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1. Introduction

In his investigation of M-ideals of compact operators (we will define this notion
shortly) the first-named author [30] introduced two properties of Banach spaces, called
(M) and (M*), and pointed out their relevance in Banach space theory. Property (M) is
the requirement that

lim sup|u + x,|| = lim sup|jv + x,||
whenever {|u|| = ||v|| and x, — 0 weakly, and (M*) means that
lim sup|lu* + x¥|| = lim sup||v* + x}¥||

whenever ||u*|| = ||v*|| and x* — 0 weak*. In this paper we will continue studying (M),
(M™*) and some of their variants, especially in the context of L,-spaces. It turns out that
apart from having some impact on M-ideals these properties are significant in the general
theory as well and lead to new results concerning the almost isometric structure of Banach
spaces.

We now describe the contents of this paper in detail. In section 2 we first deal with the
relation between (M) and (M *). It is relatively easy to check that (M *) implies (M) (see [30],
Prop.2.3), and it is clear that the converse is false (consider ¢,). However in Theorem 2.6
we prove that this is essentially the only counterexample: If X does not contain ¢, and has
(M), then X has (M*). It should be noted that, due to the weak* compactness of the dual
unit ball, (M *) is the technically more convenient property of the two to work with. In the
second part of section 2 we investigate the approximation property in Banach spaces with
(M*). We show in Theorem 2.7 that a separable Banach space with the metric compact
approximation property and property (M*) actually admits of a sequence (L,) of compact
operators such that L, — Id strongly (that is, L,x — x for all xe X'), Ly — Idy. strongly
and ||Id —2L,|| — 1. Here the norm condition on Id — 2L, can be thought of as an un-
conditionality property since it is fulfilled if X has a 1-unconditional (shrinking) basis and
L, are the canonical finite rank projections associated to that basis.
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These theorems enable us to improve the main result of [30] in Theorem 2.13: For a
separable Banach space X, the space of compact operators X (X) is an M-ideal in .Z(X),
the space of bounded operators, if and only if X does not contain a copy of Z;, X has (M)
and X has the metric compact approximation property.

In section 3 we study a particular version of property (M), namely property (m,)
which requires that

lim sup||x + x, || = (Il x||” + lim sup|| x, [|7)"/?

whenever x, — 0 weakly. (The modification for p = oo is obvious.) It is known from results
in [30] and [46] that, for 1 <p < 0, X (X®,X) is an M-ideal in Z(X D, X) if and only
if #°(X) is an M-ideal in #(X) and X has (m,). Such spaces have been investigated in [30],
[46] and [47]; and it has been conjectured (cf. [20], p. 336) that a Banach space with the
above properties must be almost isometric to a subspace of a quotient of an Z,-sum of
finite-dimensional spaces. (If 9 is a class of Banach spaces, we say that X is almost iso-
metric to a member of 9 if for every ¢ > 0 there is a member Y, of ¥ with Banach-Mazur
distance to X less than 1 + ¢.) For separable Banach spaces not containing a copy of 7; a
stronger result than this conjecture is proved in Theorems 3.2 and 3.3, namely, X has (m,) if
and only if X is almost isometric to a subspace of some £,-sum of finite-dimensional spaces if
and only if X is almost isometric to a quotient of some Z,-sum of finite-dimensional spaces. As
a corollary we obtain an almost isometric version of a result due to Johnson and Zippin [28]
that the class of subspaces of 7,-sums coincides with the class of quotients of Z,-sums.
Previously the validity of the above conjecture has been proved only for special cases if
p = oo; see [57] and [20], p-337. Theorem 3.5 now presents a necessary and sufficient
condition for a Banach space to embed almost isometrically into c,.

The following two sections deal with property (M) and in particular property (m,)
for subspaces of L,[0,1] (section 4) resp. for subspaces of the Schatten classes ¢, of oper-
ators on a separable Hilbert space J (section 5). It turns out (Theorem 4.4) that a sub-
space X of L,, 1 <p <o, p#* 2, has (m,) if and only if its unit ball is compact for the
topology inherited from L, if and only if X embeds almost isometrically into Z,. Natural
examples of this situation are the Bergman spaces. If 2 < p < oo, Theorem 4.4 allows us to
deduce a more precise variant of a result of Johnson and Odell [26]: X embeds almost
isometrically into 7, if and only if X contains no hilbertian subspace (Corollary 4.6). In
connection with the Bergman spaces we also consider the Bloch space 8, and show that it is
almost isometric to a subspace of ¢, and that X°(8,) is an M-ideal in Z(f,), thus an-
swering a question raised in [36].

We derive similar results in the context of the Schatten classes ¢, in section 5. Here
£,(cy) plays the rdle of #,, and for X = ¢, we now obtain that X has (m,) if and only if X
embeds almost isometrically into Z,(c;) (Theorem 5.2), and if p > 2 this happens if and only
if X does not contain a hilbertian subspace (Corollary 5.4). This improves a result of Arazy
and Lindenstrauss [5].

Section 6 is devoted to M-ideals of compact operators. Let us now recall the defini-
tion of an M-ideal. According to Alfsen and Effros [1], who introduced this notion in 1972,
a subspace J of a Banach space E is called an M-ideal if there is an ¢, -direct decomposition
of the dual space E* of E into the annihilator J* of J and some subspace V' < E*:

E*=J'@,V.
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Since that time M-ideal theory has proved useful in Banach space geometry, approxima-
tion theory and harmonic analysis; see [20] for a detailed account.

A number of authors have studied the M-ideal structure in #(X,Y), the space of
bounded linear operators between Banach spaces X and Y, with special emphasis on the
question whether X "(X, Y), the subspace of compact operators, is an M-ideal; see e.g. [7],
[10], [11], [17], [30], [31], [34], [44], [46], [47], [53], [56] or Chapter VI in [20].
Examples of M-ideals of compact operators include () for a Hilbert space ¢ (this is
due to Dixmier [13]), #'(¢,,£,)) for 1 <p < g < oo [34], and ¢ (X) for certain renormings
of Orlicz sequence spaces with separable duals [30].

Necessary and/or sufficient conditions for #°(X) to be an M-ideal in £ (X) were
studied for instance in [19], [30] and [56]. In section 6 we propose a notion of property (M)
for a single operator T: X —» Y and employ it in connection with the problem of giving
necessary and sufficient conditions for #(X, Y) to be an M-ideal in #(X,Y). Such a con-
dition is proved for X =/, in Corollary 6.4; it permits us to deduce that X¥'(¢,, L,[0,1])
is an M-ideal for 2 <p < co.

A list of open questions concludes the paper.

The results and proofs in this paper are — for the most part — formulated for the case
of real scalars. They extend, however, to complex scalars and are in fact tacitly used in this
context. Our notation largely follows [39]; in particular, By denotes the closed unit ball of
a Banach space X. The symbol d (X, Y) stands for the Banach-Mazur distance between two
Banach spaces, i.e., d(X,Y) = inf ||T||||T || where the infimum extends over all surjec-
tive isomorphism 7T: X —» Y.

Acknowledgement. This work was done while the second-named author was visiting
the University of Missouri, Columbia. It is his pleasure to express his gratitude to all those
who made this stay possible.

2. Implications of properties (M) and (M*)

The first objective of this section is to show that property (M) implies (M*) for
separable Banach spaces containing no copies of ¢,; the definitions of properties (M) and
(M*), introduced in [30], have been recalled in the introduction. Actually, we will also deal

with particular versions of (M) and (M*) that will be studied in more detail in the next
sections, but we formulate them already here.

Definition 2.1. Let 1< p < oo.
(a) A separable Banach space is said to have property (m,) if
lim sup||x + x, || = | (Il x]l, lim supl|x,[Dl,

whenever x, — 0 weakly.
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(b) A separable Banach space is said to have property (my) if
lim sup {{x* + x| = [[(Ilx*|l, im sup (| DIl ,
whenever x¥ —» 0 weak*.
The following lemmas will lead to the first main result, Theorem 2.6.

Lemma 2.2. Suppose X is a separable Banach space and that (x¥) is a bounded
sequence in X*. Let F be a finite-dimensional subspace of X *. Then for any

o> liminfd(x}, F)
there exist a subsequence (u¥) of (x¥) and f* € F so that ||u}¥ — f*|| < a for all n.
Proof. Obvious. O

Lemma 2.3. Suppose X is a separable Banach space and that (xY¥) is a weak*-null
sequence in X *. Then for any finite-dimensional subspace F of X * we have

lim infd (x*, F) = % lim inf | x*|| .

Proof. Assume « is such that there exist a subsequence (1}) of (x¥) and f* € F with
[lu¥ —f*|| £ a. Since w*-lim (u} — f*) = —f* we obtain || f*|| £ « and hence

llugll < 2a
for all n. The result follows by Lemma 2.2. O

Lemma 2.4. Suppose X is a separable Banach space containing no copy of ¢, and
that (x}) is a weak*-null sequence. Then there are a subsequence (u¥) of (x¥) and a weakly

1
null sequence (w,) in X with {|w,|| £1 so that lim {w,, u¥)> = 2 liminf || x¥||.

Proof. Let a =liminf|[x¥|. By Lemma 2.3, we can pass to a subsequence (u}) so
that liminfd(u}, lin{uf, ..., u¥_,}) =2 /2. Hence we can find a sequence (x,) in By so
that lim inf (x,, u*) = a/2 and (x,,u}) =0 for kK <n. By passing to a subsequence we
can suppose that (x,) is weakly Cauchy by Rosenthal’s ¢,-theorem [39], Th. 2.e.5. Let

w, = %(x,, — X, +1)> and the result follows. 0O

We say that a Banach space has the weak* Kadec-Klee property if the weak* and
norm topologies agree on its dual unit sphere. (Occasionally this has been called property

(*+).)

Lemma 2.5. Assume X is a separable Banach space containing no subspace isomorphic
to £, and with property (M). Then X has the weak* Kadec-Klee property, X* has no proper
norming subspace and X* is separable.
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Proof. Suppose that (x¥) converges weak* to x* and that lim|| x*|| = || x*|| % 0. We
show that lim|{x¥ — x*|| = 0. Suppose not. Then, after passing to some subsequence, we
would have lim||x¥ — x*|| = a > 0. By Lemma 2.4 there are a weakly null sequence (w,) in
By and a subsequence (¥)) of (x¥) so that lim inf{w,, x¥ — x*)> = a/4. Hence

lim infx*(w,) = a/4.
Suppose x € X with ||x]| = 1. Then for any ¢t = 0 we have
lim infx}(x + tw,) = x*(x) + ta/4.

By property (M) we can pass to a subsequence (v,) of (w,) so that there is an absolute
norm N on R? with N(1,0) = 1 and lim||u + tv,|| = N(||u]|, [¢]|) for anyue X and e R. It
follows that N(1,7) — 1 = a|¢|/4. But this implies (cf. [30], Lemma 3.6) that £, embeds into
X contrary to our assumption. Hence X has the weak* Kadec-Klee property.

We also deduce that X* has no proper norming subspace and must be separable.

Indeed, if Y= X* is a norming (closed) subspace (i.e., || x|| = sup {y*(x)]| for all xe X)),
y*eBy

then By is weak*-dense in By.. Hence, for each x* e X*, ||x*|| =1, there is a sequence
(y¥) <V, ||y¥|l =1, such that y* — x* in the weak* sense. By the weak* Kadec-Klee pro-
perty, ||y¥ — x*|| - 0 and thus x* €Y, which proves that there are no proper norming
subspaces. Now, if 4 = X is a countable dense set, there is a countable set B < X* that
norms 4. Hence lin B is a separable norming subspace, and we infer that X * is separable. 0

Theorem 2.6. Let X be a separable Banach space with property (M) and containing
no copy of ¢,. Then X has property (M*). Furthermore if X has property (m,) where
1< p < oo, then X has property (m}) where 1/p+1/q=1.

Proof. By Lemma 2.5, X* is separable. It therefore suffices, for the first part, to
prove that if (x*) is a weak*-null sequence in X* with the property that lim|jx* + x}*||
exists for all x* € X*, then the function

¢ (x*) = lim || x* + x7 ||

satisfies ¢ (x*) = ¢(y*) whenever || x*|| = ||y*||. For the second part we will need additio-
nally to show that ¢ (x*) = (|| x*||? + ¢ (0)9)*/.

We observe first that ¢ is a convex and norm-continuous function: in fact

l¢G®) —d (I = lx* —p*Il.

We also note that ¢ (x*) = || x*|| — ¢ (0). For 7 = 0 we define g (z) = inf{¢ (x*) : || x*|| = }.
Then g is also continuous: in fact [g(t) —g(0)| £ |1 — 0| and g(1) 2 T — g(0). It follows
that g attains its minimum and that there exists 7, so that g(z,) < g(z) for all = with strict
inequality if 7, <7.

Now suppose that 7 = 0 and u* is a weak*-strongly exposed point of By,; this means
there exists u € By with u* (&) = 1 such that lim [ju} — «*|| = 0 if lim || &} || = lim u} (u) = 1.

10 Journal fiir Mathematik. Band 461



142 Kalton and Werner, Property (M)

The existence of such points follows from the separability of X*, see e.g. [48], p. 80. Let
Z = {x*e X*:x*(u) = 0}. We will define

6 = inf{p(zv*):v*eu*+Z}.

Let (F,) be an increasing sequence of finite-dimensional subspaces of Z so that | | F, is
dense in Z. We claim that lim inf d (tu* + x*, F,) = 0 for each k. Indeed if for some k& this

n—w
fails, a simple compactness argument gives a subsequence (¢¥) of (x¥*) and f* € F, so that
Hm|| f* +tu* + £¥|| <6, i.e., ¢(ru* + f*) < 0. This would contradict the choice of 6.

Now we may pass to a subsequence (y¥) of (x¥) so that we obtain
liminfd(zu*+y*, F)=0.

Hence we can find y, € By so that f*(y,) =0 for f*e F, and

® lim inf (z* (y,) + v (yn)) 2 6.
Clearly any weak* cluster point, say y, of (y,) in X** satisfies x|, = 0 and so y €lin {u}. In
particular, the sequence (y,) is relatively weakly compact, and passing to a subsequence
we can suppose that (y,) converges weakly to au for some a. We thus write y, = au + f,
where (f,) is weakly null.

We first use the sequence to estimate ¢. If ||x|| <1, then by property (M),

lim sup {|ax + £, || < lim sup|jau + f,]| £ 1
and hence for any x*e X'*.
¢ (x*) 2 ax*(x) + lim supy; (£,) .
Let B = lim sup y*(f,); then
@ ¢ (x*) 2 Jalllx*[| + B
for all x* € X*. Now if v* e u* + Z, then ||v*|| = v*(«) = 1, and so we obtain

0=lajt+ 8.
On the other hand by (1)

0 < liminf (zu* (y,) + y¥(y)) Sat+ 4.
We conclude that § = at + f and « 2 0 if £ > 0.
At this point we specialize to the assumption that T > t,. Since

dx*) 2 alx*|+52 B
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we also have by definition of 7, that f < g(t,). On the other hand,
0 2 inf{g(0):0 2 7} > g(1,),

1
and thus o > 0. Now choose v} € u* + Z so that ¢ (tv}*) <60 + —. Then
n

1
acllofll+ B <0+

and so

1
ol =15 —.
aTn

Since v} (1) = u*(u) =1 we conclude that lim||v}]| = 1, and by choice of u*,
lim fjo¥ — u*||=0.

Thus ¢ (ru*) = 0 = at + f. By (2) this implies that ¢(tu*) £ ¢ (rv*) whenever ||v*|| =1
and hence ¢ (tu*) = g(1).

Now from the convexity of ¢ we have ¢ (tx*) £ g(t) whenever x* is in the convex
hull C of the weak*-strongly exposed points of B,.. However since X * is separable C is
weak*-dense in By, [48], p. 80. By the weak* Kadec-Klee property (Lemma 2.5) C is norm-
dense in By.. Hence ¢(zx*) < g(r) whenever ||x*|| £1. In particular ¢(zx*)=g(1)
whenever ||x*|| =1 and 7 > 7,.

We can now conclude the argument for the first part. If t < 7, and || x*|| = 1 we have
by the above argument ¢ (tx*) < g(o) for any ¢ > 7,. Hence ¢ (tx*) < g(z,) and conse-

quently ¢(tx*) =g(t,) = g(z). Thus in either case ¢(tx*) = g(r), and the first part is
proved.

For the second part we observe that by what we have already shown ¢ (u*) < ¢ (v*)
whenever {ju*|| £ ||v*]|. Therefore if u* is a weak*-strongly exposed point of By, and
7 2 0, we can deduce that in the construction above we have ¢ (tu*) = 0 = a1 + § without
restriction on 7. Hence by (1) ¢ (tu*) £ [i(z, ¢ (0))|], lim inf || («, f)I - Therefore

g(®) < (z7+g(0)9)".

For the converse direction we perform the above construction for t = 0 to produce a, ( /)
so that {{au + £, || <1 and g(0) = limy*(/,). Then lim sup|| f,|| < 1. Now for any 7 > 0 we
have lim sup ||yu + 81,1l = I1(y, )|, and g(z) = yt + 5g(0) whenever [|(y, §)||, <1 which
yields g(1) = (72 + g(0)?)/4. The proof is then complete. O

In the second part of this section we study the approximation property in Banach
spaces with property (M *). We shall show that in separable Banach spaces with (M *) and
the metric compact approximation property actually an unconditional version of this
approximation property is valid. As in [30] we call a sequence (X)) of compact operators a
shrinking compact approximating sequence if X, — Idy, and K* — Id,. strongly.
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Theorem 2.7. Let X be a separable Banach space with property (M *) and the metric
compact approximation property. Then there exists a shrinking compact approximating
sequence (L,) such that

lim [|L,|| = lim ||1dy — 2L || =1.

Proof. By Proposition 2.3 of [30] X is an M-ideal in X **, X * is separable, and a
result of Godefroy and Saphar ([18], p.678 and p.681) shows that X has a shrinking com-
pact approximating sequence (K,) with || K,|| =1. It suffices to show that for given
e>0 we can find a shrinking compact approximating sequence (S,) satisfying
limsup||Id — 2S,|] <1+ ¢&. The operators S, will be obtained by averaging a certain
subsequence of the K. This will be achieved in a series of lemmas. For notational con-
venience we assume K, = 0.

Let A4 be the collection of norms on R? such that there is a weak*-null sequence
(x¥) « X'* satisfying ||x}¥[| =1 and N(a, ) = lim |jau* + Bx¥|| whenever |[u*|| =1. Itis

easy to see that .#y is a compact subset of the space of all continuous real-valued functions
on R? with the topology of uniform convergence on compact sets.

Suppose some sequence (N,){- ; with N, € A is given. For each n we define a norm &,

depending on the sequence (N)), on R”*! by the inductive formula

¢(£0’ cees én) = Nn(¢(£0’ [REE) én—-l)’ 6,,) .

We can then define a space 4(N)) or 4(®) as the completion of the space ¢y, of finitely
supported sequences under the norm

d(ay, ..., a,,0,...) =Py, 2y, --.5 &) -

The space A (®P) is then isomorphic to a subspace of X *. The collection of such norms & is
denoted %.

Lemma 2.8. There exist constants C >0, p < oo so that for any ¢ € %, me N and
any disjoint v, ..., v, € A(P), we have

j=1

Proof. Let (N) be any sequence which is dense in A% and form a sequence (N;) in
which each N; is repeated infinitely often; then (N;) induces a norm ¥ € %. Any A4(®)
for @ € # is (lattice-)finitely representable in A (¥). Thus it suffices to show that A(¥) has
a lower p-estimate for some p. Now A(¥) is a modular sequence space h, where

E(H=N@,0-1,

for j =2 1 and F,(¢) = |¢t| (cf. [30]). However, A(¥) is isomorphic to a subspace of X * and
thus contains no copy of 7. By a result of Woo [58], A, coincides with a modular space
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h,y where the G satisfy a uniform A,-condition, and this in turn implies that A, has a
lower p-estimate (by calculations similar to those in [40], p.139f). 0O

At this point we suppose 0 <J <¢/8 and that ;> 0 are chosen for j > 1 so that
2 n;<8.

izl

Lemma 2.9. There exists a subsequence (T,)- o = (K, )i-o of (K,) 50 that ry = 0 and
if we put

A, = { A(TFx* =T x*) | S LiIx* = 1}
=1

J

and

B, ={T*x*—-T*x*:||x*||<1,m>12n},

m

then:

(a)

Y (=D || <3 forn=1,2,....
k=1

(b) For any v* € B, there exists N € Ay so that if |a| <1 and u*€ A, _,, then
N(lfu*ll, lafflo*|D) — 1, S Hlu* +av*[| < N(u*]], fallfo* ) + 1, .

Proof. We will construct (r,) by induction so that:

© <3 and

<3 whenever [>r,.

Y (=D'T,
k=1

S (~DM, 4 (17K,
=1

k

d) If D, = {KXx* — K*x*:{|x*|| <1,m>[2r,}, then for any v* € D, there exists
Ne Ay so that if |a] £1 and u*e 4, _,, then | N(J|u*]}, |alljo*{]) — |u* + av*|}] £ 14,.

To begin the induction simply take r, = 0. Then (c) and (d) are trivial.

Now suppose r,, ..., r, -, have been chosen. We show that one can choose r, large
enough so that (c) and (d) hold. We consider each case separately. If one cannot satisfy (c)
for all large enough choices of r, then by induction one can find a sequence (x¥) in X'*
with || x¥*|| = 1 and increasing sequences of natural numbers (a,), (b,) so that

r,_i<a;<b<a,<b,<...,

n—1
for whichif S= ) (—1)/T,,
=

J

IS*xd + (=" (K — KD X1 2 3.

By passing to a subsequence we can assume that (x;*) converges weak* to some x*. Since
S is compact, (S*x}*) converges in norm to S*x*. Let d, = a, or b,. Then (K} (x¥ — x*))
converges weak* to 0 and so
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lim sup || S* x¢ + 2K (xf — x*)|| = lim supl| S*x* + 2K (xf — x*¥)|
= lim sup | K (S* x* + 2(x} — x%) |
S limsup [|.S*x* + 2(xF — x*)||
< max ({| S}, 2) lim sup || x* + (xf — x*)||

s max (|| S1,2).
(The last estimate used property (M*).) By averaging
lim sup [| S*xf + (—1)" (Kt — KF) (x¥F — x*)|| <3.

It remains to observe that lim|| (Kt — K*) x*|| = 0; then we arrive at a contradiction and
conclude that if r, is chosen large enough (c) will hold.

We turn now to (d). If this cannot be satisfied by taking r, large enough, then we can
find a sequence (x;*) with || x¥|| = 1 and two increasing sequences of positive integers (a,),
(by) sothatr,_, <a, <b;<a,<... andif vf = (K} — K})x} then for every Ne 4}

max max |[N(flu*|], lalllof]]) — llu* + avgll|>1n,.
laj<1 ueAd, -,

Clearly we have that lim inf||v |} > 0. We may pass to a subsequence so that (||v;¥]|) con-
verges to some >0 and lim|[x* +av}|| = N(||x*|l, [«]|f) for every x*e X*, where
N e Ay. Now pick |o,| <1 and uf € 4, _, so that

[Nl 1l L g D) — [ + o0l > 7,

By passing to a further subsequence we can suppose () converges in norm to some u*
(since A4, _, is norm compact) and that («,) converges to some a. This gives a contradiction
and so (d) holds for all large enough choices of r,. This enables us to complete the inductive
construction, and so the lemma is proved. O

Lemma 2.10. Suppose (a,), >, and (b,), >, are two sequences of nonnegative integers
so that

0=<gy<by<a, <b <....

Suppose further that || x*|| £ 1. Then there exists ® € % so that for any finite sequence
(Ao sken With |4 1, if we let v = (T,f — T,¥) x*, we have

P(Aollvglls-..s Aoy -0 = S P(Aollogll, -.os Aullog i + 4.

n
Z Aog
k=0

In particular

L o

k=1

3) +26.

IIA

n
Z AgOg
k=1
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Proof. 1t follows from (b) in Lemma 2.9 that we can choose N;e A; for j =1 so
that if u*e 4, _, and |«| <1, then

IN; (el Tedilof () — llu* + avX{ll <mn,, .

Choose @ corresponding to the sequence (N;). Then we prove by induction that

k k
B(Aollvdll s AdloED = X g, || 2 Ajvf
ji=1 ji=0
k
S O(Aollvgll, -, Adivt D+ 3 7,
i=1

for 0 £ k £ n. This is trivial for k = 0. Assume it is true for k = s — 1. Then

_Ns<

The inductive hypothesis follows easily. The last statement is trivial from the uncondition-
ality of the norm ¢. O

S
Z ’11'”}*
ji=0

s—1
Z A‘jvj* a’ls”vs*”>‘ £ Y, -
j=0

Nowlet V,=T,,,—T,

ne

Lemma 2.11. For any finite sequence (A,); -, we have

< 8max|4,].

Y AV
k=0

Proof. For convenience we suppose n is even, say n = 2m; we also suppose
max |4, | =1. Let ||x*|| = 1. Then by Lemma 2.10,

X AnVAxr|| S| X VRt +26.
k=0 k=0
However by (a) in Lemma 2.9 we have || ) V3% |l <3. Hence
k=0
X AuVhx*| 4.
k=0
Similarly
Z Aa-1 Va1 x*|| 24
k=1

and the lemma is proved. O

a
It follows now that for any x* € X* the series » A,V *x* converges weak* in X*.
n=0
In fact since X'* is separable the series must converge in norm, although we do not need
this observation.
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Lemma 2.12. Suppose C and p are given by Lemma 2.8, and that te N. Then for
[Ix*|| =1 and any sequence (A;) with max|4,| <1 we have:

S1418Ct 1P 4854+ 161A

Y A V*x*
k=0

where A = sup |4, — A, .|

nz20

Proof. We begin by noting that according to Lemma 2.10 there exists @ € %, so
that if ()i -, is a finite sequence satisfying max |a,| <1, then
0sksn

DI Vo x* I, .., o IVAX* N =0 S || X oy P35 x*
j=0
S (ool V" x* Il .o a1V x* () + 0.

We can apply Lemma 2.8 to obtain for any ne N

(5 ~3f) s e

It follows that there exists 0 £ s £t —1 so that

nt+t—1

Y Vhx*
k=0

n

* *
Z Vik+2s%

k=0

+5)§9C.

<6+9CtVr,

n
* *
Z Vot +2s%
k=0

Now, by Lemma 2.10,

n n
Y Aams2sVoa2s X | S| Y ViuraaX* || +2629C7 V2436,
k=0 k=0
For0 £k £n+1 we set
o = Y Vi*x*

2(k—1)t+2s<j<2kt+2s
and
* * .k
wE = Y A Vixx*,

2(k—1)t+2s<j<2kt+2s

where each range of summation consists only of j with 0 £ j <2nt+ 2t —1. Then for
0 £ k £ n we have

* * _ * o %
Wi = Agir s 25Uk = Z (}'j—}'Zkt+2s)I/j x".
2(—1)t+25<j<2kt+2s

Similarly

* * * %
W1 = AomsasUns1= Z (AJ"}‘Z'!HZS)VJ X"
2m+ 2s<j<2m+2t-1
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Combining we have that

n+1 n+1 2m+2t—-1

Yowr— Y qvE=2tA Y  BVFx*
k=0 k=0 j=0

where max |} =<1 and max |B;| £1. Thus by (3) and Lemma 2.11
0sksn+1 0sSjs2m+21—-1
n+1 n+1
Y wi Y vFi +25+161A.
k=0 k=0
Now
2nt+ 2t -1 n+1 n
) AV = > wE Y Aziras Vs 26 X"
j=o0 k=0 k=0
n+1
S Y oF|| +9C VP +16tA+ 56
k=0
2nt+ 2t —1
< Vi*x*|| +18Ct™ VP 4+ 161tA + 66
j=0

S14+18Ct VP +16¢tA +86.
Finally letting n - oo we obtain the result. 0O

We complete the proof of Theorem 2.7 by showing that if S, = — (T1
then limsup||Id — 2S,|| <1+ &. To see this we write

Id—2S,= Y %Vﬁ' Y

k=1 k=n+1

so that by Lemma 2.12 for any te N

IId—2S,|<1+18Ct~ 1P+ 32tn" 1 +85.

149

~+T),

Hence limsup||Id —2S,]| £1+18Ct~'/? 4+ 85. However, as ¢ is arbitrary we obtain

limsupl||Id —2S,||<1+e O

Under the assumptions of Theorem 2.7 we have thus established condition (6) of
Theorem 2.4 in [30]. Combining Theorems 2.6 and 2.7 we therefore obtain the following
improvement of the main result of that paper. (For the necessity of the conditions below

see [19] and [30].)

Theorem 2.13. Let X be a separable Banach space. Then X (X) is an M-ideal in
L(X) if and only if X does not contain a copy of ¢,, X has (M) and X has the metric compact

approximation property.



150 Kalton and Werner, Property (M)

Since a reflexive space with the compact approximation property automatically has
the metric compact approximation property [10] (see also [18]) we can refine Theorem 2.13
in the case of reflexive X.

Corollary 2.14. Let X be a separable reflexive Banach space. Then # (X)) is an M-
ideal in (X)) if and only if X has (M) and the compact approximation property.

We remark that an alternative approach to Theorem 2.7 was recently developed by
Lima [35].

3. Implications of property (m,)

In this section we prove that a separable Banach space that does not contain a copy
of ¢, and enjoys property (m,), which was introduced in Definition 2.1, is almost isometric
to a subspace of an £,-sum of finite-dimensional spaces if 1 < p < oo (Theorem 3.3), re-
spectively almost isometric to a subspace of ¢, if p = o0 (Theorem 3.5). At the end of this
section we point out the relevance of the (m,)-condition in the theory of M-ideals.

We first recall that, if 1 £ p < oo, the space C, is defined to be £,(E,) where (E,) is a
sequence of finite-dimensional Banach spaces dense in all finite-dimensional Banach spaces
in the sense of Banach-Mazur distance. If p = co0 we define C_ = ¢,(E,). Now if (F,) is any
sequence of finite-dimensional Banach spaces and £ > 0, it is easy to see that there is a 1-
complemented subspace X, of C, so that d(Z,(F,), X,) <1+¢, or d(co(F,), X,) <1+e¢
when p = 0. For short we say that £,(F,) is almost isometric to a 1-complemented sub-
space of C,,. It is clear that C,, is almost isometric to a subspace of c,. The spaces C, have
been investigated by Johnson and Zippin ([22], [23], [27], [28]).

Although the definition of C, depends on the choice of the sequence (E,), it is known
that any two such choices yield essentially the same space C,. More precisely, if C, and
C, are built on two dense sequences (E,) and (E,), then d(C,, C,) = 1 (see [22]). Since the
statements we are going to make are almost isometric in character rather than isometric,
this ambiguity does not affect the following theorems. So we fix one model of C, once and
for all.

Some of the ideas in the proof of the following Theorem 3.2 are borrowed from those
of Johnson and Zippin [28]. We also need a lemma.

Lemma 3.1. Let 1 <p < o and let X be a separable Banach space with (m,) that
does not contain a copy of £,. Let q be the exponent conjugate to p, i.e., 1/p+1/q=1.

(a) If E is a finite-dimensional subspace of X and n > 0, then there is a finite-codi-
mensional subspace U of X such that

A=mUxP+IyIHY? S llx+ylIl < A+ AP +1yIDYP

forall xeE, yeU.
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(b) If F is a finite-dimensional subspace of X* and n > 0, then there is a finite-codi-
mensional weak*-closed subspace V of X* such that

A=mUx*1T+1y* DY < x* + y* [ < A+ I 1T+ [ y* DY

forall x*eF, y*eV.

Proof. (a) A compactness argument shows that it is enough to give the proofin the
case where dim E = 1, say E = lin{x}. By Lemma 2.5, X * is separable; let («*) be a dense
sequence in X *. Suppose now that the lemma does not hold. Then there exists some n > 0
so that there is a bounded sequence (y,), y,€ U, = {y 1 u¥(y) =0 for k =1, ..., n}, satis-
fying

Hlx + yull = Al N2 + [y, [I)VP1 > .
Since y, — 0 weakly, this is a contradiction to property (m,).
The proof of (b) is similar; note that X has (m}) by Theorem 2.6. O

Theorem 3.2. Suppose 1 <p < oo, and suppose X is a separable Banach space not
containing a copy of ¢£,. Then X has property (m,) if and only if given any € > 0 there is a
quotient X, of C, so that d(X,X,) <1 +e.

Proof. 1tis clear by Theorem 2.6 that — in the case p < oo — a space which is almost
isometric to a quotient of C, has (m,), since it is reflexive and its dual has (m,). (Here and in
what follows we suppose 1/p + 1/q = 1.) In the case p = oo we use a result due to Alspach
[2] to conclude that a quotient of C_ is almost isometric to a subspace of ¢, and thus
has (m,).

1
We now prove the converse. Suppose 6 > 0 is chosen so that § < 2° and

1 .
We will also need a positive integer ¢ selected so that 32¢ /1< 3 e. Suppose (n,) 1s a
sequence of real numbers satisfying

0<nn<15, [J@-n)>1-6 and [[A+n)<1+6.
2 n21 n21

Let (u,) be a dense sequencein X. For Fc X*welet F, = {xe X : x*(x) =0Vx*e F},
and we denote the span of u,,...,u, by [u,,...,u,]. We will inductively choose two
sequences of subspaces (F) and (F,") of X * and subspaces E(m, n), 1 < m < n,in X so that:

(a) dim F, < o0, dim E(m, n) < oo for all m < n.

() F c[uy,...,u,}'n [} E(j,k)‘isweak*-closedand X*=F, @ - @ F, @ F,.

jsk<n

© F=F, ®F,,
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(d) Ifx*eF,+ -+ F,and y*€ F,, , then
A =n)UX* [T+ Iy DY (Ix* +y* [ £ A+ )X [T+ ([ y*1DY9.

() f xe(Fy+ - +F,) and ye Y E(j,k), then

jsk<n
A =n)UxP+ I IDYP < llx + yI £ A + 1) Ulx )P + Iy lIDY?

when p < o or

(1 —nymax (x|, IyID = llx +yll = A + n,) max (|| x]], /| ¥]))

when p = .

(f) We have (Fi+ -+ F,_+F) <cE(m,n)and Em,n)c(F,+ - +FE,_,), if
1<mgn

(g) If x*e F,+ --- + F,, then there exists x € E(m,n) so that || x| £1 and
x*(x) 2 (1 =0)llx*].
(Here we understand F, + --- + F, = {0} if r <1.)

Let us describe the inductive construction. We pick F{ = [u,]* and F, to be any
complement of F| to start the procedure.

Now suppose we have defined (F))

jsm (F))jsnand EGk) for 1</ <k <n—1 Gt
the first step no E-subspaces exist).

We first must define the spaces E(m, n) for 1 £ m < n. To do this we notice that if
mz3, x*eF,+ - +F,_,and y*eF,+ :-- + F, we have

0
x* +p* 1l 2 (4 = 1)U+ N y* 1D 2 (1 - 5) y*l-

Hence we can find a finite-dimensional subspace G = G (m, n) so that

Go(Fi+ - +E,_ ;)
and

sup  y*(g) 2 (1 —d)liy*|l

geG,ilgli=1

if y*e F, + --- + F,. We then augment G to E(m,n) =G+ (F,+ -+ F,_,+F)),. For
m =1 or m =2 the procedure is similar.

We now turn to the definitions of F, ., and F/, . Using Lemma 3.1 we see that there
exist finite-dimensional subspaces H < X and K < X* so that:
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(h) If xe ) E(m,n)and yeK,, then

1smsn

A= DUXP+HUYIDYE S llx +y1l £ A+ 1,5 DU XP + [P IDV2
(@) If x*eF,+ --- + F, and y*e H*, then
A =n)UX*N+Uy* 1DV < Nix* + p* [ < A+ ) (X y*19)Ye.

Let D be any weak*-closed complement of F, + --- + F, + K which is contained in
F; (which is a complement of F, + --- + F,). Then let F,,, be defined as the intersection

E,’+1=Dm<H+ Y E(m,n)+[u1,...,u,,]>l.

1<smszn

Now there is a subspace K’ of F, so that F, + - + F,+ K=F, + - + F,+ K'. Pick
E . o K'sothat /= F, ,,®F/,,. This completes the inductive construction.

Now suppose (a,),,o and (b,),,, are two increasing sequences of integers with
a,£by<a;, £b;<a,<.... First suppose b, +2 < a,,, for all n. We observe that if
xreF, + - +F, foralln, then by induction, using (d), we have

n—1

n—1 n 1/q n 1/q
I1 (1—nbk)< ) llxtll") = <[ (1+rl,,k)< ) let‘li“)
k=1 k=1 k=1 k=1

n
> X
k=1

and hence

n 1/q
a —5)( ) sz‘ll“> <
k=1

n
x X
k=1

n 1/q
§(1+5)< ) ux:w) :
k=1

Similarly if b, + 3 £ a,,, and x,€ E(a,, b,) then by (e) and (f) and induction

n 1/p n n 1/p
(1—5)( Y kall”> Y x §(1+5)( > ||xkl|”)
k=1 = k=1

when p< 0 or

(1 —o)ymax(llx,ll,.... [Ix,[) = ixk S A+ d)ymax (x|, ..., lI1x,lD)
when p = .

We also notice that for each n there is a weak*-continuous projection, P* say, of X *
onto F, with kernel F, + --- + F,_, + F,. Then P¥*P* =0if m#%n, and ran P, < E(m, n)

whenever m Sk <n. If x*e X and 1 £n< oo then we can write x* = ) P*x* + w*
n k=1
with w* € F. Then x*(u,) = Y x*(P,u,) and P,u, =0 for k > n.

k=1
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Now if 0 < s < r—1 we will define two operators, T, and R,. Suppose p < co. We
define

T,:Y=(,(E(4(n— 1)t +4s+4,4nt +45+1),,,) > X

by T,((x,)) = Y -x, where the first space with n = 0 is to be understood as E(1,4s + 1).
nz0

We also define
R:Z=(,(E@nt+4s+2,4ni+4s5+3),,0) > X

by R,((x,)) = ¥ x,. In the case p = oo we let ¥, and Z, be c,-sums.

nz0

It is clear that (1 — 8)|&]| < IT.El < (1 + 8)||&|| for e Y, and similarly

A=d)IEN =R =+ )l
for teZ,.

At the same time we introduce two operators

T:Y:=(,((1)ih) » X and R:Z=£,((Z)i2h) - X
defined by

1 t—1
T(éo"'-’ét—1)= m ;()Tsés

and
R(éo,'"’ét—l) = i Rsés'
s=0

By construction we have
1 -1 t—1 1/p
IT (o> - & - DI = 7375 ) HTslIllésll§(1+5)( ) lIéll")
s=0 §=0

and thus || T'|} £ 1 + d. Also, we can consider R as an operator on the space
£,(E@n+2,4n+3),,,)

given by R((x,)) = Y x, and deduce that [|Rl| <1+ 6.

n20

Now suppose x*e X* and R¥x* = 0. Then it is clear that P*x* = 0 whenever
k=4s+2 ork=4s+3mod4:. Let

x¥= Y PXx*
4(n—1)t+4s+4sksd4nt+4s+1

for n 2 0. Then for each n = 0 there exists x,e E(4(n — 1)t +4s+4,4nt + 45 +1) by (g)
so that ||x,|| =1 and x¥(x,) = (1 —8)||x¥|. We also have x}¥(x,) =0 if n+m by con-
dition (f).
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Hence if («,),,, is any finitely nonzero sequence with |{(«,)l|, = 1, then
”T;*X*” g ‘<X*’Zan‘xn>‘ ; (1 - 5)Zan”xrf” .

We draw the conclusion that

1 1+46
DY s = ITx* < 5 1%

By the remarks above it follows that )  x} is bounded in norm by
k=1

A+8)* A =8 ix*]l.

Clearly ) x*(u,) converges for each k and so ) x* converges weak* (and actually also

in norm, but we do not need this). Since P*(x* — ) x*) =0 for all i it follows that
x*(u) = Y, x¥(u,) for all k. Hence x* =) x}* weak*.

Now

I x*]l = sup

n
X X
k=1

1/q
§(1+5)< Z [l x¢ Il“>
1+ * %
< T

provided, of course, that R¥x* = 0.

Now let us relax this assumption. In general the norm of x* restricted to the range
of R is at most (1 — §) ™ !|| R*x*||. Hence by the Hahn-Banach theorem there exists y* € X *
with || p*|| £ (1 — 8)7!||R*x*|| < 4]|R*x*|| and so that R*y* = R*x*. But by the above

1+6
Ily* —x*|| = —-—IIT*(y —x%)|.

Hence
NTEx*[ 2 1T (* — x| = I T*y*l

1-—
2yt —x* =1+ )] y*
2 1ol === A+ D)
1-46
> — I x*|| —
2 75 Il =4y
1-9
> x*[ — R**
2 5 IIx*ll - 1611 Rx x|

From this we deduce using the triangle inequality in #; that
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| —
<

1 t—1 /9 1 t—1 1/q
( ) u:r*x*n«) 2 ux*n—ie(; ) nR:x*n«) :
s=0

Hence

Nr* x> — t”“ HR*X*II

*
x““1+5

and this gives

IT*x%] 2 (1 - %s)nx*n.

1
Since ||T]| £1+ Zs this implies that d(X,Y/kerT) <1+e. Since Y is an /,-sum of

finite-dimensional spaces we are done. 0O

Theorem 3.3. Suppose 1 < p < oo and X is a separable Banach space not containing
a copy of ¢,. Then X has property (m,) if and only if, given any &> 0, there is a subspace
Xo of C, 50 that d(X, X)) <1+e.

Proof. In this case X, being a quotient of C,, by the preceding result, is reflexive and
so Theorem 3.2 can be applied to X' * to give the result. O

The following corollary is a more precise statement of a classical result of Johnson and
Zippin [28] who have proved the corresponding isomorphic results.

Corollary 3.4. Let 1 <p<o0 and > 0.
(@) If X is a quotient of C,, then there is a subspace X, of C, with d(X, X,) <1 +e.
(b) If X is a subspace of C,, then there is a quotient X, of C, with d(X, X)) <1+e.

Proof. (a) We have that X* has property (m,), since it is a subspace of C, where as
usual 1/p +1/g =1, and hence X* has (m)) by Theorem 2.6. It follows that X has (m,),
and it remains to apply Theorem 3.3.

The proof of (b) is similar. O

Theorem 3.5. Let X be a separable Banach space not containing a copy of ¢,. Then
X has property (m,) if and only if, for any ¢ >0, there is a subspace X, of c, with
dX, X)) <1+e.

Proof. If X has (m_), then Theorem 3.2 shows that there is a quotient of C_, X,
say, with d(X, X,) <1+ ¢. However, this implies that there is a quotient of a subspace of
¢, and hence a subspace of a quotient of ¢,, X, say, with d(X, X,) <1 + ¢. The result now
follows from Alspach’s theorem [2] that quotients of ¢, are almost isometric to subspaces
of ¢, O
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We finally combine results from [30], [46] and Theorems 2.13 and 3.3 (resp. 3.5) to
obtain the following corollary. If X satisfies condition (i) below, it was said to be an (M,,)-
space in [46]; see also Chapter VL.5 in [20] for information on (M,)-spaces.

Corollary 3.6. Let 1 <p <o and let X be a separable Banach space. Then the
Sfollowing conditions are equivalent.

i) H(XD,X) is an M-ideal in Q(XEB‘,X).

(i) The space X has the metric compact approximation property, enjoys property (m,)
and fails to contain a copy of ¢;.

(iii) The space X has the metric compact approximation property and is almost isometric
to a subspace of an ¢,-sum of finite-dimensional spaces when p < o, respectively, to a sub-
space of ¢, when p = o,

Remarks. (1) The equivalence (i) <> (iii) has been conjectured by M-idealists for
some time, cf. [20], p.336. A special case of the equivalence (i) <> (iii) for p = o0 was
proved by W. Werner [57]. Actually, it now turns out that the condition considered by him
is equivalent to the (M, )-condition.

(2) One can prove the implication (ii) = (iii) employing techniques as in the proof of
Theorem 2.7. For simplicity suppose p < co. In this case one concludes first that there is a
sequence (S,) in X' (X) such that

© 1/p
(1—8)llx|l§< > IIS,.xll") s +9lx|l
n=0

for all x e X. Then one embeds X into a space Y with the approximation property, say via
an embedding j. Then j S, can be approximated up to £/2" by finite-rank operators F,. Thus
X embeds into /,(ran F,).

(3) For examples illustrating Corollary 3.6 we refer to Corollaries 4.8 and 4.9 below.

4. Property (M) for subspaces of L,

The subject-matter of the present section is to refine the results of the preceding one
for subspaces of L,. Here L, stands for a separable nonatomic L,(u)-space. It is known
that such a space is isometric to L,[0,1] [51], p. 321; in fact, the ‘same’ isomorphism works
for all values of p. We are first going to prove a technical result, Theorem 4.2, that will be
applied to subspaces of L, in this section and to subspaces of the Schatten classes in the
following one. In order to formulate it we need the notions of a finite-dimensional decom-
position (FDD) and of cotype for which we refer to [39], p. 48, and [40], p. 72ff., respec-
tively. We also found it convenient to introduce the following technical definition.

Definition 4.1. Let Y be a separable Banach space and let T be a topology on Y
making it a topological vector space. If 1 < p < co we will say that Y has property (m,())

11 Journal fiir Mathematik. Band 461
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if whenever ||u|| =1 and (y,) is a normalized sequence with lim y, = 0 for the topology T,
then

lim |lau + By,lI” = |a|? + | B}
for all scalars o and §.

We remark that Y has (m,(7)) if and only if

lim sup ||u + y,|| = [ (1], im sup | ,ID1l,

whenever t-lim y, = 0. We will take advantage of the fact L, has (mp(r)) for the topology
of convergence in measure.

Theorem 4.2. Suppose Y is a separable Banach space with nontrivial cotype. Suppose
Y has an unconditional (FDD) and denote the partial sum operators by S,. Suppose further
that t is a vector topology on 'Y weaker than the norm topology and such that Y has property
(m, () for some p > 1.

Now let X be a closed infinite-dimensional subspace of Y so that S, x — x for the topo-
logy 7 uniformly for x € By. Then, given ¢ > 0 there are a sequence of finite-dimensional sub-

spaces (E,) of Y and a subspace X, of ¢,(E,) so that d(X,,X) 1+ .

Proof. The argument is a variant of Theorem 2.7. We suppose Y has cotype ¢ where
g 2 p, with constant C,, and we denote the unconditional constant of the (FDD) by C,. We

1
select 0 < < gt and choose 7, > 0 so that ) 5, <4, and finally we pick an integer ¢ so

1
that C,C ¢t~ < gt

For convenience we index (S,) from zero with S, = 0. We will construct a subsequence
T, =S, (for n 2 0) of (S,) with the property that if

A4,= { Y A(TGx =T, - x): 14l §1,xeBx}
i=1

and D, = {S,,x— S;x:xeBy,m>12r,}, then for any ve D,, ue A, _, we have:
(ull? + NoliP)? =, < Hlu+oll < Alull? +110l12)Y? + 1,

To start the induction set r, = 0. Now suppose r,, ..., 7, _, have been chosen. If no
successful choice of r, > r, _; can be made, then we can find sequences

r

w_1<a, <b <ay<...

and x, € By so that if v, = §,,_x, — S, X, then there exist u, € 4, _, with

Hla + vl = Qo I + o IP) 21> 1,
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Passing to a subsequence we can suppose that () converges in norm to some u € 4, _,.
However (v,) then converges to 0 for 7 by assumption on X, and we obtain from property

(m,(0)
klirr:o (e + v ll = Qull? + v 1P)?) = 0

which leads to a contradiction. Thus the induction can be carried out.

Now it follows by induction that, if x € By and (a,)x5 0, (bi)xz 0 are two sequences
satisfying 0 < a, < by <a, < b, < ..., then, letting v, =T, x — T, x, we have

n 1/p n
()"~ n,s
ji=1 j=1

n n 1/p n
Z U; é( Z Hv,-ll") + Z Na, -
i=1 i=1 i=1

Since ) v; converges as the (FDD) is unconditional this means that

© 1/p
( D llv,-ll") —-0=
ji=1

Now let ¥, =T, ., — T, for k2 0, and for 0 < s <t —1 define 4,y = ) ¥,y (con-
gruence mod ¢). We also let j=s

® © 1/p
Ty §(Z 1|uj||v) +5.

Wes = ) Y

k=1)e+s<j<ki+s
forkz0and 0 st~ 1.

Then for any |4,| =1 and any x e){with l|x]] =1 we have

t—1

Y AA,x||<C,
=0

s

and hence by the cotype ¢ condition

(ff nAsan)”q <c,c,.
s=0

From this we deduce since p < ¢,

t—1 1/p
( ) nAsan> SC,Cprtrme
Now

1/p

© i/p ©
( D Ika,SXII") — 0 S |lx—A4,x|] é( Y lIWk,SXII"> +4.
k=0 k=0
Hence

0 1/p
1—||4,xl| -0 é( > W;‘,,XII"> S1+(4.xl1+6.
k=0
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It follows that

w t—1 1/p
t””(I—é—Cqut_”q)§< D) IIW,‘,,xll"> <11 +6+C,Ct7 1y,

k=0 s=0

By choice of 4 and ¢ this implies that

1 1 = t—1 1/p 1
I—Zeé(— ) ZIka,stl”) =1+ e

I ¥=o0 s=0

Hence X has Banach-Mazur distance less than 1 + ¢ from a closed subspace of
£,(E, ) where E, ;=ranW, .. O

It remains to give concrete examples.

Lemma 4.3. Suppose 1< p<oo and p+ 2. Suppose fe L, and (g,) is a bounded
sequence in L,. Then the following statements are equivalent:

(i) For any scalars o and B we have
nlini (laf+ Bgall” =1l f 1P — 1 BIPllgalIP) = 0.

(i) lim | |gldu=0.
B0 {|f]> 0}

Proof. (i) = (ii): Itsuffices to consider thecase|| f|i, = || g,Il, = 1. Then by a result
of Dor [14] (cf. the discussion in Alspach [3]), there exist for each n disjoint Borel sets
A,, B, so that || fx, I, > 1 and |lgxp |l, = 1. Hence lim|igx, |, = 0. Now let

Cn = {wlf(w)l >O’w¢An} *

Then lim u(C,) = 0. Hence (g,) tends to 0 in measure on {| f| > 0} and is equi-integrable,
so that (ii) follows.

(ii) = (i): This is standard and we omitit. O

Theorem 4.4. Suppose 1 < p < oo, p*2, and let X be a closed infinite-dimensional
subspace of L,. Then the following conditions on X are equivalent:

(1) By is compactin L,.

(i) X has property (m,).

(iii) For any ¢> 0, there is a subspace X, of £, so that d(X,, X) <1+ e.
Proof. (iii) = (ii): This is immediate.

(ii) = (i): We start by producing a function f in X with maximal support. Let (f,)

be a dense sequence in the unit ball of X. Then ) 1,27"f, converges in L, and absolutely

n=1
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a.e. for every (1,) € [0,1]". By a standard Fubini argument there is a choice of ¢ = (z,) so
thatif f=) 1,27/, then f is nonzero a.e. on the set S = | J {| /| > 0}. (In fact, for almost
every we S the set of those ¢ for which ) £,27"f,(w) =0 has measure 0, and for
A={(t,w):weS8,Y t,27"f,(w) 0}, {dt [duy, = [dufdty, = u(S).) It is then easy to
see that any g € X vanishes a.e. on the set { f = 0}.

Now suppose (g,) is a weakly null sequence in X. Then by (m,) and the preceding

lemma, lim j' |g,ldu = 0. Thus lim||g,]l, = 0 and, as X is reflexive, the inclusion
2O (r1>0}
X o L, is compact and By is therefore compact in L,.

(i) = (ii)): We let 7 be the L,-norm topology on L,. Then L, has (mp (r)) and non-
trivial cotype. Also L, has an unconditional basis (the Haar basis) [40], Th. 2.c.5. The
Haar basis is also a basis for L, [40], Prop.2.c.1. Hence if (S,) denotes the sequence of
partial sum operators, then S, f — f L,-uniformly on B,. We are thus in a position to
apply Theorem 4.2, and since each E, produced there is a finite-dimensional subspace of
L, we obtain (iii). O

Next we note that in this context property (M) necessarily reduces to property (m,)
for some r.

Corollary 4.5. Suppose 1 < p <o and let X be a closed infinite-dimensional sub-
space of L, with property (M) and, if p =1, failing to contain a copy of ¢,. Then there
exists 1 <r < oo so that X has (m,), and for any € > 0 there exists a closed subspace X, of
(withd(X,X))<1+e Ilfps2 thenp<r<2;ifp>2,thenr=2orr=p.

Proof. Since X is stable [32] it follows that X has property (m,) for some 1 < r < c0.
(This is what the proof of [30], Th. 3.10, actually shows.) Theorem 3.3 implies that X
contains a copy of Z,. Now L, contains only those 7, as stated [38], p.132ff., hence we get
the final assertion.

Since there is a weakly null sequence (u,) in X with lim || x + aw,|| = (||x||"+ |a|")!'"
for any xe X [30], Prop.3.9, the space X@®, R is finitely representable in X and thus
embeds isometrically into an ultraproduct of X and hence also into L,. We wish to con-
clude that X is isometric to a subspace of L,.

If p <2, this is a result independently due to Dor [15] and Raynaud [50], Prop. 3.
If p>2 and r = 2, we observe that Raynaud’s argument still works if p is not an even
integer; and the assertion is trivial if » = p. Suppose now that p = 2m is an even integer and
r = 2. We claim that a Banach space Y is isometric to a Hilbert space provided Y®, R is
isometric to a subspace of L,. Indeed, if Y= L, and ge L, satisfy

Iy +2gll, = (lyll; + 112

forall yeY, teR, then

fy+eglle=[ly+tgl?du=(lyl2+|t]*)™
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is a polynomial in ¢, the coefficient of #2™~2 being
mQ2m—1)[1y|*|g|*" 2du=m|yl .
Hence Y is a Hilbert space.
To prove the corollary it is now left to apply Theorem 44. 0O
The case p > 2 is especially interesting.

Corollary 4.6. Suppose p > 2 and let X be a closed subspace of L,. Then the following
conditions on X are equivalent:

(1) X contains no subspace isomorphic to ¢£,.
(i) X is isomorphic to a subspace of ¢,.
(iii) For any &> 0, there is a subspace X, of £, so that d(X,, X) <1+e.

Proof. The only step requiring proof is that (i) implies (iii)). By Theorem 4.4 it
remains to show that By is L,-compact. If not, there is a sequence ( f,) which is weakly
null but does not converge to zero in L,. By passing to a subsequence we can assume that
(f,) is an unconditional basic sequence, cf. [39], Prop.1.a.11, and that inf|| £,|}; > 0. We
thus have for any finite sequence of scalars a,, ..., q,

Z a fi

k=1

2 c ave
p

Z ta fi
k=1

p

n 1/2
( Z la,‘lzlfklz)
k=1

n 1/2
(£ tarise)
k=1

v

¢
p

iv

4]
2

n 1/2
2 Czinf”fnllz( ) lakl2>

k=

n 1/2
2 Cy ( Z Iaklz>
k=1

for suitable constants ¢; > 0. Since L, has type 2, it follows that conversely

Z a fi

k=1

= c,ave
p

Z ta /i
k=1

n 1/2
§Cs< ) 'ak|2> .
k=1

Thus lin{f,, f,...} is isomorphic to a Hilbert space. O

p
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Remarks. (1) The equivalence of (i) and (ii) above, however with a large iso-
morphism constant, is due to Johnson and Odell [26]; see also [24].

(2) Inthecase 1 < p <2 the equivalence of (ii) and (iii) breaks down. In fact the space
¢, ®,¢, is isometric to a subspace of L, and has a subspace isometric to the space ¢,
equipped with the norm || || = (I €112 + [1¢115)Y/7. A direct calculation shows that this norm
does not have property (m,) (not even property (M)); so £, with this norm cannot embed
almost isometrically into £, with its classical norm. (A more roundabout way to arrive at the
same conclusion is to observe that the above norm is 1-symmetric and to invoke a result
due to Hennefeld [21] (see [20], Prop. V1.4.24, for a proof based on property (M)) ac-
cording to which the spaces (£, ||||,) are the only 1-symmetric Banach spaces for which
A(X) is an M-ideal in #(X) and thus the only ones with property (M).)

Corollary 4.7. Let 2 < p < oo and suppose X is a closed infinite-dimensional subspace
of L, with property (M). Then either X embeds almost isometrically into £,, or X is isometric
to a Hilbert space.

Proof. This follows from Corollaries 4.5 and 4.6. (Note that if X embeds almost
isometrically into £,, then the parallelogram identity holds, and X is isometric to a Hilbert
space.) 0O

As a specific example of a subspace of L, we now discuss the Bergman space B,. This
is the space of all analytic functions on the open unit disk D in the complex plane for which
{1f(x+ iy)|Pdx dy is finite. Thus B, is a linear subspace of L, = L,(D, dxdy), and it is
D

closed. It is well known that B, has the metric approximation property (use Fejér kernels,
as in [54], Lemma 3.4); in fact, it is isomorphic to £, [37]. Let us point out that B, has
(m,). If f, — 0 weakly, then clearly f, — 0 pointwise. Since bounded sets in B, are equi-
continuous on compact subsets of D, we conclude that f, — 0 uniformly on compact subsets
of D. From this it follows easily that B, has (m,,).

Hence Corollary 3.6 and Theorem 4.4 imply:

Corollary 4.8. The Bergman space B, embeds almost isometrically into ¢,, and X (B,)
is an M-ideal in ¥(B,) if 1 < p < 0.

We also wish to consider the corresponding space of analytic functions when p = .

This is the so-called ‘little’ Bloch space B, consisting of those analytic functions f on D

for which || f||z:=sup( — 121} f(2)] < 0 and II}m (1 —1z|®) f(z) = 0. (The analytic
z| =1

functions satisfying || f |5 < oo form the Bloch space . We remark for completeness that in
complex analysis the space of functions whose derivatives belong to f is called the Bloch
space.) It is known that 8 is the bidual of 8, (e.g., [9]), B, is an M-ideal in B [54], B, has
(m,) (the above argument works here as well, see also [36]), and B, has the metric
approximation property (e.g., [54], Lemma 3.4). Hence we get from Corollary 3.6:

Corollary 4.9. The little Bloch space B, embeds almost isometrically into c,, and
X (By) is an M-ideal in £(B,). In fact, for every Banach space X, X (X, B,) is an M-ideal
in (X, B).
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This result (the last mentioned assertion follows from [53]) was conjectured in [36].
Note that B, is not isometric to a subspace of ¢,, because its unit ball has extreme points
[12], but the only subspaces of ¢, whose unit balls have extreme points are finite-
dimensional.

Actually, to obtain the above corollaries it is not necessary to apply the machinery
developed in this paper; all one has to know is that B, embeds almost isometrically into
¢, and B, into c,. This can be proved directly as follows; for simplicity let us give the
details for f,. Let e>0 and r,=1—2"" for n 2 0. Then for each n there are constants
K,and L,sothatif || f]l; = 1,then | f(2)| = K,and | f'(z)| = L, for |z| < r,. Now for each
n choose a finite subset F, of the annulus 4, = {z:r,_, < |z| £r,} so thatif ze 4,, then
there exists z'€ F, with |z — z'| £ §, where (L, + 2K,)d, S e.

Suppose || fll; =1. If ze 4,, pick z'€ F, as above. Hence | f(2)| =|f(z)|+ L,6,
and so

A=z @I (21> = 1z f @I+ A = 121D )+ L,6,) .

Hence

sup (1 —z|)| ()] £ (L, +2K,) 6, + max (1 — 1z f @)1

zeAp ze

Thus if F= {J F,
1< sug(1 =1z @) +e.

If we arrange the set F into a sequence (z,), then the operator T defined by

Tf = ((1 = 12z,*) /()
maps B, into a subspace of ¢, and (1 —&)|| fil, =N TS NI = 1| flp-

Let us remark that our arguments are not restricted to the weight 1 — |z|? appearing
in the Bloch norm; as a matter of fact one may consider any radial weight of the form
v(|z|) where v: [0,1] — [0, 1] is a continuous decreasing function with v(r) = 0 if and only
if r = 1. For all these weighted spaces of analytic functions Corollary 4.9 is valid. Lusky
([41], [42]) has recently investigated those spaces and shown that they always embed into ¢,
isomorphically, and he has determined for which weights one actually gets spaces iso-
morphic to ¢,.

5. Property (M) for subspaces of the Schatten classes

At this point we also consider the Schatten classes ¢, of operators on a separable
Hilbert space # and prove similar results like for L, by essentially the same technique. The
reader is cautioned that x* will now denote the Hilbert space adjoint of an operator x € c,,.
We will need the following analogue of Lemma 4.3 above. We use || ||, to denote the oper-
ator norm.
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Lemma 5.1. Suppose 1 <p < oo and p + 2. Suppose xec, and (y,) is a bounded
sequence in c,. The following conditions are equivalent:

(1) For any scalars a and 3 we have

lim (llax + By,liy —lal?llxlly — 18171l yall5) = 0.
(i) lim flyrx|l, = lim ||y, x*(|,=0.

Proof. (ii)) = (i): Given ¢ > 0 we can choose finite-rank orthogonal projections =,
n’ so that ||z'x% — x||, < ¢ and ran(n) < ran(x*), ran(xn’) < ran(x). Now y,(£) — 0 for
all {eran(x*) and so lim |{y,=l||,, = 0. Since = has finite rank, lim ||y,=||, = 0. Simil-
arly lim [[n'y,|[,=0. "% nTe

Now it follows that for any a and B,

lim (Jlan'xm + By, —llan’xn + B(Id — ") y,(Id — ﬂ)“,) =0.

n— o

Since

llam'xm+ B(Ad — =")y,(Ad — m)||} = [a|?||n"x=|[7 + | BIP|}(Id — =") ,(Id — m)[|]

we quickly obtain that
lim sup |[|ax + By,ll, — (JalPllx||” + BNy lIDYP] < Jale.

Since ¢ > 0 is arbitrary we have the result.

(i) = (ii): Let us start by calling a sequence (y,) in c,, tight if the induced sequences
of singular values o, = (s,(»,))- ; form a relatively compact subset of Z,. This is easily seen
to be equivalent to the requirement that given any & > 0 there exists a natural number
t = t(g) so that for each ne N there is an orthogonal projection =, of rank at most ¢ so
that ||y, — y,m,ll, <e.

Let us first assume that (y,) is a tight sequence. Let # be any non-principal ultra-
filter on the natural numbers and consider the ultraproduct X defined by £, () quo-
tiented by the subspace of all sequences (£,) so that lim [|£,|] = 0.

ned

We will consider the maps 0 € £(J,) defined by 8((&,)) = (x(&,)) and ¢ defined by
& (&) = (¥,(£,)). Suppose a and B are any scalars. It is clear that the singular values of
af + B¢ are given by

@0+ ) = lim s, (ax + B,).

We will argue that (ax + fy,) is a tight sequence. In fact, given ¢ > Owe canfind te N
so that for each » there is an orthogonal projection =, of rank at most ¢ so that

HB(Yw— Yamdll, < €/2.
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We also fix a finite-rank projection m, of rank ¢, so that |la(x — xm,)||, < £/2. Let x, be
the orthogonal projection onto ran(=n,) + ran(z,). Then =, has rank at most 7+ ¢, and
Il (@x + By,)(d — = )l < e.

It thus follows that a0 + B¢ € c,(5#,) and that

e+ Boli, = lirg fHax + By,ll, -
Hence we have that

|26 + B} = ll?lI01i7 +1BI7lISI5 -

A classical result of McCarthy [43] gives that in the case of equality in the generalized
Clarkson inequalities in ¢, we have [0}|¢| = 0 or ¢6* = ¢*0 = 0. Translating this back we
obtain that

lim ||y, x*||, = lim ||yfx|l, =0.

This completes the proof when (y,) is tight.

For the general case we may reduce the problem by passing to a subsequence so that
lim s.(y,) = s, exists for all k. Then if y, is written in its Schmidt series

a0

In = Z 55, () E ®

k=1

o}

where (&,) and (7,) are orthonormal sequences, we will put y, = Y s, &, ® ;. Then (3,) is

k=1
tight and lim||y, —y,ll, = 0. To see the latter statement notice that s,(y,) < Mk~ /?
where M = sup|| ||, and so |5, (3,) — 5| £ 2Mk™"? but lim s,(y,) — s, = 0 for each k.

Now suppose « and § are given. Then (xx + By,) is tight as before and hence we can
find isometries u, and v, so that the set (u,(ax + By,)v,) is relatively compact. However
Hu, (¥, — y)ll, = 0 and by (ii) = (i) and a standard compactness argument we get

Nluy(ax + Byn) v,lip =, (ax + By ) v, 115 + | BIP g (¥ — Ya) 0all7 + €4
where lime, = 0. Thus
llax + By,lly = llax + Byylip + 1817y — yall} + & -
We can apply the same equation with a = 0 to obtain
Him (| yu 115 — tyallp =1y —3allp) = 0.
Putting this together we see that

lim (flax + By, II7 — lal?{{x; — [ BI%il3all7) = 0.
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Since (y,) is tight this means that lim ||y, x*||, = lim||(y;)*x||,, = 0 and hence
lim || y, x*|{,, = lim{| y¥x]l, = 0.
This completes the proof. O

To state our main theorem let © be the topology on ¢, given by the seminorms

x| x(&)]l and x - || x*(£)[| for £ € . Denote by c;, the space of n X n-matrices with the
c,-norm.

Theorem 5.2. Suppose 1 < p < oo with p+2, and X is a closed infinite-dimensional
subspace of c,. Then the following conditions are equivalent:

(1) By is compact for the topology t.

(i) X has property (m,).

(iii) For any ¢ > 0 there is a subspace X, of ¢,(cp) so that d(X, X,) <1+ e.

Proof. 'We note first that c, has nontrivial cotype ([43] and [52]). Let (£,) be any
fixed orthonormal basis of # and let #, be the orthogonal projection onto lin {£,, ..., &,}.

Then ¢, has an unconditional (FDD) with partial sum operators S,(x) = =, x=,, cf. [5].

We claim that c, has (mp(t)). In fact if ||x||, =1 and [|y,l|, =1 with y, - 0 for 1,
then since x is compact ||y, x*||, = 0 and || y¥x|{,, = 0. Hence

lim|lax + By,ll, = (la|” + | B[P)*?
by Lemma 5.1.

Now we give the proof of the theorem:
(iii) = (ii)): Obvious.

(ii) = (i): Suppose (y,) converges to 0 weakly in X. Then for any x € X we have by
Lemma 5.1 that lim || y* x]|, = 0. In particular it follows that lim |} y¥(£)]| = 0 whenever ¢

is in the closed linear span of | | ran(x). From this it follows easily that (y}*) converges to
xeX

0 for the strong operator topology. Similarly (y,) converges to 0 for the strong operator
topology and so y, — 0 for t which implies that By is T-compact.

(i) = (iii): We only need to show that S,x — x t-uniformly for x € By. In fact if
¢ e o then {x(&): x € By} is compact and so

lim sup ||z, x(&) —x()|f=0.

n—+ o xeBx

On the other hand, if x € By, then

7, x7, (8) — 7y x () = 11 & — m, ()] -
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Combining we have that

lim sup Iz, x7,(&) — x(©)l| = 0.

n—>w xeBx

This with a similar statement for x* allows us to apply Theorem 4.2 to obtain the
result. O

The following result is analogous to Corollary 4.5.

Corollary 5.3. Suppose 1 < p< oo and let X be a closed infinite-dimensional sub-
space of c, with property (M). Then there exists r € {2, p} so that X has (m,). If X does not
contain a subspace isomorphic to ¢,, for any ¢ > 0 there exists a closed subspace X, of
Z,(cp) with d(X, X,) <1+ e.

Proof. We argue as before that X is stable, which was proved by Arazy [4]. There-
fore, for some r, X has (m,) and contains a copy of ¢,. This implies that r =2 or r = p by
[5]. It remains to apply Theorem 5.2. O

Again, we specialize to p > 2.

Corollary 5.4. Suppose 2 < p < co and that X is a subspace of c,. Then the following
conditions on X are equivalent:

(1) X contains no subspace isomorphic to £,.
(i) X is isomorphic to a subspace of ¢,(cp).
(ii)) For any &> 0 there exists a closed subspace X, of £,(c}) so that d(X, X,) <1+ e.

Proof. The argument is very similar to that of Corollary 4.6. We only have to show
that (i) implies (iii), that is, by Theorem 5.2, that By is T-compact. If not, there would be a
weakly null sequence (x,) in By, which is an unconditional basic sequence and satisfies
inf{{ x,(€){| > 0 or inf}{x*(¢)]] > 0 for some & e # (One can extract an unconditional
basic sequence since c,, having an unconditional (FDD), embeds into a space with an
unconditional basis [39], Th.1.g.5.) Let us assume without loss of generality that
inf|| x,(£)|| > 0. We then have for suitable positive constants c; and all finite sequences of
scalars a,,...,a,

= cyave
p

tayx
1

IIM:

n
Z a, X,
k=1 k P

= cyave

™=

+a, xk(é) '
k=1

n 1/2
= "2( Z “akxk(é)llz)
k=1

n 1/2
o(£ar)

v
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On the other hand, ¢, has type 2 ([43] and [52]), and we get the reverse estimate

n 1/2
§c4( 2 Iakl2> .
p k=1

Therefore E{xl, X,, ...} 1s isomorphic to a Hilbert space. O

n
2 ay Xy
k=1

The equivalence of (i) and (ii) in the above corollary was first proved by Arazy and
Lindenstrauss [5].
6. An operator version of property (M)

In this section we study M-ideals of compact operators between distinct Banach spaces
X and Y. Our investigations will be based on an operator version of property (M).

Definition 6.1. An operator T with || T'|| £ 1 between Banach spaces X and Y is said
to have property (M) if for all xeX, yeV?, ||y|| £llx|l, and weakly null sequences
(x,) <X,

()] limsup||y + Tx,|| < limsup||x + x, .

Note that a Banach space has property (M) if the identity operator has property (M)
of Definition 6.1. We also mention that Lemma 2.2 of [30] implies that every contractive
operator in #(X) has (M) if and only if the identity operator has (M).

We shall need the following lemma.

Lemma 6.2. If T: X — Y is a contractive operator with (M), (u,) = X and (v,) <Y

are relatively compact sequences with ||v,|| £ ||u,l| for all n, and if (x,) < X is weakly null,
then

lim sup|{v, + Tx,|| < lim sup||u, + x,I| .
Proof. Otherwise we would have
lim sup||v, + Tx,|| > lim sup {|u, + x,|| .

After passing to subsequences we could deal with convergent sequences, say limu, = u
and limv, = v, and obtain

lim sup||v + Tx,|| > lim sup |ju + x,||
contradicting that ||v|| < l{u]| and that T has (M). O
The next result is a variant of Theorem 2.4 in [30], and it has a very similar proof.

Theorem 6.3. Suppose that the Banach space X admits a sequence of compact oper-
ators K, € X (X) satisfying
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(@ K, x> x VxelX,
(b) K*x* —» x* Vx*eX™*,
© lI1d—2K,|| > 1.

Let Y be a Banach space. Then X (X,Y) is an M-ideal in #(X,Y) if and only if every con-
traction T: X - Y has (M).

Proof. Suppose first that every contraction has property (M ). To show that X'(X,Y)
is an M-ideal in #(X,Y) we establish the 3-ball property of [33], Th. 6.17 (see also [20],
Th. 1.2.2), that is, given S,, S,, S; e ¥ (X,Y) with ||S;]| <1, Te Z(X,Y) with ||T|| <1,
and ¢ > 0, there is some compact operator S satisfying

S;+T—S||S14e, i=1,2,3.
In fact, we shall show that S = TK, will work for large n.

Since K¥ — Id,. strongly and (KX,) is uniformly bounded, (K.*) converges uniformly
on relatively compact sets and thus || S; K, — S;|| S ¢/2, i =1, 2,3, for large m. We also
assume that || Id — 2K, |} <1 + ¢/2. Consider a sequence (x,) in the unit ball of X such that

limsup || S, K, x,+ (T—TK,) x,|| = limsup || S, K,,+ T— TK,]|| .
Note that (Id — X,) x, — 0 weakly. By Lemma 6.2 and the fact that T has (M) we get the
inequality
lim sup “S1 Kmxn + T(Id - Kn) xn” _S_ hm sup ”Km Xn + (Id - Kn) xn”

< limsup || K, + (Id — K)) I,

and the last quantity is dominated by [|Id — 2K, (see [30], p.153). Therefore,

limsup ||S, + T—TK,||<1+¢,

and
lim||S;+T~TK, ||<1+e¢

for some subsequence (K, ). After switching to further subsequences one obtains the
same type of inequality for S, and S; which proves the desired 3-ball property.

On the other hand suppose that X°(X,Y) is an M-ideal in Z(X,Y). Let xe X, ye Y,
Iyl £ llxll. Fix a compact operator S with || S}/ <1 and Sx=y.Let T: X - Y be a con-
traction and suppose that x, - 0 weakly. For each n > 0 there is a compact operator
U:X->Ysuch that |Ux—Tx|| £n and ||S+ T—U|| £1+ n (see [55], Theorem 3.1,
Remark). Thus
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limsup ||y + Tx,|| = lim sup || Sx + Tx,l|
= limsup | S(x + x,) + (T— U)x,]|
= limsup||S(x + x,) + (T— U)(x + x)|| + 7
SA+n)limsup||x+ x,]l+7.

Since n was arbitrary, this proves that T has property (M). O

It is easy to check that (4) of Definition 6.1 holds if X and Y both have property (M).
The validity of Theorem 6.3 under these extra assumptions has already been observed in
[45] (cf. [20], Cor. V1.4.18); but we will later encounter situations where Theorem 6.3
applies, but Y fails (M) (cf. Propositions 6.5 and 6.6).

We also mention that the assumptions on X in Theorem 6.3 enforce X (and X *) to
be separable. Nonseparable versions (as in [45] and [20], Chap. VI.4) are easily supplied,
and we leave it to the reader to spell these out. Likewise, we don’t formulate a corresponding
result based on the notion of (M *) of [30], which can be done without difficulty.

Note that the assumptions on X above hold in particular if X has a 1-unconditional
shrinking basis; €.g., X = £, for 1 < p < 00. In this case there is an embellished version of
Theorem 6.3 which we state next. As usual, (e,) denotes the unit vector basis in 7Z,.

Corollary 6.4. Suppose 1 <p < co. Then X'(¢,,Y) is an M-ideal in £(¢,,Y) if and
only if for all y € Y and all operators T: ¢, — Y the condition

5) lim sup ||y + Te, |l < (IyIlI” + I T1IP)"*

holds.
Proof. The condition is necessary by Theorem 6.3 since
lim sup||x + ¢,]| = (|| x||” + 1)/?.

Next suppose that (5) holds. If (x,) is a weakly null sequence in ¢, and if (4) fails for some
contractive T: ¢, » Y, xe/, and y e Y with || y|| < || (|, then we may, after passing to sub-
sequences, assume that

lim||y + Tx,|| > lim || x + x,]|

and that y = lim||x,|| exists. We may also assume without loss of generality that y = 1;
thus

lim|{y 4 Tx,[| > (llx||? + 1)'/?.
On the other hand, some subsequence (£,) of the sequence (x,) is almost isometrically
equivalent to the unit vector basis of £,. Let @:¢, — lin {¢,¢,,...) be a (1 + n)-iso-
morphism mapping e, onto £,. Then (5) implies that

lim sup || y + T&,|| = lim sup ||y + (T®)e,|l < (I ¥ I + I T®|1)"'7,
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thus
limsup|ly + T& |l < (Ix1IP + (1 +m)?)Y/?

since || T®|} <1+ 7, which is a contradiction if # is small enough. O

Let us mention some situations where this corollary applies, thus providing new
examples of M-ideals of compact operators.

Proposition 6.5. Let 2 <p<oo. Then X (¢,, L,[0,1]) is an M-ideal in the space
Z(¢,, L,[0,1]).

Proof. Since the case p = 2 is well-known, we only have to take care of the case
2<p<oo.LletT:4,— L,[0,1] be an operator. We claim that the sequence (f,) = (Te,)
tends to 0 in measure which will prove that

(6) lim sup||y + Te,|| = lim sup (| y||” + || Te, |I?)*'?
SdiyliP+lTIRYe

whenever y € L,[0,1], and hence our assertion by Corollary 6.4. (In (6) we are using the
fact that L, has (m,(z)) for the topology of convergence in measure.)

Suppose that ( f,) does not tend to 0 in measure. Then there are ¢ > 0, § > 0 and Borel
sets A, of measure = 6 such that | f,| = ey, a.e. for infinitely many n. There is clearly no
loss in generality in assuming this to hold for all n. Then we have for some positive
constants ¢; (the existence of ¢, below follows from the Khintchin inequalities, cf. [40], p. 50)
and all Ne N

KTINY? =T

N
2 te,
n=1

v

41

(£r)”

(22"

g c2N1/2

2 C €

(where the average extends over all choices of signs), which enforces p < 2.

Thus the proof of the proposition is completed. O
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Note that L,[0,1] fails property (M) unless p = 2. Proposition 6.5 does not extend
to 1 < p <2 because in this case X#'(£,, L,[0,1]) is not even proximinal in Z(#,, L,[0,1])
[6]; proximinality is a well-known property of M-ideals, see e.g. [20], Prop. II.1.1. On the
other hand, Proposition 6.5 implies the proximinality of %#°(¢,, L,[0,1]) in £(¢,, L,[0,1])
for 2 < p < co which was first proved by Bang and Odell [6].

The well-known result that X#'(7,,£,) is an M-ideal in £(£,,£) for 1<p<g<w
can clearly also be deduced from Corollary 6.4.

Next we consider the Schatten class c, of all compact operators on £, with p-sum-
mable singular values, and we denote its subspace consisting of those operators u whose
matrix representations with respect to the unit vector basis in ¢, are upper triagonal (i.e.,
u(e,)elin{e,, ..., e} for all k) by UT,.

Proposition 6.6. (a) Let 1 < p < 2. Then X (¢,, UT,) is an M-ideal in ¥(¢,, UT,).
(b) Let 2 < p<oo. Then A'(¢,,c,) is an M-ideal in £(¢,, c,).
(c) The space A (cy, K (£,)) is an M-ideal in ¥ (cy, K (£,)).

Proof. (a) In the case p =2 we are dealing with Hilbert spaces, so the result is
clear. Let 1 <p <2. For a fixed me N consider the orthonormal projection n:7¢, - ¢,
mapping onto the first m coordinates. We first claim that the operator

Q,:.c,®,c,>c,, (D) yn+(z—2zm),

is contractive. Indeed, this is trivially true for p = 1 by the triangle inequality, and it holds
for p = 2 since the Hilbert-Schmidt norm of an operator on ¢, is just the square sum norm of
the corresponding infinite matrix. Applying the complex interpolation method we deduce
the same result in the interval 1 < p < 2; note that the complex interpolation space [c,,c, ],

2
for6=2— » is ¢, [49] and that [c, ®,¢,,c; @, ¢,]4 = ¢, ®, ¢, [8], Th.5.63.
That @, is a contraction can be rephrased in the following way (denote the matrix

entries of an operator y € ¢, by y(k, /)): If, for some m, y(k, ) =0 for /> mand z(k,/) =0
for I £ m, then

ly+zll, = Aylis+1zlIpHe.

Let us now check that (5) of Corollary 6.4 holds. Since the operators with finite
matrix representations are dense in UT,, we may assume that y(k,/) =0 for /> m for
some m. Also, z,:= Te, — 0 weakly so that z,(k,!) — 0 for all k, / < m. Therefore, with ©
as above, ||z, n|[, — 0 (recall that the z, are upper triagonal) and thus

limsup |y + Te,ll, = lim sup||y + (z, — z,®)|l,
< limsup ([ ylI5 + liz, — z,=|I2) /7
=(lyie+nTinte,
since (z, — z,m)(k, 1) =0 for [ S m.

12 Journal fiir Mathematik. Band 461
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(b) Again, we will check (5) of Corollary 6.4, and we may and shall assume that
y(k, 1) =0 if k> m or I> m, for some m. Let z, = Te,, and let © be as above.

If zec,, then =z is a finite-rank operator mapping ¢, into £;". Since c,(£,,£;") is
isomorphic to ¢,, we can think of the operator ¥ : ¢, -+ ¢, mapping x e/, to no T'x as an
operator from £, to £,, and since p> 2, ¥ is compact [39], Prop.2.c.3. Consequently,
lim o Te,l||, = 0. Likewise, x — Tx o m is compact, and || Te, n||, - 0. Therefore y + Te,
becomes essentially block-diagonal, and we have

limsup|ly + Te,l|, = limsup|inyn + (Id — n)(Te,)(1d — m){|,

siylz+1ITIR)Y?.
(c) The proof here is similar to that of part (b). DO

The M-ideal property of (£, V') for some subspaces V of ¢, has been investigated by
P. Harmand (unpublished). Since by Corollary 6.4 the class of Banach spaces Y for which
X (£,,Y) is an M-ideal in £ (¢,,Y) is hereditary, those results are contained in the above
proposition.

The assertion in part (c) above corresponds to the limiting case p = o in (b). By
contrast, we have the following negative result which was prompted by a question of
T.S.S. Rao. "

Proposition 6.7. If ¢ is an infinite dimensional Hilbert space, then the three-fold
injective tensor product # ®, # &, H is not an M-ideal in its bidual. In fact,

HR,HE,H = (H,H (X))
is not an M-ideal in L (o, H (3))

Proof. Since the bidual of # &, # ®, H# is isometric with £ (o, Z(#)), it suffices
to prove the latter assertion. It is also enough to assume that J# is separable and thus
represented as £,. We shall show that (5) of Corollary 6.4 fails.

Let T: ¢, - X'(£,) be the operator that maps the sequence (,) € £, to the matrix

0 o o, oy
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Then || T|| = 1, but since the norm of the matrix
11
1 0
1 1
is 5(1 + [/5), we have that [e, ® e, + Te,|| = 5(1 + [/5) > [/E w|

However, for the space U T, of upper triangular compact operators it follows easily
from Corollary 6.4 that X"(o¢, UT,)) is an M-ideal in Z(3¢, UT,).

A more complete picture of those n-fold tensor products of £,-spaces which are M-
ideals in their biduals will be given in [16].

7. Open questions

Here we gather some problems suggested by our work.

Problem 7.1. The method of proof employed in Proposition 6.5 suggests considering
a version of property (M) with respect to convergence in measure, meaning that
lim sup || f+ g,]| depends only on || f'|| whenever g, — 0 in measure. It might be interesting
to pursue this idea further.

Let us indicate why such a notion might be useful. Suppose X is a function space on
[0,1] that can be renormed to have this property. Then every subspace generated by a
sequence of pairwise disjoint functions has the usual property (M). Consequently, by [30],
Th.4.3, if an order continuous nonatomic Banach lattice Y different from L, embeds
isomorphically into X, then the Haar system in ¥ cannot embed on disjoint functions in X.
This is an important property in the investigation of rearrangement invariant spaces, see
[25], [29] and [40], Sect. 2.e.

By way of illustration we observe that this line of reasoning together with [29],
Th.7.5, implies the following result.

Proposition 7.2. If X % L, is a separable rearrangement invariant space of functions
on [0, 1] that can be renormed to have the above property (M) with respect to convergence
in measure and if Y is a rearrangement invariant space on [0,1] isomorphic to X, then X =Y,
and the norms of X and Y are equivalent ( for short, the space X has unique rearrangement
invariant structure).

One can check that the Lorentz spaces L, ,[0,1] can be so renormed and thus
Proposition 7.2 can be applied to them. In fact, the canonical norm works in the case
1<g<p<ow,butforl1<p<g< o the canonical expression is only a quasinorm, and
one should consider the norm

1 dr\1/e
1 N = (g (z‘“’f**(z))"{) .
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Let us remark that L, [0,1] even has (mq(t)) for the topology 7 of convergence in
measure. For ¢ = oo one obtains this conclusion for the span of the bounded functions in
L, . [0,1]; note that this span is an M-ideal in its bidual [54].

We conjecture that Orlicz spaces allow such a renorming, too. Anyway, in the case of
Orlicz spaces one can argue that a sequence of pairwise disjoint functions generates a
modular sequence space which can be renormed to have property (M) by [30], Prop.4.1.
This argument is a variant of that given in [25], p.168, for the reflexive case.

Problem 7.3. Is X'(£,,c,) an M-ideal in #(¢,,c,) for 1 <p <2 (cf. Proposition
6.6(a))? Note that c, is isomorphic to UT, [5].

Problem 7.4. What about the commutative version of Proposition 6.6 (a), i.e., is
A (¢,, H,) an M-ideal in £(£,, H,) for 1 < p <27 Recall that the Hardy space H, must not
be replaced by L,, by the results of [6].

Problem 7.5. By Corollary 4.9 and well-known results on M-ideals (see [30] or [20],
Th.V.5.4) there is a sequence (K,) of compact operators on the little Bloch space 8, such
that K, — Id strongly and {|Id — 2 X, || = 1. Such operators can actually be obtained by
taking suitable convex combinations of Fejér operators. Is it possible to find such K, ex-
plicitly among the classical kernel operators? This would give a direct proof, which does
not rely on the embedding of f, into c,, that #°(f,) is an M-ideal in Z(8,) and, moreover,
that J°(X, B,) is an M-ideal in Z(X, B,) for all Banach spaces X, cf. [36]. In fact, it
suffices to find K, satisfying ||Id — K, || = 1 [45]. Also, it would be interesting to check
property (M *) for B, directly.
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