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COMPACT CONVEX SETS 
AND COMPLEX CONVEXITY 

BY 

N. J. KALTON t 
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ABSTRACT 

We construct a quasi-Banach space which cannot be given an equivalent 
plurisubharmonic quasi-norm, but such that it has a quotient by a one- 
dimensional space which is a Banach space. We then use this example to 
construct a compact convex set in a quasi-Banach space which cannot be 
atfinely embedded into the space L0 of all measurable functions. 

1. Introduction 

A little over ten years ago Roberts ([12], [3]) showed that there exists a 
compact convex subset KofLp (where 0 < p < 1) which has no extreme points; 
in particular K cannot be affinely embedded into a locally convex space. For 
other examples and related work see [6], [8], [9], and [15]. 

The purpose of this paper is to construct a compact convex subset K of a 

quasi-Banach space which has no extreme-points and cannot be affinely 

embedded into the space L0 of all measurable functions. Thus, for example, the 
still unresolved problem of whether every compact convex set has the fixed 
point property cannot be reduced to considering L0. 

The construction of the example uses the same basic outline as the original 
Roberts construction. However in place of  needle-points as used by Roberts 
we introduce analytic needle-points. The set K is an absolutely convex set in a 

complex quasi-Banach space with the property that every continuous plurisub- 
harmonic function W: K---R is constant. In view of the recent interest in 

plurisubharmonic functions on quasi-Banach spaces (cf. [2], [3]) this also 

should be of interest. 

t Supported by NSF grant DMS-8301099. 
Permanent address: Department of  Mathematics, University of Missouri, Columbia, MO 

65211, USA. 
Received June 7, 1986 

29 



30 N . J .  K A L T O N  Isr. J. Math.  

In order to make analytic needle-points we construct another example which 

we believe to be of some interest. We construct a complex quasi-Banach space 

X which has a one-dimensional subspace L so that X/L  is a Banach space, but 
X cannot be given an equivalent plurisubharmonic quasi-norm. In [7] we 
defined a quasi-Banach space to be A- convex if it can be given an equivalent 
plurisubharmonic quasi-norm; A-convexity is equivalent to a form of the 
Maximum Modulus Principle for vector-valued analytic functions. Thus our 
example shows that a twisted sum of two Banach spaces need not be A-convex. 

Similar examples for local convexity in place of A-convexity were constructed 

independently by Ribe [ 11 ], Roberts [14] and the author [5]. 
The author would like to thank J. Roberts, M. Stoll, G. Weiss and 

R. Rochberg for their useful comments and the University of South Carolina 

for its hospitality during the preparation of this paper. 

2. Notation 

We refer the reader to [9] for the basic properties of quasi-normal spaces. We 
shall say that a quasi-norm is a p-norm (0 < p < 1) if it satisfies 

II x,  + x2 II ' ---< II x ,  II ' + II x2 I1'. 

A well-known theorem of Aoki and Rolewicz asserts that every quasi-norm is 

equivalent to a p-norm for some 0 < p < 1. 
Let A denote the open unit disc in the complex plane and T the unit circle. If 

X is a complex quasi-Banach space a function f :  A ~ X is called analytic if it 

has a power series expansion 

f ( z )  = 

and harmonic if 

XnZ" , z E A,  
n>__O 

f ( z )  = x.z" + y d " ,  z A. 
n>_-0 n>0  

We denote by Ao(X) the space of functions f:/~---" Xso tha t f i s  continuous on A 

and analytic on A. 
If K is an absolutely convex subset of  X a function qJ: K ~ R is called 

plurisubharmonic if it is upper-semi-continuous and for every finite-dimen- 

sional subspace E of X, ~F is plurisubharmonic on the relative interior of  
E N K. X is called A- convex if it can be given an equivalent purisubharmonic 

quasi-norm. It is shown in [7] that X is A-convex if for some C and every 
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f ~ A o ( X )  

I[ f(0)[I ----< C max l] f ( z ) I [ -  
Izl=l 

We denote by m normalized Haar  measure dO/21t on T and let Lp ( T) =  

Lp(T, m). The variable e ~° on T will also be denoted by w for convenience, so 

that  if  g: A ~ Lp(T) is an analytic function then z is used for the variable in A 

and w for the variable in T. 

3. Analytic needle-points 

In this section we describe a modification o f  the Roberts technique (cf. [9], 

[ 12]) for constructing pathological compact  convex sets. Let X be a complex 

quasi-Banach space. Then x E X will be called an analytic needle-point of  X if, 

given e > 0, there exists g ~Ao(X) with 

(1) g(O) = x;  

(2) II g(z) II < e, z ET;  
(3) if  y ~ co g(/~) there exists a, 0 _-< a _-< 1 with 1[ Y - a x  [] < e. 
Note that if  X contains a non-zero analytic needle-point then X cannot be A- 

convex. Before showing that  such a situation can occur, we describe the use of 

such needle-points. For convenience suppose X is p -normed where 0 < p < 1. 

LEMMA 3.1. Let x be an analytic needle-point o f  X. Then given any e > 0 

there is a finite set F = F(x ,  e) c X and a polynomial 4~EAo(X) so that: 

(4) q~(z~) c co F; 

(5) ~(0) = x; 

(6) II ~(z)II < ~ ,  z E T ;  
(7) i f  y @co F there exists a, O <-_ a <= 1 with I l Y - a X  [[ < ~ ;  

(8) i f y E F t h e n  IlY [[ < ~ .  

PROOF. Let L = {ax: 0 <= a <= 1}. Pick gEAo(X)  satisfying (1)-(3) with e 

replaced by 3 - l/Pc. For 7 close enough to one, g(yz) fulfills the same properties 

so we may suppose that 

g(z) = Y, u S ,  I zl  < 1, 
n=O 

where [I u, l[ --< M//" for some M and 0 < fl < 1. 

Select N so that 

M p ~ flnp<lg', 
N+I 
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and set 4~(z ) = Uo + u~z + • • • + uNz ~. Clearly (5) holds. I f  c l , . . . ,  Cm > 0 with 

Z cj = 1 and Zl, • • •, zm c A ,  then 

II z c/p(zj) - z c jg(z j ) l ie= < MPfl "p 
N + I  

We conclude that  (6) holds and that  if  y ~ co ~(z~), 

d(y,  L )V <__ ~ev 

where d(y,  L)  = infl~L ]] y - 1 ]]. 

Now let E = [u0, u, . . . . .  uN] be the at most  (N + D-dimensional  space 

generated by q~. Now x = uo~E.  Let V c E be the open set o f  all v ~ E  so that  

1 
d(v, a(T)) v < e v. 

3(N + 2) 

Now by Carath6odory's  theorem, i f  y E c o  V there exist v~ . . . . .  vu+2 so that  

y E c o { v l , . . . ,  vu+2}. Thus 

d(y,  co <p(T)) < ~e p 

and  so 

d ( y , L ) < e .  

By a simple compactness argument  there is a finite subset F o f  V with 

~(T) C ints co F.  Then ~(Z~) c co ~(T) = co ~(T) C co F.  I f  y ~ F then 

II y II =< + dO,, ~(T)) p < e p. 

REMARK. Conditions (7) and (8) show that  x is a needle-point in the sense 

o f  Roberts [ 12]. 

PROPOSITION 3.2. Let  X be a quasi-Banach space in which every x E X is an 

analytic needle-point. Then there is a non-empty compact absoutely convex set 

K C X so that: 

(a) ext K -- Z~, 

(b) i f  h: K--* R is continuous and plurisubharmonic then h is constant. 

PROOF. Fix 0, > 0 (n >= 1) to be any sequence so that  Z 0,P < oo. Fix any 

x0 ÷ 0 and let Go = {Xo}. We define a sequence of  finite sets inductively. I f  

n >= 1 and G,_ ~ has been selected let us suppose G,_ ~ -- { y ~ , . . . ,  Yu} where 
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N = I G. _ 1 I" Let e = N -  L/P6. and put 

N 

G, = U F(yj ,  e) 
j = l  

where F(yj, e) is given by L e m m a  3.1. We readily verify: 

(9) co G,_ 1 C CO G,; 

(10) d(y,  co G , - t )  <= Ne p <= tiP,, y E c o  G,. 

We shall also need: 

(11) I f y  ~ co G, _ l there is a p o l y n o m i a l  4a ~ A o ( X )  with 4~(z~) c co G,, 4~(0) = 

y a n d  [14~(z)[I < 6 , f o r  Izl = 1. 
To see (11) note that  i fy j  E G,_ l there exists ~j, a polynomial  in Ao(X)  with 

4~j(z~) C co = G,, ~i(0) = Yi and [1 q~j(z) I[ < e for I zl  = 1. I f y  = cry1 + " "  + 

cuyN then take 4~ = clcbl + • • • + CN4~U. If  [Z I = 1 then 

II  (z)II < Ntt/v < 6 . .  

From (9), (10) we can repeat the original Roberts argument  to show that  i f  K0 

is the closure of  U.%0 co G. then K0 is compact  and convex and ext Ko c {0}. 

I f  we set K = {au +fly:  u, v E K o ,  la[ + Jill < 1} then K i s  absolutely convex 

and compact  and ext K = ~ .  

Now suppose h: K ---- R is a continuous plurisubharmonic function. Suppose 

y is in the absolutely convex hull of  G._ 1- Then writing y = ayl + flY2 where 

Yl, Y2 E co G. _ 1 and I a I + l fl I < 1 we see from (11) that  there is a polynomial  

4~ E A o ( X )  with 4~(zi) c K, ~(0) = y and II II =< 2 l/v0. for I z I = 1. The range 

of  4~ is contained in a finite-dimensional subspace E of  the linear span of  K. For 

0 < ;t < 1, the range of  24~ is contained in the interior o f  K n E relative to E.  

Thus, h(Aq~(z)) is subharmonic on A and continuous on A. We conclude 

h(2y) _-< max h(24~(z)) 
Izl =1 

= < max h ( x )  
II x liP_-< 26~ 

By continui ty 

Since co G . _  1 C c o  G .  c • • • 

conclude 

h(y)_-  < max h(x ) .  
l[ x IIp < 26~ 

we conclude that  h(y)_-< h(0). By density we 

h(0) = max h(y). 
yEK 
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For any y E K t h e  set V = {z: zy ~K} is a convex neighborhood of  zero in C 

and x ~h(zy) is subharmonic  on int V, cont inuous on V. Since it attains a 

max imum at 0, it is constant  and so h is constant. 

We conclude this section by quoting a result f rom [4]. 

PROPOSITION 3.3. Let X be a separable p-normable quasi-Banach space. 
Then there is a transitive separable p-normable quasi-Banach space Y which 
contains a subspace linear isomorphic to X. 

REMARK. Y is called transitive if given any Yl, Y2 ~ Y with Yl # 0 there is a 

linear operator  T: Y ~ Ywith Tyl = Y2. In fact Ycan be chosen universal for all 

separable p- normable spaces. 
Now the target is clear. I f X  contains just  one non-zero analytic needle-point 

then Y will satisfy the condit ions of  Proposi t ion 3.2. 

4. The example 

We first construct a functional version of  the Ribe space ([11]; see also [9]). 

Since we are working over  complex scalars we first note the inequality 

2 
l u l o g l u l  + v loglv l  +wlog lwl l~ - ( lu l  + Ivl)  

e 

whereas u, v, w E C with u + v + w = 0. Hence 0 log 0 is defined to be zero. 

In fact we may suppose I w I > I u I, [v I and then note 

u log  lul  + v l o g  Ivl < Iw[ Iwl 
Iwl ~ - ~  = l u l l o g - ~ +  Ivl log-- lvl  

2 2 
<-LwI-----<-(lul + Ivl), 

e e 

since xlog(1/x) <= ( l / e )  for 0 < x < 1. 

Let us define a functional ~ :  L 2 ( T ) ~  C by 

(12) c~(f)= :TflOglfldm -- ( : T f  dm) logl:Tf dm I. 

Now q) is quasilinear for the Ll -norm (cf. [9], [5]), i.e., 

(13) O ( a f ) = a ~ ( f ) ,  a E C ,  (EL 2, 

4 
l~(f~ + A) - ~(f,) - ~(f~) i ~ - ( II f, [I, + II f2 II 3, 

e 
(14) A,A L . 
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Thus we can form a twisted sum C @~, LI(T) by completing C • L2(T ) with 

respect to the quasi-norm 

(15) I I ( A , f ) l l  = + I l f l l , .  

The quasi-norm constant here is at most 4/e + 1. We denote this constant 

by C. 
Let us write RF for C @. L~; we call this space the Ribe function space. The 

map (2, f)----fextends to a quotient map Q0: RF ~ L~ with dim(Ker Q0)= 1. 

LEMMA 4.1. Given e > 0 there exist 0 < fl < 1 and 0 < 3 < 1 such that i f  

then g is continuous on A, harmonic on A, and 

(17) g(O) = (1, 0), 

(18) 11 g(z)  II < I z I = 1, 

(19) i f  y ~ co g(A) then there exists a, 0 < ~ < 1 with II Y - ~(1, 0) II < e" 

REMARK. This lemma implies (1, 0) is a needle-point of  RF, but it is not an 

analytic needle-point. In fact it may be shown that RF is A-convex. 

PROOF. For a n y 3 , 0 < ~ < l  set 

1 
1/fl = l o g  - -  

1 - 3 2, 

and define g by (16). We will show that for suitable 3, (17), (18), (19) hold. It is 
clear that g is harmonic on A and continuous on A, and that (17) holds. 

Let P(z ,  w) be the Poisson kernel, i.e., 

1 - I z [  2 
P ( z , w ) = ( I _ ~ z ) ( I _ w Z ) ,  I w l = l ,  Izl < 1 .  

Let P(z)  be the corresponding function in L2(T). We note that since 

.f e ( z ) d m  = 1 

• (e(z))  = f x  e ( z ) l og l e ( z ) l  dm (w). 

Now log I 1 - wz t and log I 1 - w~ 1 are harmonic for [ w I < I for fixed z E A. 

Hence log lP(z, w)l is also harmonic and 
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Now 

rP(z ,  w)loglP(z, loglP(z ,  z)l w)ldm(w) = 

1 
= l o g -  

1 - I z l  ~ 

g(z) = -- (0, fl) + (1, flP(Jz)). 

Hence if  I z [ = 1, 

II g(z)II --< 2 c ~  

where C is the quasi-norm constant• 

Now suppose y ~ co g(A), say 

y = ~ cjg(zj) 
j - I  

where cj > O, Y. cj = 1 and zj ~ A. Let 

f - -  ~ c;,P(Szj). 
j - - I  

Then 

y -- - (o,/~) + O ,  ~ f ) .  

The function x log x is convex for x >-_ 0. Hence as f >= 0 and  f f = 1, 

f),o  f f]=o. 
On the other hand 

t" 

~ f~ < E cj J P( ~zj )log l POzj ) l dm 

1 
< ~ cj log di 2 
- 1 - I z j l  2 

< f l - I  

Thus 0 < ¢l)(f) < f l -~ .  Let a = 1 - f l ~ ( f ) .  Thus 

II y - (~, o)II < II - ( o , ~ )  + # ( ~ ( y ) ,  f ) I I  

__<2c~. 
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Now for large enough 6 (and small enough fl), (18) and (19) hold. 
The next theorem which seems to have some independent  interest is the key 

to our construction. 

THEOREM 4.2. Let  f E H l .  Then 

exists and 

1f02" lim -- f(rei°)loglf(rei°)l  dO = a 
, - '  2n 

lo" - f(O)loglf(O){ } ~ 2( II flb,- {ri0)l). 

REMARK. If we identify H, as a subspace of Li, then this theorem implies 

{O(f)} -< 2 II f l l ,  f o r fEH2 .  

PROOV. The function 2[zl  - -z log[z [  is subharmonic on C, as may be 
checked by differentiating and verifying the mean-value property at the origin. 
Thus if we set f o r f E H ~  

= ST 2 }fl -- (Re f ) l og l f l  dm w ( f )  

then W is plurisubharmonic on H~. 
Now if F: A --- H~ is analytic then W o F is subharmonic. This is immediate 

for polynomials and follows in general by approximation. I f f E H ,  set 

F ( z ) ( w ) = f ( w z ) ,  w E T ,  zEA.  

Then 

V(F(z)) = v(f~) 

where r = Izl and f ( w ) = f ( r w ) .  Hence W(f,) is increasing in r. Hence it 
converges to a real limit or + ~ .  The same argument can be applied to ( - f)  

and since f I l l  --" II f II-, we conclude that 

lim f (Re f ) logl f r  I dm exists. 
r ~ l  J 

Again arguing with i f  and - i f  we finally deduce that 

lira f f log l f  {dm = a exists. 
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Returning to q~(f)  we see that 

2 II f IIH~ - Re tr >= 2 If(0) I - Re f(0)log I f(0) [ 

so that 

Re(tr - f(0)log If(0)[)  ---< 2( II f I1.1 - If(0) I). 

Applying the argument to 2 f w h e r e  12 [ = 1 we deduce that 

l a - f (0) loglf(0)  I I =< 2( II f I1,,, - If(0) l). 

REMARK. This theorem may also be proved using Green's  theorem, as was 
pointed out to the author  by G. Weiss and M. Stoll. 

We now return to the space RF. Let M0 c C • L2 by the subspace of  all (0, f )  
w h e r e f ~  H2. We claim that (1, 0) is not in the closure M o f M 0  in RF. In fact, if 

fE/-/2,  

II (1, JO II 

If(O, f ) E M o  

= I I - o ( f ) l  + [Ifl l l  

>__ max(l  - 2 II f l l , ,  II f l i t )  

II f II1 ~ II (0, f )  II = I ~ ( f ) l  + Ilf l l ,  

3 II f l i t .  

Thus M is isomorphic to H1 and Q0 maps M isomorphically onto HI. 
Let A be the quotient space RF/M and let QI: RF ---- A be the quotient map. 

Let u = Q,(I, 0), so that u :g 0. Note that A/[u] = Lt/Hl. 

PROPOSITION 4.3. U is an analytic needle-point in A. 

PROOF. By Lemma 4.1, we can pick g to verify (16)-(19). Let f = Qtg. 

Then f i s  in Ao(A) and satisfies (1)-(3). Thus u is an analytic needle-point. 

THEOREM 4.4. There is a twisted sum of  C and L~/Ht which is not 

A-convex. 

THEOREM 4.5. There exists a complex quasi-Banach space X and a non- 

empty compact absolutely convex subset K o f  X such that: 

(i) e x t K = ~ .  
(ii) Every continuous plurisubharmonic function on K is constant. 
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(iii) K cannot be affinely embedded into Lo. 

PROOF. In view of the discussion in Section 3, (i) and (ii) are immediate. 

Let us suppose that there is a real-affine embedding S: K ~ L0,R into the 
space of real-measurable functions. We may suppose SO = 0 so that S extends 

to a real-linear map S~: Xx---" Lo,R where XK is the linear span of  K. 

Now define T: XK ~ L0,c (into the space of complex measurable functions) 

by 

Tx = Sx  - iS(ix); 

T is complex-linear, and still an affine embedding of  K into L0,o 

Consider XK as a Banach space with the norm generated by K. By Nikishin's 

theorem ([ 10]) there exists 4~ E L0,R with q~ > 0 a.e. so that Tt = ¢. T maps XK 

boundedly into some Lp, c where 0 < p < 1. Fix any q, 0 < q < p. Then T~ 

maps K homeomorphically into Lq,o 

Now consider the map 

~u(x) = ]l T ,x  IIg. 

~U is plurisubharmonic on K and continuous. Further ~,(0) -~ O. Hence ~ --~ 0 

and thus T~ ~ 0 which is a contradiction. 

5. Concluding remarks 

Theorem 4.2 seems to have some interesting ramifications. It is closely 

related to the work of  Coifman-Rochberg [ l ] and Rochberg-Weiss [ 16], and 

has other applications to twisted sums. The author hopes to pursue these ideas 

in a future publication. 
Probably the most obvious question which arises is whether the appearance 

of  LI/H1 in Theorem 4.4 is a coincidence. The author suspects it is not. 

CONJECTURE. Every twk~ted sum o f  C and L 1 o r  C and [l is A-convex. 

The reason for this conjecture is that l~ and L~ are uniformly PL-convex (see 

[2]); it is known that every twisted sum of C and a uniformly convex Banach 

space is locally convex (see [5]). Thus the conjecture would follow by analogy. 
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