On a question of Pisier

N. J. Kalton¹
University of Missouri-Columbia

1. Introduction.

It is well-known that if \(X_0 \) and \(X_1 \) are Banach spaces with \(X_1 \) of (Rademacher) type 2 then a complex interpolation space \([X_0, X_1]_\theta\) is of type \(p \) where \(1/p = 1 - \theta/2 \). In [3] Pisier asks if there is a converse to this observation. Precisely he asks whether given a Banach space \(X \) of (Rademacher) type \(p \) where \(1 < p < 2 \) one can find a pair of Banach spaces \(X_0, X_1 \) with \(X_1 \) of type 2 so that \(X \) is isomorphic to the complex interpolation space \([X_0, X_1]_\theta\) where \(1/p = 1 - \theta/2 \).

In this note we will consider the natural finite-dimensional version of this question. It is natural to ask whether given \(1 < p < 2 \) and \(1 < K < \infty \) there exist a constant \(C = C(p, K) \) so that if \(X \) is an \(n \)-dimensional Banach space with type \(p \) constant \(T_p(X) \leq K \) then one can find \(N \geq n \), two \(N \)-dimensional Banach spaces \(X_0, X_1 \) so that \(T_2(X_1) \leq C \), and an \(n \)-dimensional subspace \(F \) of \([X_0, X_1]_\theta\) (where \(1/p = 1 - \theta/2 \)) such that \(d(X, F) \leq C \). (Notice that we only ask if \(X \) can be well-embedded into \([X_0, X_1]_\theta\) whereas Pisier asks for \(X \) to be isomorphic to \([X_0, X_1]_\theta\).)

We show that the answer to this question is negative. In fact we show the following result about the Lorentz spaces \(\ell_{p,s} \) where \(1 < p < 2 < s < \infty \) and \(1/p + 1/s < 1 \). Given any constant \(K \) and any \(\epsilon > 0 \) there exists a constant \(c = c(K, \epsilon, p, s) > 0 \) so that if \(X_0, X_1 \) are \(N \)-dimensional Banach spaces with \(T_2(X_1) \leq K \) and if \(F \) is an \(n \)-dimensional subspace of \([X_0, X_1]_\theta\) where \(1/p = 1 - \theta/2 \) then \(d(F, \ell_{p,s}^n) \geq c(\log n)^{1-1/p-1/s-\epsilon} \). The Lorentz spaces \(\ell_{p,s} \) are of type \(p \) (see [2], Theorem 1.f.10) so that the spaces \(\ell_{p,s}^n \) have uniformly bounded type \(p \) constants.

We now explain our notation. Let us note first that we regard any \(N \)-dimensional Banach space as being the same underlying vector space \(C^N \) equipped with a particular norm. On \(C^N \) we have the natural bilinear pairing defined simply by

\[
(x, y) = \sum_{k=1}^{N} x_k y_k.
\]

Hence if \(X \) is an \(N \)-dimensional Banach space we can define \(X^* \) by

\[
\|x\|_{X^*} = \sup_{\|y\|_X \leq 1} |(x, y)|.
\]

For any \(n \in \mathbb{N} \) we let \(D_n = \{-1, +1\}^n \) be the dyadic group with \(2^n \) elements. For \(t \in D_n \) and \(1 \leq k \leq n \) we define \(\epsilon_k(t) = t_k \) where \(t = (t_j)_{j=1}^n \). We use \(dt \) to denote normalized Haar measure on the finite group \(D_n \). Similarly we let \(S_n \) be the group of

¹This research was partially supported by funds from BSF grant 87-00244
permutations of \(\{1, 2, \ldots, n\} \) and use \(\sigma \) to denote Haar measure on it. We may then consider the finite-dimensional spaces \(L_2(D_n; X) \) and here the bilinear pairing is defined by

\[
(f, g) = \int (f(t), g(t)) \, dt
\]

and similarly for \(L_2(S_n \times D_n; X) \).

We recall that the type \(p \) constant of \(X \), \(T_p(X) \) is the least constant \(T \) such that for any \(n \in \mathbb{N} \), and \(x_1, \ldots, x_n \in X \) we have

\[
(\int_{D_n} \left\| \sum_{k=1}^n \epsilon_k(t) x_k \right\|^p dt)^{1/p} \leq T \left(\sum_{k=1}^n \| x_k \|^p \right)^{1/p}.
\]

We shall also need the \(K \)-convexity constant \(K(X) \) which is the least constant \(K \) such that for any \(n \) and any \(f \in L_2(D_n; X) \) we have

\[
\left\| \sum_{k=1}^n (\int_{D_n} \epsilon_k(t) f(t) dt) \epsilon_k \right\|_{L_2(X)} \leq K \| f \|_{L_2(X)}.
\]

Pisier [4] shows that if \(p > 1 \) then \(K(X) \) is bounded by a constant depending only on \(p \) and \(T_p(X) \).

The Lorentz sequence spaces \(\ell_{p, s} \) where \(1 < p, s < \infty \) consist of all sequences \(\xi = (\xi_n) \in c_0 \) such that if \((\xi^*_n) \) denotes the decreasing rearrangement of \((|\xi_n|) \) then

\[
\| \xi \|_{p, s} = \left(\sum_{n=1}^\infty n^{1/p-1/s} (\xi^*_n)^s \right)^{1/s} < \infty.
\]

Strictly speaking, if \(p < s \) then \(\| \|_{p, s} \) is a quasi-norm but it is equivalent to a norm. If \(1 < p \leq s < \infty \) then \(\ell_{p, s} \) is of type \(p \), (see [2], Theorem 1.f.10). We use \(\ell^n_{p, s} \) to denote the \(n \)-dimensional analogue of \(\ell_{p, s} \); these spaces have uniformly bounded type \(p \) constants.

Finally let us mention interpolation. We will use the ideas of interpolation of families developed in [1]. Suppose, for every \(z \in \mathbb{T} \), except on a Borel set of measure zero, we are given a norm \(\|\|_{X_z} \) on \(\mathbb{C}^N \). Suppose that the map \((z, x) \to \| x \|_{X_z} \) is a Borel function. Suppose that for some fixed norm \(\| \|_0 \) there exists a Borel function \(h \) on \(\mathbb{T} \) such that (letting \(\lambda \) denote Haar measure on the circle)

\[
\int |\log h| d\lambda < \infty
\]

and \(h(z)^{-1} \| x \|_0 \leq \| x \|_z \leq h(z) \| x \|_2 \). We say that a map \(\phi : \Delta = \{ z : |z| < 1 \} \) is in class \(\mathcal{N}^+ \) if each co-ordinate is in the Smirnov class \(\mathcal{N}^+ \); then \(\phi \) extends a.e. to the boundary. We then define for \(z \in \Delta \)

\[
\| x \|_{X_z} = \inf \sup \| \phi(z) \|_{X_z}
\]

where the infimum is taken over all \(\phi \in \mathcal{N}^+ \) such that \(\phi(z) = x \).

It is then possible to show that the infimum is actually attained. In the special case of interest to us when each \(X_z \) is a lattice for \(|z| = 1 \) then the same is true for \(|z| < 1 \).
Further if \(\|x\|_{X_\sigma} \leq 1 \) with \(x \geq 0 \) then there exists a Borel function \(\phi : T \to R_+^n \) such that for \(1 \leq k \leq n \),

\[
x_k = \exp(\int_T \log(\phi(z))_kd\lambda(z))
\]

where the integral can take the value \(-\infty\).

2. The main result.

Before stating our first technical result we introduce a definition. We shall say that a finite sequence \(\{x_1, \ldots, x_n\} \) in a Banach space \(X \) is \(1 \)-real symmetric if for any \(\sigma \in S_n \) and any \(t \in D_n \) we have that

\[
\|\sum_{k=1}^n a_k x_k\|_X = \|\sum_{k=1}^n \epsilon_k(t) x_{\sigma(k)}\|_X.
\]

This does not mean that the sequence is unconditional in the usual complex sense and so we incorporate the word real to remind the reader of this distinction.

Theorem 2.1. Suppose \(1 < r < 2, 0 < \theta < 1 \), and \(1 \leq K < \infty \). Then there is a constant \(c = c(r, \theta, K) > 0 \) with the following property. Suppose \(N \in N \) and that \(X_0, X_1 \) are two \(N \)-dimensional Banach spaces with \(T_r(X_0) \leq K \) and \(T_2(X_1) \leq K \). Suppose \(X_\theta = [X_0, X_1]_\theta \). Then for any \(1 \)-real symmetric basic sequence \(x_1, x_2, \ldots, x_n \in X_\theta \) and any real numbers \(a_1 \geq a_2 \geq \cdots \geq a_n \geq 0 \) we have

\[
\|\sum_{k=1}^n a_k x_k\|_{X_\theta} \geq cn^{-1/p}(\sum_{k=1}^n k^{2(1-\theta)/\theta r}|a_k|^{2/\theta})^{\theta/2}\|\sum_{k=1}^n x_k\|_{X_\theta}
\]

where \(1/p = \theta/2 + (1 - \theta)/r \).

Proof: We start by observing (see [4]) that since \(r > 1 \) there is a constant \(K_0 = K_0(K, r) \) so that \(X_0^*_r \) and \(X_1^* \) are \(K \)-convex with \(K \)-convexity constant bounded by \(K_0 \). For convenience we set \(M = \|x_1 + \ldots + x_n\|_{X_\theta} \).

It will now be convenient to transform the setting to that of interpolation of families on the unit disk (see [1]). We define a family of norms on \(C^N \) for \(z \in T \) by setting \(\|x\|_{Y_z} = \|x\|_{X_1} \) whenever \(|\tau| \leq \pi \theta \) and \(\|x\|_{Y_z} = \|x\|_{X_0} \) for other \(z \). We can then interpolate to produce a family \(Y_z \) for \(|z| \leq 1 \) and we have \(Y_0 = X_\theta \). We note that the family \(L_2(S_n \times D_n; Y_z) \) also forms an interpolation family. We introduce \(\xi_k \in L_2(Y_z) \) defined by \(\xi_k(\sigma, t) = \epsilon_k(t) x_{\sigma(k)} \). Then the sequence \((\xi_k) \) is isometrically equivalent to \((x_k) \). Let \(\xi = \sum \xi_k \), so that \(\|\xi\|_{L_2(Y_0)} = M \).

Now for \(t \in D_n \) we may choose \(u(t) \in Y_0^* \) with \(\|u(t)\|_{Y_0^*} = 1 \) and

\[
(\sum_{k=1}^n \epsilon_k(t)x_k, u(t)) = M.
\]

We can then for each such \(t \) find an analytic function \(\phi(t) : \Delta \to C^n \) in class \(\mathcal{N}^+ \) so that \(\|\phi(t, z)\|_{Y_z^*} \leq 1 \) a.e. for \(z \in T \) and such that \(\phi(t, 0) = u(t) \).
Now define, for $k = 1, 2, \ldots, n$, $|z| \leq 1$.

$$
\phi_k(z) = \int_{D_n} \epsilon_k(t) \phi(t, z) \, dt.
$$

Then for $|z| = 1$, and indeed also for $|z| < 1$, we have

$$
\left(\int_{D_n} \left\| \sum_{k=1}^{n} \epsilon_k \phi_k(z) \right\|_{Y_x^*}^2 \, dt \right)^{1/2} \leq K_0.
$$

We next introduce $\psi_k(z) \in L_2(S_n \times D_n; Y_x^*)$ by setting

$$
\psi(z)(\sigma, t) = \epsilon_k(t) \phi_{\sigma(k)}(z).
$$

Then for each $z \in \Delta$ and for a.e. $z \in T$, the sequence $\{\psi_k(z)\}_{k=1}^{n}$ is 1-(real) symmetric. Furthermore we have

$$
\left\| \sum_{k=1}^{n} \psi_k(z) \right\|_{L_2(Y_x^*)} \leq K_0
$$

and

$$
\langle \xi_k, \psi_j(0) \rangle = \int_{S_n} \int_{D_n} \langle \epsilon_k(t)x_{\sigma(k)}, \epsilon_j(t)\phi(0) \rangle \, dt \, d\sigma
$$

$$
= \delta_{j,k} \int_{S_n} \langle x_{\sigma(k)}, \phi(k) \rangle \, d\sigma
$$

$$
= \delta_{j,k} \frac{1}{n} \sum_{j=1}^{n} \langle x_j, \phi_j(0) \rangle
$$

$$
= \delta_{j,k} \frac{1}{n} \sum_{j=1}^{n} \int_{D_n} \epsilon_j(t) \langle x_j, u(t) \rangle \, dt
$$

$$
= \delta_{j,k} \frac{1}{n} \int_{D_n} \left(\sum_{j=1}^{n} \epsilon_j(t)x_j, u(t) \right) \, dt
$$

$$
= \delta_{j,k} \frac{M}{n}
$$

where $\delta_{j,k}$ is the Kronecker delta. Hence also:

$$
\langle \xi, \sum_{k=1}^{n} \psi_k(0) \rangle = M.
$$

It follows that $\| \sum_{k=1}^{n} \psi_k(0) \|_{L_2(Y_x^*)} \geq 1$.

We now define a family of symmetric lattice norms on C^n for $z \in T$. Let

$$
\|a\|_{E_z} = \| \sum_{k=1}^{n} |a_k| \psi_k(z) \|_{Y_x^*}.
$$
Let us show that the family E_z is an admissible family of norms. Clearly $\|\cdot\|_{E_z}$ is Borel measurable on $C^n \times T$ when suitably extended to be defined on a set of measure zero. We further note that if $h(z) = \|e_1 + \cdots + e_n\|_{E_z}$ then

$$\frac{1}{n} h(z) \|a\|_\infty \leq \|a\|_{E_z} \leq h(z) \|a\|_\infty.$$

Clearly $h(z) \leq K_0$, a.e. However

$$\int_T \log h(z) d\lambda(z) = \int_T \log \|\sum_{k=1}^n \psi_k(z)\|_{L_2(Y_z^*)} d\lambda(z) \geq \log \|\sum_{k=1}^n \psi_0(z)\|_{L_2(Y_z^*)} \geq 0.$$

Thus we can extend the definition of E_z to $|z| < 1$ by interpolation.

Now define $S_z : C^n \to L_2(Y_z^*)$ by

$$S_z(a) = \sum_{k=1}^n a_k \psi_k(z).$$

It is then clear that

$$\frac{1}{2} \|a\|_{E_z} \leq \|S_z a\|_{L_2(Y_z^*)} \leq 2 \|a\|_{E_z}.$$

Thus S_z defines a 4-isomorphism of E_z onto a closed subspace of $L_2(Y_z^*)$. Further the map $z \to S_z$ is in class \mathcal{N}^+ in the finite-dimensional spaces of all linear maps from C^n to $L_2(S_n \times D_n; C^N)$. In particular if $f : \Delta \to C^n$ is in \mathcal{N}^+ then so is $S_z \circ f$ and as $\|S_z\|_{E_z \to L_2(Y_z^*)} \leq 2$, we have the same inequality for $|z| < 1$.

Now for any $a = (a_1, a_2, \ldots, a_n) \in C^n$ we have

$$S_0^*(\sum_{k=0}^n a_k \xi_k) = \frac{M}{n} a$$

so that

$$\|\sum_{k=1}^n a_k x_k\|_{X_\theta} \geq \frac{M}{2n} \|a\|_{E_0^*}.$$

We turn to the estimation of $\|\cdot\|_{E_0^*}$. To do this we consider E_z^* for $|z| = 1$. Then E_z^* is 4-isomorphic to a quotient of $L_2(Y_z)$. If $z = e^{i\tau}$ where $|\tau| \leq \pi \theta$ then $T_3(E_z^*) \leq 4K$. Hence E_z^* has 2-convexity constant bounded by $4\sqrt{2}K$ ([2], Proposition 1.f.17) and if $a \geq 0$, using the symmetry of E_z^*,

$$\|a\|_2 \|e\|_{E_z^*} \leq 4\sqrt{2}K \sqrt{n} \|a\|_{E_z^*}.$$

Now $\|e\|_{E_z^*} = n/\|e\|_{E_z} \geq n/K_0$. Thus we conclude that for some $K_1 = K_1(K, r, \theta)$,

$$\|a\|_2 \leq \frac{K_1}{\sqrt{n}} \|a\|_{E_z^*}.$$
For other values of \(z \) we deduce that \(T_r(E^*_z) \leq CK \), for some \(C \) depending only on \(r \). We have immediately by symmetry

\[
\| \sum_{k=1}^{l} e_k \|_{E^*_z} \geq (CK)^{-r} \frac{l}{2n} \| \sum_{k=1}^{n} e_k \|_{E^*_z}
\]

\[
\geq K_2^{-r} ln^{r-1},
\]

where \(K_2 \) depends only on \(K, r \) and \(\theta \). From this we have that if \(a_1 \geq a_2 \geq \cdots \geq a_n \geq 0 \), then

\[
\max_{1 \leq k \leq n} k^{1/r} a_k \leq K_2 n^{1/r-1} \| a \|_{E^*_z}.
\]

Now suppose \(a_1 \geq a_2 \geq \cdots \geq a_n \geq 0 \). Then there exists a Borel measurable map \(v : T \to R^n_+ \) so that \(\| v(z) \|_{E^*_z} \leq \| a \|_{E^*_z} = A \), say, and

\[
\log a_k = \int_T \log v_k(z) d\lambda.
\]

Now let \(w(z) \) be the vector obtained from \(v(z) \) by rearranging the co-ordinates in decreasing order. Then let \(b_k \geq 0 \) be defined by

\[
\log b_k = \int_T \log w_k(z) d\lambda.
\]

Then \(b_1 \geq b_2 \geq \cdots \geq b_n \geq 0 \), and clearly

\[
\sum_{j=1}^{k} \log a_j \leq \sum_{j=1}^{k} \log b_j
\]

for \(k = 1, 2, \ldots, n \). For convenience let us assume that \(a_n > 0 \); some minor modifications must be made in the other case. In this case we have equality in the above case when \(k = n \). It follows from a well-known lemma of Hardy, Littlewood and Polya (cf [2] Proposition 2.a.5) that \((\log a_k)_{k=1}^{n} \) is in the convex hull of all permutations of \((\log b_k)_{k=1}^{n} \).

Thus since the Lorentz space \(l^{p,2/\theta}_r \) is a Banach space under a suitable renorming we have the existence of a constant \(K_3 \) depending only on \(r, \theta \) such that

\[
\sum_{k=1}^{n} k^{2/(1-\theta)\theta} a_k^{2/\theta} \leq K_3 \sum_{k=1}^{n} k^{2/(1-\theta)\theta} b_k^{2/\theta}.
\]

Now

\[
\log(k^{(1-\theta)/r} |b_k|) = \frac{(1-\theta)}{r} \log k + \int_T \log w_k(z) d\lambda(z)
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \log w(e^{i\tau}) d\tau + \frac{1}{2\pi} \int_{\pi\theta < |\tau| < \pi} \log(k^{1/r} w_k(e^{i\tau})) d\tau.
\]
Now we may use the estimate if $|\tau| > \pi \theta$ that $k^{1/r} w_k(e^{i\tau}) \leq K_2 n^{1/r-1} A$. We conclude that

$$k^{1-\theta/r} b_k \leq (K_2 n^{1/r-1} A)^{1-\theta} \exp(\int_{-\pi \theta}^{\pi \theta} \log w(e^{i\tau}) \frac{d\tau}{2\pi}).$$

From this and the geometric-arithmetic mean inequality we deduce that

$$k^{2(1-\theta)/\theta} r_k^{2/\theta} \leq (K_2 n^{1/r-1} A)^{2(1-\theta)/\theta} \int_{-\pi \theta}^{\pi \theta} w(e^{i\tau})^2 \frac{d\tau}{2\pi \theta}.$$

Now summing over k,

$$\sum_{k=1}^{n} k^{2(1-\theta)/\theta} r_k^{2/\theta} \leq (K_2 n^{1/r-1} A)^{2(1-\theta)/\theta} \int_{-\pi \theta}^{\pi \theta} \|w(e^{i\tau})\|_2^2 \frac{d\tau}{2\pi \theta}.$$

For $|\tau| \leq \pi \theta$, we recall $\|w(e^{i\tau})\|_2 \leq K_1 n^{-1/2} A$. Hence

$$\sum_{k=1}^{n} k^{2(1-\theta)/\theta} r_k^{2/\theta} \leq (K_2 n^{1/r-1} A)^{2(1-\theta)/\theta} (K_1 n^{-1/2} A)^2 \leq (K_4 n^{1/p-1} A)^{2/\theta}$$

for some K_4 depending only on K, θ and r. Thus

$$\left(\sum_{k=1}^{n} k^{2(1-\theta)/\theta} r_k^{2/\theta} \right)^{\theta/2} \leq K_4 n^{1/p-1} \|a\|_{E_0}^\theta \leq \frac{2K_4}{M} n^{1/p} \| \sum_{k=1}^{n} a_k x_k \|_{X_\theta}^\theta.$$

and the theorem follows.

THEOREM 2.2. Suppose $1 < p < 2$ and $q < s < \infty$ where $\frac{1}{p} + \frac{1}{q} = 1$. Then given $\epsilon > 0$, $K < \infty$ there is a constant $c = c(K, \epsilon, p, s) > 0$ so that whenever X_0 and X_1 are N-dimensional Banach spaces with $T_2(X_1) \leq K$, and F is an n-dimensional subspace of $[X_0, X_1]_\theta$ where $1/p = 1 - \theta/2$ then $d(F, \ell^n(p, s)) \geq c(\log n)^{1/q-1/s-\epsilon}$.

PROOF: Pick any $0 < \alpha < \theta$ and consider $[X_0, X_1]_\alpha = X_\alpha$. Then Y is of type r with $T_r(Y_0) \leq K^\alpha \leq K$. Further $\theta = (1 - \beta)\alpha + \beta$ where $0 < \beta < 1$ and by the re-iteration theorem $X_\theta = [X_\alpha, X_1]_\beta$.

Let $S : \ell^n_{p,s} \to F$ be any isomorphism, and let $Se_k = f_k$ for $1 \leq k \leq n$. We will argue that we may suppose that $(f_k)_{k=1}^{n}$ is 1-(real) symmetric. We can define $\tilde{S} : \ell^n_{p,s} \to L_2(S_n \times D_n; [X_0, X_1]_\theta)$ by $\tilde{S}e_k(\sigma, t) = \epsilon_k(t)f_{\sigma(k)}$ and \tilde{S} is an isomorphism onto a subspace \tilde{F} of $[L_2(X_0), L_2(X_1)]_\theta$ such that $\|\tilde{S}\|\|\tilde{S}^{-1}\| \leq \|S\|\|S^{-1}\|$. This reasoning allows us to suppose that f_k is already 1-(real) symmetric.

Now there is a constant $c = c(K, \alpha, p) > 0$ so that for any $a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$ we have

$$\| \sum_{k=1}^{n} a_k f_k \|_{X_\theta} \geq c n^{-1/r} \left(\sum_{k=1}^{n} k^{2(1-\beta)/\theta} r_k^{2/\theta} \right)^{\beta/2} \| \sum_{k=1}^{n} f_k \|_{X_\theta}.$$
Let us choose $a_k = k^{-1/p}$. Then we have
\[
\left\| \sum_{k=1}^{n} a_k f_k \right\|_{X_\sigma} \geq cn^{-1/p}(\log n)^{\beta/2} \left\| \sum_{k=1}^{n} f_k \right\|_{X_\sigma}.
\]
Clearly
\[
\left\| \sum_{k=1}^{n} f_k \right\|_{X_\sigma} \geq c_1 \|S^{-1}\|^{-1} n^{1/p}
\]
for a suitable $c_1 = c_1(p, s)$. Also
\[
\left\| \sum_{k=1}^{n} a_k f_k \right\| \leq C \|S\|(\log n)^{1/s}
\]
for some suitable $C = C(p, s)$. If we combine these we have
\[
\|S\| \|S^{-1}\| \geq c_2 (\log n)^{\beta/2 - 1/s}
\]
where $c_2 > 0$ depends on α, p, K. As $\alpha \to 0$, we have $\beta \to \theta$ and $\beta/2 \to 1/q$ whence the result.\(\blacksquare\)

References.