ON VECTOR-VALUED INEQUALITIES FOR SIDON SETS
AND SETS OF INTERPOLATION

BY

N. J. KALTON (COLUMBIA, MISSOURI)

Let E be a Sidon subset of the integers and suppose X is a Banach space. Then Pisier has shown that E-spectral polynomials with values in X behave like Rademacher sums with respect to L_p-norms. We consider the situation when X is a quasi-Banach space. For general quasi-Banach spaces we show that a similar result holds if and only if E is a set of interpolation (I_0-set). However, for certain special classes of quasi-Banach spaces we are able to prove such a result for larger sets. Thus if X is restricted to be “natural” then the result holds for all Sidon sets. We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.

1. Introduction. Suppose G is a compact abelian group. We denote by μ_G normalized Haar measure on G and by Γ the dual group of G. We recall that a subset E of Γ is called a Sidon set if there is a constant M such that for every finitely nonzero map $a : E \to \mathbb{C}$ we have

$$\sum_{\gamma \in E} |a(\gamma)| \leq M \max_{g \in G} \left| \sum_{\gamma \in E} a(\gamma) \gamma(g) \right|.$$

We define Δ to be the Cantor group, i.e. $\Delta = \{\pm 1\}^\mathbb{N}$. If $t \in \Delta$ we denote by $\varepsilon_n(t)$ the nth coordinate of t. The sequence (ε_n) is an example of a Sidon set. Of course the sequence (ε_n) is a model for the Rademacher functions on $[0,1]$. Similarly we denote the coordinate maps on $\mathbb{T}^\mathbb{N}$ by η_n.

Suppose now that G is a compact abelian group. If X is a Banach space, or more generally a quasi-Banach space with a continuous quasinorm and $\phi : G \to X$ is a Borel map we define $\|\phi\|_p$ for $0 < p \leq \infty$ to be the L_p-norm of ϕ, i.e. $\|\phi\|_p = (\int_G \|\phi(g)\|^p d\mu_G(g))^{1/p}$ if $0 < p < \infty$ and $\|\phi\|_\infty = \text{ess sup}_{g \in G} \|\phi(g)\|$.

Research supported by NSF-grant DMS-8901636.
It is a theorem of Pisier [12] that if E is a Sidon set then there is a constant M so that for every subset $\{\gamma_1, \ldots, \gamma_n\}$ of E, every x_1, \ldots, x_n chosen from a Banach space X and every $1 \leq p \leq \infty$ we have

\[
M^{-1} \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p \leq \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p \leq M \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p.
\]

Thus a Sidon set behaves like the Rademacher sequence for Banach space valued functions. The result can be similarly stated for (η_n) in place of (ε_n). Recently Asmar and Montgomery-Smith [1] have taken Pisier’s ideas further by establishing distributional inequalities in the same spirit.

It is natural to ask whether Pisier’s inequalities can be extended to arbitrary quasi-Banach spaces. This question was suggested to the author by Asmar and Montgomery-Smith. For convenience we suppose that every quasi-Banach space is r-normed for some $r < 1$, i.e. the quasinorm satisfies $\|x + y\|^r \leq \|x\|^r + \|y\|^r$ for all x, y; an r-norm is necessarily continuous. We can then ask, for fixed $0 < p \leq \infty$, for which sets E inequality (\ast) holds, if we restrict X to belong to some class of quasi-Banach spaces, for some constant $M = M(E, X)$.

It turns out Pisier’s results do not in general extend to the non-locally convex case. In fact, we show that if we fix $r < 1$ and ask that a set E satisfies (\ast) for some fixed p and every r-normable quasi-Banach space X then this condition precisely characterizes sets of interpolation as studied in [2]–[5], [8], [9], [13] and [14]. We recall that E is called a set of interpolation (set of type (I_0)) if it has the property that every $f \in \ell_\infty(E)$ (the collection of all bounded complex functions on E) can be extended to a continuous function on the Bohr compactification $b\Gamma$ of Γ.

However, in spite of this result, there are specific classes of quasi-Banach spaces for which (\ast) holds for a larger class of sets E. If we restrict X to be a natural quasi-Banach space then (\ast) holds for all Sidon sets E. Here a quasi-Banach space is called natural if it is linearly isomorphic to a closed linear subspace of a (complex) quasi-Banach lattice Y which is q-convex for some $q > 0$, i.e. such that for a suitable constant C we have

\[
\left\| \left(\sum_{k=1}^{n} |y_k|^q \right)^{1/q} \right\| \leq C \left(\sum_{k=1}^{n} \|y_k\|^q \right)^{1/q}
\]

for every $y_1, \ldots, y_n \in Y$. Natural quasi-Banach spaces form a fairly broad class including almost all function spaces which arise in analysis. The reader is referred to [6] for a discussion of examples. Notice that, of course, the spaces L_q for $q < 1$ are natural so that, in particular, (\ast) holds for all p and all Sidon sets E for every $0 < p \leq \infty$. The case $p = q$ here would be a direct consequence of Fubini’s theorem, but the other cases, including $p = \infty$, are less obvious.
A quasi-Banach lattice X is natural if and only if it is A-convex, i.e. it has an equivalent plurisubharmonic quasi-norm. Here a quasinorm is plurisubharmonic if it satisfies
\[
\|x\| \leq \frac{2\pi}{\int_0^{2\pi} \|x + e^{i\theta}y\| \, d\theta}
\]
for every $x, y \in X$. There are examples of A-convex spaces which are not natural, namely the Schatten ideals S_p for $p < 1$ [7]. Of course, it follows that S_p cannot be embedded in any quasi-Banach lattice which is A-convex when $0 < p < 1$. Thus we may ask for what sets E (*) holds for every A-convex space. Here, we are unable to give a precise characterization of the sets E such that (*) holds. In fact, we define E to be an analytic Sidon set if (*) holds, for $p = \infty$ (or, equivalently for any other $0 < p < \infty$), for every A-convex quasi-Banach space X. We show that any finite union of Hadamard sequences in $\mathbb{N} \subset \mathbb{Z}$ is an analytic Sidon set. In particular, a set such as $\{3n\} \cup \{3n + n\}$ is an analytic Sidon set but not a set of interpolation. However, we have no example of a Sidon set which is not an analytic Sidon set.

We would like to thank Nakhlé Asmar, Stephen Montgomery-Smith and David Grow for their helpful comments on the content of this paper.

2. The results. Suppose G is a compact abelian group and Γ is its dual group. Let E be a subset of Γ. Suppose X is a quasi-Banach space and that $0 < p \leq \infty$; then we will say that E has property $C_p(X)$ if there is a constant M such that for any finite subset $\{\gamma_1, \ldots, \gamma_n\}$ of E and any x_1, \ldots, x_n of X we have (*), i.e.
\[
M^{-1}\left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p \leq \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p \leq M \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p .
\]
(Note that in contrast to Pisier’s result (*), we here assume p fixed.) We start by observing that E is a Sidon set if and only if E has property $C_{\infty}(\mathbb{C})$. It follows from the results of Pisier [12] that a Sidon set has property $C_p(X)$ for every Banach space X and for every $0 < p < \infty$. See also Asmar and Montgomery-Smith [1] and Pelczynski [11].

Note that for any $t \in \Delta$ we have $\|\sum \varepsilon_k(t) x_k \varepsilon_k\|_p = \|\sum x_k \varepsilon_k\|_p$. Now any real sequence (a_1, \ldots, a_n) with $\max |a_k| \leq 1$ can be written in the form $a_k = \sum_{j=1}^{\infty} 2^{-j} \varepsilon_k(t_j)$ and it follows quickly by taking real and imaginary parts that there is a constant $C = C(r, p)$ so that for any complex a_1, \ldots, a_n and any r-normed space X we have
\[
\left\| \sum_{k=1}^{n} a_k x_k \varepsilon_k \right\|_p \leq C \|a\|_\infty \left\| \sum_{k=1}^{n} x_k \varepsilon_k \right\|_p .
\]
From this it follows quickly that \(\| \sum_{k=1}^{n} x_k \eta_k \|_p \) is equivalent to \(\| \sum_{k=1}^{n} x_k \xi_k \|_p \). In particular, we can replace \(\xi_k \) by \(\eta_k \) in the definition of property \(C_p(X) \).

We note that if \(E \) has property \(C_p(X) \) then it is immediate that \(E \) has property \(C_p(\ell_p(X)) \) and further that \(E \) has property \(C_p(Y) \) for any quasi-Banach space finitely representable in \(X \) (or, of course, in \(\ell_p(X) \)).

For a fixed quasi-Banach space \(X \) and a fixed subset \(E \) of \(\Gamma \) we let \(\mathcal{P}_E(X) \) denote the space of \(X \)-valued \(E \)-polynomials, i.e. functions \(\phi : G \to X \) of the form \(\phi = \sum_{\gamma \in E} x(\gamma)x \gamma \) where \(x(\gamma) \) is only finitely nonzero. If \(f \in \ell_\infty(E) \) we define \(T_f : \mathcal{P}_E(X) \to \mathcal{P}_E(X) \) by

\[
T_f \left(\sum x(\gamma) \gamma \right) = \sum f(\gamma)x(\gamma) \gamma.
\]

We then define \(\| f \|_{M_p(E,X)} \) to be the operator norm of \(T_f \) on \(\mathcal{P}_E(X) \) for the \(L_p \)-norm (and to be \(\infty \) if this operator is unbounded).

Lemma 1. In order that \(E \) has property \(C_p(X) \) it is necessary and sufficient that there exists a constant \(C \) such that

\[
\| f \|_{M_p(E,X)} \leq C \| f \|_\infty \quad \text{for all } f \in \ell_\infty(E).
\]

Proof. If \(E \) has property \(C_p(X) \) then it also satisfies (*) for \((\eta_n) \) in place of \((\varepsilon_n) \) for a suitable constant \(M \). Thus if \(f \in \ell_\infty(E) \) and \(\phi \in \mathcal{P}_E(X) \) then

\[
\| T_f \phi \|_p \leq M^2 \| f \|_\infty \| \phi \|_p.
\]

For the converse direction, we consider the case \(p < \infty \). Suppose \(\{ \gamma_1, \ldots, \gamma_n \} \) is a finite subset of \(E \). Then for any \(x_1, \ldots, x_n \)

\[
\begin{align*}
C^{-p} \int_{\mathbb{T}^n} \left\| \sum_{k=1}^{n} x_k \eta_k \right\|^p \, d\mu_{\mathbb{T}^n} &= C^{-p} \int_{\mathbb{T}^n} \int_{G} \left\| \sum_{k=1}^{n} x_k \eta_k(s) \gamma_k(t) \right\|^p \, d\mu_{\mathbb{T}^n}(s) \, d\mu_{G}(t) \\
&\leq \int_{G} \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|^p \, d\mu_{G} \\
&\leq C^p \int_{\mathbb{T}^n} \int_{G} \left\| \sum_{k=1}^{n} x_k \eta_k(s) \gamma_k(t) \right\|^p \, d\mu_{\mathbb{T}^n}(s) \, d\mu_{G}(t) \\
&\leq C^p \int_{\mathbb{T}^n} \left\| \sum_{k=1}^{n} x_k \eta_k \right\|^p \, d\mu_{\mathbb{T}^n}.
\end{align*}
\]

This estimate together with a similar estimate in the opposite direction gives the conclusion. The case \(p = \infty \) is similar. \(\blacksquare \)

If \(E \) is a subset of \(\Gamma \), \(N \in \mathbb{N} \) and \(\delta > 0 \) we let \(AP(E, N, \delta) \) be the set of \(f \in \ell_\infty(E) \) such that there exist \(g_1, \ldots, g_N \in G \) (not necessarily distinct)
and $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ with $\max_{1 \leq j \leq N} |\alpha_j| \leq 1$ and

$$|f(\gamma) - \sum_{j=1}^{N} \alpha_j \gamma(g_j)| \leq \delta$$

for $\gamma \in E$.

The following theorem improves slightly on results of Kahane [5] and Méla [8]. Perhaps also, our approach is slightly more direct. We write $B_{\ell_\infty}(E)$ as $\{ f \in \ell_\infty(E) : \|f\|_\infty \leq 1 \}$.

Theorem 2. Let G be a compact abelian group and let Γ be its dual group. Suppose E is a subset of Γ. Then the following conditions on E are equivalent:

1. E is a set of interpolation.
2. There exists an integer N so that $B_{\ell_\infty}(E) \subset \text{AP}(E, N, 1/2)$.
3. There exists M and $0 < \delta < 1$ so that if $f \in B_{\ell_\infty}(E)$ then there exist complex numbers $(c_j)_{j=1}^\infty$ with $|c_j| \leq M\delta^j$ and $(g_j)_{j=1}^\infty$ in G with

$$f(\gamma) = \sum_{j=1}^\infty c_j \gamma(g_j)$$

for $\gamma \in E$.

Proof. (1)\Rightarrow(2). It follows from the Stone–Weierstrass theorem that $T^E \subset \bigcup_{m=1}^\infty \text{AP}(E, m, 1/5)$.

Let $\mu = \mu_{T^E}$. Since each $\text{AP}(E, m, 1/5) \cap T^E$ is closed it is clear that there exists m so that $\mu(\text{AP}(E, m, 1/5) \cap T^E) > 1/2$. Thus if $f \in T^E$ we can find $f_1, f_2 \in \text{AP}(E, m, 1/5) \cap T^E$ so that $f = f_1 f_2$. Hence $f \in \text{AP}(E, m^2, 1/2)$. This clearly implies (2) with $N = 2m^2$.

(2)\Rightarrow(3). We let $\delta = 2^{-1/N}$ and $M = 2$. Then given $f \in B_{\ell_\infty}(E)$ we can find $(c_j)_{j=1}^N$ and $(g_j)_{j=1}^N$ with $|c_j| \leq 1 \leq M\delta^j$ and

$$|f(\gamma) - \sum_{j=1}^N c_j \gamma(g_j)| \leq 1/2$$

for $\gamma \in E$. Let $f_1(\gamma) = 2(f(\gamma) - \sum_{j=1}^N c_j \gamma(g_j))$ and iterate the argument.

(3)\Rightarrow(1). Obvious. \(\blacksquare\)

Theorem 3. Suppose G is a compact abelian group, E is a subset of the dual group Γ and that $0 < r < 1$, $0 < p \leq \infty$. In order that E satisfies $C_p(X)$ for every r-normable quasi-Banach space X it is necessary and sufficient that E be a set of interpolation.
Proof. First suppose that E is a set of interpolation so that it satisfies (3) of Theorem 2. Suppose X is an r-normed quasi-Banach space. Suppose $f \in B_{\ell_p(E)}$. Then there exist $(c_j)^\infty_{j=1}$ and $(g_j)^\infty_{j=1}$ so that $|c_j| \leq M\delta^j$ and $f(\gamma) = \sum c_j \gamma(g_j)$ for $\gamma \in E$. Now if $\phi \in \mathcal{P}_E(X)$ it follows that

$$T_f \phi(h) = \sum_{j=1}^\infty c_j \phi(g_j h)$$

and so

$$\|T_f \phi\|_p \leq M \left(\sum_{j=1}^\infty \delta^{js} \right) \|\phi\|_p$$

where $s = \min(p, r)$. Thus $\|f\|_{M_{\ell_p}(E, X)} \leq C$ where $C = C(p, r, E)$ and so by Lemma 1, E has property $C_p(X)$.

Now, conversely, suppose that $0 < r < 1$, $0 < p \leq \infty$ and that E has property $C_p(X)$ for every r-normed space X. It follows from consideration of ℓ_∞-products that there exists a constant C so that for every r-normed space X we have $\|f\|_{M_{\ell_p}(E, X)} \leq C \|f\|_\infty$ for $f \in \ell_\infty(E)$.

Suppose F is a finite subset of E. We define an r-norm $\|\cdot\|_A$ on $\ell_\infty(F)$ by setting $\|f\|_A$ to be the infimum of $(\sum |c_j|^r)^{1/r}$ over all $(c_j)^\infty_{j=1}$ and $(g_j)^\infty_{j=1}$ such that

$$f(\gamma) = \sum_{j=1}^\infty c_j \gamma(g_j)$$

for $\gamma \in F$. Notice that $\|f_1 f_2\|_A \leq \|f_1\|_A \|f_2\|_A$ for all $f_1, f_2 \in \ell_\infty(F)$.

For $\gamma \in F$ let e_γ be defined by $e_\gamma(\gamma) = 1$ if $\gamma = \chi$ and 0 otherwise. Then for $f \in A$, with $\|f\|_\infty \leq 1$,

$$\left(\int_G \left\| \sum_{\gamma \in F} f(\gamma) e_\gamma \right\|_A^p \, d\mu_G \right)^{1/p} \leq C \left(\int_G \left\| \sum_{\gamma \in F} e_\gamma \right\|_A^p \, d\mu_G \right)^{1/p}.$$

But for any $g \in G$, $\|\sum_{\gamma \in F} (g) e_\gamma\|_A \leq 1$. Define H to be the subset of $h \in G$ such that $\|\sum_{\gamma \in F} f(\gamma) \gamma(h) e_\gamma\|_A \leq 3^{1/p} C$. Then $\mu_G(H) \geq 2/3$. Thus there exist $h_1, h_2 \in H$ such that $h_1 h_2 = 1$ (the identity in G). Hence by the algebra property of the norm

$$\|f\|_A \leq 3^{2/p} C^2$$

and so if we fix an integer $C_0 > 3^{2/p} C^2$ we can find c_j and g_j so that $\sum |c_j|^r \leq C_0$ and

$$f(\gamma) = \sum c_j \gamma(g_j)$$

for $\gamma \in F$. We can suppose $|c_j|$ is decreasing and hence that $|c_j| \leq C_0 j^{-1/r}$.

Choose N_0 so that $C_0 \sum_{j=N_0+1}^{\infty} j^{-1/r} \leq 1/2$. Thus

$$
\left| f(\gamma) - \sum_{j=1}^{N_0} c_j \gamma(g_j) \right| \leq 1/2
$$

for $\gamma \in F$. Since each $|c_j| \leq C_0$ this implies that $B_{\ell_\infty(F)} \subset AP(F, N, 1/2)$ where $N = C_0 N_0$.

As this holds for every finite set F it follows by an easy compactness argument that $B_{\ell_\infty(E)} \subset AP(E, N, 1/2)$ and so by Theorem 2, E is a set of interpolation.

Theorem 4. Let X be a natural quasi-Banach space and suppose $0 < p \leq \infty$. Then any Sidon set has property $C_p(X)$.

Proof. Suppose E is a Sidon set. Then there is a constant C_0 so that if $f \in \ell_\infty(E)$ then there exists $\nu \in C(G)^*$ such that $\tilde{\nu}(\gamma) = f(\gamma)$ for $\gamma \in E$ and $\|\nu\| \leq C_0 \|f\|_\infty$. We will show the existence of a constant C such that $\|f\|_{\mathcal{M}_p(E, X)} \leq C \|f\|_\infty$. If no such constant exists then we may find a sequence E_n of finite subsets of E such that $\lim C_n = \infty$ where C_n is the least constant such that $\|f\|_{\mathcal{M}_p(E_n, X)} \leq C_n \|f\|_\infty$ for all $f \in \ell_\infty(E_n)$.

Now the spaces $\mathcal{M}_p(E_n, X)$ are each isometric to a subspace of $\ell_\infty(L_p(G, X))$ and hence so is $Y = c_0(\mathcal{M}_p(E_n, X))$. In particular, Y is natural. Notice that Y has a finite-dimensional Schauder decomposition. We will calculate the Banach envelope Y_\circ of Y. Clearly $Y_\circ = c_0(Y_n)$ where Y_n is the finite-dimensional space $\mathcal{M}_p(E_n, X)$ equipped with its envelope norm $\|f\|_\circ$.

Suppose $f \in \ell_\infty(E_n)$. Then clearly $\|f\|_\infty \leq \|f\|_{\mathcal{M}_p(E_n, X)}$ and so $\|f\|_\infty \leq \|f\|_\circ$. Conversely, if $f \in \ell_\infty(E_n)$ there exists $\nu \in C(G)^*$ with $\|\nu\| \leq C_0 \|f\|_\infty$ and such that $\hat{f} \gamma d\nu = f(\gamma)$ for $\gamma \in E_n$. In particular, $C_0^{-1} \|f\|_\infty^2 \hat{f}$ is in the absolutely closed convex hull of the set of functions $\{\hat{g} : g \in G\}$ where $\hat{g}(\gamma) = \gamma(g)$ for $\gamma \in E_n$. Since $\|\hat{g}\|_{\mathcal{M}_p(E, X)} = 1$ for all $g \in G$ we see that $\|f\|_\infty \leq \|f\|_\circ \leq C_0 \|f\|_\infty$.

This implies that Y_\circ is isomorphic to c_0. Since Y has a finite-dimensional Schauder decomposition and is natural we can apply Theorem 3.4 of [6] to deduce that $Y = Y_\circ$ is already locally convex. Thus there is a constant C'_0 independent of n so that $\|f\|_{\mathcal{M}_p(E, X)} \leq C'_0 \|f\|_\infty$ whenever $f \in \ell_\infty(E_n)$. This contradicts the choice of E_n and proves the theorem.

We now consider the case of A-convex quasi-Banach spaces. For this notion we will introduce the concept of an analytic Sidon set. We say a subset E of Γ is an **analytic Sidon set** if E satisfies $C_\infty(X)$ for every A-convex quasi-Banach space X.

Proposition 5. Suppose $0 < p < \infty$. Then E is an analytic Sidon set if and only if E satisfies $C_p(X)$ for every A-convex quasi-Banach space X.
Proof. Suppose first E is an analytic Sidon set, and that X is an A-convex quasi-Banach space (for which we assume the quasinorm is plurisubharmonic). Then $L_p(G, X)$ also has a plurisubharmonic quasinorm and so E satisfies (⋆) for X replaced by $L_p(G, X)$ and p replaced by ∞ with constant M. Now suppose $x_1, \ldots, x_n \in X$ and $\gamma_1, \ldots, \gamma_n \in E$. Define $y_1, \ldots, y_n \in L_p(G, X)$ by $y_k(g) = \gamma_k(g)x_k$. Then

$$\max_{g \in G} \left\| \sum_{k=1}^{n} y_k \gamma_k(g) \right\|_{L_p(G, X)} = \left\| \sum_{k=1}^{n} x_k \gamma_k \right\|_p$$

and a similar statement holds for the characters ε_k on the Cantor group. It follows quickly that E satisfies (⋆) for p and X with constant M.

For the converse direction suppose E satisfies $C_p(X)$ for every A-convex space X. Suppose X has a plurisubharmonic quasinorm. We show that $M_\infty(E, X) = \ell_\infty(E)$. In fact, $M_\infty(F, X)$ can be isometrically embedded in $\ell_\infty(X)$ for every finite subset F of E. Thus (⋆) holds for X replaced by $M_\infty(F, X)$ for some constant M, independent of F. Denoting by e_γ the canonical basis vectors in $\ell_\infty(E)$ we see that if $F = \{ \gamma_1, \ldots, \gamma_n \} \subset E$ then

$$\left(\int_\Delta \left\| \sum_{k=1}^{n} \varepsilon_k(t)e_{\gamma_k} \right\|_{M_\infty(F, X)}^p \, d\mu_\Delta(t) \right)^{1/p} \leq M \max_{g \in G} \left\| \sum_{k=1}^{n} \gamma_k(g)e_{\gamma_k} \right\|_{M_\infty(F, X)} = M.$$

Thus the set K of $t \in \Delta$ such that $\| \sum_{k=1}^{n} \varepsilon_k(t)e_{\gamma_k} \|_{M_\infty(F, X)} \leq 3^{1/p} M$ has measure at least $2/3$. Arguing that $K \cdot K = \Delta$ we obtain

$$\left\| \sum_{k=1}^{n} \varepsilon_k(t)e_{\gamma_k} \right\|_{M_\infty(F, X)} \leq 3^{2/p} M^2$$

for every $t \in \Delta$. It follows quite simply that there is a constant C so that for every real-valued $f \in \ell_\infty(F)$ we have $\|f\|_{M_\infty(E, X)} \leq C \|f\|_\infty$. In fact, this is proved by writing each such f with $\|f\|_\infty = 1$ in the form $f(\gamma_k) = \sum_{j=1}^{\infty} 2^{-j} \varepsilon_k(t_j)$ for a suitable sequence $t_j \in \Delta$. A similar estimate for complex f follows by estimating real and imaginary parts. Finally, since these estimates are independent of F we conclude that $\ell_\infty(E) = M_\infty(E, X)$.

Of course any set of interpolation is an analytic Sidon set and any analytic Sidon set is a Sidon set. The next theorem will show that not every analytic Sidon set is a set of interpolation. If we take $G = \mathbb{T}$ and $I = \mathbb{Z}$, we recall that a Hadamard gap sequence is a sequence $\{\lambda_k\}_{k=1}^{\infty}$ of positive integers such that for some $q > 1$ we have $\lambda_{k+1}/\lambda_k \geq q$ for $k \geq 1$. It is shown in [10] and [14] that a Hadamard gap sequence is a set of interpolation. However, the union of two such sequences may fail to be a set of
interpolation; for example $(3^n)_{n=1}^\infty \cup (3^n + n)_{n=1}^\infty$ is not a set of interpolation, since the closures of (3^n) and $(3^n + n)$ in \mathbb{bZ} are not disjoint.

Theorem 6. Let $G = T$ so that $\Gamma = \mathbb{Z}$. Suppose $E \subset \mathbb{N}$ is a finite union of Hadamard gap sequences. Then E is an analytic Sidon set.

Proof. Suppose $E = (\lambda_k)_{k=1}^\infty$ where (λ_k) is increasing. We start with the observation that E is the union of m Hadamard sequences if and only if there exists $q > 1$ so that $\lambda_{m+k} \geq q^m \lambda_k$ for every $k \geq 1$.

We will prove the theorem by induction on m. Note first that if $m = 1$ then E is a Hadamard sequence and hence [14] a set of interpolation. Thus by Theorem 2 above, E is an analytic Sidon set.

Suppose now that E is the union of m Hadamard sequences and that the theorem is proved for all unions of l Hadamard sequences where $l < m$. We assume that $E = (\lambda_k)$ and that there exists $q > 1$ such that $\lambda_{k+m} \geq q^m \lambda_k$ for $k \geq 1$. We first decompose E into at most m Hadamard sequences. To do this let us define $E_1 = \{\lambda_1\} \cup \{\lambda_k : k \geq 2, \lambda_k \geq q\lambda_{k-1}\}$. We will write $E_1 = (\tau_k)_{k \geq 1}$ where τ_k is increasing. Of course E_1 is a Hadamard sequence.

For each k let $D_k = E \cap [\tau_k, \tau_{k+1})$. It is easy to see that $|D_k| \leq m$ for every k. Further, if $n_k \in D_k$ then $n_{k+1} \geq \tau_{k+1} \geq q n_k$ so that (n_k) is a Hadamard sequence. In particular, $E_2 = E \setminus E_1$ is the union of at most $m-1$ Hadamard sequences and so E_2 is an analytic Sidon set by the inductive hypothesis.

Now suppose $w \in \mathbb{T}$. We define $f_w \in \ell_\infty(E)$ by $f_w(n) = w^{n - \tau_k}$ for $n \in D_k$. We will show that f_w is uniformly continuous for the Bohr topology on \mathbb{Z}; equivalently we show that f_w extends to a continuous function on the closure \bar{E} of E in the Bohr compactification \mathbb{bZ} of \mathbb{Z}. Indeed, if this is not the case there exists $\xi \in \bar{E}$ and ultrafilters \mathcal{U}_0 and \mathcal{U}_1 on E both converging to ξ so that $\lim_{n \in \mathcal{U}_0} f_w(n) = \zeta_0$ and $\lim_{n \in \mathcal{U}_1} f_w(n) = \zeta_1$ where $\zeta_1 \neq \zeta_0$. We will let $\delta = \frac{1}{2} |\zeta_1 - \zeta_0|$.

We can partition E into m sets A_1, \ldots, A_m so that $|A_i \cap D_k| \leq 1$ for each k. Clearly \mathcal{U}_0 and \mathcal{U}_1 each contain exactly one of these sets. Let us suppose $A_{i_0} \in \mathcal{U}_0$ and $A_{i_1} \in \mathcal{U}_1$.

Next define two ultrafilters \mathcal{V}_0 and \mathcal{V}_1 on \mathbb{N} by $\mathcal{V}_0 = \{V : \bigcup_{k \in V} D_k \in \mathcal{U}_0\}$ and $\mathcal{V}_1 = \{V : \bigcup_{k \in V} D_k \in \mathcal{U}_1\}$. We argue that \mathcal{V}_0 and \mathcal{V}_1 coincide. If not we can pick $V \in \mathcal{V}_0 \setminus \mathcal{V}_1$. Consider the set $A = (A_{i_0} \cap \bigcup_{k \in V} D_k) \cup (A_{i_1} \cap \bigcup_{k \in V} D_k)$. Then A is a Hadamard sequence and hence a set of interpolation. Thus for the Bohr topology the sets $A_{i_0} \cap \bigcup_{k \in V} D_k$ and $A_{i_1} \cap \bigcup_{k \in V} D_k$ have disjoint closures. This is a contradiction since of course ξ must be in the closure of each. Thus $\mathcal{V}_0 = \mathcal{V}_1$.

Since both \mathcal{U}_0 and \mathcal{U}_1 converge to the same limit for the Bohr topology we can find sets $H_0 \in \mathcal{U}_0$ and $H_1 \in \mathcal{U}_1$ so that if $n_0 \in H_0, n_1 \in H_1$ then $|w^{n_1} - w^{n_0}| < \delta$ and further $|f_w(n_0) - \zeta_0| < \delta$ and $|f_w(n_1) - \zeta_1| < \delta$.

Let $V_0 = \{ k \in \mathbb{N} : D_k \cap H_0 \neq \emptyset \}$ and $V_1 = \{ k \in \mathbb{N} : D_k \cap H_1 \neq \emptyset \}$. Then $V_0 \in V_1$ and $V_1 \in V_1$. Thus $V = V_0 \cap V_1 \in V_0 = V_1$. If $k \in V$ there exists $n_0 \in D_k \cap H_0$ and $n_1 \in D_k \cap H_1$. Then

$$3 \delta = |\zeta_1 - \zeta_0| < |f_w(n_1) - f_w(n_0)| + 2 \delta = |w^{n_1} - w^{n_0}| + 2 \delta < 3 \delta.$$

This contradiction shows that each f_w is uniformly continuous for the Bohr topology.

Now suppose that X is an r-normed A-convex quasi-Banach space where the quasi-norm is plurisubharmonic. Since both E_1 and E_2 are analytic Sidon sets we can introduce a constant C so that if $f \in \ell_1(E_j)$ where $j = 1, 2$ then $||f||_{\mathcal{M}_\infty(E_j,X)} \leq C ||f||_\infty$. Pick a constant $0 < \delta < 1$ so that $3.4^{1/\delta} \delta < C$.

Let $K_t = \{ w \in T : f_w \in AP(E, l, \delta) \}$. It is easy to see that each K_t is closed and since each f_w is uniformly continuous by the Bohr topology it follows from the Stone-Weierstrass theorem that $\bigcup K_t = T$. If we pick l_0 so that $\mu_T(K_{l_0}) > 1/2$ then $K_{l_0} = T$ and hence, since the map $w \to f_w$ is multiplicative, $f_w \in AP(E, l_0, 3 \delta)$ for every $w \in T$.

Let F be an arbitrary finite subset of E. Then there is a least constant β so that $||f||_{\mathcal{M}_\infty(F,X)} \leq \beta ||f||_\infty$. The proof is completed by establishing a uniform bound on β.

For $w \in T$ we can find c_j with $|c_j| \leq 1$ and $\zeta_j \in T$ for $1 \leq j \leq l_0$ such that

$$|f_w(n) - \sum_{j=1}^{l_0} c_j \zeta_j^n| \leq 3 \delta$$

for $n \in E$. If ζ_j is defined by $\zeta_j(n) = \zeta^n$ then of course $||\zeta_j||_{\mathcal{M}_\infty(E,X)} = 1$. Restricting to F we see that

$$||f_w||_{\mathcal{M}_\infty(F,X)} \leq l_0^2 + \beta (3 \delta)^r.$$

Define $H : \mathbb{C} \to \mathcal{M}_\infty(F,X)$ by $H(z)(n) = z^{n-r}$ if $n \in D_k$. Note that H is a polynomial. As in Theorem 5, $\mathcal{M}_\infty(F,X)$ has a plurisubharmonic norm. Hence

$$||H(0)||^r \leq \max_{|w|=1} ||H(w)||^r \leq l_0^2 + (3 \delta)^r \beta^r.$$

Thus, if χ_A is the characteristic function of A,

$$||\chi_{E_1 \cap F}||_{\mathcal{M}_\infty(F,X)}^r \leq l_0^2 + (3 \delta)^r \beta^r.$$

It follows that

$$||\chi_{E_2 \cap F}||_{\mathcal{M}_\infty(F,X)}^r \leq l_0^2 + (3 \delta)^r \beta^r + 1.$$

Now suppose $f \in \ell_1(F)$ and $||f||_\infty \leq 1$. Then

$$||f \chi_{E_1 \cap F}||_{\mathcal{M}_\infty(F,X)}^r \leq ||f \chi_{E_1 \cap F}||_{\mathcal{M}_\infty(E_1 \cap F,X)} ||\chi_{E_1 \cap F}||_{\mathcal{M}_\infty(F,X)}$$

$$\leq l_0 + l_1 + 3 l_0 l_1 + (3 \delta)^r \beta^r + 2.$$

This completes the proof.
for \(j = 1, 2 \). Thus
\[
\|f\|_{\mathcal{M}_\infty(F,X)} \leq C'(1 + 2l_0^2 + 2(3\delta)^r \beta^r).
\]
By maximizing over all \(f \) this implies
\[
\beta^r \leq C'(1 + 2l_0^2 + 2(3\delta)^r \beta^r),
\]
which gives an estimate
\[
\beta^r \leq 2C'(1 + 2l_0^2)
\]
in view of the original choice of \(\delta \). This estimate, which is independent of \(F \), implies that \(E \) is an analytic Sidon set.

Remark. We know of no example of a Sidon set which is not an analytic Sidon set.

Added in proof. In a forthcoming paper with S. C. Tam (Factorization theorems for quasi-normed spaces) we show that Theorem 4 holds for a much wider class of spaces.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MISSOURI-COLUMBIA
COLUMBIA, MISSOURI 65211
U.S.A.

Reçu par la Rédaction le 17.3.1992