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ABSTRACT

We show that the Lipschitz structure of a separable quasi-Banach space
does not determine, in general, its linear structure. Using the notion of
the Arens-Eells p-space over a metric space for 0 < p < 1 we construct
examples of separable quasi-Banach spaces which are Lipschitz isomorphic
but not linearly isomorphic.

1. Introduction

Let X and Y be quasi-Banach spaces. A Lipschitz map f: X — Y is a possibly
nonlinear map satisfying an estimate

[ (1) = fz2)| < Cllay — a2, z1,22 € X,
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for some constant C' > 0. X and Y are Lipschitz isomorphic if there exists
a Lipschitz bijection f : X — Y such that f~! is also Lipschitz (i.e., f is
bi-Lipschitz). Here || - || denotes the quasi-norm on X or Y.

It is a well-known open problem whether two separable Lipschitz isomorphic
Banach spaces are necessarily linearly isomorphic. Counterexamples are known
for non-separable Banach spaces [5, 7, 1]. The aim of this paper is to provide
counterexamples for separable quasi-Banach spaces, based on the methods of
[7].

Let us remark that rather little is known about the nonlinear structure of
quasi-Banach spaces. In general, authors have treated uniform structure rather
than Lipschitz structure. For example, Weston [21] has shown that the spaces
L,(0,1) and ¢, are not uniformly homeomorphic if p,¢ < 1 and p # ¢. See also
the recent paper [16]. Let us also note that it is apparently unknown whether for
0 < p < g <1 the metric spaces (L, dp) and (Lg,d,) are Lipschitz isomorphic,
where dy,(f,9) = ||f — gl|5. However, the spaces L, and L, are not Lipschitz
isomorphic as quasi-Banach spaces in the sense described above [2].

2. Preliminaries

For background on quasi-Banach spaces we refer the reader to [14] or [11]. Let us
recall first that a quasi-norm || - || on a real vector space X is a map X — [0, c0)
with the properties:

(i) ||lz|| = 0 if and only if z = 0;
(i) ||lez|| = |al||z|| if « € R,z € X;
(iii) there is a constant k > 1 so that for any z7 and 2 € X we have

(2.1) 1+ zo|| < k(]| + [J=2])-

The least k in equation (2.1) is often referred to as the modulus of concavity
of the quasi-norm. A very basic and important result is the Aoki-Rolewicz
theorem [4, 17] which can be interpreted as saying that if 0 < p <1 is given by
k = 2Y/P=1 then there is a constant C such that for any {xr}7_, in X we have

n 1/p
<o(Xlatr)
k=1

n

DL

j=1

(2.2)
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It is then possible to replace || - || by an equivalent quasi-norm ||| - ||| which is
p-subadditive, i.e.,

1+ z[|” < [lfal[l” + [[|z2][[P, 21,22 € X.

X is said to be p-normable if (2.2) holds. X is a p-normed space if the quasi-
norm on X is p-subadditive. We will assume from now on that a quasi-normed
space is p-normed for some 0 < p < 1.

A p-subadditive quasi-norm || - || induces a metric topology on X. In fact,
a metric can be defined by d(z,y) = [z — y[|’. X is called a quasi-Banach
space if X is complete for this metric. A quasi-Banach space with an associated
p-norm is also called a p-Banach space.

Let M be an arbitrary set. A quasimetric d on M is a symmetric map
d: M x M — [0,00) such that d(z,y) = 0 if and only if = y, and for some
constant k > 1, d satisfies

d(z,y) < k(d(z,z) +d(z,y)), z,y,z€ M.

The space (M, d) is then a quasimetric space (see [8, p. 109]).
If (M, d) and (M, p) are quasimetric spaces we shall say that a map f: M —
M is Lipschitz if there exists a constant C' > 0 so that

p(f(x), fly) < Cd(z,y), x,ye€ M.

The least such constant C' is denoted by Lip(f). If f is a bijection, and both f
and f~! are Lipschitz, then we say that f is bi-Lipschitz, and M and M are
called Lipschitz isomorphic. A map f from a quasimetric space (M, d) into
a quasimetric space (M, p) is an isometry if

p(f(x), f(y) =d(x,y), =x,y€ M.

Let (M,d) a quasimetric space. We will say that d is a p-metric for some
0 <p<1ifdPis a metric, i.e.,

d(z,y)P < d(z,2)P +d(z,y)", =,y,2€ M.

We then call (M, d) a p-metric space. An analogue of the Aoki-Rolewicz the-
orem holds in this context: every quasimetric space can be endowed with an
equivalent quasimetric which is p-subadditive for some 0 < p < 1; that is, every
quasimetric space is Lipschitz isomorphic to a p-metric space for some choice of
0 < p <1 ([8, Proposition 14.5]).
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We shall say that (M, d) is a pointed quasimetric space (or a pointed p-
metric space, or a pointed metric space), if it has a distinguished point that
we call the origin and denote 0. The assumption of an origin is convenient to
normalize Lipschitz functions. We can regard a p-Banach space X as a pointed
p-metric space by taking 0 as the origin and the p-metric d(z,y) = ||z — y||.

3. Lipschitz maps between quasi-Banach spaces

A classical theorem of Mazur and Ulam from 1932 [15] establishes that a surjec-
tive isometry between two (real!) Banach spaces that takes 0 to 0 is linear, i.e.,
the linear structure of a Banach space is completely determined by its structure
as a metric space. The generalization of this result to quasi-Banach spaces was
obtained by Rolewicz in 1968 (note that we are assuming that every quasi-norm
is a p-norm for some p):

THEOREM 3.1 (Rolewicz, [18], [19, p. 397]): IfU : X — Y is a bijective isometry
between the (real) quasi-Banach spaces X andY with U(0) = 0 then U is linear.

In [7] it is shown that if X is a separable Banach space and Y is any Banach
space such that X embeds isometrically into Y, then X will also embed linearly
and isometrically. In the quasi-Banach case the corresponding result fails:

THEOREM 3.2: Suppose 0 < p < 1. There exists a separable p-normed quasi-
Banach space X and a p-normed quasi-Banach space Y such that:

(i) X embeds isometrically into Y.

(ii) If T : X — Y is a bounded linear operator then T = 0.

In order to prove Theorem 3.2 first we prove:

PROPOSITION 3.3: Suppose 0 < p < 1. Let (M,d) be a pointed p-metric
space. Let Y = (. (M;L,(0,00)) be the p-Banach space of bounded maps
from M into the real space L,(0,00), with the associated p-norm | flly =
sup{||f(x)| : « € M}. Then M embeds isometrically into Y.

Proof. We will define a map f : M — Y with f(0) = 0 which is an isometric
embedding. For z € M put

f(x)(y) = X(O,d(z,y)ﬁ) - X(O,d(O,y)p)a (NS M.
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Then f(0) =0. Then for any x1,z9 in M,

1 (@) () = f@2)®)llz, = |d(z1,9)" = d(w2, y)?|"? < d(z1,22), y € M,
while

[f(@1)(w2) = f(@2)(22)| 2, = d(z1, 72).
Thus |[f(z1) = f(z2)lly = d(z1,22). B

Remark: Proposition 3.3 asserts that every metric space can be embedded iso-
metrically into a p-Banach space X with the metric ||x — y||P.

Proof of Theorem 3.2. Consider the complex space L,(T;C) and let H,(T) be
the usual Hardy subspace. Let X be the quotient space L,(T)/H,(T) regarded
as a real quasi-Banach space.

Using Proposition 3.3 with M = X, we can embed X isometrically in the
space Y = (o (X; Ly(0,00)), hence (i) follows.

To see (ii), if there exists a nonzero bounded linear operator T': X — Y, then
there exists a nonzero bounded linear operator S : X — L,(0,00), e.g., letting
Sz = Tx(y) for some y € X. We can then induce a bounded complex-linear
map S : X — L,((0,00);C) by S(x) = Sz — iS(ix). But then § = § = 0 (the
fact that there is no nonzero bounded complex-linear map S : L,/H, — L,
follows as a consequence of the F. & M. Riesz theorem, [9]). |

Remark: A quasi-Banach space X is called natural if it is linearly isomorphic
to a closed subspace of a quasi-Banach lattice which is p-convex for some p > 0
(see [10]). Proposition 3.3 shows that every p-normed space (0 < p < 1), and, in
particular, the real quasi-Banach space X = L,/H,,, embeds isometrically into
a natural space, namely, (o (M; L,(0,00)). But X cannot be linearly embedded
into any natural space since it fails to be natural. Thus we could replace X by

any nonnatural space.

4. Arens-Eells p-spaces

If (M,d) is a pointed quasimetric space, let R™ be the space of all functions
(not necessarily continuous) f : M — R so that f(0) = 0. We then define P (M)
to be linear span in the linear dual (R™)# of the evaluations 6(x), where z runs
through M, defined by

(6(x), f) = f(x), feRM.
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Note that §(0) = 0.

Definition: If 0 < p <1 and d is a p-metric on M, we define the Arens-Eells
p-space over M, denoted by &E,(M), as follows. If = Zjvzl a;0(z;) € P(M)
put

N
(4.3) i, an) = sup || D asf (@)
j=1

the supremum being taken over all p-normed spaces Y and all maps f: M — Y
with f(0) = 0, and satisfying the inequality

Hf(x)—f(y)HY Sd(l‘ay)v T,y € M.

Then || - ||l&,(ar) is @ p-seminorm which induces a p-norm on P(M)/Z where
Z ={peP(M):|ullg, ) =0} Then &y(M) is the completion of P(M)/Z
under this p-norm.

Remarks: We do not know if || - || g, (ar) is actually a p-norm on P (M) except
in the case when p = 1 (see below); equivalently, we do not know if Z intersects
P(M). Of course, if M is a subset of a p-Banach space, then || - ||, () is
trivially a p-norm. It will be convenient for us to regard P(M) as a subset of
E, (M) by identifying each p € P(M) with the corresponding equivalence class
in B,(M).

If p =1 (so that d is a metric), then it follows from the Hahn-Banach the-
orem that /(M) is the space denoted by F(M) in [12] (or [7]); however, the
terminology here dates back to Weaver [20], who denotes this space by &(M).
In this case £ (M)* can be identified naturally with Lip, (M), the space of all
Lipschitz functions f: M — R with f(0) =0 and the norm

LGER IR
d(z,y)
Note that if p < r < 1 and M is a pointed r-metric space, then it is also a

[/ lLipy(ar) = SUP{

pointed p-metric space. From definition we then have

lulle, oy < llpllz, oy, 1€ PM),
and from this it follows that there is a natural map J,, : B,(M) — E,.(M)
with ||| < 1, which is induced by the identity map on P(M). We do not
know if this map is always injective. We will need these remarks in the case
r =1, when we consider E,(X) for X a Banach space.
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LEMMA 4.1: Suppose 0 < p < 1. If (M, d) is a pointed p-metric space, then the
map § : (M,d) — (£,(M), || - ||, () is an isometric embedding and A, (M)
is the closed linear span of §(M).

Proof. This follows directly from Proposition 3.3 since we can take f to be an
isometric embedding. |

Remark: Let us highlight one difference between the cases p < 1 and p = 1. If
p =1 and M is a pointed metric space, then if M is a subset of M containing
0 we have
el (vt0) = Il @y (ary, 1€ P(Mo).

This follows from the fact that every fo € Lipy(Mp) can be extended to some
f € Lipy(M) with the same Lipschitz constant. It follows that &;(My) can be
naturally identified with a subspace of & (M). In the case p < 1, it is unclear
whether one has a corresponding result.

LEMMA 4.2: Suppose (M,d) is a p-metric space. Suppose p € /E,(M). Then
for any € > 0 we can write p in the form

n= Z an(0(xn) = 6(yn));, Tn,yn € M,
n=1

where
oo

> lanlPd(@n, ga)” < (1+ 7l (o

n=1

Proof. Let K be the absolutely p-convex hull of {d(z,y) " '(6(z) — §(y)) :
x,y € M, © # y} in P(M). Then we may define a p-seminorm on P (M)
via the Minkowski functional of K| i.e.,

lullx = inf{\ > 0:p € MK}
Clearly,
lelle, o < llullx, weP(M).
However,
lo(z) = d(y)|lx <d(z,y), z,ye€ M.

This means § : M — (P(M),]| - ||x) is a permissible map in the definition
of |- |l&,n and so |ulls, ) = [lullx for p € P(M). The lemma follows
immediately from this. ]
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LEMMA 4.3: Suppose Y is a p-Banach space, M is a pointed p-metric space,
and f: M —Y is a map satisfying f(0) = 0 and

1f(x) = f(y)lly < Cd(z,y), =ye M.

Then f induces a bounded linear operator Ty : E,(M) — Y with |Ty]] < C
and

Ty(o(x)) = f(z), xe M.

Conversely, if T : /E,(M) — Y is a bounded linear operator, then T = Ty where
fl@x) =T((x)) for x € M.

In particular, if X is a p-Banach space, the identity map Idx : X — X
induces a linear operator Ox : &,(X) — X which is a quotient map. Thus X
is (isometrically) a quotient of /,(X).

Proof. This is purely formal and can be proved in the same way as the corre-
sponding result in [7, Lemma 2.5]. |

Remarks: If X is a p-Banach space, then for y = Z?Zl

a;0(z;) € P(X) we
have

Bx () =) aja;.
j=1

If X is a Banach space we should distinguish between Sx = Bgf) CEL(X)—- X
and Ox = g) : E1(X) — X. These are related by 6%’) = g) o Jp,1, where
JIp1 2 BBy (X) — Eqi(X) is the canonical map, described above.

Definition: Suppose 0 < p < 1. Let us say that a p-Banach space X has the
p-Lipschitz lifting property if whenever

0—FE—Y -5 X0

is a short exact sequence of p-Banach spaces such that there exists a Lipschitz
map f: X — Y with qo f = Idx, then the sequence splits linearly, i.e., there is
a bounded linear operator S : X — Y with ¢S = Idx. For Banach spaces this
concept appears implicitly in [7]; similar ideas are also studied in [6].

LEMMA 4.4: Suppose 0 < p < 1 and let (M,d) be a pointed p-metric space.
Then the p-Banach space /E,(M) has the p-Lipschitz lifting property.
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Proof. (Compare with [7, Lemma 2.10].) Suppose
0—F—Y -5 E,(M)—0

is a short exact sequence and f : E,(M) — Y is a Lipschitz map such that
qo f=1Idg, ). We can assume f(0) = 0 by translation. Then fod: M — Y
satisfies f 0 d(0) = 0 and

[fod(x) = fod(y)l < Cdlz,y), =yeM.
Let T : BE,(M) — Y be the associated linear operator such that
T(6(x)) = f(6(z)), xe€ M.
Thenqu:IdEp(M). |

PROPOSITION 4.5: Let X be a p-Banach space for some 0 < p < 1. Then the
following statements are equivalent:

(i) X has the p-Lipschitz lifting property;

(ii) the short exact sequence of p-Banach spaces

0 — ker By — A, (X) 25 X —0

splits (linearly);
(i) X is linearly isomorphic to a complemented subspace of &,(M) for
some pointed p-metric space M.

Proof. (i) = (ii): By Lemma 4.1, the map 0 : (X, || ||x) — (£,(X), [l | &,(x))
is an isometry, and Bx o = Idx.

(il) = (iii) is trivial.

(ili) = (i): &E,(M) has the p-Lipschitz lifting property (Lemma 4.4) so any
complemented subspace of (M) has the p-Lipschitz lifting property as well.
Since X is linearly isomorphic to a complemented subspace of &E,(M) we are

done. [ |

In [7], it was shown that in the case p = 1 every separable Banach space has
the 1-Lipschitz lifting property, while for nonseparable spaces the property is
rather rare. However, for 0 < p < 1, the situation is somewhat different; in the
next section we will show that a separable Banach space which fails the Schur
property also fails the p-Lipschitz lifting property for 0 < p < 1. In fact, it seems
that, if 0 < p < 1, the set of separable p-Banach spaces with the p-Lipschitz
lifting property is probably quite small. Of course ¢, has this property (as it
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is projective for the category of p-Banach spaces; see [14]). If M = [0,1] with
the p-metric d(z,y) = |z — y['/?, then E,(M) = L,(0,1). If M is the unit
circle with arc length to the power 1/p as the p-metric we obtain that &,(M)
is isomorphic to the quotient of L, by a one-dimensional space (which is not
isomorphic to L,(0, 1), [13]). If one takes, say, M = [0, 1] with d(z,y) = |z —y|*
where 0 < a < 1/p one obtains some other non-classical spaces.

To conclude the section, let us also observe that Theorem 3.1 of [7] holds in
somewhat more generality with a very similar proof (which we omit):

THEOREM 4.6: Let

0—X —Y-5HLZ—0
be a short exact sequence of quasi-Banach spaces such that Z is separable, X is a
Banach space and there exists a Lipschitz map f : Z — Y such that qo f = Idy.

Then the sequence splits, i.e., there exists a bounded linear operatorT : Z — 'Y
with qoT' = Idx.

5. The Example

Throughout this section M will be a complete pointed metric space. If u €
P(M) we define the support of 4 to be the smallest subset F' of M which
contains 0 and such that p € [0(z)]zer (the linear span of {0(z) : x € F}).

If g : M — [0,00) is any Lipschitz function with Lipschitz constant at most
one, we can induce a pseudo-metric

dg(z,y) = min(d(z,y), 9(x) + 9(y)), =,y € M.
(We recall that a pseudo-metric satisfies all the conditions of a metric except

that we allow d(x,y) = 0 when x # y.)
We recall that a type on a metric space M is a function of the form

T(I‘) nlgl/ll d(ma an)7
where (a,,)2°, is a metrically bounded sequence in M (i.e., sup,, d(a,,0) < o)

and U is an ultrafilter on N. We refer to [3] for a discussion of types in the
context of Banach space theory. We note the following properties of types:

d(z,y) <7(x) +7(y), =y€e M,

(54) |T(‘T) - T(y)| < d(l’,y), T,y € M.
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Let o, = inf,ep 7(x). We say that 7 is principal if o, = 0. Clearly, since
M is complete, 7 is principal if and only if there exists a € M so that

T(x) =d(z,a), z=€ M.

LEMMA 5.1: Suppose (un)52 is a sequence in P(M). Let F,, be the support
of p,,. Suppose that:

(1) sup, [lpnll 2, (ar) < o0,
(1) llppm — pnll 8y (ary > 1 whenever m # n, and
(iil) sup,, |Fn| < oc.
Assume T is a finite set of types on M and let g(x) = min,e¢7 7(2). Then for
any € > 0 and ng € N there exist f € Lipy(M) and n € N with n > ng such
that

lf(z) = fW)| < dg(z,y), z,y €M,
and

(tn, ) > 5(1 —e).

Proof. We pass to a subsequence to ensure that each Fj, has the same cardinal-
ity, say N, and write F,, = {an : 1 <k < N}. Fix a nonprincipal ultrafilter &
and let V' be the subset of {1,...,n} such that lim, ¢y a,; = b; exists in M for
j € V. By solving an appropriate linear programming problem, for each n we
may write
o= Y ng(8(an;) = 8(ank))
1<j<k<N
with oy, 1 > 0 in such a way that

hn = Z anjkdg(anj, ank)
1<j<k<N

is minimized. The space (F,,d,) is a pseudo-metric space and it is possible to
define || - || g, (F,,4,) in the same way as in the case of a metric space. Then
(cf. Lemma 4.2) h,, is simply the norm of y,, in the space &Eq(F,,d,). Hence
ho < || pinll @y (7o) = |l 2, (a1), using the remark following Lemma 4.1. Thus
sup,, hyp, < 00.

By the properties of an ultrafilter, we may select a set A in the ultrafilter U
so that for every 1 < j,k < N with j # k we can find 0 = o(j, k), 7 = 7(j, k)
both in 7 so that either:

(55) dg(anj, ank) = d(an]’, ank), Vn € A,
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(5.6) dg(anj,ank) = 0(an;) + T(ank), Vn €A.

Oik = lUm amjndg(amj, Gmpk)-
meU

We show now that as long as j # k, and either lim,,ey qumjr < 00 or (5.5)
holds, then we have

(5.7) Tlnlgzl/{ lim ||O‘mjk(6(amj) —0(amk)) — Qnjk (6(anj) - 5(ank))HEE1(M) < 20j.

First we consider the case when (5.5) holds. Then for m # n both in A,

[tk (6(am;s) — 0(ami)) = anjk(0(an;) = 6(ank))|l 2, (m)
S amjkdg(amja amk) + anjkdg(anja ank)~
Thus (5.7) follows.
If limyepr i < 00 and (j, k) does not satisfy (5.5), then for suitable types

o,7 € T we have dy(amj, amk) = 0(am;) + T(amk) for all m € A. Suppose first
that lim,ey dg(@m;j, amr) < 00; then if m #n € A,

[l (8(am;) = 0(amn)) = anjr((an;) = d(ank))l|m, ()

S |amjk - anjk|d(a’mja amk + an]k(d(amja anj) + d(amka ank))
(

< lamj = anjk|d(@mg, amp) + anjk(0(am;) + 0 (an;) + 7(amr) + 7(ank))
= lemjk = anjk|d(@m;; ami) + anji(dg(amg, amr) + dg(anj; ant))
< 2|amjk = anjk|d(@m;, ami) + Amirdg(@mg, amk) + njkdg(ang, k).
Since limy, ey amjr < 0o this also implies (5.7).
On the other hand, if limy,ey dg(@mj, ame) = oo and (5.6) holds, we have
lim,,ezs amjr = 0. Note that

dg(anj, ank) > d(an;,0) + d(ank,0) — o(0) = 7(0) > d(an;, ank) — o(0) — 7(0),
SO
}liélz/lt anjk(d(ang, ank) — dg(anj, ank)) =0

and again (5.7) follows. This completes the proof of (5.7) in all the claimed
cases.
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Let us define P to be the set of all pairs (j,k) with j # k so that we have
both that lim, ey mjr = 0o and (5.5) fails. In this case we claim that j,k € V
and

(5.8) Tlllgzl/{ilélbl{ ltmjr (Vg — Vmk) — gk (Vnj — Vnk)ll w00y < 2051,

where v,,; = 0(an;) — 0(b;).

We can find 0,7 € T such that dy(an;,ank) = olan;) + 7(ank) for n €
A. Since lim,, ey Qmjr = oo we must have lim,,ey dg(am;j, ame) = 0 and so
limy,eyr 0(@m;) = limyey T(ami) = 0. Thus both types o and 7 are principal
and the sequences (an;), (ank) are both convergent, i.e., j,k € V. In fact, we
must have o(z) = d(z, b;) while 7(z) = d(x, b). Hence, for m # n both in A,

||amjk(ymj - mG) - anjk(an - Vnk)”[El(M)
S anbjk(a(anbj) + T(anbk)) + 047ij(0(anj) + T(ank))
= anbjkdg (anbj; amk) + anjkdg(anj7 ank)-

Thus (5.8) holds.
Now let

An= > angi(8(bs) — 6(b))-
(4,k)eP
Combining (5.7) and (5.8) we get
. i i — — < i, =21 .
(5 9) ngzl/{ }ng/l[ ||M7n Hn Am + )\n”}El (M) > 2 Z ij 2 'rllléILl{ I,
J#k
Together with sup,, ||in &, (1) < 0o this implies that

ng}/{ H)\nL”}El(M) < o0

and, since (A, )50

>©_, is contained in a finite-dimensional subspace,

ii?bilé?, [Am = Anll 2, (ar) = 0.
We therefore deduce from (5.9) that
(5.10) Jim o o = pn 2y 3y < 2 im b
Hence,
1/2 < lim h,,.
neu
Thus we may pick n > ng so that h,, > %(1 —e¢). Now by a simple application of
the Hahn-Banach theorem (from the definition of h,,) there is a linear functional
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@ on [6(30)]&1: so that (d(an;)—0(ank)) < dg(an;j, ank) for all j, k and ¢(un,) =
ha > L1 = ). If we put fo(w) = (3()) for @ € Fy, then |fox) — foly)] <
dg(x ,y) and, since dg is a pseudo-metric, fo has an extension f to M satisfying
the same inequality. |

THEOREM 5.2: Let (11,)52; be as in Lemma 5.1. Then for any € > 0 there
exist an infinite subset Ml of N and f € Lipy(M) with || f||Lip,(ar) < 1 such that

(n, f) >1/4—¢€, neM.

Proof. Since F,,, the support of pu,, is finite for all n, it suffices to consider the
case when M is separable. As we did before in Lemma 5.1, by passing to a
subsequence we may suppose that F,, = {an1,...,a,n} for some fixed N. We
may pass to a further subsequence and assume that for each 1 < k < N either
lim;, 00 d(, ank) = oo for all z or lim,_,o d(z, any) exists and is finite for all
z. In the latter case we can define a type by

Ti(z) = lim d(z, ank)-

n—oo

This yields a finite set of types 7 with |7 | < N. Notice that, since 0 is assumed
to be in every F,, 7 is always nonempty because the type given by d(z,0)
belongs to 7.

We will build by induction two increasing sequences of natural numbers,
M = {my,ma,...} and P = {p1,pe, ...}, and a sequence of Lipschitz functions
(fn)32, C Lipy(M) so that
) ||f7LHL1pU o <1 for all n;

i) fi(z) =0forall z € |J,° leFl
(111) fa(z)=0for all z € (U T Fy) U (UZ 1 F)) and n > 2;
) (fomns fn) > 3(1—€) for each n > 1; and

(V) mp > pp_1 if n>2, and m,, < p, ifn > 1.

Suppose M1, ...,Mp—1,P1,-sPn—1sf1,---, fn_1 have been constructed (if
n = 1 this set is vacuous). We then put

g1(z) = %1%1 7(x),

and for n > 2,

o) =i (51(0). U Fa,)).



Vol. 170, 2009 LIPSCHITZ STRUCTURE OF QUASI-BANACH SPACES 331

Applying Lemma 5.1 we can find m,, with m,, > p,_1 if n > 2, and a function
fn € Lipy(M) so that

|fu(2) = fu(y)| < dg, (z,y), a,y€M

and 1
(Mnbna fn> > 5(1 - 6)'
Let fn = an where 0 < € < 1 is chosen so that
A 1
(Hm,» fn) > 5(1 —e).

For any p > m,,, define
n—1 oo
hy(x) = d(m, ( U ij) U ( U Fl))
=1 I=p+1
We have that hy(z) < g,(z) and h,(x) is increasing for p > m,,. Suppose that
limy o0 hp(2) = & < gn(x). Then, clearly, there is a sequence (y,) C U2, Fi
such that d(z,y,) < £. But this implies the existence of a sequence (an,,,k,,)p>mn

so that d(z,an, x,) < & and n, > p, 1 <k, < N. Thus there exists 7 € 7 with
7(z) < & which gives a contradiction. Thus

gn(x) = lim hy(z), xzeM
p—00
and hence
dg, (x,y) = lim dp,(z,y), =x,y€ M.
p—00
It follows, since F,,, is finite, that for some p,, > m, we have

|fu(@) = fay)| < 0dg, (z,y) < dp, (2,y), @,y € Fp,,

and so we can extend f,| F,,, toa function f, € Lipg(M) such that

|fn(z) = fuly)| < dn,, (2,y), x,y€ M.

In particular, f,, vanishes on U?;ll Fpn; and on U;’ipn 41 I This completes the
inductive construction.
Now let f,F(z) = max(f,(z),0) and f, (x) = max(—f,(z),0). Then for each
n we can find ¢, = f, or f, so that
1
[{tim,, s on)| > 1(1 —€), n=1,2...
Let

o(x) =suppn(z), =€ M,
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so that [|¢||Lip,(ar) < 1 and ¢|p,, = @n. Thus

1
(o) > (L=€), n=1,2,....
Taking a further subsequence and f = ¢ gives the conclusion. n

THEOREM 5.3: Let X be an infinite-dimensional separable Banach space which
is not a Schur space. Then X fails the p-Lipschitz lifting property for any
0<p<l1.

Proof. Let us assume that X has the p-Lipschitz lifting property for some 0 <
p < 1. Then there exists a bounded linear operator S : X — &E,(X) with
BxS = Idx. Since X is not a Schur space, there is a bounded sequence (z,,)3° ;

in X such that ||z, —x,||x > 1 for m # n and lim,_,o 2, = 0 weakly. Thus
(Szp)22, is bounded in &E,(X). By Lemma 4.2 we can write

Sz = Y nj(8(yns) = 8(zns));
j=1
where for some constant K,

oo
> i Pllyns — znjl% < KP, n=1,2,....
j=1

Further, suppose that for each n the sequence (an;|||yn; — 2njllx)52; is dec-
reasing. Thus for any N € N

lann|[ynn — zonllx S KNTYP, n=1.2,...

and so
o o
Z lonj[l[yng — 2njllx < (KN_I/p)l_p Z o [P [|yns — anllz))(
j=N+1 j=N+1

< KNYYPo op=1,2....

Fix N so that KN'=1/P < 1/10 and let

N
Hn :Zanj(é(ynj)ia(znj)); n € N.

Then
|Bxfin — xnllx < KN'YP <1/10, neN.
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Thus
[Bx pin = Bx pm || x = 4/5,  m #n.
This implies that
[ = pmll By (x) = 4/5, m #n,
and so, after scaling, by Theorem 5.2 there exists f € Lip(X) = &1 (X)* with
| fllLip,(x) < 1 and an infinite subset M of N so that
(5.11) i )] = 16, n €M,

However, the canonical map Jp 1 : Ey(X) — E;(X) is norm-decreasing and
therefore (Jp,15z,)0%, is weakly null in /&, (X),

lim (Jp 1Sz, f) =0,

and also
(o1 S0 = pins £l <D e llgng — 2n5]l < 1/10,
J=N+1

a contradiction with (5.11). A

Remark: Although this is not made explicit in the argument, we are essentially
using the fact that &, (X) can be identified with the Banach envelope of &, (X)
and the quotient Bx : £,(X) — X factors through /£, (X).

THEOREM 5.4: Let X be an infinite-dimensional separable Banach space which
is not a Schur space. Then for 0 < p < 1, /&,(X) is Lipschitz isomorphic but
not linearly isomorphic to the space ker Bx @, X equipped with the p-norm

1= ey + 1 150

Proof. The map p — (pu — 08x(p), Bx (1)) is a Lipschitz isomorphism between
the p-Banach spaces &E,(X) and ker fx &), X.

On the other hand, X fails the p-Lipschitz lifting property by Theorem 5.3
and so it cannot be isomorphic to a complemented subspace of &E,(X); this
would contradict (iii) of Proposition 4.5 with M = (X, || - ||x). We conclude
that /&, (X) cannot be linearly isomorphic to ker Sx &, X. |

Remarks: If the reader prefers, this theorem may be rephrased in the following
terms: the separable complete metric linear spaces &, (X) and ker Sx &, X are
Lipschitz isomorphic with the metrics induced by their respective p-norms but
not linearly isomorphic.
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It is very likely that the hypothesis that X is not a Schur space in the
theorem can be eliminated. To establish this, one needs to prove that no
infinite-dimensional Banach space can have the p-Lipschitz lifting property for
0 < p < 1. We conjecture that this is true. Indeed, it is very likely that if
p < ¢ < 1, no infinite dimensional ¢g-Banach space has the p-Lipschitz lifting

property.
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