A REMARK ON A PROBLEM OF KLEE

BY

N. J. KALTON (COLUMBIA, MISSOURI) AND
N. T. PECK (URBANA, ILLINOIS)

This paper treats a property of topological vector spaces first studied by Klee [6]. \(X \) is said to have the Klee property if there are two (not necessarily Hausdorff) vector topologies on \(X \), say \(\tau_1 \) and \(\tau_2 \), such that the quasi-norm topology is the supremum of \(\tau_1 \) and \(\tau_2 \) and such that \((X, \tau_1) \) has trivial dual while the Hausdorff quotient of \((X, \tau_2) \) is nearly convex, i.e. has a separating dual. Klee raised the question of whether every topological vector space has the Klee property.

In this paper we will only consider the case when \(X \) is a separable quasi-Banach space. In this context the problem has recently been considered in [2] and [7]. In [7], the problem was considered for the special case when \(X \) is a twisted sum of a one-dimensional space and a Banach space, so that there is subspace \(L \) of \(X \) with \(\dim L = 1 \) and \(X/L \) locally convex; it was shown that \(X \) then has the Klee property if the quotient map is not strictly singular. Then in [2] a twisted sum \(X \) of a one-dimensional space and \(\ell_1 \) was constructed so that the quotient map is strictly singular and \(X \) fails to have the Klee property. Thus Klee’s question has a negative answer. The aim of this paper is to completely characterize the class of separable quasi-Banach spaces with the Klee property. Using this characterization we give a much more elementary counter-example to Klee’s question.

Given a quasi-Banach space \(X \), the dual of \(X \) is denoted by \(X^* \). We define the kernel of \(X \) to be the linear subspace \(\{ x : x^*(x) = 0 \ \forall x^* \in X^* \} \).

Now we state our theorem:

Theorem. Let \(X \) be a separable quasi-Banach space, with kernel \(E \). Then \(X \) fails to have the Klee property if and only if \(E \) has infinite codimension and the quotient map \(\pi : X \to X/E \) is strictly singular.

Proof. For the “if” part, suppose that \(E \) has infinite codimension, \(\pi \) is strictly singular and that \(X \) has the Klee property. In this case the closure 1991 Mathematics Subject Classification: Primary 46A16.

N. Kalton was supported by NSF grant DMS-9201357.
of \{0\} for the topology \(\tau_2\) must include the kernel \(E\), so that on \(E\) the topology \(\tau_1\) must coincide with the quasi-norm topology. By a standard construction, there is a vector topology \(\tau_3 \leq \tau_1\) which is pseudo-metrizable and coincides with the quasi-norm topology on \(E\). Let \(F\) be the closure of \(\{0\}\) for this topology.

Note that \(F \cap E = \{0\}\) and that \(E + F\) is \(\tau_3\)-closed and hence also closed for the original topology. This implies that \(\pi\) restricted to \(F\) is an isomorphism, and so if \(F\) is of infinite dimension, we have a contradiction. If \(F\) is of finite dimension, then since \(X^*\) separates the points of \(F\) we can write \(X = X_0 \oplus F\), and \(\tau_3\) is Hausdorff on \(X_0\). Suppose \(\tau_3\) coincides with the original topology on \(X_0\). Then \(X_0\) has trivial dual and so \(X_0 \subset E\). This implies that \(E\) is of finite codimension, and so contradicts our assumption. Thus \(\tau_3\) is strictly weaker than the original topology on \(X_0\).

By a theorem of Aoki–Rolewicz [4], we can assume that the quasi-norm is \(p\)-subadditive for some \(0 < p < 1\). Now let \(|\cdot|\) denote an \(E\)-norm defining \(\tau_3\) on \(X\). There exists \(\delta > 0\) so that \(|x| \leq \delta\) and \(x \in E\) imply \(|x|^p \leq 1/2\). We can also choose \(0 < \eta < 2^{-1/p}\) so that \(x \in X\) and \(|x| \leq \eta\) together imply that \(|x| < \delta/2\). Also, there exists a sequence \((x_n)\) in \(X_0\) so that \(|x_n| \leq 2^{-n}\) and \(|x_n| = 1\). Now by [4] (p. 69, Theorem 4.7) we can pass to a subsequence, also labelled \((x_n)\), which is strongly regular and \(M\)-basic in \(X\), i.e. so that for some \(M\) we have \(\max|a_k| \leq M\|\sum_{k=1}^{\infty} a_k x_k\|\) for all finitely nonzero sequences \((a_k)_{k=1}^{\infty}\). Now pick \(n_0\) so large that \((M + 1)2^{-n_0} < \delta/2\).

Let \(F_0\) be the linear span of \((x_n)_{n>n_0}\); we show that \(\pi\) is an isomorphism on \(F_0\). Indeed, suppose \(e \in E\) and \((a_n)_{n>n_0}\) is finitely nonzero with \(\|e + \sum_{k>n_0} a_k x_k\| < \eta\) but \(\|\sum_{k>n_0} a_k x_k\| = 1\). Then \(\|e + \sum_{k>n_0} a_k x_k\| \leq \delta/2\). Further, \(1 + \max_{n>n_0} |a_k| \leq M + 1\). Hence \(\|e\| \leq \delta\) and \(\|e\|^p \leq 1/2\); this implies \(\|e + \sum_{k>n_0} a_k x_k\| \geq 1/2\), which gives a contradiction. Hence the map \(\pi\) is an isomorphism on \(F_0\), and this contradicts our hypothesis.

Now we turn to the converse. By the theorem of Aoki–Rolewicz we can assume that the quasi-norm is \(p\)-subadditive for some \(0 < p < 1\). Suppose \(\pi\) is an isomorphism on some infinite-dimensional closed subspace \(F\). Then \(F\) has separating dual and hence contains a subspace with a basis. We therefore assume that \(F\) has a normalized basis \((f_n)_{n=1}^{\infty}\), and that \(K\) is a constant so large that \(e \in E\) and \(f \in F\) imply that \(\max\{\|e\|, \|f\|\} \leq K\|e + f\|\) and so that if \((a_n)\) is finitely nonzero then \(\max |a_n| \leq K\|\sum_{n=1}^{\infty} a_n f_n\|\).

Now let \((x_n)_{n=1}^{\infty}\) be a sequence whose linear span is dense in \(X\), chosen in such a way that \(M_n^{n+1}\|x_n\|^p = 2^{-(n+4)}\), where each \(M_n\) is a positive integer. We also require that for each positive integer \(m\) and each \(x_n\), \(m x_n = ax j\) for some \(0 < a < 1\) and some positive integer \(j\). Let \(N_n = M_n - M_{n-1}, M_0 = 0\). Let \(a_n = 2^{(n+4)/p} N_n K^2\). Define \(V\) as the absolutely \(p\)-convex hull of the set \(\{a_n f_k + x_n : M_{n-1} + 1 \leq k \leq M_n, 1 \leq n < \infty\}\). We let \(L\) be the closed linear span of the vectors \(\sum_{k=M_{n-1}+1}^{M_n} f_k\).
We now consider the set $L + V + U_X$, where U_X is the open unit ball of X. This is an open absolutely p-convex set and generates a p-convex semi-quasi-norm $|\cdot|$ on X. We will show that $|\cdot|$ generates the original topology on E; more precisely, we will show that if $e \in E$ and $e \in L + V + U_X$, then $\|e\| \leq 2^{1/p}K$.

Indeed, assume $e \in E \cap (L + V + U_X)$. Then there exists $y \in U_X$ so that $e - y \in L + V$. It follows that there exist finitely nonzero sequences $(b_k)_{k=1}^\infty$ and $(c_n)_{n=1}^\infty$ so that $\sum_{k=1}^\infty |b_k|^p \leq 1$ and $e - y = z_1 + z_2$, where

$$z_1 = \sum_{n=1}^\infty \sum_{k=N_{n-1}+1}^{N_n} (b_k - c_n)a_n f_k, \quad z_2 = \sum_{n=1}^\infty \left(\sum_{k=N_{n-1}+1}^{N_n} b_k \right) x_n.$$

Let $\beta_n = \sum_{k=N_{n-1}+1}^{N_n} b_k$. Then

$$\|y + z_2\|^p \leq 1 + \sum_{n=1}^\infty |\beta_n|^p \|x_n\|^p = A^p,$$

say. It follows that

$$\|z_1\| \leq K\|e - z_1\| \leq KA.$$

Thus

$$\max_n \max_{M_{n-1}+1 \leq k \leq M_n} |b_k - c_n| a_n \leq K^2 A,$$

so

$$c_n^p \leq K^{2p} A^p a_n^{-p} + |b_k|^p \quad (M_{n-1} + 1 \leq k \leq M_n).$$

Adding, and using $\sum |b_k|^p \leq 1$, we obtain

$$N_n c_n^p \leq \sum_{k=N_{n-1}+1}^{N_n} |b_k|^p + a_n^{-p} K^{2p} A^p \leq 1 + N_n a_n^{-p} K^{2p} A^p.$$

Hence,

$$c_n^p \leq K^{2p} A^p a_n^{-p} + N_n^{-1} \leq 2N_n^{-1} \max(N_n K^{2p} A^p a_n^{-p}, 1).$$

Taking pth roots,

$$c_n \leq 2^{1/p} N_n^{-1/p} \max(1, N_n^{1/p} a_n^{-1} K^2 A).$$

It now follows that

$$|\beta_n| \leq 2^{1/p} N_n^{-1/p} \max(1, N_n^{1/p} a_n^{-1} K^2 A) + N_n K^2 a_n^{-1} A.$$

This implies that

$$|\beta_n|^p \leq 3 N_n^{p} K^{2p} a_n^{-p} A^p + 3 N_n^{p-1}.$$

We finally arrive at the inequality

$$A^p \leq 1 + A^p \sum_{n=1}^\infty (3 N_n^{p} K^{2p} a_n^{-p} + 3 N_n^{p-1}) \|x_n\|^p \leq 1 + \frac{1}{2} A^p,$$
which implies $A \leq 2^{1/p}$ and hence $\|e\| \leq K\|e - z_1\| \leq KA \leq 2^{1/p}K$, as desired.

This shows that $L + V + U_X$ intersects E in a bounded set and $\|\cdot\|$ induces the original topology on E. However, for each n,

$$x_n = \frac{1}{N_n} \sum_{k=M_{n-1}+1}^{M_n} (a_n f_k + x_n) - \frac{a_n}{N_n} \sum_{k=M_{n-1}+1}^{M_n} f_k$$

is in the convex hull of $L + V$. Hence, by assumption on (x_n), mx_n is in the convex hull of $L + V$ as well for all m in N, and hence $(X, \|\cdot\|)$ has trivial dual.

Remark. The main theorem of [7] is an immediate consequence of our theorem. Indeed, assume $X = R \oplus_F Y$ is a twisted sum and that the quasi-linear map F on the separable normed space Y splits on an infinite-dimensional subspace. Then it is bounded on a further infinite-dimensional subspace, so the quotient map $\pi : X \to X/E = X/R$ is not strictly singular.

Remark. One special case, which is sometimes applicable, is that X has the Klee property if it has an infinite-dimensional locally convex subspace with the Hahn–Banach Extension Property (cf. [4]). Indeed, in these circumstances, there is a locally convex subspace Z with $\dim Z = \infty$, so the Banach envelope seminorm is equivalent to the original quasi-norm on Z; it then follows rapidly that the quotient map $\pi : X \to X/E$ is an isomorphism on Z.

For a particular case of this, let (A_n) be a sequence of pairwise disjoint measurable subsets of $(0, 1)$, of positive measure. Let (f_n) be a sequence of measurable functions, with f_n supported on A_n and each f_n having the distribution of $t \to 1/t$, for small t. Let F be the closed linear span of (f_n) in weak L_1. Then F has the Hahn–Banach Extension Property in weak L_1 and so if X is any separable subspace of weak L_1 containing F then X has the Klee property.

Example. Finally, we construct an elementary counter-example to Klee’s problem, using much less technical arguments than [2]. We use the twisted sum of Hilbert spaces, Z_2, introduced in [3] (see alternative treatments in [1] and [5]). To define this it will be convenient to consider the space c_{00} of all finitely nonzero sequences as a dense subspace of ℓ_2 and consider the map $\Omega : c_{00} \to \ell_2$ given by

$$\Omega(\xi)(k) = \xi(k) \log(\|\xi\|_2/|\xi(k)|),$$

where $\|\cdot\|_2$ is the usual L_2-norm.
where as usual the right-hand side is interpreted as zero if $\xi(k) = 0$. Then $\Omega(\alpha\xi) = \alpha\Omega(\xi)$ for $\alpha \in \mathbb{R}$ and

$$\|\Omega(\xi + \eta) - \Omega(\xi) - \Omega(\eta)\|_2 \leq C(\|\xi\|_2 + \|\eta\|_2)$$

for a suitable absolute constant C. Now $Z_2 = \ell_2 \oplus \ell_2$ is the completion of $c_{00} \oplus \ell_2$ under the quasi-norm

$$\| (\xi, \eta) \| = \|\xi - \Omega(\eta)\|_2 + \|\eta\|_2.$$

Now (cf. [3]) the map $(\xi, \eta) \rightarrow \eta$ extends to a quotient map from Z_2 onto ℓ_2 which is strictly singular. More precisely, if F is any infinite-dimensional subspace of c_{00} then the completion of $\ell_2 \oplus \Omega F$ contains an isometric copy of Z_2 (this is essentially Theorem 6.5 of [3], or see [1]). In particular, this subspace is never of cotype 2.

Now to construct our example, embed ℓ_2 into L_p, where $p < 1$. Then $L_p \oplus \ell_2 = X$ has its kernel E isomorphic to L_p and $X/E \sim \ell_2$. If the quotient map is not strictly singular then there is an infinite-dimensional subspace F of c_{00} such that the completion of $L_p \oplus \Omega F$ is linearly isomorphic to $L_p \oplus \ell_2$ and hence has cotype 2. Then $\ell_2 \oplus \Omega F$ is also cotype 2, and this is impossible as we have seen.

It follows from our main theorem that the space we have constructed fails the Klee property.

REFERENCES

