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ABSTRACT

We construct a quasi-Banach space which cannot be given an equivalent
plurisubharmonic quasi-norm, but such that it has a quotient by a one-
dimensional space which is a Banach space. We then use this example to
construct a compact convex set in a quasi-Banach space which cannot be
affinely embedded into the space L, of all measurable functions.

1. Introduction

A little over ten years ago Roberts ([12], [3]) showed that there exists a
compact convex subset K of L, (where 0 < p < 1) which has no extreme points;
in particular K cannot be affinely embedded into a locally convex space. For
other examples and related work see [6], {8], [9], and [15].

The purpose of this paper is to construct a compact convex subset K of a
quasi-Banach space which has no extreme-points and cannot be affinely
embedded into the space L, of all measurable functions. Thus, for example, the
still unresolved problem of whether every compact convex set has the fixed
point property cannot be reduced to considering L.

The construction of the example uses the same basic outline as the original
Roberts construction. However in place of needle-points as used by Roberts
we introduce analytic needle-points. The set K is an absolutely convex setin a
complex quasi-Banach space with the property that every continuous plurisub-
harmonic function ¥: K —R is constant. In view of the recent interest in
plurisubharmonic functions on quasi-Banach spaces (cf. [2], [3]) this also
should be of interest.
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In order to make analytic needle-points we construct another example which
we believe to be of some interest. We construct a complex quasi-Banach space
X which has a one-dimensional subspace L so that X/L is a Banach space, but
X cannot be given an equivalent plurisubharmonic quasi-norm. In [7] we
defined a quasi-Banach space to be 4A-convex if it can be given an equivalent
plurisubharmonic quasi-norm; A4-convexity is equivalent to a form of the
Maximum Modulus Principle for vector-valued analytic functions. Thus our
example shows that a twisted sum of two Banach spaces need not be A-convex.
Similar examples for local convexity in place of 4-convexity were constructed
independently by Ribe [11], Roberts [14] and the author [5].

The author would like to thank J. Roberts, M. Stoll, G. Weiss and
R. Rochberg for their useful comments and the University of South Carolina
for its hospitality during the preparation of this paper.

2. Notation

We refer the reader to [9] for the basic properties of quasi-normal spaces. We
shall say that a quasi-norm is a p-norm (0 < p = 1) if it satisfies

I+ 07 = xall? + x]*

A well-known theorem of Aoki and Rolewicz asserts that every quasi-norm is
equivalent to a p-norm for some 0 < p = 1.

Let A denote the open unit disc in the complex plane and T the unit circle. If
X is a complex quasi-Banach space a function f: A— X is called analytic if it
has a power series expansion

f2)= 2 x.z",  zEA,

nz0
and harmonic if

f2)= Y x.z2"+ Y y.2", zEA.
nz0 n>0
We denote by A,(X) the space of functions f: A— X so that /'is continuous on A
and analytic on A.

If K is an absolutely convex subset of X a function ¥: K —R is called
plurisubharmonic if it is upper-semi-continuous and for every finite-dimen-
sional subspace E of X, ¥ is plurisubharmonic on the relative interior of
E N K. X is called 4-convex if it can be given an equivalent purisubharmonic
quasi-norm. It is shown in [7] that X is 4-convex if for some C and every
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SEA(X)
A0 | = Cmax | S

We denote by m normalized Haar measure d6/2n on T and let L,(T)=
L,(T, m). The variable ¢” on T will also be denoted by w for convenience, so
that if g: A— L,(T) is an analytic function then z is used for the variable in A
and w for the variable in T.

3. Analytic needle-points

In this section we describe a modification of the Roberts technique (cf. [9],
[12]) for constructing pathological compact convex sets. Let X be a complex
quasi-Banach space. Then x € X will be called an analytic needle-point of X if,
given ¢ > 0, there exists g € 4y(X) with

(1) g(0)=x;

@) llg2) || <& z€T;

(3) if y Eco g(A) there exists ¢, 0 =a =1 with ||y —ax || <e.

Note that if X contains a non-zero analytic needle-point then X cannot be A4-
convex. Before showing that such a situation can occur, we describe the use of
such needle-points. For convenience suppose X is p-normed where 0 < p < 1.

LEMMA 3.1. Let x be an analytic needle-point of X. Then given any ¢ >0
there is a finite set F = F(x, ¢) C X and a polynomial ¢ € A(X) so that:

(4) ¢(A) Cco F;

(5) 6(0) = x;

6) o) || <&, z€ET,

(7) ifyEco F thereexists a, 0 S a =1 with ||y —ax || <e;

8) ifyEF then ||y | <e.

PrOOF. Let L = {ax: 0 = a = 1}. Pick g €A4y(X) satisfying (1)-(3) with ¢
replaced by 3 ~!"?¢. For y close enough to one, g(yz) fulfills the same properties
S0 we may suppose that

gz)= 2 u,z", |z| =1,
n=0
where || u, || = Mp" for some M and 0 <f < 1.
Select N so that

M3 g <ier,

N+1
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and set ¢(z) = ug + U,z + - - - + uyz". Clearly (5) holds. If ¢, . . ., ¢,, = 0 with
2¢=1andz,...,z,€EA, then

I Zco(z)—Zcglz)IP= ¥ MPB™
N+1
< e,
We conclude that (6) holds and that if y €co ¢(A),
d(y,L)y = 3

where d(y, L)=infie; |y — /| -
Now let E =[uy, u,, ..., uy] be the at most (N + 1)-dimensional space
generated by ¢. Now x = y,€E. Let V' C E be the open set of all v € E so that

d(v, ao(T))" <§(N—+2—5 .
Now by Carathéodory’s theorem, if y Eco J there exist v;,..., ¥y, so that
y€co{vy, ..., Vy42}. Thus
d(y, co ¢(T)) < 4e”
and so

diy,L)<e.

By a simple compactness argument there is a finite subset F of V with
¢(T) C intg co F. Then ¢(A) C co ¢(T) = co ¢(T) C co F. If y EF then

Iy 17 =% +d@, §(T)F <e.

ReEMARK. Conditions (7) and (8) show that x is a needle-point in the sense
of Roberts [12].

PROPOSITION 3.2. Let X be a quasi-Banach space in which every x € X is an
analytic needle-point. Then there is a non-empty compact absoutely convex set
K C X so that:

(@) extK=0,

(b) if h: K — R is continuous and plurisubharmonic then h is constant.

Proor. Fix 6, >0 (n = 1) to be any sequence so that Z d; < oo. Fix any
Xo # 0 and let Gy = {x,}. We define a sequence of finite sets inductively. If
n =1 and G,_; has been selected let us suppose G,_, = {¥,, ..., Yy} Where
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N=|G,_,|. Let e = N~"?§, and put
N
Gn = U F(y]’ 6)
j=1

where F(y;, €) is given by Lemma 3.1. We readily verify:

9) coG,_, CcoGy;

(10) d(y,c0 G,_ ) = Ne? =67, y€co G,.
We shall also need:

(11) IfyEco G,_, there is a polynomial ¢ € A(X) with ¢(A) C co G,, $(0) =
yand || #(2) || <d,for |z| =1.

To see (11) note that if y, €G, _, there exists ¢;, a polynomial in 4,(X) with
¢ (&) Cco=G,, ¢;(0)=y;and | ¢;(z) || <efor [z|=1.Iy=cpy+ -+
cyyy then take p = ¢, + - -+ + cydy. If |2] = 1 then

| (z) || =Ne'” <,

From (9), (10) we can repeat the original Roberts argument to show that if K,
is the closure of UZ=_, co G, then Kj is compact and convex and ext K, C {0}.
Ifweset K = {au + pv:u,vEK,, |a| + |f| = 1} then K is absolutely convex
and compact and ext K = .

Now suppose #: K — R is a continuous plurisubharmonic function. Suppose
y is in the absolutely convex hull of G,_,. Then writing y = ay, + Sy, where
Vi, 2Eco G, _, and a| + |f]| =1 we see from (11) that there is a polynomial
P E AW X) with ¢(A) C K, $(0) =y and || ¢(z) || =2"?3,for |z] = 1. The range
of ¢ is contained in a finite-dimensional subspace E of the linear span of K. For
0 <4 <1, the range of A¢ is contained in the interior of K N F relative to E.
Thus, h(A¢(z)) is subharmonic on A and continuous on A. We conclude

h(Ay) = max h(A¢(2))

= max Ah(x).

lx1°=267
By continuity

hA(y)= max h(x).

hx 1P =247

Since co G,_, Cco G, C --- we conclude that h(y) < k(0). By density we
conclude

h(0)= mealg( h(y).
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For any y EK the set V' = {z: zy €K} is a convex neighborhood of zero in C
and x — A(zy) is subharmonic on int V', continuous on V. Since it attains a
maximum at 0, it is constant and so 4 is constant.

We conclude this section by quoting a result from [4].

PROPOSITION 3.3. Let X be a separable p-normable quasi-Banach space.
Then there is a transitive separable p-normable quasi-Banach space Y which
contains a subspace linear isomorphic to X.

REMARK. Y is called transitive if given any y,, y,€ Y with y, # 0 there is a
linear operator T Y — Y with Ty, = y,. In fact Y can be chosen universal for all
separable p-normable spaces.

Now the target is clear. If X contains just one non-zero analytic needie-point
then Y will satisfy the conditions of Proposition 3.2.

4. The example
We first construct a functional version of the Ribe space ([11]; see also [9]).
Since we are working over complex scalars we first note the inequality
2
luloglu| +vlog|v| +wlog|w|| =—(u| +|v])
e
whereas u, v, wEC with u + v + w = 0. Hence 0log 0 is defined to be zero.
In fact we may suppose |w| = |u|, |v| and then note

u v w w
ulog:—||—+vlog—|-|— = lullogu+ |v|10g|—~|
w

[w] lul [v]
2 2
=—jwl=-(ul +[v]),
e e

since x log(1/x)=(l/e)for0=x = 1.
Let us define a functional @; L(T)— C by

(12) o= [ yiogifiam = [/ fam)rog

f o

Now @ is quasilinear for the L,-norm (cf. [9], [5]), i.e.,

(13) D(a /) =a®(f), a€EC, fEL,

4
(14) |q)(fl+f2)—'q)(ﬁ)_q)(f2)lé_e("fl"l+“fZ"l), S LEL,.
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Thus we can form a twisted sum C @4 L (T) by completing C & L,(T) with
respect to the quasi-norm

(15) AN =1A=2N+ | [
The quasi-norm constant here is at most 4/¢ + 1. We denote this constant
by C.

Let us write RF for C ©4, L,; we call this space the Ribe function space. The
map (4, /) — fextends to a quotient map Q,: RF — L, with dim(Ker Q) = 1.

LEMMA 4.1. Given e >0 there exist 0 <p <1 and 0 <6 < such that if

(16) g(z)= <1, />’< T 8z + Y 5"2"’w">)
n=1 n=1

then g is continuous on A, harmonic on A, and

(17) g(0)=(1,0),

(18) lg2) || <e, [z =1,

(19) ify Eco g(A) then there exists 0, 0 S a = L with ||y — (1, 0) || <e.

REMARK. Thislemma implies (1, 0) is a needle-point of RF, but it is not an
analytic needle-point. In fact it may be shown that RF is A-convex.

Proofr. Foranyd, 0<d <1 set

1/8 = log

1—6%

and define g by (16). We will show that for suitable 8, (17), (18), (19) hold. It is
clear that g is harmonic on A and continuous on A, and that (17) holds.
Let P(z, w) be the Poisson kernel, i.e.,

__ 1=z
(1 —wz)1 —wz)’

P(z,w) wl =1, |z|] <.

Let P(z) be the corresponding function in L (T). We note that since
[ P(z)dm =1

D(P(2)) = fT P(z)log| P(z)| dm(w).

Nowlog|! —wz| and log|! — wZ | are harmonic for {w| < | for fixed z €A.
Hence log| P(z, w)| is also harmonic and
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fTP(z, wilog| P(z, w)|dm(w) = log|P(z, z)|

1
1—(z|*

= log

Now

g(z)=—(0, B) + (1, BP(dz)).

Hence if |z] =1,

Ne(z) | =2CB

where C is the quasi-norm constant.
Now suppose y € co g(A), say

y= _il ¢g(z;)

j=

where ¢, 20, 2 ¢; = 1 and z;EA. Let

f=3 ¢Plz).

Then
y= —(Oaﬂ)_*—(l,ﬂf)'

The function x log x is convex for x = 0. Hence as f= 0O and [ f= 1,

()= [ fiogi z(ff)log ff‘ —0,

On the other hand
YN=X¢ f P(dz;)log| P(z;)| dm

1
=2Cj10g1—:—672j?
<p.
Thus 0 =®( ) =B '. Leta=1— BP(f). Thus

=2CB.
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Now for large enough J (and small enough ), (18) and (19) hold.
The next theorem which seems to have some independent interest is the key
to our construction.

THEOREM 4.2. Let fEH,. Then

1 2n ) .
lim —f f(re®)log| f(re'®)|d6 = o
0

r—=1 27
exists and
lo — f(O)log| AO)| | =2(|| f &, — | ACO)]).

ReEMARK. If we identify H, as a subspace of L,, then this theorem implies
| D(N] =2 f| for fEH,.

Proor. The function 2|z| — zlog|z| is subharmonic on C, as may be
checked by differentiating and verifying the mean-value property at the origin.
Thus if we set for fEH

‘P(f)=fT2lf| — (Re flog| fldm

then W is plurisubharmonic on H.
Now if F: A— H_ is analytic then ¥ o F is subharmonic. This is immediate
for potynomials and follows in general by approximation. If f€ H, set

F(z)(w) = f(wz), weT, z€A.

Then

Y(F(z))=Y¥(/)

where r = [z| and f,(w) = f(rw). Hence W(/,) is increasing in r. Hence it
converges to a real limit or + oo. The same argument can be applied to (— f)
and since [|f,| — | f||», we conclude that

lim f (Re f)log| f,|dm exists.
r—-1i

Again arguing with ifand — if we finally deduce that

lim { flog|f.|dm =0 exists.
r—1
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Returning to W( /) we see that

2|l fIlu, — Re o = 2| f(0)| — Re f(0)log| f(0)|
so that
Re(o — f(O)log| f(O)) = 2(|| f |, — 1 S(O)]).
Applying the argument to A fwhere |4 | = 1 we deduce that
lo — fO)og| f(0)| | = 2(|| f llw, — |AOY]).

ReEMARK. This theorem may also be proved using Green’s theorem, as was
pointed out to the author by G. Weiss and M. Stoll.

We now return to the space RF. Let M, C C ® L, by the subspace of all (0, f)
where f€ H,. We claim that (1, 0) is not in the closure M of M, in RF. In fact, if
fe HZ’

HEDN =11=®ND+ [ /1
z max(l =2 | /s, /1)

1
3.

v

If (0, NEM,
1A= 10NN =1DNDI+ 11 S

=301

Thus M is isomorphic to H, and ¢, maps M isomorphically onto H,.
Let A be the quotient space RF/M and let Q,: RF — A be the quotient map.
Let u = Q/(1, 0), so that u # 0. Note that A/[u] = L,/H,.

PrOPOSITION 4.3. u is an analytic needle-point in A.

Proor. By Lemma 4.1, we can pick g to verify (16)-(19). Let f= Q8.
Then fis in A,(A) and satisfies (1)~(3). Thus u is an analytic needle-point.

THEOREM 4.4. There is a twisted sum of C and L,/H, which is not
A-convex.

THEOREM 4.5. There exists a complex quasi-Banach space X and a non-
empty compact absolutely convex subset K of X such that:

(i) extK=¢d.

(i1) Every continuous plurisubharmonic function on K is constant.



Vol. 59, 1987 COMPACT CONVEX SETS 39

(ii1) K cannot be affinely embedded into L.

ProoF. In view of the discussion in Section 3, (i) and (ii) are immediate.

Let us suppose that there is a real-affine embedding S: K — L,y into the
space of real-measurable functions. We may suppose S0 = 0 so that S extends
to a real-linear map S|: Xy — Ly where X is the linear span of K.

Now define T: Xy — L, (into the space of complex measurable functions)
by

Tx =8x —iS(ix);

T is complex-linear, and still an affine embedding of K into L.

Consider Xy as a Banach space with the norm generated by K. By Nikishin’s
theorem ([10]) there exists ¢ € Lyg with ¢ >0 a.e. so that 7|, = ¢.T maps Xy
boundedly into some L, where 0 < p <1. Fix any g, 0<g < p. Then T,
maps K homeomorphically into L, .

Now consider the map

yx)= || Twx |17.

v is plurisubharmonic on K and continuous. Further w(0) = 0. Hence v =0
and thus 7,=0 which is a contradiction.

5. Concluding remarks

Thecrem 4.2 seems to have some interesting ramifications. It is closely
related to the work of Coifman-Rochberg [1] and Rochberg-Weiss [16], and
has other applications to twisted sums. The author hopes to pursue these ideas
in a future publication.

Probably the most obvious question which arises is whether the appearance
of L,/H, in Theorem 4.4 is a coincidence. The author suspects it is not.

CONJECTURE. Every twisted sum of C and L, or C and I, is A-convex.

The reason for this conjecture is that /, and L, are uniformly PL-convex (see
[2]); it is known that every twisted sum of C and a uniformly convex Banach
space is locally convex (see [5]). Thus the conjecture would follow by analogy.
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