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Sequences of random variables in L, for p <1

By N. J. Kalton*) at Columbia

1. Introduction

Let (2,2, P) be a probability space and suppose 0<p<2. Suppose X e L,(£2)
and that (X,: n=1) is a sequence of independent identically distributed random vari-
ables on Q with dist X, =dist X; denote by 4,(X) the closed linear span of (X,: n=1).
If p21 and E(X)=0 then (X,) is a basis for 4,(X) equivalent to the unit vector basis
of a certain Orlicz sequence space (see [2]). In general if E(X)+0, A4,(X) is still isomor-
phic to an Orlicz sequence space, as can be proved by considering the basic sequence
(X, — E(X,)).

The purpose of this note is to investigate the situation when 0 <p<1. We shall
show that in this case it is possible for 4,(X) to fail to have a separating dual, and that
when this happens 4,(X) is a twisted sum [5] of the real line and an Orlicz sequence
space; more precisely if R is the subspace of constants, then R is an uncomplemented
subspace of 4,(X) and A4,(X)/R is isomorphic to an Orlicz sequence space.

A special case arises when X has the probability density function f given by:

1
R x219

f=1"

0, x<i

(or one may use X =|Y|, where Y has the Cauchy distribution). In this case 4,(X) for
0 < p <1 turns out to be isomorphic to the Ribe space constructed in [6]. The Ribe space
is an example of a non-locally convex space whose quotient by a line is isomorphic to
the Banach space /;; thus the Ribe space embeds into L, for 0<p<1. This embedding
can be further used to show that L, contains a needle-point which is the critical step in
Roberts’s proof [7] that L, contains a compact convex set with no extreme points;
indeed any point of R is a needle-point of A4,(X), as a simple calculation shows.

We note that the ideas of this paper are based on a recent paper of Bourgain and
Rosenthal [1].

*) Supported in part by NSF grant MCS-7903079
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2. Notation

Let ¢ be a strictly increasing continuous real-valued function on [0, c0) with
¢(0)=0. Suppose that for some constants a;, «, with 1 <a; Sa,<oo we have

(1) 1 () SF2X) S0, d(), O0<x=1,
Then the Orlicz sequence space /, is the space of real sequences (x,) with
2 ¢ (xy]) < 0.

This is a complete locally bounded F-space (i.e. a quasi-Banach space) when quasi-
normed by
Ix|=inf{0>0:3 ¢(O~ ' x,h =1}

for x=(x,) €ls.

Now suppose M and N are two quasi-Banach spaces. Then a twisted sum L of M
and N is a quasi-Banach space with a subspace M,=~ M such that L/M = N. Twisted
sums can be constructed by using quasi-linear maps ([3], [5], [6]). Let N, be a dense
subspace of N and F: N, — M be a map satisfying the conditions

2 F(tx)=1tF(x), teR, xe Ny,
3 IFGey +x2) = Flx )= FOx)l S B([x |+ x2l)), %1, x2€ No

where B is some constant independent of x, and x,. Then M @y N, is the algebraic
direct sum M @ N, quasi-normed by

4 1 ) =1y —=Fll + llxl.

The completion M @p N is a twisted sum of M and N. It will be a direct sum (i.e. there
will be a projection onto the subspace M @ {0}) if and only if for some linear map
G: Ny — R and some constant B

) [F(x)—Gx)| =B llxl,  xe N,
If H is any other quasi-linear map H: N, — M then M @®¢N and M @y N will be
isomorphic provided that for some ¢+0, B; <o and linear G: Ny —» M

(6) IF(x)—cH(x) -G =B l|xll,  xe&No.
(see [6]).

The Ribe space is an example when M =R and N=1. Let Ny =R®, the finitely
supported sequences in /;, and define

™ F(9= % x loglx —<§ xi> log

i=1

e o)
2 X
i=1

(where 0 log0=0). Other non-trivial twisted sums were constructed in [3] and [8]. In
[7] it is shown that the Ribe space is, in certain respects, the “worst” twisted sum of
R and ;.

Now suppose (2, X, P) is a probability space. If X is a random variable on Q we
denote by X its characteristic function i.e.

X(5)=E(e*) =] Y dP(w).

Journal fiir Mathematik. Band 329 27
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We denote by XA Y the pointwise minimum of two random variables. If X e L, then
X1, = (E(XP))'?

is the quasi-norm defining the topology on L,.

3. Main results

We start with a simple lemma which can be easily deduced from known results
(cf. [9] p. 112). However it is quick and easy to prove directly.

Lemma 3. 1. Let p be fixed with O<p<?2. Then for every ¢>0 there exists
d=0()>0 so that whenever {Yy,...,Y,} are mutually independent random variables
with Y| €1, 1 LiLn and ce R is such that

le+ i+ + Y [,=0(e)
then
e+t Yi+--+ Y[, Ze.

Proof. 1If the lemma is false there exists for each me N a finite sequence of
mutually independent random variables (Y;,..., Yyum) with |¥;]<1 and scalars ¢, so
that if

Zm=Cm+ Y1+"‘+ YN(m)
then :
1ZalZe but [ Z,<—.

m

Let Uy, =Y, —E(Y,, ). By Taylor’s theorem if || <1

. 1 1
el —it—— 1} S —
€ 1 3

<
) =

t2

and so if ‘slgé

. 1
U@l 21— s*E(Up,).

IfV,=2,—E(Z,) then

R Nm) 1 N(m) 1
W= 11 IU,..,,,(S)Iétﬂil)(-;s2 z E(Ui,n)>, |S|§~2~
n=1 n=1

= exp (—%SZE(V,ﬁ)> )

Now Z,, — 0 in probability and hence |V, (s)| — 1. Thus E(V2) —0. As V,,—Z,, —0
in probability, E(Z,) — 0 and so [|Z,]|, — 0, contrary to assumption.
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From now on we fix p with 0<p<1 and suppose X e L, but X¢ L,. Define
for t>0

_ X if |X(@)|=sr,
U’(“’)"{o otherwise.

For convenience in notation, let Uy=X.

Lemma 2. There exists a>0 so that if 0 <t=Z<a then
1
E(U) S (E(UD}™.

Proof. |U,l|; — o0 and so
U/IIlUfls —0 as t—0

in probability and is equi-integrable in Z,. Hence

1Tl /1 Uil — 0.
Now define
©) $(1)=E(X2 at?|X)), 120
(19) Y(O=1EU), 120
=H5 X (w) dP(w).

¢ is an Orlicz function satisfying condition (1). We denote by ||, the quasi-norm
on ly.

Define a map F: R - R by

(11) F(a)=|ally Z l//( ) a=+0.
lally

F clearly satisties (2). We shall deduce later that F satisfies (3) with respect to ||,.

Let (X,: n=1) be a sequence of independent random variables with dist X, =dist X.
Let M be the linear span of 1 and (X,: n=1).

Theorem 1. The L,-quasi-norm as M is equivalent to the quasi-norm

(12) e+ E a; Xl =lc+ F(a)| + llallg, aeR®, ceR.

j=t

Proof. We start by observing that it is not immediately clear that (12) defines
a quasi-norm on M, this requires F to satisfy (3). However both facts follow auto-
matically if we can show that there exists constants 0 < f; < f§, < oo with

BillZl, slZI 2 602l  ZeM.

27*
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First suppose
Z=a, X+ - +a,X,—F(a)
and that |lal|,=1. Let
{0
and let Y;=a;X;—Y;. Then

p

ST IVIE=%X | l1aXPdP<3 $(la;)=1

n
p j=1 J laijX[>1

2 Y
=1

i

and

=
p

p

T Y-F@)| = || £ (5-EM)| 5| X (5-E) ={inn—E<Y,~>n§}’z
i=1 i i=1 2

j=1
(since Y;— E(Y)) are mutually independent)

n 1/2 n 1/2 n 1/2
g{_;lunn%} g{z ) |a,-X12dP} é(_§¢(lajl)> =1.

j=1 la;X|<1

Combining
1z, <2
Now suppose |||Z]||=1 where
Z=c+ Zl a;X;
j=
Then
(13) Y a;X;—F(a)| £2'7al,
i=1 4

by the preceding argument. Hence

c+ Za}A/J

j=1

<27 (|e+ F(a)| +27 |a] ) 277,
p .

We conclude that
(14 Wzj|=z2-%7|zl,, ZeM.

For the converse, we shall use Lemma 2 to pick 6>0 so small that if [la|,<0
(a € R™) then
1

T dlahss
and

E(:U,\)%{Ew,ﬁ}”z

whenever 0 << max|aj|.
J
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We shall show that for #>0 there exists p(y)>0 with lirr(l) p(m=0 so that if
"—D

ZeM with (Z||,<n, IZI|<£0 then [|Z]ll<p(n). From this we can conclude that
IZII= B2 11 Z], for some B, < co.

Suppose [ Z], <7 and {[|Z]l| <6, where
Z=c+ ) a;X;.
j=1
Let B;={w: |a;X;(w)| £1} and C;=Q\B;. Put B= [ B;. Clearly
=1

j=

P(Cj)—_<~¢(]ajl), .]215 2,...,”
and so

n n 1
P(B)z UI (1=¢(ah)z1- ~—21 ¢lahz— -

Now let
Yi=a;X1g,, Yj=a;X;— Y

Define a new probability measure Pz on by

P(4 N B)

Pg(A)= P(B)

s Ael.

Now with respect to P, {Y;: j=1,2,..., n} are mutually independent; furthermore if
expectation with respect to Py is denoted by Ejp

Es(Y)=P(B) ' E(Y), Ep(YP)=P(B) ' E(Y).
Now P(Bj)gP(B)g% and by choice of 0 we have

1
= (EQPYEZE(Y).

Hence

_ 1 _
Es (Y~ (1)) = Ex(Y)) = (Ea(V)P 2 (P(B) ™'~ P(B)™2) E(Y)) 23/4 E(Y}).
We conclude from the Pz-independence of Yi,..., ¥,
n 5 4 n 2 4 n 2
Thus

(15) > E()s |
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Now

r

dPs<2[|Z)P dP<2yP
0

|

2

c+XY Y
j=1

and so by Lemma 1, (5) yields

(16) T EOP)S40)

where A(n) — 0 when y# — 0. We conclude

(17) ;1 1 axrapsam.

Now let &= 21 E(Y)). Then
z Y =z IIIG—E(Yj)Ilﬁéé 1,13 =40,

Hence

(18) 1(2 Y,-—¢> SV,
Now J

(19) 1(2 Y,~+c> <y
and so " p

Mg (c+O), <217 (n+)/4m)

and

le+&1 =227 (n+)/ 4()-

-¢)

We now turn to Yi,..., Y,. We have

™M=

W=Z—@+@—(

M-

J

It
—

J

and so

2y
j=1

where y(n) — 0 as n — 0. However

n

2 Y

j=1

P 1 1
2Y | IWpdPzo 3 [IYrdP==3 |
p J CGn () B Jj Cj

k+j

<3P+ 22 (n+ ) Am)+ 1)/ Am)=v(n)

i [an]>1

la;X|1PdP.
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Combining with (17) we obtain
(20) ;1 ola;) S 2(y(m))" + A ()

and so
lalle=4(m)
where A(y) — 0 as n — 0. Thus

” _F(a)+a1X1 +oee +aan”p§21/p l(”)
by (13). Hence

le+ F(a)| £2V7(n+2'% A(n))
and

NZIT < Aty + 242 (n + 277 A(m)) = p(n)

where p(n) — 0 as n — 0. The proof is complete.

Remark. The Kolmogoroft Three Series Theorem ([9] p. 113) shows that > aq,X,
converges almost surely if > ¢(la,|) <oo and 3 y(a,) converges.

We can now state our main results on the linear structure of the closed linear span
A,(X) of {X,}.

Theorem 2. (a) In order that 1 ¢ A,(X) it is necessary and sufficient that for some
constant C < o0

1) WOI£Co( 0121,

(b) In order that A,(X) has a separating dual it is necessary and sufficient that for
some constants ¢, C,

(22 W@ —ctl=Co(r) O0=1=1.

If (22) holds then A,(X)=l,; if (22) does not hold then A,(X) is isomorphic to a non-
trivial twisted sum of R and I,.

n(m)

Proof. (a) If Z,= 3 a;,X; and a,=(a; )i~ then Z,—1 if and only if

j=1

flamly — 0 and F(a,) — —1. Thus 1 € 4,(X) if and only if

sup (IF(@)|: flall4=1)= oo
i.e. if and only if
sup m-——oo
o<t<1 @)

by appealing to the definition (11) of F.
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(b) Theorem 1 shows that if (21) fails then A,(X) is isomorphic to the twisted
sum R@®pl,. This is a direct sum if and only if for some linear G: R* — R
\F(@)—-G@)|=Cllally, aeR”.

If such a G exists suppose G(e,)=c,, where ¢, is the nth basis vector. As F(e,) is con-
stant, G(e,) is bounded. Select a subsequence n, so that ¢, — c¢. Then for a e R,

= Cllaly

- Z cnk+1ai

1
'F( 3 a,-e,,kﬂ>
i=1 i=1

and so taking limits
= Cllalg

Fla)y—c é a;

i=1

<Cjal,, aeR™.

or

(W (@) — Cai)

1

M8

]

This leads easily to (22), with a possibly modified constant.

Conversely if (22) holds, we may define G(@)=c Y a. If (21) holds
i=1

A,(X)=R® I, =1, If (22) fails then A,(X) is by Theorem 1 isomorphic to the non-

trivial twisted sum R @ p)l4.

Corollary. Suppose X =0 is such that
t
lim iglf ) < o0
t e

(23)
Then A,(X) is a non-trivial twisted sum of R and ly if E(X)=o00.

Remark. (23) is valid if X belongs to weak L', i.e.
PXzZx)=0(x"") as x—

as may be verified by integration; in fact ¢ (¢)/t is bounded.
The converse is false; we can have E(X) <oo and 4,(X) a non-trivial twisted sum.

Let X have probability density function w(x) ~(x logx)~? for large x.
However if (22) and (23) hold then for some sequence ¢, — 0
o (1) = Ct,
and hence
t
M < C+icl.

In

Thus
E(U,)EC+]c] and E(X)<oo.
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4, Examples and remarks

We shall show first how to embed the Ribe space into L, for 0<p<1. Let X be
the positive random variable with probability density function

1/x?, 1<x<oo0,
W(x)z{o x<1

Then Xe L, for 0<p<1, and for 0<z<1

b

-1

d()y=1> | x*w(x)dx+1* ojo xw(x)dx=t—t>+(1—p)~'t.
1 1

Thus I,=1;. Now
-t

t | —dx, 0<t<1,

yn=y '
0, t21 or t=0
i.e.

1
t//(t)=t10g+7, 0=st<w
if we define 0 log co=0.
Hence A4,(X)>~R @l where

Fla)=5 a;log, 121¢

|a;|

The Ribe space is R @y, where
H(a)=% a;logla] — (X a;) log|¥ ail.

Hence

F@)+ H@ =X aloglal,— L a;log[S al— ¥ alog1oe

lail = Nlall la]

and is clearly bounded on the unit ball of /;. Thus we have proved that A4,(X) is
isomorphic to the Ribe space.

Theorem 3. The Ribe space embeds into L, for 0<p<1.

These considerations may be generalized in the spirit of the results of [4],
Section 9. There it was proved that if f is an Orlicz function satisfying /, </, then
there is a non-trivial twisted sum of R and /; if and only if f, =1 where

24 Br=inf{p|IM: fax)=ZMda"f(x), 0<a, x<1}.
An equivalent formulation of this condition is that /; is isomorphic to a subspace of /.

If we suppose, in addition that /; embeds into L, for some g<1 then we can
actually construct the twisted sum as a subspace of L, for any p<gq. In this case
(cf. [2]) we may suppose that x~9f(x) is increasing, and that x~?f(x) is decreasing
for 0<x<1. Then if we define for r=1

w0 a(xs(1))

Journal fiir Mathematik. Band 329 28
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g is increasing and by a straightforward integration by parts ¢ approaches a finite limit
as t— o0. Choose a>0 so that hm ag(f)=1 and let X be random variable with
distribution function

q(n, 21,
0, t<1.

Q)= {

Again it is straightforward to show X e L, and

2—
| X"dQ(X)<oc(q )t Pf(0),

1/
1/t

g x2dQ(x)=a(t™2f(t) — f(1)).
There ¢ is equivalent to f.

Now
v~ f xagw=a o sr(2)) (50 1+ L2 ).

It is easy to see that A,(X) is a non-trivial twisted sum if and only if A(r)/f(z) is un-
bounded for 0 £¢<1 where

h(t) = of (X)

It is shown in [4] that this happens pre01se1y when f,>1.

We conclude with some problems. We do not know whether the twisted sum of
R and /; constructed in [3] embeds into L, for p<1. Equally can a non-trivial twisted
sum of /, with itself for 0<p<1 embedded into some L, for 0 <g<p? We remark
that the twisted sum of two Hilbert spaces constructed in [5] does not embed into any
L, for 0<p<oo.
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