¢ > 0 and a Borel subset B of F such
that A(B) > 0 and u(x) = € (x € B).
Iffe L,(B),
1SS = [|PeSSIE

L la@P|f @) PN ()

_— L | Flox)PdAGx)

P L |f () [Pdy(x)

o? L £ ®)Pulo)d (x)
= e f]5.

This establishes (a) if p > 0. The case p = 0is proved by a similar technique.
(b) Define V € ¥(L,) by

Vix) = ax)f(x) x€E
=0 x &€ E.

Then V maps S(L,(B)) isomorphically onto the subset of L,(o~!B) for all func-
tions measurable with respect to the sub-g-algebra of # of sets of the form
(c'A:A € B).Ifp =1, VS(L,(B)) is complemented in L, (by using the com-
position of P,-iz and a conditional expectation operator). Part (b) follows now
from Lemma 4.3.

(c) If (5.1.1) and (5.1.2) hold we may suppose that E in (a) is a subset of C.
Then VS(L,(B)) = L,(c™'B) is complemented in L,.

We now introduce some notation. If T € £(L,) (0 < p = 1) is represented by
the map x|— v, as in Theorem 3.1, then we define

) = | [valBinco

= J o (KA
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If B is a Borel subset of K with A(B) > 0 then

1Tlis = sup(Zf]| = If = 1, f € Ly(B)).

Lemma 5.2. Suppose 0 < p < land T, € ¥(L,). Suppose that 6,(T,) — 0.
Then given any € > 0and C € Bwith A\(C) > 0, there exists B € Bwith B C C
and MB) > 0, and n € IN such that ||T,||s < e.

Proof. For A € B, let

puld) = j 2, (A)dA(x)

where x | v} represents T,. Then p, is a positive Borel measure on K and
pa(A) = ||T,|[’PA(A). Hence p, has Radon-Nikodym derivative w, and

6,(T,) = pa(K) = j n()dA(D) = 0.

In particular w,, — 0 in A-measure, and so there exists BE€ B, B C C,A(B) > 0
and » € IN such that

wy(f) = € t € B.
Then

I TallE = [17nPs|”

sup. )\(A)‘IJ w2/(A O B)dA(x)

AA) >0

I

ess sup w,(f) = €.
tE€EB

Lemma 5.3. (a) Suppose 0 <p <1landT,, S € £(L,). Suppose 0,(T, — S)
— 0. Suppose there exists C € B with N(C) > 0 such that S|L,(C) is an iso-
morphism onto its image. Then there is a subset B of C, with B € 3, A\(B) > 0,
and n € IN such that T,|L,(B) is an isomorphism onto its image.

(b) Suppose, in addition, S(L,(C)) is complemented in L,(K). Then n and B
may be chosen so that T,(L,(B) is complemented in L,(K).

Proof. We prove only (b), as part (a) is essentially proved en route. We may
suppose that

1Sflls = 8lIfll € Lu(C)
where § > 0. Let Q be a projection onto S(L,(C)) and let ¢ = % 812171817
Choose Band n € IN as in Lemma 5.2 so that A(B) > 0 and
ITa = S)s =«
For f € L,(B)
[ Tnf o = (8% — €)M £]}5-
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Since 8 < ||§|| and 1 < ||Q||, T, maps L,(B) isomorphically onto its image. Let
VIS(L,(C)) be the inverse of S|L,(C), so that |[V|| = &7*. Then let W = SPzVQ;
W is a projection of L, onto S(L,(B)).

For f € S(L,(B)) consider

If = WLV S|l = ||(S — WT)Vf|»
[W(S ~ TVS|s
e[|WIHIVIIAle
= 87%|S|||€l| [/l

1
== Il

1A

Hence WT,V maps S(L,(B)) onto itself isomorphically. Thus W maps T,(L,(B))

onto S(L,(B)) isomorphically and hence T,(L,(B)) is complemented in L, by
Lemma 4.3.

We now come to the first main theorem of the section:
Theorem 5.4. Suppose 0 =p < land T € #(L,) is non-zero. Then there is
a Borel subset B of K with \(B) > 0and such that T|L,(B) is an isomorphism.

Proof. Consider the case p > 0. Suppose T has a representation as in Theo-
rem 3.2

]

Tf(x) = z a,(x) f(opx) a.e.

n=1

Suppose C € B and n € IN are such that M(C) > 0 and |a,(x)| > 0 (x € C). For

eachm € IN, let B, 1, * * * , Buxany b€ @ covering of K by disjoint Borel sets of
diameter less than m™!. Let C,; = 03 (Bn) N C (1 =i = k(m)). Define

k(m)

Tm = 'Zl Pcm,iTPBm,i'
If x | v, represents T, then x | »7 represents T, where
Vr;(B) =v,(BN Bm,i) x € Cpy

=0 x & C.
Let S denote the map

S$fx) = a(0)flowx) x€EC
={ x & C.

Then § is represented by x |— u, where

M = ay(x)8(ox)  x€C
=9{ x &€ C.
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Forx € Cm,t
IVzl' - I“L:I.‘\p(K) = 'V.r - FL1'|p(Bm,i)'
Hence for all x € C, where x € Cp y4my, m € IN,

lim \VZ'. - IvLI‘p(K) = lim IV.r - /J'.r|p(Bm,i(m))
m — w0

m — w

IA

|V.r - /J'.r|p(1im SUpBy, iim))
= |V.r - Nz|p{0'nx}

= 0.

As % = uglp(K) = |vo[p(K) we conclude from the Dominated Convergence
Theorem that 6,(T,, — S) — 0.

Now by Lemmas 5.1 and 5.3, there exist m and a Borel set B of positive
measure such that 7,|L,(B) is an isomorphism. For some i, 1 =i < k(m), A(Bn,
N B)> 0, and the T|L,(B,; N B) is an isomorphism.

For the case p = 0, the argument is similar. We define 7T, as before and
observe that, almost everywhere, v, has finite support. Hence »% = u, even-
tually, almost everywhere. We may thus produce B, A(B) > 0 such that
TulLo(B) = S|Ly(B).

For the case p = 1, we obtain the following theorem, which is very closely
related to a result of Enflo and Starbird ([4] and [22]). In fact, after suitable
translation, it is essentially a special case of their result. It follows in exactly
the same way as Theorem 5.4, but appealing to Lemma 5.1(b).

Theorem 5.5. Suppose T € £(L,) has non-zero atomic part T% Then there
is a Borel subset B of K with M(B) > 0 such that T|L(B) is an isomorphism and
T(L,(B)) is complemented in L,.

For 0 = p < 1 we cannot guarantee that T(L,(B)) is complemented in general,
by the results of Section 4. In fact consider the map S : L,([0, 1] x [0, 1]) —»
L,([0, 1] x [0, 1].

Sfis, ) = flos)

where ¢ : [0, 1] — [0, 1] X [0, 1] is a measure preserving Borel isomorphism. If
S(L,(B)) is complemented for B C [0, 1] X [0, 1], then it is also complemented
in L,(c™'B X [0, 1]), and this contradicts Corollary 4.5.

We shall say that T € £(L,) is large if there exist U, V € $(L,) with UTV =
I. Otherwise T is small.

Theorem 5.6. Suppose T € ¥(L,), where 0 < p < 1, is given in the form of
Theorems 1.1 and 3.2

3

Tfx) = > a,x)f(o.x)  ae.

n=1
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Then the following conditions are equivalent:

(a) Tis large.

(b) There exists B € B with A\(B) > 0and such that T maps L,(B) isomorphi-
cally onto a complemented subspace of L,.

(c) There exists B € % with N(B) > 0, and n € IN such that |a,(x)| > 0
(x € B) and a,|B is injective.

Proof. (a) = (¢): Suppose UTV = I where

Ufix) = 21 b, (x) f (%) a.e.
Vfx) = i (%) f(8,.x) a.e.

n=1

Then the lattice moduli of T, U, V, are given by

©

TIf(x) = Y |aa)|flowx)  ace.

=1

o

ULfG) = 2 |ba@)|frax)  ace.

=1

©

VIf®) = 2 |ca@|fBnx)  ace.

=1

Hence for f = 0
7 Vi) = mZ 2 |an(®)] [en(om0)|f Onomx)  ace.
and the series converges absolutely. It follows easily that
ggl mi;l ngl |bo(X)] |am(Tex)| |CrlOmTex)| | f(0n0 mTex)| < © a.e.
for f € L,. It now follows that, if f € L,,
UTVf(x) = lil mmzl nil b () (70%) C (0 T 0%) [ (80 T o) a.e.
and
!21 mgl ngl |be(x)] |@m(Tex)| [CalamTex)| < a.e.
Hence by the uniqueness of the representation of I,

9= S S 3 bdantca@nreldbuoar)  ac.
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Hence there is a closed set E of positive measure and ¢, m, n € IN such that 7|E
is continuous, x = #,0,7.x (x € E) and

beXanGa)cyammx)| >0  x €E.

Thus a,|re(E) is injective and A(r,E) > 0 since A(E) > 0 and |b,(x)| > 0 (x € E).
(c) = (b). Simply repeat the proof of Theorem 5.4, using Lemma 5.1(c) and
Lemma 5.2.
(b) = (a). Let Q be a projection onto T(L,(B)), and let V : T(L,(B)) = L,(B)
be the inverse of T. Thenif J : L, — L,(B) is an isomorphism, (J-'VQ)TJ = I.

Corollary 5.7. The set § of small operators on L,(0 < p < 1) is the unique
maximal two-sided ideal in ¥(L,).

Proof. IfS,Te€ FthenS + T€ #byS5.6(c).If § € Fand T € ¥(L,) then
STand TS € #. Hence ¢ is an ideal, and it is clearly the unique maximal ideal
from the definition.

6. Complemented subspaces and unconditional Schauder decompositions.
An F-space X is prime if it is isomorphic to each of its infinite-dimensional
complemented subspaces, and primary if X =Y & Z implies that either Y or
Z=X. It is well-known that ¢, (0 < p = ) and ¢, are prime (Pefczyriski [19],
Stiles [24] and Lindenstrauss [13]) and it has recently been shown that L,
(1 = p < ) is primary (Enflo, see [4], [16] and [23]).

Our first result extends Enflo’s theorem to the case p < 1 and provides an
alternative proof for the case p = 1.

Theorem 6.1. L, (0 <p = 1)is primary.

Proof. Let P and Q be complementary projections with representations
x |> v, and x | u,. Then

vy + e = 8(x) A-a.e.

In particular either v,{x} > 0 or u,{x} > 0 on a set of positive measure. Sup-
pose the former; then, by Theorem 5.6, orif p = 1, Theorem 5.5, P(L,) contains
a complemented subspace isomorphic to L,. It now follows from the Pelc-
zyfiski decomposition technique that P(L,) = L,,.

In fact, we conjecture that L, is prime for 0 < p < 1. We shall now show that
L, is prime; of course, L, has no complemented finite-dimensional subspaces,
so we might say that L, is ‘‘ultra-prime’’.

Theorem 6.2. L, is prime.

Proof. Suppose P € ¥(L,) is a non-zero projection. Then we may repre-
sent P in the form

)

Pf(x) = z a,(x) flox) a.e.

n=1
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as in Theorem 1.1. We may additionally suppose, as for the case p > 0, that
|an(x)| = |a, 4+ (x)| a.e. (n € IN) and that o,x # o,x for m # n, a.e. We note
that it is sufficient, by the Pekczynski decomposition technique and Theorem
5.6 to show that P is large. In this case we use the fact that L, = w(L,) (i.e. the
Cartesian product of a countable number of copies of L,).

Almost everywhere, there exists a least N = N(x) < « such that g,(x) = 0
for n > N. In fact, for convenience we may alter each a, on a set of measure
zero so that N(x) < = everywhere. Choose a closed subset E on K with positive
measure such that N(x) is constant and non-zero on E (say N(x) = N), and
o4, ¢+, Oy are continuous on E.

Observe that

sz(X) = 21 21 an(x)am(o'nx)f(o'mo'nx) a.c.
n= m=
(the sum is everywhere finite). Since P? = P we may appeal to the uniqueness
of the representation of Theorem 1.2 (which is established exactly as in the case
p > 0) to deduce

o0

S ay080) = Y Y 400 )80 noex)  ace.
n=1 n=1 m=1
Thus if 1 = ¢ = N, for almost every x € E there exists 1 = n < N and
m = 1 so that o.x = 0,0,x and a,(o,x) # 0. We can then determine a closed
subset F of E of positive measure such that for each €, 1 = € = N there exist
1 = ¢(€) = N and (€) such that aye\(oee(x)) # 0 and

T eX = TyeyT o)X xeF.
For some k and some €, 1 = £ = N, ©o*(¢) = €. Thus
OpX = 01,0y, * * * 000X xeF

where g, (o.xx) # 0 (x € F). Clearly o,F is closed, A(o,F) > 0 and ayjoF is
injective. Thus P is large.

If 0 < p = 1, we extend these results a little bit further by considering un-
conditional Schauder decompositions. Lindenstrauss and Petczyriski [15]
showed that if (X,) is an unconditional Schauder decomposition of C[0, 1] then
at least one X, = ([0, 1]. We show that the same result is true for (0 < p < 1);

for p = 1, this result has been independently obtained, via a different proof by
Starbird.

Lemma 6.3. Suppose T, € £(L,) (0 < p = 1) and there exists M < « such
that

n

Z &T;

i=1

=M
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forall nand €, - « - , €, = £1. Then if x |- v} represents T,
L ||V£|]§d)\(x) — 0.
Proof. Let r, be the sequence of Rademacher functions on [0, 1];i.e. r,(¢)

= sgn sin 2%zt (0 = ¢ =< 1). Since #(K) is an L,-space, and hence of cotype 2,
there exists & > 0 such that if u,, - - - , u, € M(K)

X ar=a 3 )"

i=
If 0 < p = 1, we can also show that for some a = a(p) > 0,

1 P n p/2
L pdt = a,,( Zl ”M”;;) .
Hence for n € IN,

<
@ L (; ||V}||,2,)p/2d)\(x) = Ll L

1
=
0

= M~.

n

> rOw

n

Z ry(0)py

i=1

n

Z ri(tvi

i=1

P
»AaA(x)dt

n

Z r(OT,

i=1

¥4
dt

Thus
D <> ae.
i1=1
e _\Pi2
and ( > |]v;||,2,) is integrable. Hence by the Dominated Convergence Theorem
i=1

J |vE|BaN(x) — O.
K

Theorem 6.4. Suppose (X,)is an unconditional Schauder decomposition of
L, (0 < p = 1). Then for at least one value of n, X, = L,.

Proof. Let T, be the associated projection, and let x |[— v} represent T,.
From the preceding lemma, we clearly have that

Jim J
m,n —> K

Thus we may find an increasing sequence (n,) with n; = 0 such that

oy

m

2 vi

n+1

r4
LdA() = 0.

Mg 41

2 vi

np+1

r4
pdA(x) < 0,
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Thus,
® LY
> ( > V;,}) converges in #(K)  x-a.e.
k=1 ne+ 1

Let (f,) be a dense countable subset of C(K); then

S [pa-re e
Hence

o LR )
Z ( Z v;) = §(x) a.e.
=1 ng+ 1
Hence for some n, vZ{x} > 0 on a set of positive measure, so that T, is large.
As usual, this implies T,(L,) = L,. In the case p = 1 apply Theorem 5.5.

7. Quotients of L,. We start by constructing a quotient Y of L, = L0, 1)

such that the quotient mapping q : L, — Y is not an isomorphism on any sub-
space Ly(B) (contrast Theorem 5.4).

Theorem 7.1. There is a proper closed subspace X of L, such that for any
Borel subset B of [0, 1], the quotient map q : Ly — L,/X is not an isomorphism
on Ly(B). Then ¥(*/X, L;) = {0}.

Proof. Let (8,) be a strictly decreasing sequence of real numbers such that

6, =2and@g, | 1.Let(m, : n = 1) be an increasing sequence of integers such
that

m, %o _.—0, - 4°

Let Mi=1 and M, =m; - m,_,. We now define uy(f)=1 and for
Il=n<o, 1l=k=M,

k= Dm, +j—1 k — Dm, +j .
Unp() = € <t < ———"— (1=j=m,
k( Mn+1 Mn+1 ( /

Z 1 lo 0,116, < 1
n=1

=0 otherwise.

Let X, = lin{u, 45 1 = n <, 1 <k < M,}. We show that u, & X,. Suppose g
€ X, and

Mx: 2+ g > 1} < %

Let

o
I
M=

hy,

1

E
It
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where h, € lin{u,, : k=12, - -, M,}; suppose g, = z h;,and g, = 0. Let

i=1

Mx i 2 + gu(x)| < 04} = €.

Clearly €, = 0. Suppose n > 0, and consider the interval I = ((k — )M, kM7Y).
Then g, -, is constant on 1. Suppose 2 + g, _1(x)| = 0, _;. On I, h, = atty
where @ € R, and hence |2 + g,(x)| < 0, only when

k= Dmy +j—1 k= 1Vm, +j
< x L —
Mn+1 Mn+1

where
On—1— 0p < |a|e <Op_y+ 0,
Thus, if & # 0,
log(@, -1 — 6,) — log |a| <j <log (8, -1 + 6,) — log |a].

Hence
2 0,_1+0
My €I:2+4 g,(0)] <8, < log—2—t—= .
{ | gn( )| n} Mn+ 1 g Bn—l_gn
Thus
6,_,t+86
< + log—*—21—*,
€ = €51 m, Oggn_l_gn
Hence ¢y < % , and we have reached a contradiction. Thus u, € X,.

Let X = X,; then X is a proper closed subset of L,. Now consider the quo-
tient map q : Ly — L,/X. Suppose B is a Borel subset of positive measure. For
1

eachn € IN, let U, be an open set U, D Bsuchthat A(U,) < (1 + o ))\(B). Then

there exists a disjoint sequence (J,,; : k € IN) of intervals of the type (M;1( —

1), M~Y) such that )\(Un\ U Jn,k> = 0. Thus there exists u, € X with u,(x) #
k

Oa.e. (x € U,). We may suppose
1
Mx o u(x) < 1} < 7)\(3).

Let v, = Pgu, € Ly(B). Then g(v,) = q(v, — u,) — 0 but

Mt o,(0) = 1} > (1 —%))\(B).

Hence g|L(B) is not an isomorphism.

Now if T € £(L|X; L), then Tq : Ly, — L, cannot be an isomorphism on
Ly(B) for any Borel subset B of positive measure. Hence by Theorem 5.4, Tq =
Oie. T=0.
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We do not know whether L, (0 < p < 1) always has a subspace N such that
the quotient map q : L, — L,/N is not an isomorphism on any subspace L,(B);
in particular, must every quotient of L, contain a subspace isomorphic to L,?
This question is open even for p = 0. Note that every quotient of L, contains a
subspace isomorphic to €, (7)) 0 < p < 1).

Now let I be the unit circle {z € € : |z| = 1} and let A\ be normalized Lebesgue
measure on I'. Let L,(I') denote the space of complex-valued L,-functions on
I'. For 0 <p =1, let H, be the closed subspace of L, generated by the functions
e, € Ly, en(z) = 2" (n = 0).

Theorem 7.2. If 0 <p < 1%(L,I)/H,; L,(I")) = {0}.

Proof. LetTe& (L, (I')/H,; L,(I")) and suppose q is the quotient map. Let x
(= v, be the representation of Tq. Then Tq(e,) = 0 (n = 0) i.e.

J 2y (z) = 0 n=0 x-a.e.
T

and so by the F. and M. Riesz theorem ([6] p. 47), v, is A-continuous almost
everywhere. As |jv,|, < a.e., v, = 0 and hence T = 0.

We point out two applications of Theorem 7.2. First, we recall ((9]) that an F-
space X is ultratransitive if any operator of finite rank mapping a closed sub-
space N of X into X can be extended to an endomorphism of X. It is known that
there is, for each 0 < p < 1, a separable p-Banach X, such that €,(X) is ultra-
transitive. However ¢, is not ultratransitive, and neither is L,.

Corollary 7.3. L,({) is not ultratransitive.
Proof. T € %(L,(I)) and T(H,) = 0 then T = 0.

It is also known that there is a separable p-Banach space which is universal
for all separable p-Banach spaces. However no functional representation of

such a space is known. The following corollary destroys one possible can-
didate.

Corollary 7.4. L,I')/H, does not embed into C(K; L,(I")) if K is a compact
metric space.

(Here C(K,L,(I")) denote the space of continuous L,(I')-valued functions on
K with the supremum quasi-norm).

Proof. U T:L,I')/H,— C(K, L,(T)), then for each x € K, the map u |—
Tu(x) sends L,(I')/H, into L,(I'). Hence T = 0.

For p = 1, the argument of Theorem 7.2 can be used to show that H, is not
complemented in L,(I"); this is well-known ([14], [6] p. 154). We give here a
slightly stronger result, which is due to Pefczyniski [20], by a different proof.

Theorem 7.5. L,/H, does not embed into L,().
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Proof. Suppose V : L,/H, — L,(T) is such an embedding. Then Vg has a
representation x |— v,, and the argument of 7.2 shows that », is A\-continuous
almost everywhere. This means that Vq is differentiable (we omit the easy veri-
fication of this fact) and hence has the Dunford-Pettis property. Consider e_, —
0 weakly, and hence |Vg(e_,)|| — 0. However

fae-d] = | entoe-nr@) = 1.
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