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N. J. KALTON (Swansea)
Transitivity and quotients of Orlicz spaces

To Professor Wiadystaw Orlics
on the occasion of his 75-th birthday

1. Imtroduction. The initial objective of this paper was to investigate
' the quotient structure of general non-locally convex Orlicz function
spaces. However, our results required the introduction of the notion of
transitivity of an F-space, and during the investigation we came across
certain ideas connected with transitive F-spaces which seemed worth
developing. Thus the paper falls into two distinet parts. In the first part
we study transitivity in general and 1n the second part we relate the :
notion to Orlicz spaces.’

We introduce in Section 3 the notion of a transitive pair of F-spaces
and present some general results on this concept. In Section 4 we intro-
duce ultra-transitive F-spaces — an F-space X is ultra-transitive if every
finite rank operator T: E—>X, where F is a closed subspace of X, may
be extended to an. endomorphism of X. Of course every Banach space
is ultra-transitive, but the existence of non-locally convex ulfra-transitive
spaces is less obvious. For example the space [, is not ultra-transitive.
However, in Section 4 we construct an ultra-transitive p-Banach space
(p<1) which is separable and universal for all separable p-Banach spaces. -
We do not Know any examples of non-locally convex ultra-transitive
spaces which arise naturally.

In Section 5 we apply these ideas to Orlicz spaces and show, for
- example, that an Orlicz space Ly is transitive if and only if either
liminfw*l}]’( x) > 0 or F is equivalent to a submultiplicative function.

T—> 00

T o0<ap<Pr< 1 then, unless F is equlvalent to a submultlpllcatlve |
function, Ly has two non-isomorphic quotients by one-dimensional sub-
spaces (this extends some results in [5]).

In'Section 6 we show that L, has no quotient isomorphic to another
" Orlicz function space, but’ thafo\_L iy isomorphic to, a quotient of certain
‘Orliez function spaces. ‘
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Our methods in studying operators on Orlicz spaces are closely related,
but not identical, to those used by Turpin ([9], [10]). Turpin uses the
concept of the galb of the space, whereas ‘we use (essentially) the idea
of ‘analyzing the possible behaviour at infinity of F-norms on the
space.

2. Notation. An F-space is a complete metric linear topological space,
which may be over the real or complex scalars; unless stated we will
treat only the real case, and implicitly assume the complex case. |

In a locally bounded F-space X the topology may be given by .
a quasi-norm > ||| which satisfies | |

i) llzll = 0 (v e X),

(ii) [lz]] = 0 if and omnly if z = 0,

(iii) [l = [tlllzll (t € R, @ € X),

(iv) llz+yll < k(2 +1yl) (2, y € X),
where % is 1ndependent of w and y. If in addltlon we have for some p,
0<p<l,

(V) lle+yl? < el +lyl® (2, y € X),
then we say that X is a p-Banach space (when equipped with this quasi-
norm). By the Aoki-Rolewicz theorem ([8], p. 61) every locally bounded
. F-space is locally p-convex for some p > 0 and may therefore be renormed
equivalently to be a p-Banach space.

If X and Y are F-spaces we denote by £ (X, Y) the space of operators
(i.e. continuous linear maps) from X to Y. If X and Y are both quasi-
normed, then Z (X, Y) may be quasi- normed by

17 = SUP(HTwII lel 1).

In the case X = ¥ we denote £ (X, Y) by Z(X).
The space Z (X, R) (or Z(X, €) in the complex case) is denoted by X*.
An Orliez function F is a continuous, strictly increasing function
F: [0, c0)—[0, o) -such that F(0) = 0. The Orlicz function space
Lz (0,1) = Ly consists of all measurable functions f on (0, 1) such that

1

fF(alf(m)l)dw< 0o

0

for some ¢ > 0. Ly is an F-space if we equip it with the topology induced
by the base of neighbourhoods of 0 of the form rBg(e) (r >0, ¢> 0),
where Bg(¢) consists of all f such that

¢ [F(f@)dw<e.
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Two Orlicz functions F and G are equivalent (at oo) if there ex1st
constants k&, ky, a;, ay > 0 such that

kyF(ay0) < G(2) < Zng(a_zm) I<2< ).

Then Ly = Lg.
We define
Jf PF (x . } e { F(tx) }
a5 = = 8Uu su < o© = 8 < o0y,
F PlP x>11 7 (i) ’ F= | p: tx>IitF() |

Then L is loc-a,lly bounded if and only if af > 0; it is locally p-convex *
if and only if

. "F (=)
sup

<< o0
La=>1 F (o)

(see [6], [10], p. 77).
The condition % < oo is equivalent to the 4,-condition (at oo)
su (20) < oo
o0
- @)

and to the condit‘i(')n that L; is separable. Under the Z]z-eondition, if
~ feLp, then

i

. .
[P(if (@) )dw < oo.
.0 .
F is said to be subadditive if -
F@+y) < Fl@)+Fly) (0<e, y< o)
and submultiplicative (at oo) if -
Flay) <F@)F(y) (1< S,y § < ).

Fis equivalent to a submultlphcatlve functlon if there exists a % such
that . '
Floy) <kF@)F(y) (1<, y< o).

(Define :

B
GRS oy

For a full dlscussmn of Orlicz" spaces and functions see [10].

. 3. Transitive spaces. An F-space X is transitive if glven z,9eX,
with # = 0, there exists T € #(X) with Tz = 9. We shall extend this by
defining a pair (X, ¥) to be transitive if given 0 % xeX and y eY
there ex1sts Tez(X,Y) with Te = y. :
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Some elenmentary observations are collected together in Proposi-
tlons 3.1 and 3.2.

PROPOSITION 3.1. Suppose (X, Y) is a transitive pair. Then ' i

a) if N is a closed subspace of X, (N, X) is transitive; v'

(b) ¢f M is a closed subspace of Y, (X, Y|M) is transitive; ;

(c) ¢f (Y, Z) is transitive, then (X, Z) is transitive. 3

PROPOSITION 3.2. Let' X be a tramsitive space. Then '

(a) of N is a complemented subspaoe of X, N is transitive;
(b) of X* {0}, X has a separating dual.

If X is a locally bounded F-space with quasi-norm x> ||z|, We defme
for 0 <p < oo, I,(X) to be the space of all sequences (x,), #, € X such
that SR

i@l = (3 )P < oo

The quasi-norm (z,)—|(#,)l, makes [,(X) a locally bounded F-space. 4
For p = oo, we define I (X) to be the space of all sequences (#,) such
that :

1) oo = D 1, < 0.
. n .
The space [, (X) has been studied in [7]. ,

The following lemma is an ‘immediate consequence of the Open
Mapplng Theorem.

LeMMA 3.3. Let (X, Y) be a tramsitive pair of locally bounded F-spaces,
and suppose 0 % u € X. Then there ewists k such that for any y € Y, there
evists T eZ(X, Y) with 1T < Ellyll and Tu = y.

THEOREM 3.4. Suppose X is a transitive locally bounded F-space.
Then 1,(X) is also tramsitive for any p, 0 < p < oo. :

Proof. It is trivial to see that (1,(X), X) is transitive. Conversely
it weX and (v,) €l,(X) there exists T, e #(X, X) such that T,u = v,
and |T,|| < kl|jv,|, where k is a constant independent of n. Define §: X
—~1,(X) by 8# = (T,«). Then (Su), = (v,). Hence (X, 1,(X)) is transitive
and the proof is completed by Proposition 3.1 (c). '

Remark. If X is transitive and X* = {0}, then (I,(X))* = {0}
by 3.4. Compare with [7], where it is shown that for some locally bounded
spaces X, with X* = {0} we have (I, (X)) = {0}.

TeEOREM 3.5. Let (X, Y) be a transitive pair of separable locally
bounded F-spaces. If Y s locally p- com;ew, then Y is isomorphic to a quo-
tient “of 1,(X). '

OOnfversely if X is transitive,. and Y is zsomm‘phw toa quot@ent of L, (
(where 0 < p < o), then (X, Y) is transitive.
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Proof. Suppose (X, Y) is transitive, and that (y,) 1Is a sequence
dense in the unit ball of ¥ (where we assume the quasi-norm on Y sat-
isties |z +y|? < llz|? + Ilyl*). Fix w e X, with [u| = 1. By Lemma 3.1,
there exist k such that we may find T ef(X,Y) with T u =y, and
1T, < k. Define S: 1,(X)—=Y by

8 is bounded and 0 € int 8 (U), where U is the unit ball of l,(X). Hence S
i§ an open mapping.

The converse is immediate from Proposition 3.1(b) since (X, 7, (X))
is transitive. : o

COROLLARY 3.6. A separable locally bounded F-space X s isomorphic
to a quotient of L, (0 <p < 1), if and only if X is locally p-conver and
(L, X) is tmnsztwe

COROLLARY 3T If 0<g<p < 1, then L, is isomorphic to a ‘quotient
of 1,(

Oorollarles 3.6 and 3.7 follow from the remarks ‘ohat l,(L,) = L, and

L (Lyy Ly) # {0} if p > ¢. :

We conclude this section by remarkmg that there exists a non-atomic
measure space (2, u) such that L,(Q2, ) is not transitive. Indeed if
(£2o, 1o) denotes an uncountable product of copies of (0, 1) with Lebesgue
‘measure, there is mo continuous operator from L 0 (205 o) (0 < p <1)
into a separable F-space. This may be proved by the methods of [1];
indeed any operator is an isomorphism on some subspace isomorphiec
to a non-separable Hilbert space. Hence L, (2, u,)@®L, is not transitive
and this is isomorphic to IL,(2, n) for some (02, u).

4. Ultra-transitive spaces. In [56] an F-space X was said to be strongly
tramsitive if whenever B < X is a subspace of finite dimension then évery
T,e%(E,X) has an extension T € Z(X). Clearly if we replace finite
- dimension by dimension one in this definition we would obtain a charac-
~ terization of transitive spaces. For complex locally bounded spaces the
- two concepts coincide ([5]), but it is an open question whether they
coincide in general.

Motivated by this defmltlon we define an F -space X to be wulira-
transitive if whenever N < X is a closed subspace and T,e Z (N, X)
is an operator of finite rank, them 7, has an extension T € Z(X).

PROPOSITION 4.1. Let X be an F-space.
a) If X is ultra-transitive, then every quotient of X is ultra-tramsitive.

(b) If X s tramsitive and (X|M,X) is transitive for every closed
subspace M of X, then X is wullra-transitive.
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Proof. (a) Let M be a closed subspace of X and N a closed subspace
of X/M.Let T,: N—X/M be an operator of finite rank. Then if ¢:
X->X /M is the quotient map, there exists an operator T': N-—X of finite
rank such that ¢T, = T,. Then consider T'q: g ' (N)—»X; T,q has an
extension §: X—X, and as S(M) = 0, § factors through g, ie. 8 = 8,4q,
where 8, e (X /M, X). Then ¢8; = T extends T and belongs to £ (X [ M).

~ (b) It suffices to show that if N is a closed subspace of X and T,
- € #(N, X) has rank one, then T, may be extended to an endomorphism
of X. Let M = T;1(0); then if ¢: X—X/M in the quotient map, Ty = 8¢,
where 8,: ¢(N)—~X. As dimg(N) =1 and (X/M, X) is transitive, S,
may be extended to § e #(X/M,X). Then T = Sq extends T,.

We remark now that I, (0 <p < 1) is not ultra-transitive since L,
is isomorphic to a quotient of 1,, and Z(Ly,l,) = {0}. The space L,
(0 < p < 1) is also not ultra-transitive, but the proof of this will appear
elsewhere [4]. Also the space L, is not ultra-transitive [4]. In view of
this it may appear that the only ultra-transitive spaces are. locally convex,

but this is not the case. We now construct some non-locally convex ultra- .

transitive spaces.

LEMMA 4.2. Let X be a separable p-Bamach space, and let (E,) be o
sequence of closed subspaces of X. Let T,: E,—X be a sequence of operators
with ||T,) < 1. Then, there is a separable p-Banach space Y containing X
such that each T, ewtends to an operator T,: X->Y, with |T,]<1.

Proof. Consi_der l,(X) (where for convenience we- index sequences
(#,) € 1,(X) starting at n = 0). Let M be the subspace of 1,(X) of all
() such that z, e H, (n>1) and ' ' 4 :

. @+ Z’ann = O'..
n=1 ' :
Let ¥ = lp(X)/M ,and g: 1,(X)—Y be the "quotient: map. Y is clearly
separable. Let (J,: n > 0) be the map J,: X—=1,(X) defined by J,
=(0,...,0,2,0,...) (¥ in the n-th place).

:  Pirst observe that ¢J, is an isometric embedding of X into Y. For
if (u,) e M and x € X, then '

ot o+ S l? > o+l + D) 1T, >l
n=1" : n=1 _

Thus we may identify X with the subspace ¢J (X). If & € E,, then

(T,%,0,..., —,0,...) e M and hence ¢J,» = qJT,x, so that the map

qJ (g o) : qJo(X)—~Y extends the map qJ o T, (g )" qJ o(E,)—~>Y.
THEOREM 4.3. There is o separable p-Banach space, universal for all
separable p-Banach spaces, which is transitive. '

SRR R o A R R T e e i
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Proof. In [2] Theorem 4.1 it is shown that there is a universal sepa-
rable p-Banach space, X, say. Let D, be a dense countable subset of the.
unit sphere of X,. We shall construct inductively a sequence (X,) of
p-Banach spaces and a dense countable subset D, of the unit sphere
of X, such that

(1) | Xp2 X, (=
(2) _. Dy =D, (0>
(3) If w,veD,, there is an operator Tﬁf’v X,—>X,,, with T®, (u) =
>0 and |TW,) =1.
(4) If w,veD,, then T¢I (x) = Tﬁf{,(zp), p eXn, n=0.

Suppose X,,, D, and (for n > 1) T0.', #,veD, ; are given. Then
by Lemmsa 4.2 we may construct X, , containing X, such that each
operator ! :

Tgtgl): Xn—-l”‘*Xn? (’Il/, Iv) € Dn—l.XDn-—U
Ry lin(u)>X,,  (u,9) € (Dy XDp)N(Dpy XDy 1)

(where R, ,(#) =v) has a norm one extension, denoted by T&“{, for all
(w,v) e D, XD, '
T (n) X _>Xn+1

Then choose D,., a dense countable subset of Xn +1, containing D, .
Repeating this construction 1nduot1vely we obtained the requn'ed sequences

Now let Z be the completion of U X, . Clearly D = U Dn is dense
’ =0 n=0 LN

in the unit sphere of Z, and if (u, v) € D x D, there is a unique operator
T,.: Z—~Z such that T,,(x) =T, () for eXn, (u, o) eD,xD,;
Tu v(u) =, a’nd. “Tu v” =1."
For fixed zeZ, with ||| =1, the map @: Z(Z)—~4, defmed by
& (T) = Tz has the property that the image of the unit ball of £ (Z) is -
dense in the unit ball of Z. Hence & is an open map and so Z is transitive.
As Z o X,, Z is also universal for all separable p-Banach spaces. |
THEOREM 4.4. A transitive universal separable p-Banach space is
ultra-transitive. Hence for each 0 < p <1, there is a separable ultra-tran-
sitive - p-Banach space which is mot locally q-comvex for any q > p.
Proof. Let W, be such a space, and let X be a quotient of W,. Then
(X, W,) is tranSJtlve (since X embeds in W,). Apply Proposltlon 4.1.
In fact, we observe that by Theorem 4.4 and Theorem 3.4,
COROLLARY 4.5. For 0 < p < 1, there is a separable p Bomaoh space
W for which 1,(W) is ultra-transitive. :
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THEOREM 4.6. Let W be a separable p-Banach space such that 1,(W)
is ultra-transitive. Let X be any sepamble p-Banach space; the followmg
conditions are equivalent: :

(a) 1,(X) ¢s ulira-transitive; :

(b) X s isomorphic to a quotient of l,(W);

(¢) (Y, X) is tramsitive for any separable p-Banach space Y ;

(d) X is isomorphic to a quotient of 1,(Y) for any separable p- Bomach
space Y.

Proof. (¢)=(d) Theorem 3.5.

(d) =(b) Trivial. ‘

(b) =(a) Since lp(X) is also isomorphic to a quotient of I,(W), this
is immediate from Proposition 4.1.

(a) =(c) Since 1,(X) contains a copy of 1,, it-has a quotient Z which
is universal for a]l separable p-Banach spaces. Thus Y embeds in Z,
and as Z is transitive so is the pair (Y, Z). However, (Z l (X,)) is also
transitive, hence so is (¥, 1,(X)) and hence (¥, X).

Remark. L, has an ultra-transitive quotient (see part (d)).

‘5. Transitivity of Orlicz spaces. In this section we turn to the question
“of transitivity of pairs of Orlicz function spaces. First we observe that
for any Orlicz function ¥ and f € Ly, there exists T e % (Ly) with T'f =1
(by 1 we mean the characteristic function of the unmit interval). Hence
to show that a pair (Lg, Lg) is transitive it suffices to show that for g € Lg
there exists T € & (Ly, Lgy) with T1 = g. -

Our first lemma is a positive result.

LeEMMA 5.1. Let F and G be Orlwz functions amd Suppose u € LG Suppose
 there exists k such that

E]

(*) f_G(tm(aj)r)"dé <EF(1) "(1 < t < o).

Then there ewists T € % (L, Lg) with TL = w. If, in addition, u is countably
simple and (x) holds for 0 <t < oo, then T may be chosen so thai

1 1
[\ Tf@))de <k [ F(1Tf@))ds  (f € Ly).
0 0 .
Proof. In fact, we prove the latter assertion first. Suppose
U = chan
n=1

where g, is the characteristic fuﬁction of the set A,, where 1(4,) > 0.
Since the measure spaces A4, and A4, X (0,1) are isomorphic, we may

R D R T S AR
1 S -
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define an operator S: LG((O 1) X (0,1))>Lg(0,1) such that 8 (x4, X
x(0,1) = z, and

f GISf@)jde = [ [ @(1f (@, y)))dwdy

for feLg((0,1) x(0,1)). |
~ Now defme T,: LF—>LG_((0 1) X (0,1)) by

Tof(@,y) = u(2)f(y).

Then 8T, satisfies the conditions.
For the first part let

v = Z 2y {m: 2" < fu )|<2"+1}

n=-—0co

Then v € Ly is éounta,bly simple and there exists 4 € ¥(L,;) such that
Av = u. Clea,rly

fG(t]v <EF(t) (L<t< ).

If we define 7™ (1) = max{F , k7t fG( lv x)|)dz} (0 .( <t< oo) then F™

18 equivalent to F and
fG (¢ 1o (@)l do < IcF*() (0<t< o0)!

By the second part of the lemma, there exists R e $(LF, Lg) with R1 = v;
then ARl = u.

THEOREM 5.2. Let F and G be two Orlz'oz functions. In order that the
pair (Lg, Lg) be transitive it is necessary and sufficient that either

(a) liminfo™*F(x) > 0; -

Z—>00
or

(b) there is a oonstant. k such that

G(lo) <RGN F(2), 1<t o< oo.
In particular Ly is transitive ¢f and only if either (a) holds or F is equivalent
to a submultiplicative function. *

, Proof. If (a) holds, Ly has a separating dual and so (Lz, X) is tran-
sitive for any X. If (b) holds, then @ satisfies the A4, condltlon If %e LG,
let v(x) = max(1, |u(«)]). Then v e Lz and hence -

f G(|v(x)|)dw < .




e

and’
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However,
1 1
[ @tlo(@))dr < KE() [ @(o(a))de, t>1
0 0
and hence by 5.1, there exists A € ¥ (L, L;) with 41 = ». Hence there

exists T such that T1 = u, and (Lp, L) is transitive.
Now suppose (Lp, L) is transitive. We may suppose that for 0 <z < 1

we have F(x) = G(») = o; suppose also that condition (a) does not hold.

Let
h(0) =1,
G(t
h(z) = min—(l (@ > 0),
o<i<x t
and define

H(x) = ah(x) (2>=0).

Then it is easy to check that H is an Orlicz function and H () < G(x)
(# = 0). Also as H(x)/x decreases monotonically, H is subadditive.

As the set By(1) is additively bounded ([10], p. 35), we may define
for T € & (Ly, Lg) '

»(T) = sup leTf ()]) dw
] feBp(1) g

and y(T) < oo. Clearly

yS+T)<y(8)+9(T), 8,TeP(Ly, Ly,
(@) <laly(8),  ld<1, 8 «#(Lr, Lo).

" For n=1, let o

Vo ={geLy: AT e Ly, Lg), y(T) <n, T1 = g}.

Then V., > V,,—V.,, m,neN. As U7V, — Ly, we may apply the Baire
category theorem to deduce 0 eintV,,, some m. As By(1) is additively
bounded, there exists N such that Bg(l) < V.

Fix # > 1, and let A be 2 set of measure G(»)~'. Let w = xy ,; then

% € Bg(1). Hence there is 2 sequence T, € #(Lg, Lg) with T 1—>wu and

v(T,) < N.
For t>1, let m = [F(t)]+1 < 2F (1). Partition (0, 1) into m disjoint
Subsets of measure m™';, with characteristic functions y;, ..., %,. Then
v; € Bg(1) and hence E

[HUT, L())dr<N  (i=1,2,...,m).

0
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Since H is subadditive,
fl.H(t IT,1()]) dv < Nm < 2NF(3).
;
As T,1—u is measure, we}have’, by Fatou’s lemma

Jf Hit|u(r) [\dr ONF(t),
i.e. '
H(tr) <2NF(1)G(x) (1<t,).

‘Now pick 6 so that

F(0)< 6]2N .
For #>1, we define |
Y -max{t: H(t) =G(1), 0<t<x}.
Then y>1. If y <2<y, then h(z) = h(y) and

H(z) = 2h(y) = 2y~ 'G(y).
Thus

-Z—G’(y)< 2NE(

and hence z/y # 0. Thus z/y < 0, and

—z-) G(y) -
Yy

G(w)>H()=—y—«G() >G(67'0) (z=1).

“H and G are therefore equivalent, and so G satisfies the A4,-condition.

Hence

- G@) < KEH(w) (»>1)
so that -

G(iz) < 2NEF ()G (z) (w,t=1).

COROLLARY 5.3. Under condition (b) of the theorem, if Ly and Lg are
locally bounded there exists p > 0 such that L is isomorphic to & quotient:
of l,(Lg). :

THEOREM 5.4. Suppose 0 < af < 5 < 1. Then the quotient of Lg by
a one-dimensional subspace is not isomorphic to Lp; and any two such quotients
are isomorphic if and only if F s equivalent to a submultiplicative function.

Proof. Ly is a A -space ([3], Theorem 4. 3), i.e. it has the property
that if X is any F-space and N c X is & subspace of dimension one then
an operator T': LF—>X /N may be lifted to an operator T: Ly—X such
that ¢T = T, Where q is the quotient map.
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Suppose V and W are two subspaces of L, of dimension one or zero
such that Lp/V =~ Ly/W. Let g, and ¢, be the quotient maps and let
S: Lp/V—>Lp/W be the isomorphism. Let R: Lgz—Lyp be the ‘lift’ of
8¢, and T the ‘lift’ of 8! ¢»- Then ¢q,RT = 8¢,T = q,, so that RT —I
has rank at most one. As Ly = {0}, RT =1 and similarly TR = 1I.
Clearly R(V) = W, and hence dimV = dimW. We deduce at once that
Ly is not isomorphic to its quotient by a subspace of dimension one,
and that if any two such quotients are isomorphic, then L, is transitive.

Conversely if L, is transitive, the same arguments as in [5] show
that any two such quotients are isomorphic.

Remark. This result may be extended to subspac(es of finite dimen-
sion as in [5].

6. Orlicz spaces as quotients of Orlicz spaces. The class of F-spaces
which are isomorphic to quotients of L, (0 < p < 1) is rather restricted
(see [1] or [10], p. 94, 3.4.3). Our first result shows that no other Orlicz
function space is such a quotient.

THEOREM 6.1. Let Ly be @somorphw to a quotwfnt of L,. Then F( x)
48 equivalent to #%, i.e. Ly = L,. :

Proof. Ly is locally p-convex and F satlsfles (for some k > 0)
F(tx) > kt*F (z) (t r>=1).

By Theorem 4.2, since (L,, Ly) is transitive, there exists K < oo such
that ' ’

F(tr) < Kt*F ().
Hence kF (1)1 < F(t) < KF(1)#* (L<t< o).

TrEOREM 6.2. Suppose F is an Orlicz function salisfying

F(t
0<11m1nf ) < oo,
tp .

{—oo

and _
ar > 0.
Then L, is isomorphic to a quotient of L.

Proof. We may suppose without loss of generality that F(f) = ¢?
(0 <?<1). Then there is a constant a > 0 such that

F(ty>a? (0<t< ).

Let 7,—oc0 be chosen so that for some k < o

F(r) <k, D zuP<1. .
n=1
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Let (4,) be a sequence of disjoint Borel subsets of (0, 1) of measure
7, P, , ' '
" Leto,: (0,1)—A4, be ameasurable map such that [s,'(B)] = 73 1(B)
for B ¢ A,,, B measurable. Define 8,: Lg(4,)—>Ly by

nf = f(0,).
Let (u,) be a sequence in L, dense in the unit ball of L,. Then

1
fm w,, ()P i < <——F) (0<t< o).
Ty art

By Lemma 4.1, there exists T,: Lp—L, such that T,1=v;'u,, and

I

1
1 . .
- [ F(f@)de  (Fe L.

Denoting by P, the natural projection of Ly onto Lxp(4,) we con-
sider T': Lp—L, defined by

Tf = M T,8,P,f.

n=1
For feLlg
. » < . _1 | f
IS 2, f (18, P ()] do < ) [ P(Psw) e
<a‘1f,17’(|f(m) dx
0
Hence T is continuous. Clearly
T (% 2ay) = Y
and |
. F(z,)
J Plimara, @)l do = —*=< k-
0 : n

Hence T(BF k)) is dense in the unit ball of L,. As LF is locally
bounded, thiy implies that T is an open map.

Remarks. We do not know whether the conditions of Theorem 6.2
are, in any sense, necessary for this result.
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