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The Thresholding Greedy Algorithm,
Greedy Bases, and Duality

S. J. Dilworth, N. J. Kalton, Denka Kutzarova, and V. N. Temlyakov

Abstract. Some new conditions that arise naturally in the study of the Thresholding
Greedy Algorithm areintroduced for bases of Banach spaces. Werelate these conditions
to best n-term approximation and we study their duality theory. In particular, we obtain
acomplete duality theory for greedy bases.

1. Introduction

Let X be aBanach spacewith aseminormalized basis (e,). An approximation algorithm
(Fn)52, isasequence of maps F, : X — X such that for each x € X, Fn(x) isalinear
combination of a most n of the basis elements (g;). The most natural algorithm is the
linear algorithm ()72, given by the partial sum operators.

Recently, Konyagin and Temlyakov [6] introduced the Thresholding Greedy Algo-
rithm (TGA) (Gn)p2,, where Gn(x) is obtained by taking the largest n coefficients
(precise definitions are given in Section 2). The TGA provides a theoretical model for
the thresholding procedure that is used in image compression and other applications.

They defined the basis (e,) to be greedy if the TGA isoptimal in the sensethat G, (x)
isessentially the best n-term approximation to x using the basisvectors, i.e., there exists
aconstant C such that, for all x € X andn € N, we have

X—Z(Xjej

jeA

(2.2 IX — Gh(X)|| < Cinf[ JAl=n, oy eR, jeA}.

They then showed that greedy bases can be simply characterized as unconditional
bases with the additional property of being democratic, i.e., for some A > 0 we have
12 a8l < AlIXcp & Il whenever |A] < |B.

They aso defined a basis to be quasi-greedy if there exists a constant C such that
IGmX)| < C|Ix|| foral x € X andn € N. Subsequently, Wojtaszczyk [11] proved that
these are precisely the basesfor whichthe TGA merely converges, i.e., limn_, oo Gn(X) =
x for x € X.
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In this paper we introduce two natural intermediate conditions. Let us denote the
biorthogonal sequence by (€%). We say (e,) isalmost greedy if thereisaconstant C such
that

X =Y eMxe

(L2) |Ix=Gyx)| < Cinf {
jeA

:|A|:n}, xeX, neN.

Comparison with (1.1) shows that this is formally a weaker condition; in fact Woj-
taszczyk's examples of conditional quasi-greedy bases of ¢, [11] are almost greedy but
not greedy. We give two characterizations of aimost greedy basesin Theorem 3.3. First, a
basisisamost greedy if and only if it is quasi-greedy and democratic. Second, if A > 1,
then (en)p2 ; is amost greedy if and only if there exists a constant C such that, for all
x € Xandn € N, we have

X_Zajel

Al =n, o R, jeA}.
jeA

(L3) [IXx—=GpumX)| < Cinf {

Equation (1.2) isavery natural weakening of (1.1).
We also introduce partially greedy bases. These are bases such that, for some C, we
have

PBRCACOES
k=n+1
We give a characterization in Theorem 3.4.

Next we study duality of these conditions. In Theorem 5.1 we show that if (g,) isa

greedy basis of aBanach space X with nontrivial Rademacher type, then (€) isagreedy
basis of X*. However, examples at the end of the paper show that if X hastrivial type,
then (&) need not be agreedy basic sequence. Theorem 5.4 concerns duality for almost
greedy seguences. It is proved that (e,) and (€}) are both almost greedy if and only if
they are both partially greedy. It is also proved that if (e,) isamost greedy, then (&) is
almost greedy if and only if (e,) isbidemocratic, i.e., for some C we have

282 ¢

jeA jeA

(1.4) [x = Gn(x)| <C . xeX, neN.

<Cn, |[Al=n, neN.

Using this result we extend Theorem 5.1 by showing that if X has nontrivia type and
(en) isalmost greedy, then () is an almost greedy basic sequence.

We use standard Banach space notation throughout (see, e.g., [8]). For clarity, however,
werecall here the notation that is used most heavily. Let X be a Banach space. The dual
space of X, denoted X*, is the Banach space of al continuous linear functionals F
equipped with the norm

IF Il = sup{F (x) - [Ix]| = 1}.

The closed linear span of aset A C X (resp., a sequence (X)) is denoted [ A] (resp.,
[xn]). A basis for X is a sequence of vectors (e,) such that every x € X has a unique
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expansion as a norm-convergent series

Here (e}) is the sequence of biorthogonal functionalsin X* defined by € (em) = 8n,m.
The basisis said to be unconditional if the series expansion converges unconditionally
for every x € X. Itissaid to be monotone if

= IIxIl, (xeX,nz=1.

Y s
k=1

Finally, more specialized notions from Banach space theory, such as type and cotype,
will be introduced as needed.

2. Greedy Conditions for Bases

Let (e1)nen be a seminormalized basis of a Banach space X (i.e., 1/C < |x]| < C
for some C); let (€%)nen be the biorthogonal sequence in X*. Let us denote by S, the
partial-sum operators

Sn(¥) =) e Xg.
j=1

We also define the remainder operators Ry, = | — §y. For any X € X we define the
greedy ordering for x asthemap p : N — N such that p(N) D {j : €(x) # 0}
and so that if j < k, then either €5, 0| > 1€, (X)| or |e/’g(j)(x)| = €)1 ()] and
p(j) < p(k). The mth greedy approximation is given by

m
Gn(X) = Z e:‘)(j)(x)ep(j).
=1

We will also introduce the mth greedy remainder
Hm(X) = X — Gm(X).

The basis (e,) is called quasi-greedy if G, (x) — x for al x € X. Thisis equivalent
(see[11]) to the condition that for some constant C we have

(21) sup [Gm(X) || < ClIx, xe X
m

It will be convenient to define the quasi-greedy constant K to be the least constant such
that

I1GmOON < KIIX]l and [Hn OOl < KX, x e X.
If (&) isany basis we denote

X—Z(Xjej'

jeA

om(X) = inf i

Al =m, OljeR}.
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A basis (e,) is caled greedy [6] if there is a constant C such that, for any x € X and
m € N, we have

(2.2 [Hn(X) || < Com(X).

It is natural to introduce two slightly weaker forms of greediness. For any basis (e,)
let

om(X) = inf {

X—Ze’;(x)a(H DAl < m}.

ke A
Note that

om(X) < om(X) < [[Rm(X)[| > O as m— oo.
Let us say that abasis (e,) isalmost greedy if there is a constant C so that
(2.3) [HmX[l < Com(X).

Wewill say that abasis (g,) ispartially greedy if thereisa constant C so that, for any
Xxe X, meN,
(2.4) HmO I < CllRmX].
Itis clear that for any basis we have the following implications:
greedy = almost greedy = partially greedy = quasi-greedy.

Next we prove two useful lemmas concerning quasi-greedy bases. These are both
essentially due to Wojtaszczyk [11]. The first lemma says that every quasi-greedy basis
is unconditional for constant coefficients.

Lemma2l Suppose(e,)nen hasquasi-greedy constant K . Suppose Aisafinitesubset
of N. Then, for every choice of signse; = £1, we have

Zf?j S

jeA

< <2K

Y8

jeA

3

(25) e

jeA
and, hence, for any real numbers (g;)jca,

(2.6) Z Q€

jeA

< 2K max|g| .
jeA

Y8

jeA

Proof. First notethat if B C Aand e > 0, then

S @+ee Ya+og+ >

jeB jeB jeA\B

<K

Lettinge — 0, weobtain ||Zj€Bej I < K||Zj€Aej || and, hence, for any choice of signs
gj = £1, we have

Zsjej < 2K

jeA

> e

jeA
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This gives the right-hand inequality in (2.5) and the left-hand inequality is similar. By
convexity, (2.6) followsimmediately. ]

Lemma22. Suppose(en)nen hasquasi-greedy constant K. Supposex € X hasgreedy
ordering p. Then

m
2
> e | < 4K2|x|

j=1
and, hence, if Aisany subset of N and (8;)jca are any real numbers,

Y > ae

jeA jeA

(2-7) |e:;(m) (X)l

< 4K? .

(2.8) min 3|

Proof. We prove (2.7), and then (2.8) isimmediate. Let 3j = €(x). Let &j = sgn &,
and put 1/|a,(0)| = 0. Then

m
Z Ep(i)€n(i)

i=1

[a, )| = |a,ml

m 1 1
Z( - ) (Hj—100 — Hm(x»‘

j=1 |aﬂ(i)| |aﬂ(j*1)|

IA

2K |||
We then use (2.5). [ ]
We concludethissection by considering direct and inversetheoremsfor approximation

with regard to almost greedy bases.
We define the fundamental function ¢(n) of abasis (e,) by

> e

ke A

() = sup
[Al<n

For x € X with greedy ordering p, let
& (X) 1= |€)4o(X)].

The following theorem was proved in [10]:

Theorem2.3. Let1l < p < oo and let (e,) be a greedy basiswith ¢(n) < n/P. Then,
forany0 <r < oo and 0 < q < oo, we have the following equivalence:

D oI <00 & D a0 TP < oo,
n n

We generalize this theorem as follows:

Theorem 24. Let1l < p < oo and let (e,) be a democratic quasi-greedy basis with
(M) =< nYP, Then, forany 0 < r < co and 0 < g < oo, we have the following
equivalence:

X:(rn(x)qn“"1 <0 & X:an(x)anq’”“/p < 0.
n n
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The proof of this theorem is similar to the proof of Theorem 2.3 and is based on the
following lemmas which are anal ogous to the corresponding lemmas from [10]. See the
Introduction (or the next section) for the definition of a democratic basis.

Lemma25. Let(e,) beademocratic quasi-greedy basiswith ¢ (n) < n'/P. Thenthere
exists a constant C such that, for any two positive integers N < M and any x € X, we
have

am(X) < CIIHN()[[(M — N)~YP.
Proof. Thislemmafollowsfrom (2.8) of Lemma2.2. ]

Lemma2.6. Let(e,) beademocraticquasi-greedy basiswith¢(n) =< nP. Thenthere
exists a constant C such that, for any sequence mg < m; < - - - of nonnegative integers,
we have

IHm 0O < C Y am 0O (Mg — my) P

I=s
Proof. Thislemmafollowsfrom (2.6) of Lemma2.1. [ |

By Theorem 3.3 below we get that a democratic quasi-greedy basis is almost greedy
and also has the following property (setting & = 2 in (3) of Theorem 3.3):

o2n(X) = [[HaaX) || = Con(X).
Thisinequality implies that
Y IH N <00 & D o)W < oo,
n n

Therefore Theorem 2.3 holds with the assumption that (e,) is greedy replaced by the
assumption that (e,) is almost greedy, which yields Theorem 2.4.

Remark 2.7. Wenotethat the version of Theorem 2.4 with o, (X) replaced by ||Hn (X) ||
wasprovedin[4] (it alsofollowsfrom Lemmas2.5 and 2.6). Our version of Theorem 2.4
is based on Theorem 3.3 below.

3. Democratic and Conservative Bases

Werecall that abasis (e,) in aBanach space X iscalled democratic if thereisaconstant
A such that

(3.

> e

keA

This concept was introduced in [6].The following characterization of greedy bases was
also provedin [6].

<A

ZeKH it |Al<|BI.

keB
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Theorem 3.1. Abasis(g,) isgreedy if and only if it is unconditional and democratic.

Recall that the fundamental function ¢ (n) of (e,) is defined by

p(n) = sup | Y &
IAI=n || keA
The dual fundamental function is given by

e () = sup | el

[AI=N || ke A

Note that ¢ (and ¢*) is subadditive (i.e., ¢(m 4+ n) < (M) + ¢(n)) and increasing.
It may also be seen that ¢(n)/n (and ¢*(n)/n) is decreasing since, for any set A with
|A] = n, we have

Ya=-1:>e

keA ke A j#k

By convexity, for any set A and any scalars {a; : j € A}, we have

Z €

jeA

< max |a; | max +e
=ie | j| HE ]
Hence

(3.2)

Zaiel

jeA

=< 2¢(|Al) max |aj].
JeA

Itisclear that (&) isdemocratic with constant A in (3.1) if and only if

> e

keA

(33 AYp(A) < <@(A), Al <.

Lemma3.2. Let (e,) beademocratic quasi-greedy basis. Let K be the quasi-greedy
constant and A the democratic constant. Then, for x € X, if p is the quasi-greedy
ordering

2
(34 &) m ()| < L:Em? 11,
and
(3.5) sup | (HmX)| < LIIXII-
keN p(m+1)

Proof. Thisfollowsdirectly from (3.3) and Lemma2.2 (2.7). ]
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Next we compare almost greedy bases with greedy bases. It follows from (3) of the
theorem below that in an almost greedy basis the convergence of the TGA is “amost”
optimal. It follows from (2) of the theorem below and [11] that any conditiona quasi-
greedy basis of a Hilbert space is actually almost greedy. See also [3] for a conditional
almost greedy basis of ¢;.

Theorem 3.3.  Suppose (&,) isabasisof a Banach space. Thefollowing are equivalent:

(1) (&) isalmost greedy.
(2) (&) isquasi-greedy and democratic.
(3) For any (resp., every) A > 1thereisa constant C = C; such that

I H[Am]X” < Crom(X).

Proof. We start by showing (1) implies (2). It isimmediate that (e,) is quasi-greedy.
Now suppose |A| < |B|. Suppose § > 0 and define

x=Y g+ > (1+de.

jeA jeB\A

Then, if r = |B\ A] we have H; (x) = ZjeAe»,. However,

PRCICEIDIE

jeB jeB

or(X) < = +4

.8

jeB\A

Letting § — O, it follows from (2.3) that (e,) is democratic.
Next we show that (2) implies (1) so that (1) and (2) are equivalent. Suppose X € X
andm € N. Let

Gm(X) = )_ € (X)e

jeA

where |A] = m. Suppose |[B| =r < m. Then

Hin(X) = (x - Zej*(X)e.> + ) gxg - Y &gXe.

jeB jeB\A jeA\B
Then |[B\A| < s:=|A\B|. Thus

D &8

< 2K | max |ef(x S
e < <jeB\A| ! ( )I> @(s)

(by (2.6))

IA

2K (m{\nB Ie,*(X)|> @(s)

D &8

jeA\B

8K3A

IA
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(by (3.4))
= 8K3A | Gs (x - Ze;*(x)e,)”
jeB
< 8K*A <x - Zej*(x)ej) H )
jeB
We also have

D &g | =

jeA\B

Gs (x - Zej*(x)ej)

jeB

X — Z e]*(x)ej

jeB

Thusit follows that

[HnO [ < (8K*A + K + 1)

and so, optimizing over B with |B| < m,
IHnOOIl < (8K*A + K + 1)Gm(X).

Let us prove that (2) implies (3) for every » > 1. Assume K is the quasi-greedy
constant and A is the democratic constant. Assumem, r € N. For x € X and A afinite
subset of cardinality m, letv = ZMA €/ (x)€;. Now supposey issuchthat €' (y) # €(X)
only if j € A. Then

Gi(y) =) €eye

jeB

where |B| =r.Let |[AN B| =swhere0 < s < min(r, m). Then

Ho(y) — Hos(0) = Hs(y —v) = ) e(y)g.

jeA\B
Now, by (3.5),
2
jgg\xqu Wl = ) Iyll-
Hence, by (2.6),
8K3Ag(m)
3.6 H —H - < —7——lvl.
(3.6) IHr (y) — Hr—s() || = o0 + 1) Iyl

For ¢ > 0 we can choose y so that ||y < om(X) + ¢ and {j : e}*(y) #+ ej*(x)} is
contained in aset A of cardinality m as above. Note that

Omir (X) = Ompr—s(X) = [[Hr—s(0) |
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and hence (3.6) and the triangle inequality yield

Omir (X) < [[Hr—s()]|
< [ITHWI + [1He (y) — Hr—s() ||
8K3Ag(m)
< K — 1yl
< Kilyll+ o + 1) Iyl
Since ||y|l < om(X) + € and ¢ isarbitrary, we obtain
. 8K3Ap(m
Omyr (X) < <(p(r7—}—(pfl_)) + K) om(X).

Next suppose A > landr = [Am] — m. Now ¢(m)/e( + 1) < m/(r + 1), sowe
have

8K3A
r—1

5[Am] X) < ( + K) om(X).

Thisimplies (3) with C;, < (A — 1)~%.
It remainsto show (3) (for somefixed A > 1) implies(2). That (e,) isquasi-greedy is
immediate. Notethat if |D| = [Am], then

28

jeD

< @p(Am) < Ap(m).

So to provethat (e,) isdemocratic it is enough to show that

>8

jeD

= ¢(m)/C;.

Suppose | Al < m < oo. For any set B of cardinality [Am] digoint from A we have (by
asimilar argument asin the case (1) implies (2))

Zej SCAUm<Z e,)fCA

jeA jeAUB

> e

jeD

whenever D ¢ AU B with |D| > [Am]. Thus, maximizing over all Awith |A| <m,

Y8
jeD

and so (gj) is democratic. [

inf > p(m)/C
Dl=[Am] > p(m)/Cy

If A, B are subsets of N we use the notation A < Btomeanthat m € A,n € B
impliesm < n. Wewriten < Afor {n} < A.Letusdefineabasis(e,) to be conservative
if thereisaconstant I such that

> &

ke A

(3.7) <T if|Al < |Bland A < B.

D

keB
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The analogue of Theorems 3.1 and 3.3 is

Theorem 3.4. A basis (&) is partially greedy if and only if it is quasi-greedy and
conservative.

Proof. Clearly apartially greedy basis is also quasi-greedy. Suppose (&,) is partialy
greedy (with constant C in (2.4)) and A < B with |A| = |B| = m. Letr = max A. Let
D =[1,r]\Aand then, for § > 0, let

x=Y a+1+0) Y e

ke A keDUB
Then
IH 00l = ZeKH
ke A
and
IR OO =(1+8) Y e
keB

so that letting § — 0 gives (3.7) with " = C.

Conversely, let us suppose (&,) isquasi-greedy with constant K and conservative with
constant T". Suppose X € X and m € N. Let p be the greedy ordering for x. Then,
let D = {p(j) : j <m, p(j) <mpand B = {p(j) : ] =m, p(j) > m}. Let
A=[1, m\D.Then|Al = |B| =T, say, and A < B. Now

PCACIL

keB

= [IGr (R || = KI|[RmX||.

Also

IA

2K(g%@uﬂ)

E:QHkaH

keA

X

keA

%

keB

IA

2KF<@QMHDO

8K

IA

E:QKMaw

keB

(by (2.8))
< 8K“T[|Rmx].
Combining gives us

I HmX I

IA

IRmX ||+ | Y e

keA

+ s

keB
(8K T + K + 1)||RmX|. u

IA
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4. Bidemocr atic Bases

Suppose (e,) is a democratic basis. We shall say that (e,) has the upper regularity
property (URP) if there exists an integer r > 2 so that

(4.1 p(rn) < Ire(n), neN.

This of course implies ¢(rkn) < 27%r*p(n) and is therefore easily equivalent to the
existenceof 0 < B8 < 1 and aconstant C so that, if m > n,

m\?
(4.2) @(m) < C(F) p(n).
We say (&,) hasthe lower regularity property (LRP) if there existsr > 1 so that, for all
n € N, we have
(4.3) e(rn) > 2¢(n), neN.

Thisissimilarly equivalent to the existenceof 0 < « < 1and ¢ > O so that, if m > n,

(4.4) p(m) > C<%> @(n).

Let us recall that a Banach space X has (Rademacher) type 1 < p < 2if thereisa
constant C such that

n p\ 1/p n 1/p
Ave & Xi <C 1% ]| P X, ..., X € X, neN.
N = j s 1, > An s

The least such constant C is called the type p-constant T,(X). We say that X has
nontrivial (resp., trivial) typeif X has (resp., does not have) type p for some (resp., any)
p > 1. Recall alsothat X has (Rademacher) cotype?2 < g < oo if there existsaconstant
C such that

n

N 1/q
1% |19 <C| Ave £ Xi

The least such constant C is called the cotype g-constant Cq(X). We say that X has
nontrivial (resp., trivial) cotypeif X has (resp., does not have) cotype q for some (resp.,
any) q < oo.

a\ /4
) , X1,..., X € X, neN.

Proposition 4.1.

(1) If (en) isan almost greedy basis of a Banach space with nontrivial cotype, then
(&) hasthe LRP.

(2) If (&) isan almost greedy basis of a Banach space with nontrivial type, then (e,)
has the LRP and the URP.
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Proof. (1) Suppose K is the quasi-greedy constant of (e,) and A is the democratic

constant. Suppose X hascotypeq < oo with constant Cq(X).Let By, ..., By bedigoint
setswith |Bx| = nand let A = [ g, Bk. Then, using Lemma 2.1, (2.5), and (3.3),

m a\ la
()
k=1 ||jeBx
T

jeBx

IA

m*9(n)

IA

q)l/q

q\ 1/9
> )
jeA

Itisclear thisimplies (4.4) for some suitable constant ¢ > O and @ = 1/q.

(2) Since nontrivia type implies nontrivial cotype we obtain the LRP immediately.
The proof of the URP (with 8 = 1/p when X has type p) is very similar. Using the
same notation, and assuming X hastype p > 1 with constant T, (X), we have

p\ 1/p
281‘6’1 )

jeA

m
2K A <; S,JAZVE

IA

2K AC4(X) (;}Aviel

IA

4K ACqy(X)@(mn).

p(mn) < 2KA (szzij

p) 1/p

m
< 2KATy(X) (Z Ave | > ge
k= 6=+ || eB,
< 4K ATp,(X)mYPg(n).
Thisimplies (4.2) for suitable constants. ]

We now say that abasis (e,) isbidemocratic if there isaconstant A so that

(4.5 p(N)p*(n) < An.

Proposition 4.2.  If (e,) isbidemocratic (with constant A), then (e,) and (€) are both
democratic (with constant A) and are both unconditional for constant coefficients.

Proof. If Aisany finite set we have

A< (Y el D a| <o aAn|> g
jeA jeA jeA
Hence
ATp(A) < D g
jeA
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and so (e,) is democratic with constant A. Let (gj)jea be any choice of signs+1. Then

A<D g D ae| <207(AD|D e
jeA jeA jeA
Hence
1
SAPUAD = > eia| < 20(AD.
jeA

Hence (&,) isunconditional for constant coefficients. Similar calculations work for (€)
to obtain the theorem. [ |

Proposition 4.3. A basis (e,) is bidemocratic if and only if there is a constant C so
that, for any finiteset A C N,

(4.6) < CIA

D s

keA

%

ke A

Proof. Onedirection istrivial. Assume (4.6) holds with C > 1. Suppose n € N. By
passing to an equivalent norm on X, if necessary, we may assume that (e,) and (e}) are
both monotone. Thereexist A, B ¢ Nwith |[A| < n, |B| <n, and

P hICH

jeA jeB

> Zo(n), > 29*(n).

By monotonicity of (e,) and (&%) we may assumethat |A| = |B| = n.Let D = AU B,
E = D\A.
1Y o &l = (1/8C)p(n) and |3, p €'l > (1/8C)¢*(n) we obtain immediately
that
p(Me*(n) < 2°C’|D| < 2'Cn.

Consider when one of these inequalities fails; we need only treat the case ||Z]- &l <
(1/8C)¢p(n). Then

P

jeE

_ e e o)
2 8C 4

=[> e

jeA

_Zej

jeD

and thus, as |E| < n, (4.6) gives

Z el <4Cnpn)~.

jeE

We a so have from (4.6) that

< 2Cnp(n)~L.

2.8
jeA
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Hence
Zej* < 6Cnp(n)*
jeD
and so
6Cn o(n) 3n
n=<|D|= g e’ 5(—)(—)=—
; ng: ] p(n) 8C 4
which is a contradiction. |

Proposition 4.4. If (e,) isa democratic quasi-greedy basiswith the URP, then (e,) is
bidemocratic.

Proof. We assume (4.2) holds, that (e,) is quasi-greedy with constant K, and demo-

cratic with constant A. Suppose A is afinite subset of N. Pick x € X sothat ||x|| = 1

?2? ZjeAeJ?*(x) > %||Zj6Aej*||. Let o be the greedy ordering for x. Then by (3.5), if
=N,

()]

IA

%
Z §

jeA

2p(n) ) 160

jeA

IA

20(N) Y 16540 ()]
k=1

IA

8K2A Al
;wk)

IA

n
8K2ACH Z k=
k=1
< Cin

for asuitable constant C;. Thisimplies ¢ (n)¢*(n) < Cyin. [ |

Corollary 4.5. Let (e,) be a quasi-greedy basis for a Hilbert space. Then (e,) is
bidemocratic.

Proof. Wojtaszczyk [11] proved that (e,) is democratic and that ¢(n) =< /n. So the
result follows from Proposition 4.4. ]

Remark 4.6. Proposition 4.4 breaks down for bases that are not quasi-greedy. To see
this, let (e}) be the unit vector basis of £,. We define anormalized basis ( f,) of £2 @2 £
asfollows:

_i 2 p — 12 @ p
f2n71—\/§(en+en), fon = 360+ 2 G-
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Supposethat 1 < p < 2. Itiseasy to check that ( f,) and (f) are both democratic and
unconditional for constant coefficients, that ¢ (n) < n*P, and that ¢*(n) =< ,/n. So both
(fn) and () have the URP but ( f,) is not bidemocratic.

5. Duality of Almost Greedy Bases

Theorem 5.1. Let (e,) be a greedy basis with the URP. Then (€}) is a greedy basic
seguence. In particular, if (e,) is a greedy basis of a Banach space X with nontrivial
type, then (€) isa greedy basis of X*.

Proof. Since (€}) isautomatically unconditional thisfollowsfrom Proposition 4.4 and
Theorem 3.1. The second part follows from Proposition 4.1; note that any space with
nontrivial type and an unconditional basisis reflexive by James's theorem [5]. [ |

Remark 5.2. The Haar system is a greedy basis of H;. However, Oswald [9] proved
that the Haar system is not a greedy basic sequence in BMO (i.e., H;"). This provides
a natura illustration of the fact that the assumption of nontrivial type in Theorem 5.1
cannot be eliminated.

Corollary 5.3. For 1 < p < oo the Banach space L [0, 1] has a greedy basis not
equivalent to a rearranged subsequence of the Haar system.

Proof. For p > 2, Wojtaszczyk [11] constructed such abasiswith ¢ (n) =< n%P, hence
with the URP. The case p < 2 follows by duality using Theorem 5.1. ]

Theorem 5.4. Let (e,) beaquasi-greedy basisof a Banach space X. Thenthefollowing
are equivalent;

(1) (&) ishbidemocratic.
(2) (ey) and (e}) are both almost greedy.
(3) (en) and (e}) are both partially greedy.

Proof. Wefirst prove (1) implies (2). Let A denote the bidemocratic constant. In fact,
by Theorem 3.3 and Proposition 4.2, we only need show that (€}) is quasi-greedy. Let
usdenote by G, and H;} the greedy operator and greedy remainder operators associated
to the dual basic sequence (e}). Suppose x* € X* and x € X.

First notethat if |A| = m, then

STl = IX*l sup | Y ey
jeA gi=%1 | jeA
< 2p(m)[Ix*].
Hence
(5.1) sup|(Hix) (@) = 220 E D

jeN
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On the other hand, (3.5) implies that

4K 2A
5.2 *(Hpm < —— x|
(5.2 iJ'gle,( X)I =< oMt D) Il

Suppose G (X) = ZieAeJ?*(x)e, and G, (x*) = ZieB CICH where |A| = |B| =
m. Then

|(Hix) (Gm())| = (Z x*(q)e}‘) (x)
jeA\B
< | D x| Ixl
jeA\B
1 *
4M”X”HX*H
m+1
(by (3.2) and (5.1))
< AA|IX| X"
Also,
[(GEX") (Hn(X)| = [x* ( > e;‘(x)e,>|
jeB\A
||x*||w(2 (m))
= om+1) 7
(by (5.2)
< BKZA[IX|I[IX*]|.
Now
GLXx*(X) = X*(GmX) — (HEX")(GmX) 4+ G, (X™) (HmX).
Hence
IGEX*(X)| < (K +4A + 8K2A) X[l Ix*|
so that

IGEX*|| < (K 4 4A + 8K2A)[|x*|.

Thisimplies (€}) is aquasi-greedy basic sequence, and proves (1) implies (2).

Of course (2) implies (3), so it remains to prove (3) implies (1). By Theorem 3.4,
(3) impliesthat both (e,) and (&) are quasi-greedy and conservative. Let us assume that
K isaquasi-greedy constant for both (e,) and (€;), and that I" is a conservative constant
for both (e,) and (€)).
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Suppose A is any finite subset of N. For x € [g]j¢a, lety = >, A6 + . First
suppose that |€]'(x)| # 1 for al j. Then

Yol < | > ewe Y g§ye
jeA lef(yl<1 lef(yl<1
= 2K|yll.

By continuity, ||ZjeAe, | < 2K]|ly| for @l x € [g];¢a. Thus, by Nikol’skii’s Duality
Theorem (see, e.g., [7]), there exists x* € [€/]jca with ||x*|| = 1and

3 (Ze) el

1
jeA 2K jeA

Now suppose m € N. Choose Ag, By with | Agl, |Bg| < mand

> e >

jeho j€Bo

> Zo(m), > Zo*(m).

Now let A be any subset of N with |A] = 2m and A > max(Ag, Bop).
Note that if D C A and |D| > m, then since (e,) and (&) are conservative with
constant T,

(54) > —w(m) —so *(m).

- 2r

> e

jeD

el =

jeD

Let us choose u* € [€]jea such that ZieA |u}*(e,)|2 isminimized subject to |Ju*|| < 1
and
* p(m)
(55) doue) = e
jeA

Thisispossible by (5.3) and (5.4).

Now let G¥ (u*) = ZJeBu (g)ef where B ¢ Aand |[B| = m. Let D = A\B. We
observe that by (2.7) we have

m|n|u @) e <aK?
jeB
and hence, by (5.4),
8K?2
5.6 min|u*(g)| < .
(56) min|u*@)l = T

We then again use (5.3) to find v* € [€/]jcp With |[v*]| = 1 and

(m)
v(g) > ——.
j; 1= 4rk
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It follows from the minimality assumption on u* that

D (@A -tu(g) + v (g))® = Y (U (g))?
jeA jeA
for0 <t < 1landso, using (2.8) and (5.6),
D oute)? = ) ut(e)vi(e)

jeA jeA

minju*(e)l > 1v* (e

jebD

A

8K?2I
max
@*(M) g==+1

IA

D eig

jeD

16K 2T (m)
p*(m)

IA

Thus, from (5.5),

2
(p(m))? < 24r2K2<Z|u*<ej>|)

jeA

IA

2'T2K?m ) " u*(g)?
jeA
- 28T3K *mgp(m)
@*(m)
which gives the estimate
p(M)g*(m) < 2°I3K“*m,
so that (e,) is bidemocratic. [ |

Corollary 5.5. Let X be a Banach space with nontrivial type. If (e,) is an almost
greedy basis of X, then (&) isan almost greedy basic sequencein X*.

Proof. Thisfollows directly from Theorem 5.4 and Proposition 4.4. ]

Remark 5.6. In[3] thereis an example of an almost greedy basis (e,) of ¢ such that
(e*) is not unconditional for constant coefficients, thus not quasi-greedy. The example
localizes to give a quasi-greedy basis of the reflexive space (3 @¢7), whose dual basis
is not quasi-greedy. On the other hand, it follows from Corollary 4.5 and Theorem 5.4
abovethat in aHilbert spacethe dual basisof aquasi-greedy basisisalways quasi-greedy
(in fact, both the basis and its dual are almost greedy).

Corollary 5.7.  Supposethat (e,) and (€}) areboth partially greedy and that ¢ (n) < n.
Then (e,) is equivalent to the unit vector basis of ¢.
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Proof. By Theorem 5.4, (e,) is bidemocratic. Hence
e*(N) < n/p(n) < 1.

But this implies that (€}) is equivalent to the unit vector basis of ¢, which gives the
result. [ |

Example5.8. Let us conclude this section by showing that if ¢ : N — (0, c0) isan
increasing function satisfying ¢ (1) = 1 and ¢(n)/n isdecreasing, but failing (4.1), then
it is possible to construct a Banach space with a greedy basis (e,) with a fundamental
function equivalent to ¢ (n) and such that the dual basic sequence (&) isnot greedy. This
will show that the preceding theorem is, in some sense, sharp. In Example 5.10 we will
show, under very mild additional conditions on ¢, how to make a reflexive example.

L et us define the sequence space X, to be the completion of cgp for the norm

léll, = supsup 2 37 gy,

noia=n M keA

n<A

Itisclear that the canonical basisisunconditional. Itisalso democratic sinceif |A| = n,

> e

ke A

To(n) < < p(n).

Let us suppose the dual basic sequence (&) is democratic with democratic constant A.
We note that if A > n, then

hRL

keA

< n/e).

It follows from the democratic assumption that

n
> €| < anjpm.
k=1
Now consider
no1
§=) ——&
k; oK)
Clearly |&]| < 1and so
n . N n 1
k=1q< T ek
We deduce that
noo1 n
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Now, any m, n withm > 2, we have

n n &1
——logm < —— -
p(n) J Zk

IA
NgE
3|-

k= ¢
mn
=<
@(mn)
Hence
p(mn) < Wmfﬂ( )

For large m this shows that (4.1) holds, contradicting our assumption.

Remark 5.9. The end of the proof of Example 5.8 actually establishes one direction
of the following equivalence (the other direction is easier): (¢(n)) satisfies the URP if
and only if (1/¢(n)) isregular, i.e., if and only if there exists C > 0 such that

1 C& 1

pn) = N = e())
Regular weight sequences also arise in the theory of Lorentz spaces.

Example5.10. Now let us suppose, in addition, that ¢(n)/n® isincreasing for some
choice of § > 0. We show how to make the preceding example reflexive.

Let ¢ (n) = o(n)**n~%. Then v/ (n)/n is decreasing and v/ (n) isincreasing. Define
X, asin Example 5.8 for the function . Let & = (14 §)~ L.

Let T denote Tsirelson space (see[2]). For our purposesit is only necessary to know
that this spaceis reflexive,

in< <n if |Al=n

>..

T

and

<2 if |JAl=nandn < A.

D€

jeA

T*
Now let Y = [T, X]s be the space obtained by complex interpolation. Since T is
reflexive it follows from a result of Calderon [1] that Y is reflexive. Note that Y* =
[T X5 I

Now suppose A ¢ N and |A] = n. Then

P

jeA

4
3 e

jeA

< < o).

Y Xy
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On the other hand, if n < A we have

1-6 %

& « ™ n o n
> 8| =|X2e & =2 v = 2m
iR lye I 1R ¢

Hence, for any A with |A| = 2n, we have
n
Zei Z(P( ).
jeA v 2

Thus (&) isdemocratic with fundamental function equivalent to ¢. Now suppose (ej*) is
demoacratic with constant A. Then

n

< 2A .
()

Y

>q
=1

Now Y* = (T*)1(X3)? C Z := (L) (X})? and so we have

1-6 0

n

L]

j=1

> = =

> s
=1

>q
=1

>q
j=1

n
sk
&
j=1

0
\& z 0 X, X

We deduce that

n

>

=1

1/6
< <2AL) = (2A)1/9L.
@(n) ¥(n)

.
Xy

Hence, by the argument presented in Example 5.8, we have that

m\?
y(m) < Cl(ﬁ) ¥ (n), m=>n,

for some 8 < 1 and C;. Now

Ltes (M (B+0)/(1+8)
p(m) < Cy/*" )<H> p(n),  m>n.

Thisimplies ¢ satisfies (4.1), contradicting our assumption.
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