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ABSTRACT
We prove a general result on complemented unconditional basic sequences
in Banach lattices and apply it to give some new examples of spaces with
unique unconditional basis. We show that Tsirelson space and certain
Nakano spaces have unique unconditional bases. We also construct an
example of a space with a unique unconditional basis with a complemented
subspace failing to have a unique unconditional basis.

1. Introduction

A Banach space with an unconditional basis is said to have a unique unconditional
basis if any two normalized unconditional bases are equivalent after a permuta-
tion. It is well-known that ¢, has a unique unconditional basis (cf. [17]) and a
classic result of Lindenstrauss and Pelczynski [18] asserts that the spaces ¢; and cq
also have unique unconditional bases; later Lindenstrauss and Zippin [21] showed
that this is the complete list of spaces with symmetric bases for which the un-
conditional basis is unique. Subsequently Edelstein and Wojtaszczyk [10] showed
that direct sums of £1,#; and ¢y also have unique unconditional bases. In 1985,
Bourgain, Casazza, Lindenstrauss and Tzafriri [3] studied the classification prob-
lem for such spaces. Their main results showed that £;(¢2),co(£1), €1(co), co(€2)

and 2-convexified Tsirelson T?) have unique unconditional bases but that £2(¢;)
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and #3{(cp) do not. Based on their results a complete classification looks hope-
less. We also remark that a recent example of Gowers [12] may be easily shown
to have unique unconditional basis. Thus there are many “pathological” spaces
with unique unconditional basis.

In this paper we will give (Theorem 3.5) a simple and, we feel, useful char-
acterization of complemented unconditional basic sequences in Banach sequence
spaces which are not sufficiently Euclidean (i.e. do not have uniformly comple-
mented £3’s). This theorem is the discrete analogue of Theorem 8.1 of [14]; in
fact the basic arguments are very similar to those given in [16] and [14], but we
have opted to present a self-contained proof here. We then use this result and
the recent work of Wojtaszczyk [26] to give some more examples of fairly natural
spaces with unique unconditional basis. In Section 5, we introduce the class of
left- and right-dominant bases and use this notion to show that the Nakano space
#(p,) has a unique unconditional basis if p, | 1 and (p, — p2.) logn is bounded
(there is a dual result if p, T 00). We also show that Tsirelson space T has
a unique unconditional basis (a question raised in [3] p. 62). In Section 6, we
use similar techniques to show that certain complemented subspaces of Orlicz
sequence spaces have unique unconditional bases. Based on these examples we
are able to resolve Problem 11.2 (p. 104) of [3] by showing that there is a space
with unique unconditional basis with a complemented subspace (spanned by a
subsequence of the basis) failing to have unique unconditional basis.

Also in Section 4, we use Theorem 3.5 to give a contribution to the problem of
uniqueness of unconditional bases in finite-dimensional spaces. Specifically, we
prove that in any class of finite-dimensional lattices so that €3 is not comple-
mentably and disjointly representable, the unconditional basis is almost unique;
for a more precise statement see Theorem 4.1.

We remark that the techniques developed here using Theorem 3.5 can be used
successfully to obtain other results on uniqueness. In particular we plan to study
unconditional bases in cg-products in a later publication. Since the arguments in
such spaces are considerably more complicated, it seemed, however, appropriate

to restrict attention here to some simple applications.

2. Definitions and notation

We will take the viewpoint that an unconditional basis in a Banach space X

confers the structure of an atomic Banach lattice on X. We will thus adopt
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the language and structure of Banach lattices. It is well-known that a separable
Banach lattice can be regarded as a Kéthe function space.

We will in general use the same notation as in [16]. Let 2 be a Polish space
(i.e. a separable complete metric space) and let u be a o-finite Borel measure on
Q. We denote by Lg(p) the space of all Borel measurable functions on §2, where
we identify functions differing only on a set of measure zero; the natural topology
of Ly is convergence in measure on sets of finite measure. An admissible norm is
then a lower-semi-continuous map f — || f|| from Ly(p) to [0, 0o] such that:

(@) ||ef)l = |a|||f|| whenever a € R, f € Lo.

() 115+ gll < II£11+ llgl, for £,g € Lo.

() Il € llgll, whenever |f| < |g| a.e. (almost everywhere).

{d) IIfll < oo for a dense set of f € Ly.

(e) |IfIl =0 if and only if f =0 a.e.

A Kothe function space on (2, i) is defined to be a dense order-ideal X in L (u)
with an associated admissible norm || ||x such that if X0 = {f: [|fllx < oo}
then either:

(1) X = Xmar (X is maximal)

or

(2) X is the closure of the simple functions in X4, (X is minimal).

Any order-continuous Koéthe function space is minimal. Also any Kéthe
function space which does not contain a copy of ¢y is both maximal and minimal.

If X is an order-continuous Kdthe function space then X* can be identified
with the Kéthe function space of all f such that

Ifllx- = sup / ol d < oo

ligllx <1

X* is always maximal.
A Kdéthe function space X is said to be p-convex (where 1 < p < 00) if there
is a constant C' such that for any fi,..., fn € X we have

I 1P Plx < €O £l MP
i=1 i=1

X is said to have an upper p-estimate if for some C and any disjoint fy,..., f,
€ X,

1" fillix <O NilB)M?.
=1 =1
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X is said to be g-concave (0 < ¢ < o) if for some ¢ > 0 and any fi,...,f, € X
we have

IS 1A el > oS A8,
=1 =1

X is said to have a lower g-estimate if for some ¢ > 0 and any disjoint fy,... , f,
€ X,

IS fllx = oS A1) M.
i=1 i=1

A Banach space X is said to be of (Rademacher) type p (1 < p < 2) if there is

a constant C so that for any z,,... ,z, € X,

n n
Ave | z;émH < C(; lz:|P)*/7
1= 1=

and X is of cotype ¢ (2 < g < o0) if for some ¢ > 0 and any zi,...,2, € X we

have
n n
;T : 19y e
Ave I3 el 2 e Il
i= i=

We recall that a Banach lattice has nontrivial cotype (i.e. has cotype ¢ < oo
for some q) if and only if it has nontrivial concavity (i.e. is g-concave for some
g < 00). If X is a Banach lattice which has nontrivial concavity then there is a
constant C = C(X) so that for any z1,... ,z, € X we have

5 (Ave ||Zeka:k|| 172 < |( ;W )12 x < O Ave ||Zeka:k|| 1/2,

We will use the term sequence space to denote a Kothe function space X on
N equipped with counting measure, and subject to the normalization constraint
that |le;][x = 1 for all j € N where e; = x(;;. It is clear that (e,) forms
an unconditional basis for a sequence space X if and only if X is minimal (or
separable). We will consider finite-dimensional sequence spaces modelled on finite
sets [N] = {1,2,... , N} with counting measure.

In keeping with current usage we will write ¢ for the space of finitely nonzero
sequences. If A is a subset of N we write e4 in place of x4 and if z is any
sequence we write Az = eqz. If A, B are subsets of N we write A< Bifa <b
whenever a € A and b € B. If z is a sequence then suppz = {i: z(z) # 0}.
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Many of our examples will be Orlicz sequence spaces or more general Orlicz—
Musielak or modular sequence spaces. If (F),) is a sequence of Orlicz functions
then the modular sequence space (g, is the space of sequences (z(n))s, such
that o0, Fa(|z(n)]) < oo, with the norm

|]legr,y = inf{A > 0: ZF “La(n))) < 1}.

In the case F,, = F for all n we have the Orlicz space fp. If é( F,) 18 separable
or has finite cotype then the canonical basis vectors form an unconditional basis
of £(g,y; otherwise they form an unconditional basis of their closed linear span
h(r,)- We refer to [19] for the basic properties of modular sequence spaces.

One special case is to take F,(t) = tP» where 1 < p, < oo. This is often
called a Nakano space and we denote it 4(p,). £(p,) is separable if and only if
sup p, < co. It may also be shown that if p,, > 1 for all n and sup p,, < co then
£(pn)" = £(qn) where p7! + g7 = 1. If supp, = oo then we write h(p,,) for the
closed linear span of the basis vectors, and we have h(p,)* = #(q,).

Let (uy) and (v,) be two unconditional basic sequences. We say that (u,) and
(vn) are permutatively equivalent if there is a permutation 7 of N so that (u,)
and (vr(n)) are equivalent. We say that (u,) is equivalent to its square if (u,)
is permutatively equivalent to the basis {(u1,0), (0,u;), (u2,0),...} of [u,]®[un].
A Banach space X with an unconditional basis has a unique unconditional
basis if any two normalized unconditional bases are permutatively equivalent.
We remark that there is an important Cantor—Bernstein type principle which
helps determine whether two unconditional bases are permutatively equivalent:
if (u,) is permutatively equivalent to some subset of (v,) and if (v,) is permu-
tatively equivalent to some subset of (u,) then (u,) and (v,) are permutatively
equivalent. We are grateful to P. Wojtaszczyk for drawing our attention to this
principle, which appears explicitly in [27] and is used in [26]. We are indebted
to C. Bessaga for the information that the Cantor-Bernstein principle was used
implicitly earlier by Mityagin in [22].

A Banach space X is called sufficiently Euclidean if there is a constant M
so that for any n there are operators 5: X — 3 and T": £3 — X so that ST = Ipp
and ||S]||T]| < M. We will say that X is anti-Euclidean if it is not sufficiently
Euclidean.

A Banach lattice X is called sufficiently lattice Euclidean if there is a con-
stant M so that for any n there are operators S: X — £3 and T': /3 — X so that
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ST = Ipz and ||S||||T|| < M, and such that S is a lattice homomorphism. This is
equivalent to asking that ¢, is finitely representable as a complemented sublattice
of X. We will say that X is lattice anti-Euclidean if it is not sufficiently lattice
Euclidean. We use the same terminology for an unconditional basic sequence,
which we regard: as inducing a lattice structure on its closed linear span.
Finally if X is a family of Banach lattices we say that X is sufficiently lattice
Euclidean if there is a constant M so that for any n there exists X € X and
operators S: X — £3 and T: £f — X so that ST = Iy and ||S||||T|| < M, and
such that S is a lattice homomorphism. If X is not sufficiently lattice Euclidean

we will say that it is lattice anti-Euclidean.

3. Complemented unconditional basic sequences

The main results of this section are Theorems 3.4 and 3.5, which show that
complemented lattice anti-Euclidean unconditional basic sequences in an order-

continuous Banach lattice or Banach sequence space take a particularly simple

form.
LEMMA 3.1: Let X be a Banach sequence space and suppose (u1, ... ,un) are
disjoint elements of X, , and (u3, ... ,u}) are disjoint in X . Suppose that M > 1

is a constant such that

1Y asuslix < MY lasl)? and  [|Y agusllx- < MO lag*)'7?
i=1 Jj=1 Jj=1 J=1

whenever aq, ... ,a, € R. Suppose further that
n
Z Uj, U j = an.
=1

Then £ is 2M?a~!-representable as a 2M?a~'-complemented sublattice of X,

for some m > aM n.

Proof: We can clearly suppose that suppu = suppu*. Note that (u;,u}) < M2
Let J = {j: (uj,u}) > a}. Then |J| > ;M ~2an. Notice that for any (a;)je

we have
1D auillxl Y assllxe = 50 lasP).

Jj€J jeJ JjeJ
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Thus

S 1032 <Y gl < MOY g2

jed jed jed

so that [u;];jes is (2M?)/ca-lattice isomorphic to lejl. If we let v; = (uj,uf)™!

then we can define a projection P onto [u;]jes by
Pr = Z ’yj—l (z,u
jed

Then

|Pz||x < < = Z, z,u) 3/,

However,

Yol = (2, ) (2, uf)uj)

jeJ jedJ
< Mlallx()_{z,up)®)'?
j€J
whence we obtain
M2
| Pzllx < lzlx. W

LEMMA 3.2: Let X be an order-continuous Koéthe function space on (Q, p). Sup-
pose m € N, and ¢ € Li(u) with ¢ > 0. Suppose fi,...,f, € X4+ and let
F=(30, f]?)l/2 and Fo, = max; f;. Then we can partition [n] = {1,2,... ,n}
into m-sets Ji,... ,J, and find a set A C Q with [, ¢du > 3 [, ¢du so that

whenever a1, ... ,a., € R we have

m
Zak > Y xallx <20Flix + 28 Foollx)m™ 2> ad)'/2.
k=1 j€Ji k=1
Proof: We may select a collection of 5™ points (br) —p in the unit sphere of
€ to form a f-net. Then if T: £* — Y is any operator we have [T <
25up,c5m || T[]y
Next let IT be the set of all m™ partitions of [n] into m-sets 7 = (J1,... ,Jm)
with a probability measure P defined to be normalized counting measure. For
1<l<mand1<j<n we define §;(r) = 1if j € J; and 0 otherwise. The

random variables &;, §; are independent if ¢ # j, and each has expectation 1/m
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and variance (m — 1)/m?. We will use the fact that the covariance of &; and &;
is negative: it can be computed as —1/m?.

For each m € II we set z;(7) = (3¢, FHY? Then for 1 < r < 5™ we
define A(m,7) to be the set of w €  such that (3,7, [ |*|zi(m, w)|?)/? <
m~V2(F(w) + 2.5™Fy (w)).

Let us fix w and 1 < r < 5™, and consider the random variable ¢ on II defined
by

n

=Zlbl|22&, mIf5@)P =Y 1] Plau(m,w) 2.
=1 =1

/(de = %F(w)z.

Next we estimate the variance of { recalling our previous observations concerning

Then

the random variables &;.

/((———F( ) dp<_zlb,|42|f, |4<‘n§ (W)2 Fo (w)?.

Now

Let B(m,r) be the complement of A(m,r). Then

Z/¢XB(wr)du_m/¢ n

well

Summing over r we further obtain the existence of some 7 so that

5171
1
?) X ,rdus—/¢>du-
/Q;B(W) 4/

For this fixed 7, let B = Ui:l B(m,r). Then [ ¢dp < % [, ¢ du. Let A be the
complement of B. Then [, ¢du > 3 [, pdp.



Vol. 103, 1998 UNIQUENESS OF UNCONDITIONAL BASES 149

For 1 <r < 5™ we then have that

5™

Z YOV <m Y2(F 4 25™F,,).

By considering the map T £5* — X (¢3) defined by T(e;) = (0,... ,0,2;,0,...)

with z; in the [th position it follows that for every a,, ... ,a,, we have

1S o lod®) xallx < 2m= A(1Fllx + 257 | Fall)(3 )2
=1 =1

LEMMA 3.3: Let X be a lattice anti-Euclidean family of Banach sequence spaces.
Then, given M there exists § = §(M) > 0 with the following property. Suppose
that Y is an order-continuous Kéthe function space on (2, 1) and X € X. Let
d =dimX < oo. Suppose S: X — Y and T:' Y — X are bounded operators
with ||S|, |T|| < M. Suppose (h,)%_, € Li(n) satisty 0 < h,, < |Se,||T*e,| and
J hpdu> M™Y. Then, for any N <d, and any o1,... ,an,

A |t b | dpe > 52 ok
0 k=1

Proof: Let us suppose that for some M the conclusion of the lemma is false.
Suppose m € N is given. We put € = (2.5™)~!. Then we can find X € X
and S: X - Y, T: Y — X with ||S|,|T)| €< M and 0 < h,, < |Se,||T*e,| for
1 <n<d=dimX with [h,de > M~ and such that for suitable 0 < { € coy
and N € N, with [|¢l]; = 1 and ((4) = 0 for all i > N, we have

2

Let f, = Se, and g, = T™*e,,. Notice that this implies that

Ihall < lISenlly IT*enlly < M*.

It follows from Krivine’s theorem ([20] Theorem 1.£.4, p.93) that if ay,... ,ap €
R then

10" k) lly < KM akex|x

k=1 k=1
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and

Zaz 2 1/2

where K is as usual the Grothendieck constant.

k=1

By a well-known theorem of Lozanovskii we can factorize { = ££* where
0 < &,&* € cpo have the same support as ¢ and satisfy [|€]|x = [|€*]|x~ = 1.

Next let F = (X0 E(k)2 Y2 e Y. It follows from the remarks above that
|Flly < KgM. Similarly, if G = (35, £*(k)2¢2)"/? € Y* then ||G|ly- < KcM.
Finally let H = Y~} _, ((k)hi. Then M~! < |IH||1 = [Hdu< M2

For each k let By = {&(k)fi > €F'} and By = {*(k)gr > eG}. We will let
Ap = Q~(BxUBY).

Now if w € By, we have F¢*(k)gr(w) < e 1¢(k)hi(w) and so

N N N
3 CR)hxn, < (O €k fxa) A0 € (k)g)
k=1 k=1 k=1
Zf z 2 1/2
ZC h2 1/2

Se_lHl/z(lg}cax C (k)i )2,

From this we deduce that

1/2 1
||kZlC thBk||1_4A[2“ Il M

Similarly
al 1
| kz_:l C(K)hkxa; I < e
Hence

N 1
> —,
/Zkzlg(k)thAkdu_ oM

Now max;<;<n §(J )f]XA < eF while maxi<;j<n £*(j)gjxa,; < €G. Consider
X & X* (with the maximum norm) as a Kéthe function space on two copies
of (€2, 4) and consider the functions (£(5)fixa;,¢*(j)gjxa,) in X & X*. Using



Vol. 103, 1998 UNIQUENESS OF UNCONDITIONAL BASES 151

Lemma 3.2 with ¢ = (Zszl C(k)hkx,qk,zjkvzl hxXxa,) it is easy to deduce the

existence of a Borel subset D of () with

N 1
) h dy > —
/D;C(") XA 2 5o

and a partition Ji, ... ,Jy, of [N] so that for any ai,... ,a, we have
m m
IO ek Y 66 Fixa) Fxnllx < 4KgMm™2(Y " ap)'/?
k=1 FEJk k=1

and

Zai Y& 0) 9 xa,)*xpllx < 4KeMm™V2 (Y " af)'/.
k=1 jelJy k=1

Let L be the set of 1 < j < N so that [[h;jxa;npll1 = 1/4M. Then

[ S omsxadus

JgL
so that
/ > C)hyxa;du > —M
JjeL
Now let
ug = m'/? Z é(jle; € X and up=m Z £ (jle; € X*.
JEJNL JjEJNL

Consider an element v = 5;°  axu, € X and let v* = Diervt(ie; € X¥
norm v, i.e. [|[v*||x+ =1 and (v,v*) = ||v||x. Then

ol <4 Y060 0) [ hyca,mods

JEL
<4 (30l Bxann) (Y v
JEL jJEL
<4M|() " v() Fixann) PlixlO v ()e) 2 lx
jeL jeL

Here the first factor can be estimated by 4KqM (3", a2)"/? and the second
factor by Krivine’s theorem is majorized by KgM. Hence

lollx < 2°KEM3(Y " a})'/>.
k=1
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Thus we have the inequality

1 akuellx < 2'KZM3(D " af)'/2.

m m
k=1 k=1

Precisely dual arguments will yield that

k=1

1> arupllx- < 2'KEM() " a})'/>.
k

—

Finally Z;cn.—_1<uka ui) =m ZjeL ¢l) > %m fD ZjeL C(j)thAj > 27 M~ 'm.
Now Lemma 3.1 yields that £ is 2° K}, M"-complementably 2% K4 M -lattice
finitely representable in X for some mq > 27°K;* M ~°m.

It is clear that this is impossible for arbitrarily large m. |

THEOREM 3.4: Let Y be a nonatomic order-continuous Banach lattice and
suppose that {(f,) is a complemented unconditional basic sequence in Y.
Suppose (f,) is lattice anti-Euclidean. Then {fy,) is equivalent to a comple-
mented disjoint sequence (f]) in Y.

Proof: 'We suppose that Y is an order-continuous Kothe function space on
(9, 1), where p is nonatomic. Let X be the sequence space induced by (f,,), and
let S: X — Y be the bounded linear map with Se,, = f,. Then there is also a
bounded linear map T: Y — X with T'S = Ix. As before let g, = T*e,, and
Ry = |fngn|. Then for suitable § > 0 we have

N
max |aghg| > JZ ok |
o 1SksSN k=1

for every N,ai,...,an. By a result of Dor [9] there exist disjoint Borel sets
(Ep)7L, so that [ hndp = 6.1t is then easy to verify that (|fn|xE,)nz; is a
complemented disjoint sequence equivalent to (f,,). Indeed define U: X — Y by
Uen = faxe, and V: Y — X by V(y)(j) =6 (y,|9;|xE,)- Then VU = Ix and
for any £ € cgg we have

o0

1UElly < 110G )y < KaMI|€]|x.

J=1
Also if £€* € ¢gg then

[e o]

(V€9 <8N yl, O €7()2 g% < 67 KaM|I¢™| x-.

j=1
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Thus U,V are both bounded operators and the theorem is proved. |

Unfortunately if Y is a sequence space the result is not quite so clean. We first
state the corresponding theorem and then a more general technical result which

includes the theorem.

THEOREM 3.5: Let Y be a Banach sequence space and suppose that (f,) is a
complemented unconditional basic sequence in Y. Suppose (f,) is lattice anti-
Euclidean. Then (f,) is equivalent to a complemented disjoint sequence (f}) in

YN for some natural number N.

THEOREM 3.6: Let X be a lattice anti-Euclidean family of Banach sequence
spaces. Then given M > 1 there is a constant C = C(M) and a natural number
N = N(M) so that the following property holds.

Suppose Y is a Banach sequence space and X € X with dimX = d < oo.
Suppose S: X —» Y and T:' Y — X are bounded operators with ||S|, |T|| < M.
Let f, = Se, and g, = T"e, for n < d and suppose E,, are disjoint subsets
of N so that ||fngnXe,|li > M~'. Then we can find subsets (Fi,) of N for
1<k < Nandl <n <dso that (1) Fy, C E,, (2) for each fixed k, the
sets (Fy,) are pairwise disjoint, (3) for each fixed n, the sets (Fy,) are pairwise
disjoint and (4) the disjoint sequence (f.)2_, defined by f. = (fuXF..)~, in

YV is C-complemented and C-equivalent to the unit vectors (e,)3_; in X.

Remark: Of course if we take X’ as having one member and F,, = N, this implies

Theorem 3.5. However, the quantitative version will be of some importance.

Proof: Let § = §(M,X) be determined as in Lemma 3.3. We will show that
N =[2M?2§~! 4+ 1] and C = 2K%6~'M2N? have the property claimed.

Let hp, = |fngnlxE,. Then by Lemma 3.3 we can define an operator R: ¢; —
£1(co) by R(¢) = (¢(k)hk)72 . (For notational convenience we will assume that
d = dim X = oo; minor modifications can be made if d < 00.) Now ||R|| < M?
and [[R(C)[l > 4][¢]}x for all { € ¢;. We therefore can apply the Hahn-Banach
theorem to find a linear functional ® = (¢,)%%; € £oo(£1) so that | ®| < 1 and
®(R¢) =63.27., ¢(n) for all ¢ € £;. In other words,

S‘;I’Z bn(k)| <1 and Y ¢n(k)hn(k) =5
n=1 k=1

for each n.
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Let A, = {k: |{$n(k)| > 1/N}. Then

> (b (k) ha(k) >

k€EAR

d.

[T

Now Y07 xa. (k) < N3 > |¢a(k)| < N. It follows that we can decompose
A, = U,ICV:1 Fin, as a disjoint union where for each 1 <k < N the sets (F}.,),
are disjoint.

Let f, = (|falXF.. )b, € YN (which we consider as an £,-sum). éimilarly, let
9n = (19nlX . )k=) € (V)Y Then

(froon) = Y halk) 2 D [n(k)[ha(k) > L6.

keA, k€An

Let Bn = (f.,g),) and define U: X — YN and V: YN = X by U(£) =

Y02 EG)ff and V{(y)(4) = 87y, g}) where y = (y1,... ,yn).
Suppose £ € cgp. Then

£l < NIQ €GNy < KeMNJ|é]lx-
i=1

From this it quickly follows that U is well-defined and bounded with |U||
KcMN. On the other hand, if £ € ¢y then

IA

N

(Vy, &) <267 lwl, ma}(lf( )9;1) < 2Kg6 ' MN|ly|ly~
k—

so that ||V|| < 2Kgd 'MN. Since VU = Ix the proof is complete. |

Remarks: It is not possible to improve Theorem 3.5 by replacing Y by Y.
We sketch an example. Gowers [12] (cf {13]) has constructed a sequence space
with the property that every bounded operator is a strictly singular perturbation
of a diagonal operator. Let 1 < p < 2 and consider the space G = G(Zf,“)
(i.e. the direct sum in the sense of G of spaces Zg“). The obvious basis is anti-
lattice Euclidean (in fact G is p-concave). However G has another unconditional
basis which is formed by taking the Haar basis in each co-ordinate. It may be
shown that the original basis is not equivalent to a block basis of this basis.
We remark, however, that, in this example N = 2 suffices and we know of no
example where N = 2 does not suffice. A somewhat similar problem is considered

by Wojtaszczyk [26] for certain types of bases in quasi-Banach spaces.
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We also remark that a continuous analogue of Theorems 3.4 and 3.5 is proved
by somewhat similar techniques in [14], Theorem 8.1. This result which follows
from work in [16] was, in fact, the basis for the proof given here. We have opted

however for a completely self-contained approach.

4. Applications to finite-dimensional spaces

Before stating our first application, let us recall some definitions from [7]. Let
X be a family of finite-dimensional Banach sequence spaces. Suppose first each
X € X is a symmetric space. Then we say the members of X have a unique

dim X
=1

symmetric basis if there is a function ¥: [1,00) — [1, 00) so that if (u;) isa
normalized K-symmetric basis of some X € F then (u;)&™ X is 4( K )-equivalent
to (e;)f7 *.

Now consider the case when each X is not necessarily symmetric.

Then we say the members of X have an almost (somewhat) unique
unconditional basis if there is a function ¢: [1,00) x (0, 1) so that given K > 1,
then for any 0 < a < 1 (resp. for some 0 < o = a(K) < 1) it is true that
whenever X € X has a normalized K-unconditional basis (u;)$™ X then there is
a subset ¢ of [dim X] with |¢| > adim X and a one-one map m: ¢ — [dim X] so
that (e;)ico is ¢(K, a)-equivalent to (un(;))ico- :

The following theorem shows that any collection of finite-dimensional spaces
which form a lattice anti-Euclidean family (i.e. do not have uniformly comple-
mented £3-sublattices) have almost unique unconditional bases. In particular, in
any such class the symmetric basis is unique; both these results are new. There
are, however, numerous results of this type in the literature. It was shown by
Gowers [11] that the symmetric basis is not unique for the class of all symmet-
ric spaces, but positive results for various classes are given in [4], [7], [15] and
[24]. The problem of almost or somewhat uniqueness for unconditional bases for

various classes was considered in [24] and [7].

THEOREM 4.1: Let X be a lattice anti-Euclidean family of finite-dimensional
sequence spaces. Then the members of X have almost unique unconditional

bases.

In order to prove this we will need a lemma, due essentially to Wojtaszczyk
[26]. Our statement is a modification and we will avoid the language of bipartite

graph theory. Suppose n € N and let G be a subset of [n] x [n]. For ¢ € [n] let
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Vi be the set of j so that for some k € [n], (i,k) and (j, k) € G. For A C [n] let
V(A4) = V1(A) = |J;e 4 Vi and then define inductively V7(A) = V(V"=1(A)); let
V7 = V7({i}). Finally let G™ be the set of (i, j) so that for some k € [n] we have
(k,j)e Gand ke V.

LEMMA 4.2: Assume G is as above. Suppose (wij)i,je[n] are such that:

(1) Z;.lzl wi; = 1 fori € [n],

(2) Y, wi =1 forje€ [n].
Let M = maxi<j<n 9 1o [Wij| and let b = >_(i.j)¢c [wij|. Then for any r there
is a subset o of [n] with |o| > n — 3b — Mr~!'n and a one-one map 7: 0 — [n]
with (i,7(1)) € G” fori € 0.

Proof: Note first that either V; is empty or ¢ € V;; let E be the set of ¢ such that
Vi is empty. Then [E| =3}, 5 Z?:l w;i; < b. For any A we have A C V(A)UE
and V(A) N E = 0. Thus the sequence (V*(A4))7_, is increasing and so for every
1 < s < r we have

Vo) > 4] - b.

For future reference we let VO(A4) = A E and have the same inequality. Now for
any A C [n]let A* ={j: 3 € A, (5,j) € G} and AT ={j:3i € A: (4,j) € G"}.
Then AT = (V7(A))*.

Assume for some A we have |AT| < |A|. Then there exists some 0 < s <r —1
so that |[VoT1(A)*| < |[VE(A)*|4+r~1|Al. (Here we recall VO(A) = A E.) Notice
Vst1{A) D V¥(A). We now compute

Vertia) = ). Zwu

ieVsti(A) j=1

S b+ Z Z Wi

‘LEVH‘l A) ]EV“"H A)‘

<h+M(VHHAY - VA D+ Y. Y wy

i€VIHL(4) jeVe(A):
<SoAMrNAIEYD YT wy

i=1 jeVs(A)*
=2b+ Mr YA+ [V (4)*].

Hence
|A| < 3b4 Mr~'|A|+|AT].
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Combining we have |AT| > |A| — 3b — Mr~!n. The result then follows from
Hall’s Marriage Lemma [2]. |

Proof of Theorem 4.1: Tt will suffice to show that for any € > 0 and M > 1 there
is a constant C = C{e, M, X) with the property that whenever X,Y are finite-
dimensional sequence spaces with X € X and if S: X — Y is an isomorphism with
S|[,IIS7H|) < M then there is a subset o of [dim X] with |o| > (1—¢) dim X

and a one-one map m: ¢ — [dim X] so that for any («;);c, we have

CTDaieillx <D aiengylly <CIY_ asenlix

i€o i€o €0

max(|

Let » = dim X and let T = S~'. As before, let Se; = f; and T*e; = g; for
1 <i<n. Let wij = fi(5)g:(4). Then 330 wi; = 1 for all j and 3°7_, wy; = 1
for all i. Furthermore, S0, {wi;| = |||S*e;||Te;lll1 < [|S*e;l|x-[|Tejllx < M2.

Now by Lemma 3.3 there exists a § = §(¢, M) so that if for some subset 7 of
[n] we choose 0 < hy < |fkl||gk| for k € 7 so that ||| > €/8, then

| max axhi|ll1 > 6 Z ok
ker
ker

for all (o )ker. Next choose n = ééeM_?
We let G be the set of pairs (¢, j) so that |w;;| > 1. Then

> fwil =Y I figixall

(i,7)¢G i=1

where A; = {j: |wy;| < n}. Let by = |figs|xa, and let 7 = {i: ||h;]|; > g€} Then
8|7 < | maxhyfls < nn

so that |r| < teM~2n. Hence .

Combining we have

[hilly < gen. However 3=, ||hilli < gen.

icT

Z lwijl S %G’Il.

(1,7)¢G
We can now apply Lemma 4.2. We choose r = [4MZ¢] + 1 so that we have

a subset o of [n] with |o] > (1 — €)n and a one-one map 7: ¢ — [n] so that
(1,7(i)) € G" for i € 0.
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Note that if (i, ) € G then | f;(5)|,19:(7)| = /M. Now by Krivine’s theorem if
(o), are scalars then

1 a2 i lly < KeM||Y cuesx.
=1

=1
Hence

10> ofe)?lly < KeM*$7'| ) aseillx-

(1,)€G =1

Similarly, a dual argument gives that
n
ICY ale)?llx < KaM*67' ) ajely.
(i.j)eG j=1
Iterating these conditions gives that if C = (KZM?25~1)™! then
n
IC D" afen)Plly <CII Y aueillx
(i.5)€Gr i=1

It follows that

1D aienplly < CID el x

i€o i€o

Similarly we have

n
IC Y- afe)lly <CIY_ ajeslix,

(i,7)EGT j=1
so that
1D aieillx < CII Y- aienlly
i€o i€o
so that the result follows. B

5. Right- and left-dominant spaces

Let X be a sequence space. We will say that X is left-dominant with constant
v > 1 if whenever (uy,u2,...,u,) and (vy,... ,v,) are two disjoint sequences in
coo With ||uk||x > ||vk||x and such that suppvx > suppuy for 1 < k < n then

(|3 ne vellx <Al Y ke; ukllx. Similarly, we will say that X is right-dominant

with constant v if whenever (ui,...,u,) and (vy,...,v,) are two disjoint
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I3 ks wkllx < vl k=y vkllx
We will refer to any normalized unconditional basic sequence as being left-

sequences with ||ug||x < |lvk|lx and suppvg > suppui for 1 < k < n then

or right-dominant according as the associated sequence space is left- or right-

dominant.

LEMMA 5.1: X is left-dominant with constant v if and only if X* is right-

dominant with constant ~.

Proof: Let us prove that if X is left-dominant then X™* is right-dominant; the

other direction is similar. Suppose (u,...,u}) and (v},...,v}) are two se-

r'n
quences in cop with |lug|x+ < |[vf||x+ for 1 < k < n and suppuj < supp vj.
There exists ¢ € X supported on | JI_, suppu} with ||z]j = 1 and (z, Y, u}) =
|0 ulllx-. Let = ¥ u; where suppu; C suppu;. Next pick v; of norm
one with support contained in suppv! so that {(v;,vf) = ||v}|x-. Finally let

y = ey luill xvi. Then [lyll < [zl = . Also
.Y ) = Y ulxletlx-
2 Z(uivu;>

T
> ullx-. W
=1

If N is a natural number we denote by X the space X[N+1,00) of allz € X
such that z(k) = 0 when k < N.

LEMMA 5.2: Suppose X is a left-(resp. right-)dominant sequence space. Suppose
1 <p < oo and ¢, is disjointly finitely representable in X. Then:

(1) X satisfies a lower- (resp. upper-) p-estimate.

(2) There is a constant K so that for any n € N, there exists N € N so that

X~ satisfies an upper- (resp. lower-) estimate with constant K onn vectors.

Proof: We consider only the case of a left-dominant space, and assume that
¢, is C-disjointly representable in X (actually by Krivine’s theorem [19] we
could suppose C = 1). For notational convenience suppose p < 0o. Suppose
Zy,...,Zy are disjoint in cpy. Then there exist yi,...,y, disjoint in X with

max;, supp zx < suppy; for 1 < j < n such that ||y;|| = ||z;|| and | z;;lyjﬂ >
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20) (i s Thus (|57 250l > (207N, [lasP) 7.
Conversely, if we fix n and choose any y1,... ,y, normalized, disjoint and 2C-
equivalent to an £}-basis then if N = max,suppyx and z1,... ,z, are disjoint

in Xy then || 320, a2l < vl 7. lzsllysll < @ONAIZ=y ll251) 77w

It follows from Lemma 5.2 and Krivine’s theorem that if X is left- or right-
dominant then there is exactly one 7 = r(X) so that ¢, is disjointly finitely
representable in X. Let us call r the index of X. If X is right-dominant and of
index oo then clearly X = ¢y while if X is left-dominant of index 1 then X = 4.
A right-dominant space of finite index has a nontrivial lower estimate and so can
be realized as the dual of left-dominant space of index greater than one.

Notice that it also follows from Lemma 5.2 that every left- or right-dominant
sequence space is an asymptotically £,.space where r = r(X) (cf. [23], p. 221). We
now turn our attention to the problem of deciding when a left- or right-dominant

space is sufficiently Euclidean.

PROPOSITION 5.3: Let X be a left- or right-dominant sequence space. Then X
is sufficiently Fuclidean if and only if 1 < r(X) < oo.

Proof: Let U be a nouprincipal ultrafilter on the natural numbers and let X,, =
X[n,00). Let Y be the ultraproduct £ (X,)/cou(Xn) where c/(Xy) consists
of all sequences (z,) € foo(Xn) with limpey ||zo| = 0. Then X is sufficiently
Euclidean if and only if £; embeds complementably into Y. Assume X is left-
or right-dominant with index r. Then Y is a Banach lattice with an upper and
lower r-estimate. This implies Y is isomorphic to an abstract L,-space and so

the result follows. |

PROPOSITION 5.4: Suppose (uy) is a left- (resp. right-) dominant basis and that
7 is a permutation of the natural numbers such that (ur,)) is also left- (resp.

right-)dominant. Then there is a constant C such that for any « € ¢y

oo [o.0]
1> ewraie]] < CI Y atingiyl
k=1 k=1
(respectively,

[o.0] oo
IS~ enuzell = €Y a1
k=1 k=1

Proof:  We treat only the left-dominant case. Define a sequence (s,) induc-

tively as follows. Let s; = 1 and then let s, be the least m so that m €
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m{n,n+1,...} ~s1,... ,8._1}. Note that s, < 2n -1 < 2n and that (s,) in-
creases. Further s, = 7(r,) where r, > n. Hence (ur(,)) dominates (us,) which

in turn dominates (uz,). This establishes the result. |

PROPOSITION 5.5: Let (u,) be a left- (resp. right-)dominant basis of a Banach
space X. In order that (u, ) be equivalent to its square it is necessary and sufficient

that (u,,) be equivalent to (ugy).

Remark: Clearly (u,) is equivalent to (ug,) if and only if (u,) is equivalent to

(unn) for any N in view of the dominance assumption.

Proof: Consider the left-dominant case and assume (u,) is equivalent to its
square. Let (v,) be the natural basis of X* with (v4,_;) equivalent to (uy),
for 0 < j < 3. Then (vy,) is left-dominant. Since some permutation of (v,) is
equivalent to (u,) we have that (u,) dominates (vs,) and hence (us,) dominates
(un). This implies (u,,) and (uz,) are equivalent. The other case is similar and

the other direction is trivial. [ |

THEOREM 5.6: Let X be a left- or right-dominant separable sequence space and
let (uy,) be a complemented normalized disjoint sequence in X. Then (uy) is
permutatively equivalent to a subsequence of the canonical unconditional basis
(en) of X.

Proof: Let us assume the basis is left-dominant; the case of a right-dominant
basis is almost identical. We can assume the dual functionals (u;,) in X* have the
same support as (uy). Let f, = |ug||uy| € ¢1. For each n pick ky, € supp uy, so that
[ frepmalls = 3 and [[facp, 001 = 5. Let vn = upnep k) and wy, = Un€, o)
Now we argue that (v,,) and (w,) are both equivalent to (u,). Indeed the operator
Tz =377 (2, |u)|)u, is easily seen to be bounded on X. We have T|v,| = antin,
and T|w,| = Bpu, where a,, 8, > 1/2. It follows that both (|v,|) and (|w,]|) are
equivalent to (u,) and the desired conclusion follows.

Now, if X is left-dominant, then (v,,) dominates (e ); to see this just note that
(vnef1 k,)) dominates (||lvnep k,yllex,). Similarly, (ex,) dominates (wy). Thus

(un) is equivalent to (eg, ). |

THEOREM 5.7: Let X be a separable left- or right- dominant sequence space.
Suppose that r(X) = 1 or r(X) = oo and that (e,) and (es,) are equivalent.
Then every complemented normalized unconditional basic sequence is equivalent

to a subsequence of the basis and X has a unique unconditional basis.
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Proof: We assume X left-dominant. Let (u,) be any complemented normalized
unconditional basic sequence in X. Then (u,) is anti-lattice Euclidean by Propo-
sition 5.3 and so by Theorem 3.5 and the hypothesis on X, (u,) is equivalent to
a complemented disjoint sequence in X. By Theorem 5.6, this implies that (u,)
is permutatively equivalent to a subsequence (eg, ) of (e,).

We now restrict to the case when (u,,) is an unconditional basis of X. Applying
Theorem 3.5 again we see that (e,) is equivalent to a complemented disjoint
sequence in the N-fold sum basis (u,)™ of XV. Now (ex, )V arranged in the
obvious order is also a left-dominant basis. Here the “obvious order” (f,) is
to take fan(j_1)+s to be (0,...,0,ex,,0,...) € XN, where ek; is in the sth co-
ordinate. Hence (e,,) is permutatively equivalent to a subset of (e, )". However
(ex, )N is permutatively equivalent to a subset of (e,)" which is permutatively
equivalent to (e, ). By the Cantor-Bernstein principle [27], this means that (e, )™
is permutatively equivalent to (e, ).

Now (fx) dominates (ey;) by Proposition 5.4 and similarly (ex) dominates
(f2r)- Hence, since (ex) and (e4y) are equivalent we have that (fax) is equiv-
alent to (eg). Now (f2,—1)n>1 is dominated by (fi, fo, f1,...) and dominates
(f1, fa, fs,...) and thus is also equivalent to (f2,). Hence (f,,) is equivalent to
(er). Now fnn is equivalent to ey, and hence to (e,). Thus (eg,) is equivalent

to {en). The result now follows. |

Remarks: There is a natural question here, which is also suggested by the work
of Wojtaszczyk [26]. Suppose (z,) and (y,) are two unconditional bases whose
squares are permutatively equivalent; does it follow that (z,) and (y,) are per-
mutatively equivalent? The corresponding Banach space problem has a negative
solution. An example of Gowers [13] shows that there is a Banach space X so

that X and X? are not isomorphic but X2 and X* are isomorphic.

THEOREM 5.8: Suppose that 1 < p, < oo for all n and that p, | 1. Suppose

that for some constant a > 0

for n > 2. Then the Nakano space ¢(p,) has a unique unconditional basis.

Similarly if p, T oo and for some constant a > 0
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for n > 2, then h(p,) has a unique unconditional basis.

Proof: If p, | 1 then X = {(p,) has a right-dominant basis with 7(X) = 1. The
assumption that 1/p, — 1/p2, = O((logn)~!) implies that the basic sequences
(en) and (e2,) are equivalent by an old result of Simons [25]. The second case is

similar (or dual). |

THEOREM 5.9: Let p, | 1 be such that p, = 1+ 0O(logn)~'. Assume (N,) is an
increasing sequence of natural numbers such that 1/p,+1—1/pn = O((log N,)™1)

and inf, N,,11/N, > 1. Then ¢, (fg]") has a unique unconditional basis.

Proof: Let g, be the sequence obtained by writing out p;, N, times, p2, N»
times etc. It is clear that the Nakano space £(g,) can be written as vector-
valued Nakano space #(p,)(£)*). But by Simons’s theorem [25] £(p,) = £1. Let
M, = N1 +---+ N,. Then M,, < ¢cN,, for some ¢. If M,_1 < k < M, and
M,.1 < 2k < M,, we have that either m ~n < 1 or (m —n—1)N, < k. Thus
(m — n) is bounded independent of k and so 1/gy — 1/gx = O((log N,)7 1) =
O(log k)~ . The result follows from Theorem 5.8. |

N,

o) where

Remark: We do not know if Theorem 5.9 holds for any space ¢;(¢

pndl
Our final example of this section is the now classical Tsirelson space. We refer
to [8] for full details of this space. We recall that the Tsirelson norm || |7 on cgo

is the minimal norm satisfying ||z||r > ||z||s and
1 n n
3 > lieglle < 1) aslr
ji=1 i=1

whenever n < suppx; < supp s < --- < Supp Z,. Tsirelson space is the sequence
space T obtained by completing cop with respect to this norm. This space is the
dual of the original Tsirelson space. We will need an alternative norm || ||# which

is defined to be the least norm satisfying ||z[|% > ||z//c and

1 2n 2n
23 sl <Yl
=1 j=1

whenever z,,... ,Z2, are disjoint and n <suppz; for 7 = 1,2,...,2n.
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LEMMA 5.10: For x € cgp we have ||z||7 < ||:L”# < A|z|r.

Proof: Let || ||7 be the least norm on cog so that ||z||7 > ||z|c and

1 2n 2n
5 2 lasllr < 1Dzl
Jj=1

j=1
whenever n < suppz; < suppzs < --- < SUppZa,. By [5] we have |z|p <
lz]l%- < 2l|z|l7 and by [1] we have ||z]7 < ||z|F <2[|z]7.

We now prove that Tsirelson space is right-dominant. This result was stated

without proof in [3], and generalizes Lemma II.1 of [8].

LeMMA 5.11: Suppose z1,... ,zn are disjoint in cpo and let oy = maxsupp Tx.-
Then

N N
1D zellr < 41D llzxllrea,llF.
k=1 k=1

Proof: Indeed if this inequality is false there exist disjoint z,,...,zx with

support supp(zy + - -+ + zn) of minimal cardinality such that

N N
1> wkllr > 41> llzkllrea 17
k=1 k=1

Let z = ch\’:l Zk. Then clearly ||z|l7 > ||z]|co- Hence there exists n > 2, and
finite intervals n < E; < By < --- < E, so that Exz #0 for k=1,2,... ,n and

1 n
lzllr =5 > lIExz]r.
k=1

Using the minimal cardinality of z we have that |J;_, Fx contains supp z. Note
first that for any 7 we have

1 n
lzjlir 2 5 > 1Bkl
k=1

Now let G = {j: suppz; C Ei} and let Hy be the set of j so that a; € Ej
but j ¢ Gy.
Then |Hg| < min Eg so that

1
I llzslires,lir >3 > lzslir.

JEH JEH)
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Thus

1 n
3 Yo D IEelr <20 Y lzslres, |z,

jEHk =1 JEH

Also, by our minimality assumption we have

1
Sk Y willr <201 Y llasllrea, 13-

jEGk jeGk
Combining these statements we obtain

5 Z [Ekz|r < 22 1> llzsllrea, IF + QZ 1D laslirea, I

k=1 jeGyi k=1 j€Hy

< 4| 2 ;] 7ea, %

=1
as required. n
PRrROPOSITION 5.12: Tsirelson space T is right-dominant.

Proof: Suppose that (z;)7_1, (y;)7=; are two disjoint sequences with z;,y; € coo

and ||z;||7 < |ly;llr and suppz; < suppy, for 1 < j < n. Let a; = maxsuppz;.

Then
n T
1> " zillr <4l llzjlirea, IF-
7=1 j=1

The proof of Lemma II.1 of [8] works for the norm || ||# with only notational
changes and yields that

n n
1D leslimea, I <11 willF
=1 =1
since ||z;||r < ||ly;]|%. Combining we obtain that

n n
1> zjllr <1601 yslr-

Thus T is right-dominant. n

Remark: Of course this implies that p-convexified Tsirelson T(®) also is right-

dominant for 1 < p < co.
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THEOREM 5.13: Tsirelson space and its dual have unique unconditional bases.

Proof: 'We have T right-dominant and clearly r(T) = 1. We need only observe
that the canonical basis (e,) is equivalent to (ez,) in T' ([8] p. 14) and apply
Theorem 5.7. |

Theorem 5.13 answers a question in [3], where it is shown that convexified
Tsirelson T(? has a unique unconditional basis. In fact much more is true as
with T(2) (cf. Theorem 7.9 of [3]). We could prove Theorems 5.13 and 5.14
directly from Theorem 3.5, by using known results, but it seems more natural to
invoke the theory of right-dominant bases as here.

THEOREM 5.14: Every complemented subspace of T' with an unconditional basis

has a unique unconditional basis.

Proof: By Theorem 5.7, every complemented normalized unconditional basic
sequence is equivalent to a subsequence of the canonical basis. The result follows
in the same way as the preceding result, since every subsequence of the basis is
right-dominant and equivalent to its square ([8] p. 14). |

6. Further examples: Orlicz sequence spaces

In this section we construct some examples of spaces with unique unconditional
basis but such that some complemented subspace fails to have unique uncondi-
tional basis.

Let F be an Orlicz function satisfying the Aj-condition, normalized such that
F(1) = 1. If we set ¢(1) = sF’(s)/F(s) where s = e”7 then we can write F' in

the form
log(1/t)
F(t) = exp —/ d(r)dr
0

for 0 < ¢ < 1. It will be convenient to let ®(u) = [,* ¢(7)dr for 5 > 0.

LEMMA 6.1: Suppose z1,...,%, are disjoint in g, and satisfy ||zk|l¢r = L.
Suppose e~ = ||zk|leo and let gk = sup,,, ¢(7) and rx = inf;>., ¢(7). Then
for any ay, ... ,an, € R with | Y _, axz|e. = 1 we have

n n
3 lal <1< Y fai™

k=1 k=1
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Proof: The proof is essentially trivial. We need only observe that if j € supp zy,

F(jaxzi()]) = exp(®(log |zx (1)) — @(log|akzx(5)| ) F(larzx(5)]),

and that, since |ag| < 1 and |z ()| < e 7*,

rx log |ak| ™! < ®(log laxzk ()| 7!) — @(log |zk(j)| ™) < gk loglak|™'. W

LEMMA 6.2: If limy_, o, ¢{t) = 1 then the Orlicz sequence space {r is anti-

Euclidean.

Proof: Note first that £z has cotype 2. Assume that for some M and every n
there exist operators S,: E%" —fpand T,,: g — E%” so that T,,S, is the identity
on £2*, ||IS.|| = 1 and ||T,|| < 1.

For fixed n, we may pick by induction an orthonormal basis (fi )22, so that if
v € [fu]2%; 41 then [|Spv]loo < [ISn filloo- Let Hp = [filiZ, 4, Then if v € Hp,
[Snvllec < ISnfatillo = an, say. For fixed k € N we have > |Safj(k)| <
M|E|Y/?, when E C [n]. It follows that if Ex = {j € [n]: |S,f;(k)| > ay} then
|Ex| < M%a;?. But then

an P (Mo n ™) < OIS HDY e
j=1
<.

Hence
F(an/vn) < Mo ?n~L.

Now if Hy = [f;]32 41, then ||Spv]jee < an, for v € Hy. It follows from the
equation above that as n — oo we have lima, = 0. Now let U be a nontrivial
ultrafilter on the natural numbers. Consider the ultraproduct £o(£F)/cou(£F)
and the closed subspace thereof Zyy = Z/co 1(¢r) where Z is the set of sequences
() with lim ||z, |l = 0. Then Zy must contain a complemented Hilbert space.
However Z, as a Banach lattice, is an abstract L-space. This follows immediately

from Lemma 6.1. Thus we have a contradiction. [ |

The Orlicz space £¢ has a symmetric basis and therefore every sequence of con-
stant coeflicient blocks is a complemented unconditional basic sequence. Each

such sequence is equivalent to the canonical basis in a modular or Orlicz-Musielak
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sequence space £r[sy] of all sequences x such that 372 Fi (|z(j)]) < oo where
F,(t) = F(st)/F(s). Conversely the canonical basis of every such modular se-
quence space £p[s,] is equivalent a sequence of constant coefficient blocks. If
(sn) fails to converge to 0 then (cf [19], Proposition 3.a.5, p. 117) €p[s,] is iso-
morphic to £g. If limy, o s, = 0 then we can suppose that (s,,) is monotonically
decreasing.

Let us say that F' is multiplicatively convex or m-convex if it satisfies the
condition that F(s°t1=%) < F(s)?F(¢)'~? whenever 0 < s,t,0 < 1. In this case
it is clear that & is concave and that ¢ is monotonically decreasing.

Now if F is m-convex and (s,) is a monotone decreasing sequence it is easy
to see that if & € cgo and (ry) is an increasing sequence of natural numbers so
that 7 > k for all k then || 307 ) cwer, llepfsn] = Il 2 peq @€kllep(s,)- Thus there
is a weak form of dominance for the canonical basis of £r[7,]. Based on these
observations we can repeat the arguments of Propositions 5.4 and 5.5, which only

require this weakened version, to obtain the following:

LEMMA 6.3: Suppose F is m-convex and that (sp) is sequence with 0 < s, <1
and s, | 0. The canonical basis (e,) of £r[s,] is equivalent to its square if and

only if (e,,) is equivalent to (e2y,).

LEMMA 6.4: Suppose F is m-convex. Supposc (s,)5%, is a monotone decreasing
sequence with 0 < s, < 1, and that (u,) is a complemented normalized disjoint
sequence in £g[s,]. Then there is a permutation m of N and a sequence (s;,)52
satisfying 0 < s;, < s, and such that (u)) is equivalent to the unit vector basis

of £p[sl]. If in addition lims,, = 0 we may suppose that (s},) is also decrecasing.

Remark: If we take s, = 1 for all n, we obtain the fact that every complemented

block basis in £ is equivalent to a constant coefficient block basic sequence.

Proof: The proof is standard. Suppose (u}) are the dual functionals and that

n

frn = |unl|ut|. Let 77 = maxiesuppu, Sk Pick s, so that if
n = {k: lun(k)lsk > s} and B, = {k: |un(k)|sx < si}

then || fnea, ll1, [l feB,
(unea,) and (unep,). However, since ¢ is monotone decreasing then for k € A,
and any 0 < A <1 we have

1 > 3. Then (u,) is equivalent to both the sequences

(>‘5n|un( )|) (’\SH).

F(sp|un(k)|)
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This implies that (upes,) is dominated by the unit vector basis of ¢p[s]].
A similar argument with B, gives that (u,) is equivalent to £g[s]].

To complete the proof, suppose s > 0 and observe that |{n: s, > s}| >
{n: mn > s} > |{n: s/ < 7}| so that we can permute (s)/) to form a sequence

(s!,) with the desired properties. 1

n

THEOREM 6.5: Suppose F' is m-convex and lim;_, o, #(t) = 1. Suppose Z is a
complemented subspace of £ with an unconditional basis equivalent to its square,

and such that Z is not isomorphic to £r. Then Z has a unique unconditional basis.

Proof: 1In fact the given unconditional basis is equivalent to the canonical basis
of £p[s,] where s, | 0 and {e,) is equivalent to {es, ). By Lemmas 6.2 and 6.4 and
Theorem 3.5 we sce that any other unconditional basis is permutatively equivalent
to the unit vector basis of £p[s),] where s/, | 0 is increasing and s/, < s,. But
then, we can similarly find an integer N so that the original basis is permutatively
equivalent to a complemented disjoint sequence in the N-fold product of this
basis. Thus if (e,) is the original basis there exists a permutation 7 so that
(ex(ny) is equivalent to the canonical basis of fp[s’1+[n_l/N]]. The argument of
Proposition 5.4 again establishes that (e(n)) is equivalent to (e,). But now the

new basis is equivalent to (enyn) which is also equivalent to (e,). [ |

We will specialize to consider functions of the form F(t) ~ t*|logt|~* where
p > 1 and a > 0. More precisely let g(r) = min(1,77!) and let FP® be the
Orlicz function corresponding to ¢ = p + ag, i.e. FP%(t) =tPT® fore™! <t <1
and FPA(t) = ¢ P%P|logt|™ for 0 < t < e~ !. These functions are convex and
m-convex,

Now suppose s, | 0. For each n € N let N, be the greatest index such
that s; > exp(—2"), and let Ny = 0. Let E,, = {Np_1 +1 < k < N} and
Vo = lex: k € Ey).

PROPOSITION 6.6: Suppose 1 < p < oo and a > 0 are fixed. Let FF = FP®. Then
if0 < s, <1ands, |0, we have

(1) €rlsa] = 6,(Va).
(2) There is a constant C' depending only on p,a, so that if x € V,,, then

C7Mlzlles,, < llzllens,) < Clizles,-

(3) Lr[ss] = ¢, as a sequence space if and only if there is a constant K so that
N, < exp(K27").
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Proof: (1) Notice that if k € Ey, then sup,jog,, ¢(7) < g2 ) < p+
a2=(™=1)_ Now by Lemma 6.1, if z € ¢oo we have

I Enzllersa))le, ,umns < NZllecisa) < NUERzlersa))lle,

and by the Simons criterion [25] we obtain (1).
(2) If k € E,, we have Fy, (t) < Foyp(—2n)(t) for 0 <t < 1. Conversely

27[
Floxp(—2m)(t) < exp (/ / g(T)dT) Fy, (t) < eFy, (1)
log1/sy

(3) If z € V,, then by Lemma 6.1 we have

I2lle,, = tamy < NZllerfsa) < lllle,

so that if N, — N, < N, < exp(K2") each (ex)keg, is uniformly equivalent

N,

to the usual basis of E;,V "7t Conversely note that

N,

||Z€k||ep[s,,,] < NTIL/(p+a2“ )
k=1
so that the condition is also necessary. ]

We now give a general criterion for checking permutative equivalence of two

bases in these special Orlicz modular spaces.

LEMMA 6.7: Suppose 1 < p < 0o and a > 0 are fixed and let F' = FP“. Suppose
0 < sp,s), <1 and sy,,s, | 0. Suppose the the canonical bases of £p[s,] and
Lp|s!] are permutatively equivalent. Then there is a constant K so that for

every n > 1 and k > 2 we have
\logs:thl_l < |logs,|™! + K(logk)™!

and
|10g snk| ™! < [log sy | ™" + K (logk) ™.

Proof: Let us define
Din k)= inf  sup leplipiey and  D/(n k)= o sup lleslepin,)-

|A|=n+k
|B =k |Bl=k
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Then there is a constant C so that for all n, k we have C™'D(n, k) < D'(n, k) <
CD(n, k). Notice however that

n+k
D(n,k) = || Z €iller(sn)
j=n+l1

and hence, if 7, =log1/s;,

1/ Ptas(men)) < D(n, k) < kM (Pteg(m))

and similarly for D’(n, k). It follows that

logk
p+ag(t))

log k&

— - <logC+
p+ag(Tnik)

and this combined with a similar inequality with roles reversed gives the result.
|

PROPOSITION 6.8: Suppose 0 < s, < 1 and s, | 0. The canonical basis of
¢p|sy] Is equivalent to its square if and only if there exists | > 1 so that N4 +
exp(2"t!) > 2N, for alln > 1.

Proof: From the preceding lemma, we obtain that if the canonical basis is

equivalent to its square then
log | log s2.| < log|logs,| + K(logn)™*

for some constant K. Now suppose N,4; + exp(2"+!) < 2N,,. Then log N,, >
2"+~ Jog2 > 271 and hence

[logsn, | 7' < |logson, | 7' +2K27 " < (14 2K)27 "L

Thus 27™~! < (1 4+ 2K)27""¢ so that [ < log,(2 + 4K). This implies the given
criterion.

For the converse, notice that since the standard £-basis is equivalent to some
subsequence of the given basis, the canonical basis is equivalent to the canonical
basis of a space £p[s],] where N}, = N,, + [exp2"]. It is then clear that for some
fixed [ we have N, < 2N . This in turn implies that |logs},| < Kllogs,| for
some constant K. But then Fy; (¢) < K®F, (t) for 0 < ¢ <1 whence the result.
|
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THEOREM 6.9: Suppose a > 0 and let F(t) ~ t|logt|~® for t near zero. Let Z
be a complemented subspace of £r with an unconditional basis (u,). Suppose Z
is not isomorphic to £r. Then:
(1) If (uy) is equivalent to its square then Z has a unique unconditional basis.
(2) If every complemented subspace of Z with an unconditional basis also has

a unique unconditional basis then Z is isomorphic to £;.

Remark: By combining Propositions 6.6 and 6.8, it is clear that we can find (s,,)
with s, | 0, so that the canonical basis is equivalent to its square, but £g[s,] is

not isomorphic to £;. Thus Theorem 6.9 answers Problem 11.2 of [3] negatively.

Proof: (1) has already been proved above; it is a special case of Theorem 6.5. For
(2) we consider F = F'1@ and a sequence 0 < s, < 1 with s, | 1. Let N,,, E,, and
V., be defined as before and let M,, = N,, —~ N, _;. We may suppose, without loss
of generality, that s, = exp(—2") when N,,_; < k < N,,, by applying Proposition
6.6 (2). Assume that every subsequence of the canonical basis of £5[s,,] spans a
space with a unique unconditional basis.

Let P, = [\/Mn] We use a result of [15] that, since the given basis of each
V,, is symmetric, there is an nnconditional basis (ux)keg, of each V, uniformly
equivalent to the direct sum of M, — P,, members of the given basis and P,
constant coefficient vectors of length P,.

Now if A is any infinite subset of N we can consider the basis (ug)kcp, nen Of
the subspace [ex]lrek, nea- This is equivalent to the canonical basis of the space
Cr|(s})keE, nen] where s}, = si for Np_y +1 <k < N, — P, and s}, = pysy, for
N, — P, +1 <k < N,, where F(ppsx) = P, F(s;). Clearly p, < Pn_(H'a)il.

Now assume that fp[s,] is not isomorphic to ¢;. Then 27™log M, is
unbounded. We then choose N' = {n1,ng,...} inductively so that p, exp(27")
> exp(27™+1) for § = 1,2,... and that 27™ log M; is unbounded. Then the
sequence (s} ) ke, nen is already in decreasing order and the corresponding ba-
sis is equivalent to that for (sk)keE, nea- Lemma 6.7 can now be used again to

show that for some constant K we have that for n € N,
27" < (|log pu| + 2™) "' + K(log P,) L.
Since |log pn| > (1 + a)~!log P, this implies that
log P, < K'2"

for some K’. Thus log M,, < 3K’2™ for n € N and we have a contradiction. 1
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Remark: This theorem can be proved for wider range of Orlicz functions. Specif-
ically a proof along the same lines can be given if ¢ decreases monotonically, ¢’
is eventually monotone increasing, ¢(7) — 1 = O{(log7)™!) and 7(¢(7) — 1) is
eventually increasing.

Finally let us notice it is also possible to give a super-reflexive version.

THEOREM 6.10: Let F(t) ~ t?|logt|™! fort near zero. Let Z be a complemented
subspace of £F with an unconditional basis (u,,). Suppose Z is not isomorphic to
{r. Then:
(1) If (un) is equivalent to its square then Z has a unique unconditional basis.
(2) If every complemented subspace of Z with an unconditional basis also has

a unique unconditional basis then Z is isomorphic to £;.

Proof: The proof of (2) is identical to the proof given above. For (1), we need
a result analogous to Theorem 6.5. An inspection of the proof reveals that it is
only necessary to show that every complemented unconditional basic sequence
is equivalent to a sequence of constant coefficient blocks. It suffices to prove the
same result in £} = ¢g where G(t) ~ t*|logt|. But every unconditional basic

sequence in £ is equivalent to sequence of constant coefficient blocks [6]. |

Remark: In fact in the dual space £ the results hold for any subspace with an
unconditional basis (even if uncomplemented).

It may also be shown that the theorem is valid for F(t) ~ t?|logt|™® where
a > 1. This requires a complex interpolation technique which we will not expound
here.
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