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1. Introduction.

It is well-known that if X; and X; are Banach spaces with X; of (Rademacher)
type 2 then a complex interpolation space {Xo, X1]s is of type p where 1/p =1 — 0/2.
In [3] Pisier asks if there is a converse to this observation. Precisely he asks whether
given a Banach space X of (Rademacher) type p where 1 < p < 2 one can find a pair
of Banach spaces Xo,X; with X; of type 2 so that X is isomorphic to the complex
interpolation space [Xg, X;]o where 1/p=1—0/2.

In this note we will consider the natural finite-dimensional version of this question.
It is natural to ask whether given 1 < p < 2 and 1 < K < oo there exist a constant
C = C(p,K) so that if X is an n-dimensional Banach space with type p constant
T,(X) < K then one can find N > n, two N -dimensional Banach spaces Xy, X so that
Ty(X;) < C, and an n-dimensional subspace F' of [Xo, X1]¢ (where 1/p = 1—6/2) such
that d(X,F) < C. (Notice that we only ask if X can be well-embedded into [Xo, X1]e
whereas Pisier asks for X to be isomorphic to [Xo, X1]e.)

We show that the answer to this question is negative. In fact we show the following
result about the Lorentz spaces £, ; where 1 <p <2< s < coand 1/p+1/s < 1. Given
any constant K and any € > 0 there exists a constant ¢ = ¢(K,¢,p,s) > 0 so that if
Xo, X1 are N-dimensional Banach spaces with T5(X;) < K and if F'is an n-dimensional
subspace of [Xo,X1]¢ where 1/p = 1 — /2 then d(F,£;,) 2 c(logn)'~1/p=1/3=¢ The
Lorentz spaces £, , are of type p (see [2], Theorem 1.£.10) so that the spaces £3 ; have
uniformly bounded type p constants.

We now gXplain our notation. Let us note first that we regard any N-dimensional
Banach space as being the same underlying vector space CN equipped with a particular
norm. On CV we have the natural bilinear pairing defined simply by

N
(23, y) = Zxkyk-
k=1

Hence if X is an N-dimensional Banach space we can define X™* by

lzlix- = sup [{=,y)|-

ylix <1

For any n € N we let D, = {~1,41}" be the dyadic group with 2" elements. For
t € D, and 1 < k < n we define €(t) = tx where t = (tj)?=1- We use dt to denote
normalized Haar measure on the finite group D,,. Similarly we let S, be the group of
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permutations of {1,2,...,n} and use do to denote Haar measure on it. We may then
consider the finite-dimensional spaces Lz(Dn; X ) and here the bilinear pairing is defined
by ‘

(fg) = / (), g(t)dt

and similarly for Ly(S,, X D,; X).
We recall that the type p constant of X, T,(X) is ‘the least constant T such that
for any n € N, and z4,...,z, € X we have

ne_ 21 ||Pdt) P . 1P /P,
(/Dn Il; k(t)z[|Pdt) ST(;H £lI?)

We shall also need the K-convexity constant K(X) which is the least constant K such
that for any n and any f € Ly(D,;X) we have

I Z(/ ex(t)f(t)dt)exll o) < Kl fllzocx)-
k=1 Y Dn

Pisier [4] shows that if p > 1 then K(X) is bounded by a constant depending only on
p and T,(X).

The Lorentz sequence spaces £, ; where 1 < p,s < oo consist of all sequences
{ = (§n) € co such that if (£)) denotes the decreasing rearrangement of (|¢,]) then

1€llp,e = () nM/P=1/5(€5)*)* < oo
n=1

Strictly speaking, if p < s then || ||, s is 2 quasi-norm but it is equivalent to a norm. If
1 <p < s<oothen,, is of type p, (see [2], Theorem 1.£.10). We use £7 ¢ to denote the
n—dimensional analogue of £, ,; these spaces have uniformly bounded type p constants.

Finally let us mention interpolation. We will use the ideas of interpolation of
families developed in [1]. Suppose, for every z € T, except on a Borel set of measure
zero, we are given a norm || [|x, on CV. Suppose that the map (z,z) — ||z|x, is a Borel
function. Suppose that for some fixed norm || ||; there exists a Borel function A on T
such that (letting A denote Haar measure on the circle)

/|logh]dz\ < oo

and h(z)"[zllo < [|z||- < h(2)||z||;. We say that a map ¢ : A = {z: |z| < 1} is in class
Nt if each co-ordinate is in the Smirnov class N*; then ¢ extends a.e. to the boundary.
We then define for z € A

= infess sup ||¢(z)| x,
2€T

where the infimum is taken over all ¢ € N such that ¢(z) = z.
It is then possible to show that the infimum is actually attained. In the special case
of interest to us when each X is a lattice for |z| = 1 then the same is true for |z| < 1.
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Further if [lz][x, <1 with z > 0 then there exists a Borel function ¢ : T — R} such
that for 1 <k <n,

Ty = exp(/r log(é(2))rdA(z))

where the integral can take the value —oo.

2. The main result.

Before stating our first technical result we introduce a definition. We shall say
that a finite sequence {z,,...,2,} in a Banach space X is 1-(real) symmetric if for any
o € S, and any t € D,, we have that

1D arzillx =11 ex(®)zoqllx-
k=1 k=1

This does not mean that the sequence is unconditional in the usual complex sense and
so we incorporate the word real to remind the reader of this distinction.

THEOREM 2.1. Supposel <r <2,0< 6 < 1,andl < K < co. Then there is a constant
¢ = ¢(r,0,K) > 0 with the following property. Suppose N € N and that X,, X,
are two N-dimensional Banach spaces with T.(X,) < K and T5(X;) < K. Suppose
X¢ = [Xo,X1]e. Then for any 1-(real) symmetric basic sequence z1, s, ...z, € X and
any real numbers a; > ay > ---a, > 0 we have

1D arerllx, = en /25 R0/ qy [20)012)) N g,
k=1 k=1 k=1

where 1/p=0/2+ (1 —6)/r.

PROOF: We start by observing (see [4]) that since » > 1 there is a constant K, =
Ko(K,r) so that X§ and X{ are K-convex with K-convexity constant bounded by Kj.
For convenience we set M = ||z; +...z,]||x,-

It will now be convenient to transform the setting to that of interpolation of families
on the unit disk (see [1]). We define a family of norms on C¥ for z € T by setting
lzlly.:;, = llzl|x, whenever |r| < 76 and |z|y, = ||z||x, for other z. We can then
interpolate to produce a family Y, for |z| < 1 and we have Yy = X,. We note that the
family Ly(Sn X Dp;Y,) also forms an interpolation family. We introduce &, € Ly(Y,)
defined by £x(0,t) = ex(t)z,(r). Then the sequence (&) is isometrically equivalent to
(zk). Let £ = > &, so that Iéllz,cve) = M.

Now for ¢ € Dy, we may choose u(t) € Yy* with [[u(t)||y; =1 and

n

O e(t)ze, u(t)) = M.

k=1

We can then for each such ¢ find an analytic function ¢(¢) : A — C™ in class Nt so
that ||#(2, z)|lys <1 a.e. for z € T and such that ¢(¢,0) = u(%).
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Now define, for k =1,2...,n, |2| < 1.

¢k(z)=/ ex(t)é(t, z) dt.

n

Then for |z| = 1, and indeed also for |z| < 1, we have

( /D I )

We next introduce i (z) € Lo( S, X Dy; Y)) by setting

PY(2)(0,t) = ex(t) oy (2)-

Then for each z € A and for a.e. z € T, the sequence {¢x(2)}%_; is 1-(real) symmetric.
Furthermore we have

%/; dt)1/2 S K().

1Y $r(@)lLaqvey < Ko

k=1

and
(&> ¥3(0)) = /:9 /D (ex(t)To(ry, €5(t)bo(y(0))dt do

= 5j,k L (ma(k)v ¢0(1~)(0))da
1 n

=1

=802 [ e(0lesuv)a

=5:’,kl /D O ei(t)e;, u(t))dt

n -
n j=1
M

= 0 k—
J n

where 6; r is the Kronecker delta. Hence also:

(€,> $i(0) = M.
k=1

It follows that ” EZ=1 ‘(,[)k(O)“Lz(YO‘) > 1.
We now define a family of symmetric lattice norms on C™ for z € T. Let

n
lalle. =11 ) laelgw(2)lly:-
k=1
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Let us show that the family E, is an admissible family of norms. Clearly || ||z, is Borel
measurable on C™ x T when suitably extended to be defined on a set of measure zero.
We further note that if A(z) = |le1 + - - - ex||E, then

1
()l < la

B: < h(z)]|alleo-

Clearly h(z) < K, a.e. However
/ log h(2)dA(z) = / log || Zl/’k(Z)HLz(Y;)d)‘
T T k=1

> log|| Z Po(2)||Lo(vg)
k=1 _

> 0.

Thus we can extend the definition of E, to |z| < 1 by interpolation.
Now define S, : C™ — Lo(Y) by

n

S:(a) = > axthr(2).
k=1
It is then clear that )
sllallz. < lIS:allz.qvy) < 2lldll.
Thus S, defines a 4-isomorphism of E, onto a closed subspace of Ly(Y}"). Further the

map z — S, is in class A/t in the finite-dimensional spaces of all linear maps from C"
to L3(Sn X Dyp; CN). In particular if f : A — C™ isin N7 then sois S; o f and as

|S:|E, - Lo(vs) < 2, we have the same inequality for |z] < 1.
Now for any a = (a1,as,...,a,) € C" we have
.
M
So k) = —
O(Z ark) 2
k=0
so that

= M
I Lzﬂakwkllxe 2 5~ |lalle;-

We turn to the estimation of || || ;. To do this we consider E7 for |z] = 1. Then E;
is 4-isomorphic to a quotient of Ly(Y}). If z = e where |7| < 76 then T5(E7) < 4K.
Hence E? has 2-convexity constant bounded by 4v/2K ([2], Proposition 1.£.17) and if
a > 0, using the symmetry of E7,

lallzllellz; < 4V2K V/nljal
g: =n/llell, > n/Ko. Thus we conclude that for some K, = K;(K,r,6),

E;

Now ||e]

K,

el

llall2 < E;-
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For other values of z we deduce that T,.(E*) < CK, for some C depending only on 7.
We have immediately by symmetry

{
1 el

l n
7" > FNTT_ 7“
Er Z (CK) 271”;ek|E‘

> K;Tin™ !,

where K, depends only on K, r and 6. From this we have that if ay 2 ay > --->a, >0,

then

max 7, < Kgnl/r_lllal
1<k<n

E:-

Now suppose a; > a3 > --- > a, > 0. Then there exists a Borel measurable map
v: T — R} so that ||v(z)||g: <|a] E; = A, say, and

logak:/logvk(z)d/\.
T

Now let w(z) be the vector obtained from v(z) by rearranging the co-ordinates in de-
creasing order. Then let b; > 0 be defined by

logbk:/logwk(z)d/\.

Then by > by > --- > b, >0, and clearly

k k
Zlogaj < Zlog b;
j=1 j=1

for k = 1,2,...,n. For convenience let us assume that @, > 0; some minor modifications
must be made in the other case. In this case we have equality in the above equation
when k = n. It follows from a well-known lemma of Hardy, Littlewood and Polya (cf [2]
Proposition 2.a.5) that (log a;)7_, is in the convex hull of all permutations of (log br)7_, -
Thus since the Lorentz space £,2/6 is a Banach space under a suitable renorming we
have the existence of a constant K; depending only on r, 8 such that

Z k2(1-—0)/9rai/0 < K, Z k2(1—9)/0rbi/9.
k=1 k=1

Now

1og(k<1—0>/r|bk[)=(1__—9210gk+ / log wi(2) dA(2)
. T T

= — logw(e'™)dr + — log(kY Twy (e )dr.
27 —nf 27 mo<|r|<n ( ( )
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Now we may use the estimate if |r| > 78 that k'/7wi(e'™) < Kon'/T"*A. We conclude

that
b

k(l—@)/rbk < (I{an/r—lA)l—G exp(/

—nb

.\ dT
1 Y —).
ogw(e)z-)
From this and the geometric-arithmetic mean inequality we deduce that

w6
k?(l—&)/erbi/e < (1{2711/r—1A)2(1—0)/0/ w(ei-r)Z_iiI_.
. —né 276

Now summing over k,

n w8
Z k2(1—9)/9rbi/9 < (Kznl/r—lA)zu—e)/e)/

k=1 -

: dr
tT\{12
Gl

For |7| < 70, we recall lw(e )|l < K n Y2 4. Hence
Z k2(1-—€)/0rbi/9 < (K2n1/r—1A)2(1—0)/0(K1n—1/2A)2 < (K4n1/p-—1A)2/9
k=1

for some K, depending only on K, 6 and r. Thus

n
(O k2A=0er0012 < Kyn!/P7Y|a| g
k=1

2K .
< =P Y D aelx,
k=1

and the theorem follows.s

THEOREM 2.2. Suppose 1 < p < 2 and ¢ < s < oo where % + % = 1. Then given
e >0, K < oo there is a constant ¢ = ¢(K,¢€,p,s) > 0 so that whenever Xy and X, are
N —dimensional Banach spaces with To(X;) < K, and F is an n—dimensional subspace
of [Xo,X1]¢ where 1/p =1 —6/2 then d(F,£"(p,s)) > c(log n)t/a-1/s=¢,

PRrOOF: Pick any 0 < a < # and consider{Xy, X;]¢ = Xo. Then Y is of type r with
T.(Yy) < K* < K. Further § = (1 — f)o +  where 0 < f§ < 1 and by the re-iteration
theorem Xy = [Xo, X1]s-

Let §: £;, — F be any isomorphism, and let Ser = fr for 1 < k < n. We
will argue that we may suppose that (fi)7_; is 1-(real) symmetric. We can define
S: €2 o — Ly(SnxDn;[Xo, X1le) by Sei(o,t) = ex(t) fo(r) and S is an isomorphism onto
a subspace F' of [Ly(Xp), Lo(X1)]e such that [|S|[|IS~] < ||IS|I|S~||. This reasoning
allows us to suppose that fi is already 1-(real) symmetric.

Now there is a constant ¢ = ¢(K, a,p) > 0 so that for any a; > a2 > --- > a, 20

we have " n n
—_— —_ T 2
1> anfellx, = en (3 R2OPIEGIOPIS 7 fix,.
k=1 k=1 k=1
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Let us choose a; = £~1/?. Then we have
1D arfillx, > ecn™/7(logn)P72)| > fellx,-
k=1 k=1

Clearly
I fillx, > e S~ ndl?
k=1

for a suitable ¢; = ¢;(p,s). Also

1D axfell < C||S||(log n)*/?

k=1
for some suitable C' = C(p, s). If we combine these we have
ISTIS™H = e2(log n)f72 1/

where ¢; > 0 depends on «, p, K. As a — 0, we have § — 6 and 8/2 — 1/q whence the
result.m
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