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NORM-DECREASING HOMOMORPHISMS BETWEEN IDEALS OF C(G) 

N. J. Kalton and G. V. Wood 

0. Introduction. The aim of this paper is to provide a complete classification of 

all norm-decreasing algebra homomorphisms between ideals of the group algebras of 

continuous functions on compact groups. 

If G and K are compact groups and 0: G • K is a epimorphism, then 0 induces 

two natural algebra homomorphisms: a monomorphism of C(K) into C(G) and an 

epimorphism of C(G) onto C(K). Furthermore any character on a compact group 

induces an automorphism of the corresponding group algebra (see Section 2 for details 

- by "character" we mean a continuous homomorphism into the circle group). We 

show that any norm-decreasing homomorphism from C(G) into C(H) (where G and H 

are compact groups) may be factored into the product of three homomorphisms of 

these types (see Section 5). Such homomorphisms we call sub-canonical. Amongst 

sub-canonical homomorphisms we distinguish the canonical homomorphisms 

(introduced for measure algebras by Kerlin and Pepe [5]); these may be described as 

those homomorphisms T for which there exists a character X on G for which TX 4= 0. 

Consider the following diagram 

GXH 

K 

where K is a common quotient, M is a common prequotient of G and H, and they are 

connected by 

M = {(x,y) G G X H: 0x = •y} 

K = M/(ker rr)(ker o). 
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The corresponding diagram for the algebras is 

C(M) • C(M x) 

C(K) 

(Here, m, e and a stand for monomorphism, epimorphism and automorphism 

respectively.) The canonical homomorphisms are those that factor through C(K), 

while the sub-canonical ones are those that factor through C(M). A canonical map - 

along the lower route - can be rerouted along the upper route as a sub-canonical map. 

However the converse is not true when the automorphism of C(M) onto C(M) is given 

by a character on M that does not have an extension to G X H (see Section 2). We give 

an example of this in Section 3, thus answering a question of Kerlin and Pepe. 

If we consider homomorphisms defined only on a two-sided ideal I of C(G), then 

it is not true that every homomorphism is the restriction of a sub-canonical 

homomorphism defined on C(G). However, we are still able to give a complete 

classification of such homomorphisms by adding a further type of homomorphism, 

namely the restriction operator RE: C(G) --> C(E) where E is a closed subgroup of G. It 

is shown that on certain ideals R E is a homomorphism. 

The corresponding problems for measure algebras and Ll-spaces for locally 

compact groups appears in [2] and [5] and for ideals in LP(G) in [1] and [4]. This 

paper completes the work started in [9] and [10]. 

1. Ideals in C(G). Let G be a compact group. Suppose H is a closed subgroup of 

G and X is a character on H. The set of f G C(G) satisfying 

f(ux) = X(u)f(x) u G H x G G 

is a closed right-ideal of C(G). We denote this ideal by J(H,x). 

There is a linear projection P = P(H,x) with IIPll --- 1 of C(G) onto J(H,x) given by 

Pf(x) = fHX(U)f(u-1 x)dmH(u) 
where m H denotes normalized Haar measure on H. 
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LEMMA 1.1. If H 1 and H 2 are closed subgroups of G and X 1 C t• 1, X2 • H•2 , 
then J(Hi,Xl) = J(H2,x2) if and only ifil 1 = H 2 and Xl = X2. 

PROOF. Suppose J(Hi,Xl) = J(H2,x 2) and that H 1 is not contained in H 2. 

Select w C Hi\H 2. Define a continuous function ½ on H 2 t• H2w so that ½(u) = X2(U) 

(u G H2) and s0(uw) = c•X2(U) where c• 4: Xl (w). Then ½ may be extended by Tietze's 

theorem to a function ½ • C(G) and then f= P(H2,x2)½ C J(H2,x2). Clearly f(x)= 

½(x) (x C H 2 L; H2w ). However f(w) 4: Xl (w)f(1). This contradiction shows that H 1 C 

H 2. Similarly H 2 C H 1 and then it is trivial that Xl = X2- 
LEMMA 1.2. If w • G, then 

J(w-1Hw,Xw ) = {wf: fG J(H1,x)} 

where Xw • w-/•w and 

and 

Xw(W -1 uw) = X(U) u G H. 
PROOF. Easy. 

PROPOSITION 1.3. J(H,x) is a two-sided ideal if and only if 

(1) H is normal 

(2) X(x-lux)=x(zt) ztCH xGG. 
In these circumstances P(H,x) is an algebra homomorphism. 

PROOF. J(H,x) is an ideal if and only if it is invariant under left translations. 

This is equivalent by Lemma 1.2 to 

J(w -1Hw,Xw 0) =J(H,x) w G G 
and hence by Lemma 1.1, conditions (1) and (2) follow. 

Now P is a linear projection and P(C(G)) is an ideal. To show P is an algebra 

homomorphism it is enough to show that P-l(0) is also an ideal. Clearly 

Pfw(X) = Pf(xw) 
so that P~l(0) is a right-ideal. 

P(wf)(x) = fHX(U)f(wu-lx)d•nH(u) 
= fHX(U)f(wu-1 w -1 wx)dmH(u ) 
= fHX(W -1 uw)f(u -1 wx)dmH(u) 

(since H is normal), 
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= (Pf)(wx) (by (2)). 

Hence P is an algebra homomorphism. 

We shall call an ideal of the form J(H,x) where H,X satisfy the conditions of 

Proposition 1.3, a normal ideal. 

LEMMA 1.4. The non-trivial intersection of two normal ideals is a normal ideal. 

In fact 

J(H,x) f3 J(K,o) = 0 if X 4: o on H F3 K 

= J(HK,r) otherwise 

where r is the unique common extension of x and o to HK. 

PROOF. Suppose f C J(H,x) (h J(K,o). Then 

f(ux)=x(u)flx) uCH, xCG 

and 

f(vx)=o(v)flx) vCK, xCG. 

Thus if X(U) 4: o(u) for u G H (h K, f-= 0. 

Otherwise, define r(uv) = X(U)O(v). 

Thenf(wx)=r(w)f(x) wGHK, xGG. 

Hence f C J(HK,r). Conversely, if f(wx) = r(w)f(x) w G HK x G G then in 

particular flux) = r(u)f(x) = X(u)f(x) for u C H, x G G i.e. f G J(H,x). Similarly f C 

J(K,o) and the result is proved. 

If L 4:0 is a linear subspace of C(G) we define L X= J(H,x) where H is the 
group of all u G G such that for some constant X(U) we have 

flux) = X(u)f(x) f C L. 

It is clear that X is then a continuous character on H, and that L X is the intersection of 

all sets J(M,fi) which contain L. 

PROPOSITION 1.5. If L is a left-ideal of C(G) then L X is a normal ideal of 
C(G). 

PROOF. L X is clearly a right-ideal. If wGG, then ( _lf: fC L X} D L and 
w 

hence byLemma 1.2 { _lf: fGL X}DL X. HenceiffGL X, wfGL Xsothat L Xisan 
w 

ideal. 

If I is an ideal,then Proposition 1.5 applies and we shall call I X the normal hull of 
I. Our next result is the basis of our later results. 
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and 

Thetl 

THEOREM 1.6. Suppose I is an ideal of C(G) and • CM(G) is such that II•ll = 1 

fGf(X)d•(x) = f(1) f c I. 

fGf(X)dSt(x) = f( 1 ) f • I X. 
PROOF. Let Z be the set of X GM(G) such that IlXll = 1 and 

fGf(X)dX(x) = f( 1 ) f G I. 
Then •2 is a weak*-closed convex subset of the unit ball U of M(G). We show that •; is 

extremal i.e. if X 1,x 2G U and Vz(X 1 + X 2) cZ then X 1,x 2GZ. If e is a minimal 
self-adjoint idempotent in I, 

and hence 

Ilell = e( 1 ) 

fe dX 1 = fe dX 2 = e(1). 

Since I is the closed linear span of its minimal self-adjoint idempotents we deduce 

X 1 ,X 2 • z. 

Hence the extreme points of Z are extreme in U, i.e. are of the form O•Su, u G G. 

Iron8 u G ae•; (the set of extreme points of Z) then 

af(u) = f(1) fCI. 

Hence if x G G 

afx(U) = fx ( 1 ) 
i.e. 

Hence 

o•f(ux) = f(x) f G 1. 

aeZ = ( X(u-1)Su - uG H} 
where I X= J(H,x). Theorem 1.6 now follows from the Krein-Milman theorem. 

The lollowing corollary is an analogue of Theorem 2 in [7], since H 1 is not a 
normal ideal of L 1 

COROLLARY 1.7. Suppose I is a closed ideal in C(G) and there is a projection P 

of C(G) onto I with ]]P[[ = 1' then I is normal. 

REMARK. The converse is immediate from Proposition 1.3. 



368 N.J. KALTON and G. V. WOOD 

PROOF. By a standard device we replace P with a projection Q which commutes 

with left-translations; define 

Qf = fG x -1 [P(xf)] dmG(x)' 
(cf. [8], page 127); then IIQII = 1 and Q is a projection onto I. 

Then by Theorem 1.6 

Qf(1) = f(1) fcI x 
and hence 

Qf(x) = x(Qf)(1) 

= Q(xf)(1) 

= xf(1) 

= fix) f C I X. 
Thus I X C I and I is normal. 

2. Canonical and sub-canonical homomorphisms. In this section we construct 

some basic types of homomorphisms between group algebras. Although we confine 

ourselves to the algebras C(G), it is clear that our remarks apply also the algebras 

Lp(G) (1 •< p < •o) or, with slight rewording to M(G). General results about ideals in 
C(G) are contained in [6], Chapter VIII. 

If G is a compact group and X • G, then the map AX: C(G) --> C(G) 

Axf(X) = X(x)f(x) 
is an isometric algebra automorphism. 

If 0: G --> H is an epimorphism between compact groups, then we may define two 

algebra homomorphisms as follows: 

A0: C(H) -> C(G) 

A0f(x ) = f(0x) 

II0: C(G) --> C(H) 

•0f(0x) = fKf(Xu)dmK(u) 
where K = ker0. It is easy to see that II rI011 = IIA011 = 1. 

Thus we can construct norm-decreasing homomorphisms by considering 

compositions of these three types of homomorphisms. Let G and H be compact 
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groups and suppose K is a common quotient group of G and H, i.e. there exist 

epimorphisms 0' G--> K, •: H--> K. Then the map T: C(G)--> C(H) given by T = 

AxA•IIoA p where X G H, p G G, is a norm decreasing algebra homomorphism. We 
shall call such a homomorphism canonical (see e.g. [4] for the case of Lp(G)). 

Let G X H be the cartesian product of G and H and denote by rr G and rr H the 

co-ordinate projections. We shall say that a closed subgroup M of G X H is full if 

rrG(M) = G and rrH(M) = H. Given any full subgroup M of G X H and any X G I• we 
may define a homomorphism 

F(M,x): C(G) -• C(H) 

by F(M,x) = IlrrHAxArr G where rrG: M-->G and rrH: M--> H. Any such 
homomorphism we shall call sub-canonical. 

THEOREM 2.1. (i) Any canonical homomorphism is also sub-canonical. 

(ii) Let M be a full subgroup of G X H and X G M,' 

then the following three conditions are equivalent.' 

(1) F(M,x) is canonical. 

(2) X may be extended to a continuous character on G X H 

(3) There exists p G • such that F(M,x)p -• O. 

PROOF. (i) Let T: C(G) --> C(H) be given by T = AxA•pIIoA p where •p: H --> K, 
0: G --> K are epimorphisms. Define M c G X H to be the set of (x,y) such that 0x = 

•y, and define o G 1• by o(x,y) = X(y)p(x). Then T = IlrrHAoArr G. 
(ii) (1) =• (3). It is trivial that if F(M,x) = AoA•IIoA r that F(M,x)r -1 =/= 0. 
(3) =• (2). If F(M,x)p =/= 0, then define N C G be the set of x such that (x,1) G M. 

Then 

IlrrHAxArrGP( 1 ) = fN(AxArrGP)(x, 1 )dmN(x) 

= fNX(X, 1 )p(x)dmN(x) 
is non-zero if and only if X(X,1) = p(x) -1 (x G N). However F(M,x)p is an idempotent 
of norm one in C(H) and hence is a character on H. Thus X(X,1) = p(x) -1 (x G N). 
Now X may be extended to G X H, for if we define 

o(y) = t2(x)x(x,y) y G H (x,y) G M, 

o G • and 
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X(x,y) = p(x)-lo(y) (x,y) G M. 
(2) ==> (1). Ifx can be extended to G X H then X may be written 

X(x,y) = r(x)o(y) (x,y) G M. 

Define N C G to be the set of x such that (x,1) • M, and let K = G/N. Let 0: G -• K be 

the natural epimorphism. Define so: H -• K by so(y) = 0(x) where (x,y) • M. Then 

P(M,x) = ioA•noi r. 
This completes the proof of Theorem 2.1. 

If J(N,x) is a normal ideal of C(G) then the natural projection P(N,x) is 

sub-canonical. To see this, let M C G X G be the set of (x,y) such that x-ly • N and 
define p G •I by p(x,y) = X(x-ly). The condition 

X(x-lux) = X(U) u • N x • G 

implies that p is indeed a character. Then 

P(N,x) = P(M,p). 

In general if P(M,p): C(G)-• C(H) is sub-canonical then if we define N = {x: 

(x,1) • M} and X • •4 by X(x) = p(x -1,1), and if x G G 

X(X -1 ux) = ,o(xu -1 x 'l , 1 ) 

= p(x,y)p(u -1 , 1)p(x,y) -1 
[where (x,y) C M] 

= p(u -1,1) = x(u). 

Hence J(N,x) is a normal ideal, and it is easily checked that P(M,p) maps J(N,x) 

isometrically into C(H) and maps its complementary ideal to zero. 

The range of F(M,p) is also a normal ideal. In fact, if E = {v: (1,v) G M} and 

o G • is defined by o(v) = p(1,v), then we have o(y-lvy) = o(v) (v G E, y G H). Thus 
J(E,o) is a normal ideal and is the range of F(M,p). 

Using this notation, it is easy to show that: 

PROPOSITION 2.2. The composition of two sub-canonical homomorphisms is 

sub-canonical when it is not zero. 

PROOF. Consider C(G) F(M,p? C(H) F(N,o? C(K). Then by above the range of 
F(M,p) is the normal ideal J(H0,x0) where H 0 = (v: (1,v)G M} and X0(V) = p(1,v). 
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Now F(N,o) is an isometry on the normal ideal J(Hi,x1 ) and zero on its 

complementary ideal, where H 1 = (u' (u,1) C N} and Xl(U) = o(u-l,1). If J(H0,x0 ) N 
J(Hi,x1) = (0), then the composition is zero. Otherwise, by Lemma 1.4, X0 = X1 on 

H 0 N H 1 and J(H0,x0 ) (h J(Hi,x1 ) = J(HoHi,x) where X extends X0 and X1' If we 
now define E C G X K by: (x,y) C E if there exists u C H such that (x,u) G M and 

(u,y) C N, and ½ • • by •2(x,y) = p(x,u)o(u,y), then it is easy to check that 

F(N,o)F(M,p) = F(E,•2). 

We leave the reader to check that the direct sum of two sub-canonical 

homo mo rphisms is sub-canonical. 

3. Illustrative example. Let G 1 and G 2 be two groups of order 8 with the 
following properties: 

(P1) The centre Z i of G i coincides with the commutator subgroup and is of 
order 2. 

(P2) Gi/Zi --• C2 X C 2. 

(P3) If u,v G G i and uv = vu then either u • Z i or there exists m C N, w G Z i such 
that v = umw. 

In fact there are two groups with these properties namely the quaternions Q and 

the dihedral group D 4. The algebra C(Gi) is of dimension 8 and has four 
one-dimensional minimal ideals and one four-dimensional minimal ideal. The four 

dimensional ideal is normal, being the ideal J(Zi,x) where X is the unique non-trivial 

character on Z i. The algebra projection P(Zi,x) of C(Gi) onto J(Zi,x) is a sub-canonical 

homomorphism which is not canonical, since J(Zi,x) contains no non-trivial character 

(X cannot be extended to G i since the commutator subgroup of G i includes Zi). 
We can however go further than this and establish an isometric isomorphism 

between the four dimensional ideals of C(G1) and C(G2) and a sub-canonical 

homomorphism between C(G1) and C(G2) which is not canonical. Let 0i: Gi-> 

C 2 X C 2 be an epimorphism whose kernel is Z i (i = 1,2) and define K C G 1 X G 2 to 
be the group of all (x,y) such that 01 x = 02Y. K is full. We now show that there is a 

character X on K which cannot be extended to G 1 X G 2. Indeed the commutator 
subgroup of G 1 X G 2 is Z 1 X Z2; we show the commutator subgroup of K is a 

proper subgroup of Z 1 X Z 2. This will be the case if we establish that for any 
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commutator (x,y), x = 1 or y = 1 implies x = y = 1. Suppose (1,y) is a commutator in 

Ki.e. 

1 = u51u•ulu2 

y = vilv51vlv2 

where (Ul,V 1) C K and (u2,v 2) C K. Then by (P3)' either u 1 G Z 1 or u 2 = u•w where 
w G Z 1 . If u 1 G Z 1 then 01u 1 = 1 so that v 1 G Z 2 and y = 1. Ifu 2 = u•nw then 01u 2 = 
(01ul)m so that 02v 2 = (02vl)m i.e. v 2 = v•z where z C Z2; again y = 1. It follows 
that there is a character X on K which cannot be extended to G 1 X G 2. 

Now P(K,x): C(G 1) • C(G 2) is a norm-decreasing homomorphism and maps the 

four-dimensional ideal of C(G 1) isometrically onto the four-dimensional ideal of 

C(G2). We remark at this point that if we replace the group algebras C(G 1) and C(G2) 

by M(G 1) and M(G2) the same statement is true and P(K,x) provides an example of a 
non-canonical norm-decreasing homomorphism in answer to a question of Keriin and 

Pepe ([5]). 

If 1 denotes the identity character on K, then P(K,1) maps the span of the 

characters in C(G 1) onto the span of the character in C(G 2) and the four-dimensional 

ideal to zero. Thus P(K,1)+ P(K,x) is an algebra isomorphism between C(G1) and 

C(G 2) or between M(G 1) and M(G2)). A routine calculation shows that in either case 

liP(K,1) + P(K,x)II =¾/2 (compare [3] ). 

4. Homomorphisms between ideals. We now consider homomorphisms defined 

only on closed ideals of C(G). We shall preserve the names canonical and sub-canonical 

for those homomorphisms which are restrictions of canonical and sub-canonical 

homomorphisms. However there is in this case another possiblity; note here that the 

situation differs substantially from the cases Lp(G) (1 •< p <oo). If G is a compact 
group and H is a proper closed subgroup of G, the restriction map RH: C(G) -> C(H) is 

never an algebra homomorphism ([ 10] ). However restricted to an ideal, R H may be a 

homo mo rphism. 

THEOREM 4.1. Suppose I is a closed ideal in C(G) and H is a closed subgroup of 

G. Then the map RH.' I->C(H) is an algebra homomorphism if and only if it is an 
injection. 

PROOF. Suppose RH: I -> C(H) is a homomorphism. Then ker R H r3 I is an ideal 



NORM-DECREASING HOMOMORPHISMS BETWEEN IDEALS OF C(G) 373 

in C(G). If fC ker R H Ch I then for any x C G, fx G ker R H so that fx(1) = 0 i.e. 

f(x) = 0. Hence ker R H C• I = {0} i.e. R H is a monomorphism. 

Conversely suppose R H is an injection. Suppose J is a minimal ideal in I; we show 

RHIJ is an algebra homomorphism. Suppose dim J = n 2 and {eij' 1 •< i •< n, 1 •< j •< n} 
, 

is an orthonormal basis of J satisfying eij = eji and eijekœ = 6jkeiœ. (See [6], page 158.) 
Then x*-> (-lneij(x)) is an irreducible representation of G. We show that this 
representation remains irreducible when restricted to H. Indeed suppose not' then 

there exist •1 ,"',•n, r/l" ør/n G C not all zero such that 
n n 

Zi= 1 Ej=lr/ieij(x)• j = 0 x G H 
i.e. 

n n 

Zi= 1 Zj=lr/i•jRHeij = 0 

so RHIJ is not an injection. It now follows that (RHeij) is an orthonormal basis of a 
minimal ideal in C(H) and satisfies (RHeij) *= RHeji and (RHeij)(RHekœ) = 
fijkRH(eiœ). Hence RHIJ is an algebra homomorphism and it follows that RHtI is a 
homo morphism. 

THEOREM 4.2. Suppose I is a closed ideal in C(G) and that I X= J(N, xJ. 

Suppose RH.' I • C(H) is an injection. Then the following conditions are equivalent.' 

(i) R H is an isometry on I 

(ii) R His sub-canonical 
(iii) HN = G 

(iv) R H is an injection on I X. 
PROOF. (i) =• (iii). Suppose x qE HN. For any minimal self-adjoint idempotent 

e(1) = Ilell. 

Suppose that for some scalar o•, I•1 •< 1 

e(x) = allell 

for all such idempotents. Then, since I is the span of minimal self-adjoint idempotents, 

fix) = af(1) for all fC I, 

and so, by considering translates 

f(xy) = o•f(y) f G I. 

Hence x G N and o• = X(X). This is a contradiction so we deduce that there exist two 
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self-adj oint minimal idempotents e 1 ,e2 such that 

el(x ) = odlel I1 

e2(x ) = 1311e211 

where o• • 13. Thus 

l(e 1 + e2)(x)l <(e 1 + e2)(1)= lie I + e211. 

Hence for each h G H, since xh • NH, there exist fh C I, self-adjoint, with fh(1) = IIœhll 
and 

ifh(xh) i < fh( 1 ). 

Now by a compactness argument there exists g c I, g self-adjoint, g(1 ) = [Igll, with 

[g(xh)l < g(1) for all h G H. 

[To see this, if U h = {Y GG: Ifh(xy)l < fh(1)}, then {U h} is an open coverofH. If 
Uhl,Uh2 .-Uhn is a finite subcover, put g = f hl + f h2 + '" + ] Thus 

IIRH(xg)11 < Ilgll = Ilxgll 
contradicting (i). 

(iii) =• (ii). Let M = { (x,y) G G X H; x-ly G N} and p G •I be defined by p(x,y) = 

X(x-ly). Then R H = II•rHApA•r G where •r H and •r G are projections of Monto HandG 
respectively. For, if f G I and x G H, we have, since ker •r H = N X {1 } 

(FI•.HApA•.Gf)(x) = (FI•.HApA•.Gf)(•'(x,x)) 

= fN(ApA•rGf)(xu,x)du 

= fNX(U-1 f(xu)du 

= fNX(U -1)x(u)f(x)du = fix). 
(ii) =• (i). R H is a monomorphism on I and hence, by the remarks after Theorem 

2.1 that a sub-canonical map is an isometry on an ideal and zero on the 

complementary ideal, R H must be an isometry on I. 

(iii) =• (iv). If RHf = 0 then f(x) = 0 for x G HN. 

(iv)=•(iii). If x q• HN, define f G C(G) so that f(HN)=0 and f(ux)= 

X(U) (u G N). Then P(N,x) f G I X is non-zero but vanishes on H. 
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REMARKS. It is easy enough to construct examples to show that R H need not 

be sub-canonical. For let G be an irreducible subgroup of U n (n X n-unitary matrices), 
and let I be the minimal ideal of C(G) corresponding to the self-representation of G. 

Then N = (Xln: [Xl = 1} Ch G. If H is a subgroup of G which is also irreducible and 

HN :/: G, then RH[I is a monomorphism but not an isometry. For example let G = SU n 
and let H be any proper irreducible subgroup of G. 

5. Classification of norm-decreasing homomorphisms. 

LEMMA 5.1. ([9]). Let I be a minimal ideal of C(G) and let T.' I-> C(H) be a 

norm-decreasing monomorphism. Then T(I) is a minimal ideal of C(H) and for f C I 

Tf(1) = f(1). 

PROOF. This is proved exactly as in Lemma 3 of [9]; note however that this 
! 

proof should be modified by deleting the conclusions that T(No) and e• --- e k are 
self-adjoint. 

THEOREM 5.2. Let I be a closed ideal of C(G) and let T.' I-> C(H) be a 

norm-decreasing monomorphism. Then there is a closed subgroup M of G such that for 

Tf = SRMf 

where S.' C[M) -> C(H) is sub-canonical, and RMII is a monomorphism. Further any 

norm-one linear extension of T defined on a subspace of I X coincides with SR M. 
PROOF. For each x C H, the map f • Tf(x) is a linear functional of norm less 

than or equal to one. Let 2 x be the set of measures • C M(G) such that 

f*•*(1) -- Tf(x) fCI 

and II•11 •< 1. Then Z x :/: 0 (by the Hahn-Banach theorem) and is a weak*-compact 
convex set. 

By Theorem 1.6 and Lemma 5.1, g G Z, if and only if 

ff(x)d•-(x) = f( 1 ) f G I x. 

Hence if I X = J(N,x), 231 is the closed convex hull of the points {X(U)bu: u C N}. 
Now suppose • G 23x and u G 23y; we shall show that u*/a G 23y x. Suppose I 0 is a 

minimal ideal in I with identity e. Then for f G I 0 

Tf(x) = f*/.t*(1) = f,e*/.t*(1) = Tf*T(e*/a*)(1) by Lemma 5.! 

so that 
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Tf*/sx_l(1) = Tf*T(e*/•*)(1). 

Again by 5.1, T(I 0) is a minimal ideal of C(H) with identity Te, and, since Tf = Tf*Te, 

Tf*[(Te*/sx_l) - T(e*/•*)] (1) = 0 

for all fC I 0. Hence, since Te*/sx_ 1 - T(e*/•*) C TI0, 

Te*/sx_ 1 = T(e*/x*). 

Now if v G Zy, since e is a central idempotent, 
T(e*(v*gO*) = T(e*gt**v*) 

= T(e*gt**e*v*) 

= Te*/sx-1 */sy-1 
= Te*/5 

(yx) -1' 

Thus for f G I0, (Tf*(v*gt)*)(1) = (Tf)(yx). Since this is true for each minimal ideal in 

I, it is valid for each f G I. Hence, since IIo*•ll < 1, o,• • Zy x. 
Now let K = G/N and let q: G --> K be the natural quotient map. Letq' M(G) --> 

M(K) be the natural induced map. 

If ti C Z x and v • Zx_ 1, ti*v • Z 1 and hence IIt•*vll = 1. Thus I1•11 = Ilvll -- 1 and 
[/l[*lv[ = [/l,v[. In particular, [/l[ = 3qu for some complex number X with IX[ = 1, and 

½([/•[)*½([vl) =/51 (in M(K)) 

since the support of/l*v is contained in N. Thus 

where 0: H --> K is a group homomorphism. 0 is continuous; for if x a --> x in H, and 

gt x G Zxa , {gta} has a convergent subnet, being w*-compact. Ifgt is the limit of such a 
subnet - {gt/3 } say - we have: 

(Tf)(x) = l•[n(T f)(x/3) = l•m(f*gt/3*)( 1 ) = (f,gt*)( 1 ) 
i.e. gt G 23 x and so •(It•l) =/sx' Since this is true for all subnets and ½ is w*-continuous, 

0xa -> 0 x. 
Let •o-10(H) =M and EC MXH be the set of (x,y) such that •ox = 0y. If 

(x,y) C E and g • 2y, then since xm N • •1, XmN*g • 2y' Since mN*g = mN*v 
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whenever •(U) = •(v) we have XmN* u = •xm•b x for some constant •. Now since 
f*xm N = f for all f C I, aXmN*b x and o•b x have the same effect on I. Thus we have 

•b x C Zy. By comparing norms I•l = 1. It follows that 

Zy = •{o•(x,Y)bx: •0x = 0y}. 
Iff•I, 

(Tf)(y) = o•(x,y)f(x) (•0x = 0y). 

• is a character on E and if S: C(M)-• C(H) is the subcanonical homomorphism 

F(E,•), we have T = SR M as required. [Here we need that x(t): •(t -1,1) - but, by 
Lemma 5.1, if f6 1 and t 6 N, f(1) = (Tf)(1) = o•(f, 1)f(t) = o•(t,1)x(t)f(1).] 

R M is a monomorphism, since T is. 

Finally, since all • 6 Zy have the same effect on each f C I X, any linear extension 
T of T with IITll = 1 must have 

(Tf)(y) = offx,y)f(x) (•0x = 0y) 

whenever f 6 1X. 

If T is isometric, we may ignore M. 

THEOREM 5.3. Let I be a closed ideal of C(G) and let T: I-• C(H) be an 

isometric hornornorphisrn. Then T is subcanonical. 

PROOF. Using the notation of 5.2, T = SR M. Now R M is an isometry on I, since 

T is, and so, by Theorem 4.2, R M is sub-canonical. Since the composition of 
sub-canonical maps is sub-canonical (Proposition 2.2), T is sub-canonical. 

Finally we have the general case. 

THEOREM 5.4. Let I be a closed ideal of C(G) and let I-•C(H) be a 

norm-decreasing hornomorphisrn, then there is a closed subgroup M of G, a normal 

ideal J(Q, t•) of C(G) such that for f • L 

Tf = SRMP(Q, •)f 

where S.' C(M) -• C(H) is subcanonical. 

PROOF. Let I 0 be the kernel of T, and I 1 the complementary ideal to I 0 in I. 

Then, by 5.3, T has the form SR M on I 1. Now every norm-one linear extension of 

SR M is uniquely defined (and non-zero) on I1X. Thus I 0 fq I1 X= (0). If I1 X= J(q,•), 
then T = SRMP(Q,•) as required. 

COROLLARY 5.5. If T is a norm-decreasing hornornorphisrn of C(G) into C(H), 
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then T is subcanonical. 

PROOF. In the representation of Theorem 5.4, R M is injective on J(Q,•)and so 

by Theorem 4.2, R M is sub-canonical. The result follows from Proposition 2.2. 

We would like to thank the referee for pointing out a mistake in the original draft 

of this paper, and for suggesting improvements in the presentation. 
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