
DOI: 10.1007/s00365-002-0525-y

Constr. Approx. (2003) 19: 575–597
CONSTRUCTIVE
APPROXIMATION
© 2003 Springer-Verlag New York Inc.

The Thresholding Greedy Algorithm,
Greedy Bases, and Duality

S. J. Dilworth, N. J. Kalton, Denka Kutzarova, and V. N. Temlyakov

Abstract. Some new conditions that arise naturally in the study of the Thresholding
Greedy Algorithm are introduced for bases of Banach spaces. We relate these conditions
to best n-term approximation and we study their duality theory. In particular, we obtain
a complete duality theory for greedy bases.

1. Introduction

Let X be a Banach space with a seminormalized basis (en). An approximation algorithm
(Fn)

∞
n=1 is a sequence of maps Fn : X → X such that for each x ∈ X , Fn(x) is a linear

combination of at most n of the basis elements (ej ). The most natural algorithm is the
linear algorithm (Sn)

∞
n=1 given by the partial sum operators.

Recently, Konyagin and Temlyakov [6] introduced the Thresholding Greedy Algo-
rithm (TGA) (Gn)

∞
n=1, where Gn(x) is obtained by taking the largest n coefficients

(precise definitions are given in Section 2). The TGA provides a theoretical model for
the thresholding procedure that is used in image compression and other applications.

They defined the basis (en) to be greedy if the TGA is optimal in the sense that Gn(x)
is essentially the best n-term approximation to x using the basis vectors, i.e., there exists
a constant C such that, for all x ∈ X and n ∈ N, we have

‖x − Gn(x)‖ ≤ C inf

{∥∥∥∥∥x −
∑
j∈A

αj ej

∥∥∥∥∥ : |A| = n, αj ∈ R, j ∈ A

}
.(1.1)

They then showed that greedy bases can be simply characterized as unconditional
bases with the additional property of being democratic, i.e., for some � > 0 we have
‖∑j∈A ej‖ ≤ �‖

∑
j∈B ej‖ whenever |A| ≤ |B|.

They also defined a basis to be quasi-greedy if there exists a constant C such that
‖Gm(x)‖ ≤ C‖x‖ for all x ∈ X and n ∈ N. Subsequently, Wojtaszczyk [11] proved that
these are precisely the bases for which the TGA merely converges, i.e., limn→∞ Gn(x) =
x for x ∈ X .
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In this paper we introduce two natural intermediate conditions. Let us denote the
biorthogonal sequence by (e∗n). We say (en) is almost greedy if there is a constant C such
that

‖x − Gn(x)‖ ≤ C inf

{∥∥∥∥∥x −
∑
j∈A

e∗j (x)ej

∥∥∥∥∥ : |A| = n

}
, x ∈ X, n ∈ N.(1.2)

Comparison with (1.1) shows that this is formally a weaker condition; in fact Woj-
taszczyk’s examples of conditional quasi-greedy bases of 	2 [11] are almost greedy but
not greedy. We give two characterizations of almost greedy bases in Theorem 3.3. First, a
basis is almost greedy if and only if it is quasi-greedy and democratic. Second, if λ > 1,
then (en)

∞
n=1 is almost greedy if and only if there exists a constant C such that, for all

x ∈ X and n ∈ N, we have

‖x − G[λn](x)‖ ≤ C inf

{∥∥∥∥∥x −
∑
j∈A

αj ej

∥∥∥∥∥ : |A| = n, αj ∈ R, j ∈ A

}
.(1.3)

Equation (1.2) is a very natural weakening of (1.1).
We also introduce partially greedy bases. These are bases such that, for some C , we

have

‖x − Gn(x)‖ ≤ C

∥∥∥∥∥
∞∑

k=n+1

e∗k (x)ek

∥∥∥∥∥ , x ∈ X, n ∈ N.(1.4)

We give a characterization in Theorem 3.4.
Next we study duality of these conditions. In Theorem 5.1 we show that if (en) is a

greedy basis of a Banach space X with nontrivial Rademacher type, then (e∗n) is a greedy
basis of X∗. However, examples at the end of the paper show that if X has trivial type,
then (e∗n) need not be a greedy basic sequence. Theorem 5.4 concerns duality for almost
greedy sequences. It is proved that (en) and (e∗n) are both almost greedy if and only if
they are both partially greedy. It is also proved that if (en) is almost greedy, then (e∗n) is
almost greedy if and only if (en) is bidemocratic, i.e., for some C we have∥∥∥∥∥

∑
j∈A

ej

∥∥∥∥∥
∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥ ≤ Cn, |A| = n, n ∈ N.

Using this result we extend Theorem 5.1 by showing that if X has nontrivial type and
(en) is almost greedy, then (e∗n) is an almost greedy basic sequence.

We use standard Banach space notation throughout (see, e.g., [8]). For clarity, however,
we recall here the notation that is used most heavily. Let X be a Banach space. The dual
space of X , denoted X∗, is the Banach space of all continuous linear functionals F
equipped with the norm

‖F‖ = sup{F(x) : ‖x‖ = 1}.

The closed linear span of a set A ⊆ X (resp., a sequence (xn)) is denoted [A] (resp.,
[xn]). A basis for X is a sequence of vectors (en) such that every x ∈ X has a unique
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expansion as a norm-convergent series

x =
∞∑

k=1

e∗n(x)en.

Here (e∗n) is the sequence of biorthogonal functionals in X∗ defined by e∗n(em) = δn,m .
The basis is said to be unconditional if the series expansion converges unconditionally
for every x ∈ X . It is said to be monotone if∥∥∥∥∥

n∑
k=1

e∗k (x)ek

∥∥∥∥∥ ≤ ‖x‖, (x ∈ X, n ≥ 1).

Finally, more specialized notions from Banach space theory, such as type and cotype,
will be introduced as needed.

2. Greedy Conditions for Bases

Let (en)n∈N be a seminormalized basis of a Banach space X (i.e., 1/C ≤ ‖xn‖ ≤ C
for some C); let (e∗n)n∈N be the biorthogonal sequence in X∗. Let us denote by Sm the
partial-sum operators

Sm(x) =
m∑

j=1

e∗j (x)ej .

We also define the remainder operators Rm = I − Sm . For any x ∈ X we define the
greedy ordering for x as the map ρ : N → N such that ρ(N) ⊃ { j : e∗j (x) �= 0}
and so that if j < k, then either |e∗ρ( j)(x)| > |e∗ρ(k)(x)| or |e∗ρ( j)(x)| = |e∗ρ(k)(x)| and
ρ( j) < ρ(k). The mth greedy approximation is given by

Gm(x) =
m∑

j=1

e∗ρ( j)(x)eρ( j).

We will also introduce the mth greedy remainder

Hm(x) = x − Gm(x).

The basis (en) is called quasi-greedy if Gm(x) → x for all x ∈ X . This is equivalent
(see [11]) to the condition that for some constant C we have

sup
m
‖Gm(x)‖ ≤ C‖x‖, x ∈ X.(2.1)

It will be convenient to define the quasi-greedy constant K to be the least constant such
that

‖Gm(x)‖ ≤ K‖x‖ and ‖Hm(x)‖ ≤ K‖x‖, x ∈ X.

If (en) is any basis we denote

σm(x) = inf

{∥∥∥∥∥x −
∑
j∈A

αj ej

∥∥∥∥∥ : |A| = m, αj ∈ R

}
.
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A basis (en) is called greedy [6] if there is a constant C such that, for any x ∈ X and
m ∈ N, we have

‖Hm(x)‖ ≤ Cσm(x).(2.2)

It is natural to introduce two slightly weaker forms of greediness. For any basis (en)

let

σ̃m(x) = inf

{∥∥∥∥∥x −
∑
k∈A

e∗k (x)ek

∥∥∥∥∥ : |A| ≤ m

}
.

Note that

σm(x) ≤ σ̃m(x) ≤ ‖Rm(x)‖ → 0 as m →∞.
Let us say that a basis (en) is almost greedy if there is a constant C so that

‖Hm x‖ ≤ C σ̃m(x).(2.3)

We will say that a basis (en) is partially greedy if there is a constant C so that, for any
x ∈ X, m ∈ N,

‖Hm(x)‖ ≤ C‖Rm x‖.(2.4)

It is clear that for any basis we have the following implications:

greedy⇒ almost greedy⇒ partially greedy⇒ quasi-greedy.

Next we prove two useful lemmas concerning quasi-greedy bases. These are both
essentially due to Wojtaszczyk [11]. The first lemma says that every quasi-greedy basis
is unconditional for constant coefficients.

Lemma 2.1. Suppose (en)n∈N has quasi-greedy constant K . Suppose A is a finite subset
of N. Then, for every choice of signs εj = ±1, we have

1

2K

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ ≤
∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥ ≤ 2K

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ ,(2.5)

and, hence, for any real numbers (aj )j∈A,∥∥∥∥∥
∑
j∈A

aj ej

∥∥∥∥∥ ≤ 2K max
j∈A
|aj |

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ .(2.6)

Proof. First note that if B ⊂ A and ε > 0, then∥∥∥∥∥
∑
j∈B

(1+ ε)ej

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∑
j∈B

(1+ ε)ej +
∑

j∈A\B
ej

∥∥∥∥∥ .
Letting ε→ 0, we obtain ‖∑j∈B ej‖ ≤ K‖∑j∈A ej‖ and, hence, for any choice of signs
εj = ±1, we have ∥∥∥∥∥

∑
j∈A

εj ej

∥∥∥∥∥ ≤ 2K

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ .
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This gives the right-hand inequality in (2.5) and the left-hand inequality is similar. By
convexity, (2.6) follows immediately.

Lemma 2.2. Suppose (en)n∈N has quasi-greedy constant K . Suppose x ∈ X has greedy
ordering ρ. Then

|e∗ρ(m)(x)|
∥∥∥∥∥

m∑
j=1

eρ( j)

∥∥∥∥∥ ≤ 4K 2‖x‖(2.7)

and, hence, if A is any subset of N and (aj )j∈A are any real numbers,

min
j∈A
|aj |

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ ≤ 4K 2

∥∥∥∥∥
∑
j∈A

aj ej

∥∥∥∥∥ .(2.8)

Proof. We prove (2.7), and then (2.8) is immediate. Let aj = e∗j (x). Let εj = sgn aj

and put 1/|aρ(0)| = 0. Then

|aρ(m)|
∥∥∥∥∥

m∑
j=1

ερ( j)eρ( j)

∥∥∥∥∥ = |aρ(m)|
∥∥∥∥∥

m∑
j=1

(
1

|aρ( j)| −
1

|aρ( j−1)|
)
(Hj−1(x)− Hm(x))

∥∥∥∥∥
≤ 2K‖x‖.

We then use (2.5).

We conclude this section by considering direct and inverse theorems for approximation
with regard to almost greedy bases.

We define the fundamental function ϕ(n) of a basis (en) by

ϕ(n) = sup
|A|≤n

∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥ .
For x ∈ X with greedy ordering ρ, let

ak(x) := |e∗ρ(k)(x)|.
The following theorem was proved in [10]:

Theorem 2.3. Let 1 < p <∞ and let (en) be a greedy basis with ϕ(n) � n1/p. Then,
for any 0 < r <∞ and 0 < q <∞, we have the following equivalence:∑

n

σn(x)
qnrq−1 <∞ ⇔

∑
n

an(x)
qnrq−1+q/p <∞.

We generalize this theorem as follows:

Theorem 2.4. Let 1 < p < ∞ and let (en) be a democratic quasi-greedy basis with
ϕ(n) � n1/p. Then, for any 0 < r < ∞ and 0 < q < ∞, we have the following
equivalence: ∑

n

σn(x)
qnrq−1 <∞ ⇔

∑
n

an(x)
qnrq−1+q/p <∞.
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The proof of this theorem is similar to the proof of Theorem 2.3 and is based on the
following lemmas which are analogous to the corresponding lemmas from [10]. See the
Introduction (or the next section) for the definition of a democratic basis.

Lemma 2.5. Let (en) be a democratic quasi-greedy basis with ϕ(n) � n1/p. Then there
exists a constant C such that, for any two positive integers N < M and any x ∈ X , we
have

aM(x) ≤ C‖HN (x)‖(M − N )−1/p.

Proof. This lemma follows from (2.8) of Lemma 2.2.

Lemma 2.6. Let (en) be a democratic quasi-greedy basis with ϕ(n) � n1/p. Then there
exists a constant C such that, for any sequence m0 < m1 < · · · of nonnegative integers,
we have

‖Hms (x)‖ ≤ C
∞∑

l=s

aml (x)(ml+1 − ml)
1/p.

Proof. This lemma follows from (2.6) of Lemma 2.1.

By Theorem 3.3 below we get that a democratic quasi-greedy basis is almost greedy
and also has the following property (setting λ = 2 in (3) of Theorem 3.3):

σ2n(x) ≤ ‖H2n(x)‖ ≤ Cσn(x).

This inequality implies that∑
n

‖Hn(x)‖qnrq−1 <∞ ⇔
∑

n

σn(x)
qnrq−1 <∞.

Therefore Theorem 2.3 holds with the assumption that (en) is greedy replaced by the
assumption that (en) is almost greedy, which yields Theorem 2.4.

Remark 2.7. We note that the version of Theorem 2.4 with σn(x) replaced by ‖Hn(x)‖
was proved in [4] (it also follows from Lemmas 2.5 and 2.6). Our version of Theorem 2.4
is based on Theorem 3.3 below.

3. Democratic and Conservative Bases

We recall that a basis (en) in a Banach space X is called democratic if there is a constant
� such that ∥∥∥∥∥

∑
k∈A

ek

∥∥∥∥∥ ≤ �
∥∥∥∥∥
∑
k∈B

ek

∥∥∥∥∥ if |A| ≤ |B|.(3.1)

This concept was introduced in [6].The following characterization of greedy bases was
also proved in [6].
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Theorem 3.1. A basis (en) is greedy if and only if it is unconditional and democratic.

Recall that the fundamental function ϕ(n) of (en) is defined by

ϕ(n) = sup
|A|≤n

∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥ .
The dual fundamental function is given by

ϕ∗(n) = sup
|A|≤n

∥∥∥∥∥
∑
k∈A

e∗k

∥∥∥∥∥ .
Note that ϕ (and ϕ∗) is subadditive (i.e., ϕ(m + n) ≤ ϕ(m) + ϕ(n)) and increasing.
It may also be seen that ϕ(n)/n (and ϕ∗(n)/n) is decreasing since, for any set A with
|A| = n, we have ∑

k∈A

ek = 1

n − 1

∑
k∈A

∑
j �=k

ej .

By convexity, for any set A and any scalars {aj : j ∈ A}, we have∥∥∥∥∥
∑
j∈A

aj ej

∥∥∥∥∥ ≤ max
j∈A
|aj |max±

∥∥∥∥∥
∑

A

±ej

∥∥∥∥∥ .
Hence ∥∥∥∥∥

∑
j∈A

aj ej

∥∥∥∥∥ ≤ 2ϕ(|A|)max
j∈A
|aj |.(3.2)

It is clear that (ek) is democratic with constant � in (3.1) if and only if

�−1ϕ(|A|) ≤
∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥ ≤ ϕ(|A|), |A| <∞.(3.3)

Lemma 3.2. Let (en) be a democratic quasi-greedy basis. Let K be the quasi-greedy
constant and � the democratic constant. Then, for x ∈ X, if ρ is the quasi-greedy
ordering

|e∗ρ(m)(x)| ≤
4K 2�

ϕ(m)
‖x‖,(3.4)

and

sup
k∈N
|e∗k (Hm x)| ≤ 4K 2�

ϕ(m + 1)
‖x‖.(3.5)

Proof. This follows directly from (3.3) and Lemma 2.2 (2.7).
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Next we compare almost greedy bases with greedy bases. It follows from (3) of the
theorem below that in an almost greedy basis the convergence of the TGA is “almost”
optimal. It follows from (2) of the theorem below and [11] that any conditional quasi-
greedy basis of a Hilbert space is actually almost greedy. See also [3] for a conditional
almost greedy basis of 	1.

Theorem 3.3. Suppose (en) is a basis of a Banach space. The following are equivalent:

(1) (en) is almost greedy.
(2) (en) is quasi-greedy and democratic.
(3) For any (resp., every) λ > 1 there is a constant C = Cλ such that

‖H[λm]x‖ ≤ Cλσm(x).

Proof. We start by showing (1) implies (2). It is immediate that (en) is quasi-greedy.
Now suppose |A| ≤ |B|. Suppose δ > 0 and define

x =
∑
j∈A

ej +
∑

j∈B\A
(1+ δ)ej .

Then, if r = |B\A| we have Hr (x) =
∑

j∈A ej . However,

σ̃r (x) ≤
∥∥∥∥∥
∑
j∈B

e∗j (x)ej

∥∥∥∥∥ ≤
∥∥∥∥∥
∑
j∈B

ej

∥∥∥∥∥+ δ
∥∥∥∥∥

∑
j∈B\A

ej

∥∥∥∥∥ .
Letting δ→ 0, it follows from (2.3) that (en) is democratic.

Next we show that (2) implies (1) so that (1) and (2) are equivalent. Suppose x ∈ X
and m ∈ N. Let

Gm(x) =
∑
j∈A

e∗j (x)ej

where |A| = m. Suppose |B| = r ≤ m. Then

Hm(x) =
(

x −
∑
j∈B

e∗j (x)ej

)
+

∑
j∈B\A

e∗j (x)ej −
∑

j∈A\B
e∗j (x)ej .

Then |B\A| ≤ s := |A\B|. Thus∥∥∥∥∥
∑

j∈B\A
e∗j (x)ej

∥∥∥∥∥ ≤ 2K

(
max
j∈B\A

|e∗j (x)|
)
ϕ(s)

(by (2.6))

≤ 2K

(
min

j∈A\B
|e∗j (x)|

)
ϕ(s)

≤ 8K 3�

∥∥∥∥∥
∑

j∈A\B
e∗j (x)ej

∥∥∥∥∥
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(by (3.4))

= 8K 3�

∥∥∥∥∥Gs

(
x −

∑
j∈B

e∗j (x)ej

)∥∥∥∥∥
≤ 8K 4�

∥∥∥∥∥
(

x −
∑
j∈B

e∗j (x)ej

)∥∥∥∥∥ .
We also have ∥∥∥∥∥

∑
j∈A\B

e∗j (x)ej

∥∥∥∥∥ =
∥∥∥∥∥Gs

(
x −

∑
j∈B

e∗j (x)ej

)∥∥∥∥∥ .
Thus it follows that

‖Hm(x)‖ ≤ (8K 4�+ K + 1)

∥∥∥∥∥x −
∑
j∈B

e∗j (x)ej

∥∥∥∥∥
and so, optimizing over B with |B| ≤ m,

‖Hm(x)‖ ≤ (8K 4�+ K + 1)σ̃m(x).

Let us prove that (2) implies (3) for every λ > 1. Assume K is the quasi-greedy
constant and � is the democratic constant. Assume m, r ∈ N. For x ∈ X and A a finite
subset of cardinality m, let v =∑

j /∈A e∗j (x)ej . Now suppose y is such that e∗j (y) �= e∗j (x)
only if j ∈ A. Then

Gr (y) =
∑
j∈B

e∗j (y)ej

where |B| = r . Let |A ∩ B| = s where 0 ≤ s ≤ min(r,m). Then

Hr (y)− Hr−s(v) = Hs(y − v) =
∑

j∈A\B
e∗j (y)ej .

Now, by (3.5),

max
j∈A\B

|e∗j (y)| ≤
4K 2�

ϕ(r + 1)
‖y‖.

Hence, by (2.6),

‖Hr (y)− Hr−s(v)‖ ≤ 8K 3�ϕ(m)

ϕ(r + 1)
‖y‖.(3.6)

For ε > 0 we can choose y so that ‖y‖ < σm(x) + ε and { j : e∗j (y) �= e∗j (x)} is
contained in a set A of cardinality m as above. Note that

σ̃m+r (x) ≤ σ̃m+r−s(x) ≤ ‖Hr−s(v)‖
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and hence (3.6) and the triangle inequality yield

σ̃m+r (x) ≤ ‖Hr−s(v)‖
≤ ‖Hr (y)‖ + ‖Hr (y)− Hr−s(v)‖

≤ K‖y‖ + 8K 3�ϕ(m)

ϕ(r + 1)
‖y‖.

Since ‖y‖ ≤ σm(x)+ ε and ε is arbitrary, we obtain

σ̃m+r (x) ≤
(

8K 3�ϕ(m)

ϕ(r + 1)
+ K

)
σm(x).

Next suppose λ > 1 and r = [λm] − m. Now ϕ(m)/ϕ(r + 1) ≤ m/(r + 1), so we
have

σ̃[λm](x) ≤
(

8K 3�

λ− 1
+ K

)
σm(x).

This implies (3) with Cλ � (λ− 1)−1.
It remains to show (3) (for some fixed λ > 1) implies (2). That (en) is quasi-greedy is

immediate. Note that if |D| = [λm], then∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥ ≤ ϕ(λm) ≤ λϕ(m).

So to prove that (en) is democratic it is enough to show that∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥ ≥ ϕ(m)/Cλ.

Suppose |A| ≤ m <∞. For any set B of cardinality [λm] disjoint from A we have (by
a similar argument as in the case (1) implies (2))∥∥∥∥∥

∑
j∈A

ej

∥∥∥∥∥ ≤ Cλσm

( ∑
j∈A∪B

ej

)
≤ Cλ

∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥
whenever D ⊂ A ∪ B with |D| ≥ [λm]. Thus, maximizing over all A with |A| ≤ m,

inf
|D|=[λm]

∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥ ≥ ϕ(m)/Cλ

and so (ej ) is democratic.

If A, B are subsets of N we use the notation A < B to mean that m ∈ A, n ∈ B
implies m < n. We write n < A for {n} < A. Let us define a basis (en) to be conservative
if there is a constant � such that∥∥∥∥∥

∑
k∈A

ek

∥∥∥∥∥ ≤ �
∥∥∥∥∥
∑
k∈B

ek

∥∥∥∥∥ if|A| ≤ |B| and A < B.(3.7)
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The analogue of Theorems 3.1 and 3.3 is

Theorem 3.4. A basis (en) is partially greedy if and only if it is quasi-greedy and
conservative.

Proof. Clearly a partially greedy basis is also quasi-greedy. Suppose (en) is partially
greedy (with constant C in (2.4)) and A < B with |A| = |B| = m. Let r = max A. Let
D = [1, r ]\A and then, for δ > 0, let

x =
∑
k∈A

ek + (1+ δ)
∑

k∈D∪B

ek .

Then

‖Hr (x)‖ =
∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥
and

‖Rr (x)‖ = (1+ δ)
∥∥∥∥∥
∑
k∈B

ek

∥∥∥∥∥ ,
so that letting δ→ 0 gives (3.7) with � = C .

Conversely, let us suppose (en) is quasi-greedy with constant K and conservative with
constant �. Suppose x ∈ X and m ∈ N. Let ρ be the greedy ordering for x . Then,
let D = {ρ( j) : j ≤ m, ρ( j) ≤ m} and B = {ρ( j) : j ≤ m, ρ( j) > m}. Let
A = [1,m]\D. Then |A| = |B| = r , say, and A < B. Now∥∥∥∥∥

∑
k∈B

e∗k (x)ek

∥∥∥∥∥ = ‖Gr (Rm x)‖ ≤ K‖Rm x‖.

Also ∥∥∥∥∥
∑
k∈A

e∗k (x)ek

∥∥∥∥∥ ≤ 2K

(
max
k∈A
|e∗k (x)|

) ∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥
≤ 2K�

(
min
k∈B
|e∗k (x)|

) ∥∥∥∥∥
∑
k∈B

ek

∥∥∥∥∥
≤ 8K 3�

∥∥∥∥∥
∑
k∈B

e∗k (x)ek

∥∥∥∥∥
(by (2.8))

≤ 8K 4�‖Rm x‖.
Combining gives us

‖Hm x‖ ≤ ‖Rm x‖ +
∥∥∥∥∥
∑
k∈A

e∗k (x)ek

∥∥∥∥∥+
∥∥∥∥∥
∑
k∈B

e∗k (x)ek

∥∥∥∥∥
≤ (8K 4� + K + 1)‖Rm x‖.
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4. Bidemocratic Bases

Suppose (en) is a democratic basis. We shall say that (en) has the upper regularity
property (URP) if there exists an integer r > 2 so that

ϕ(rn) ≤ 1
2rϕ(n), n ∈ N.(4.1)

This of course implies ϕ(rkn) ≤ 2−kr kϕ(n) and is therefore easily equivalent to the
existence of 0 < β < 1 and a constant C so that, if m > n,

ϕ(m) ≤ C

(
m

n

)β
ϕ(n).(4.2)

We say (en) has the lower regularity property (LRP) if there exists r > 1 so that, for all
n ∈ N, we have

ϕ(rn) ≥ 2ϕ(n), n ∈ N.(4.3)

This is similarly equivalent to the existence of 0 < α < 1 and c > 0 so that, if m > n,

ϕ(m) ≥ c

(
m

n

)α
ϕ(n).(4.4)

Let us recall that a Banach space X has (Rademacher) type 1 < p ≤ 2 if there is a
constant C such that

(
Ave
εj=±1

∥∥∥∥∥
n∑

j=1

εj xj

∥∥∥∥∥
p)1/p

≤ C

(
n∑

j=1

‖xj‖p

)1/p

, x1, . . . , xn ∈ X, n ∈ N.

The least such constant C is called the type p-constant Tp(X). We say that X has
nontrivial (resp., trivial) type if X has (resp., does not have) type p for some (resp., any)
p > 1. Recall also that X has (Rademacher) cotype 2 ≤ q <∞ if there exists a constant
C such that

(
n∑

j=1

‖xj‖q

)1/q

≤ C

(
Ave
εj=±1

∥∥∥∥∥
n∑

j=1

εj xj

∥∥∥∥∥
q)1/q

, x1, . . . , xn ∈ X, n ∈ N.

The least such constant C is called the cotype q-constant Cq(X). We say that X has
nontrivial (resp., trivial) cotype if X has (resp., does not have) cotype q for some (resp.,
any) q <∞.

Proposition 4.1.

(1) If (en) is an almost greedy basis of a Banach space with nontrivial cotype, then
(en) has the LRP.

(2) If (en) is an almost greedy basis of a Banach space with nontrivial type, then (en)

has the LRP and the URP.
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Proof. (1) Suppose K is the quasi-greedy constant of (en) and � is the democratic
constant. Suppose X has cotype q <∞with constant Cq(X). Let B1, . . . , Bm be disjoint
sets with |Bk | = n and let A =⋃m

k=1 Bk . Then, using Lemma 2.1, (2.5), and (3.3),

m1/qϕ(n) ≤ �

(
m∑

k=1

∥∥∥∥∥
∑
j∈Bk

ej

∥∥∥∥∥
q)1/q

≤ 2K�

(
m∑

k=1

Ave
εj=±1

∥∥∥∥∥
∑
j∈Bk

εj ej

∥∥∥∥∥
q)1/q

≤ 2K�Cq(X)

(
Ave
εj=±1

∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥
q)1/q

≤ 4K�Cq(X)ϕ(mn).

It is clear this implies (4.4) for some suitable constant c > 0 and α = 1/q.
(2) Since nontrivial type implies nontrivial cotype we obtain the LRP immediately.

The proof of the URP (with β = 1/p when X has type p) is very similar. Using the
same notation, and assuming X has type p > 1 with constant Tp(X), we have

ϕ(mn) ≤ 2K�

(
Ave
εj=±1

∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥
p)1/p

≤ 2K�Tp(X)

(
m∑

k=1

Ave
εj=±1

∥∥∥∥∥
∑
j∈Bk

εj ej

∥∥∥∥∥
p)1/p

≤ 4K�Tp(X)m
1/pϕ(n).

This implies (4.2) for suitable constants.

We now say that a basis (en) is bidemocratic if there is a constant � so that

ϕ(n)ϕ∗(n) ≤ �n.(4.5)

Proposition 4.2. If (en) is bidemocratic (with constant�), then (en) and (e∗n) are both
democratic (with constant �) and are both unconditional for constant coefficients.

Proof. If A is any finite set we have

|A| ≤
∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥
∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ ≤ ϕ∗(|A|)
∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ .
Hence

�−1ϕ(|A|) ≤
∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥
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and so (en) is democratic with constant �. Let (εj )j∈A be any choice of signs ±1. Then

|A| ≤
∥∥∥∥∥
∑
j∈A

εj e
∗
j

∥∥∥∥∥
∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥ ≤ 2ϕ∗(|A|)
∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥ .
Hence

1

2�
ϕ(|A|) ≤

∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥ ≤ 2ϕ(|A|).

Hence (en) is unconditional for constant coefficients. Similar calculations work for (e∗j )
to obtain the theorem.

Proposition 4.3. A basis (en) is bidemocratic if and only if there is a constant C so
that, for any finite set A ⊂ N, ∥∥∥∥∥

∑
k∈A

ek

∥∥∥∥∥
∥∥∥∥∥
∑
k∈A

e∗k

∥∥∥∥∥ ≤ C |A|.(4.6)

Proof. One direction is trivial. Assume (4.6) holds with C ≥ 1. Suppose n ∈ N. By
passing to an equivalent norm on X , if necessary, we may assume that (en) and (e∗n) are
both monotone. There exist A, B ⊂ N with |A| ≤ n, |B| ≤ n, and∥∥∥∥∥

∑
j∈A

ej

∥∥∥∥∥ ≥ 1
2ϕ(n),

∥∥∥∥∥
∑
j∈B

e∗j

∥∥∥∥∥ ≥ 1
2ϕ
∗(n).

By monotonicity of (en) and (e∗n) we may assume that |A| = |B| = n. Let D = A ∪ B,
E = D\A.

If ‖∑j∈D ej‖ ≥ (1/8C)ϕ(n) and ‖∑j∈D e∗j ‖ ≥ (1/8C)ϕ∗(n) we obtain immediately
that

ϕ(n)ϕ∗(n) ≤ 26C3|D| ≤ 27C3n.

Consider when one of these inequalities fails; we need only treat the case ‖∑j∈D ej‖ <
(1/8C)ϕ(n). Then∥∥∥∥∥

∑
j∈E

ej

∥∥∥∥∥ ≥
∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥−
∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥ > ϕ(n)

2
− ϕ(n)

8C
>
ϕ(n)

4

and thus, as |E | ≤ n, (4.6) gives∥∥∥∥∥
∑
j∈E

e∗j

∥∥∥∥∥ ≤ 4Cnϕ(n)−1.

We also have from (4.6) that ∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥ ≤ 2Cnϕ(n)−1.
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Hence ∥∥∥∥∥
∑
j∈D

e∗j

∥∥∥∥∥ ≤ 6Cnϕ(n)−1

and so

n ≤ |D| ≤
∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥
∥∥∥∥∥
∑
j∈D

e∗j

∥∥∥∥∥ ≤
(

6Cn

ϕ(n)

) (
ϕ(n)

8C

)
= 3n

4

which is a contradiction.

Proposition 4.4. If (en) is a democratic quasi-greedy basis with the URP, then (en) is
bidemocratic.

Proof. We assume (4.2) holds, that (en) is quasi-greedy with constant K , and demo-
cratic with constant �. Suppose A is a finite subset of N. Pick x ∈ X so that ‖x‖ = 1
and

∑
j∈A e∗j (x) >

1
2‖

∑
j∈A e∗j ‖. Let ρ be the greedy ordering for x . Then by (3.5), if

|A| = n,

ϕ(n)

∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥ ≤ 2ϕ(n)
∑
j∈A

|e∗j (x)|

≤ 2ϕ(n)
n∑

k=1

|e∗ρ(k)(x)|

≤ 8K 2�

n∑
k=1

ϕ(n)

ϕ(k)

≤ 8K 2�Cnβ
n∑

k=1

k−β

≤ C1n

for a suitable constant C1. This implies ϕ(n)ϕ∗(n) ≤ C1n.

Corollary 4.5. Let (en) be a quasi-greedy basis for a Hilbert space. Then (en) is
bidemocratic.

Proof. Wojtaszczyk [11] proved that (en) is democratic and that ϕ(n) � √n. So the
result follows from Proposition 4.4.

Remark 4.6. Proposition 4.4 breaks down for bases that are not quasi-greedy. To see
this, let (ep

n ) be the unit vector basis of 	p. We define a normalized basis ( fn) of 	2⊕2 	p

as follows:

f2n−1 = 1√
2
(e2

n + ep
n ), f2n = 1

2 e2
n +
√

3

2
ep

n .
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Suppose that 1 < p < 2. It is easy to check that ( fn) and ( f ∗n ) are both democratic and
unconditional for constant coefficients, that ϕ(n) � n1/p, and that ϕ∗(n) � √n. So both
( fn) and ( f ∗n ) have the URP but ( fn) is not bidemocratic.

5. Duality of Almost Greedy Bases

Theorem 5.1. Let (en) be a greedy basis with the URP. Then (e∗n) is a greedy basic
sequence. In particular, if (en) is a greedy basis of a Banach space X with nontrivial
type, then (e∗n) is a greedy basis of X∗.

Proof. Since (e∗n) is automatically unconditional this follows from Proposition 4.4 and
Theorem 3.1. The second part follows from Proposition 4.1; note that any space with
nontrivial type and an unconditional basis is reflexive by James’s theorem [5].

Remark 5.2. The Haar system is a greedy basis of H1. However, Oswald [9] proved
that the Haar system is not a greedy basic sequence in BMO (i.e., H ∗1 ). This provides
a natural illustration of the fact that the assumption of nontrivial type in Theorem 5.1
cannot be eliminated.

Corollary 5.3. For 1 < p < ∞ the Banach space L p[0, 1] has a greedy basis not
equivalent to a rearranged subsequence of the Haar system.

Proof. For p > 2, Wojtaszczyk [11] constructed such a basis with ϕ(n) � n1/p, hence
with the URP. The case p < 2 follows by duality using Theorem 5.1.

Theorem 5.4. Let (en) be a quasi-greedy basis of a Banach space X . Then the following
are equivalent:

(1) (en) is bidemocratic.
(2) (en) and (e∗n) are both almost greedy.
(3) (en) and (e∗n) are both partially greedy.

Proof. We first prove (1) implies (2). Let � denote the bidemocratic constant. In fact,
by Theorem 3.3 and Proposition 4.2, we only need show that (e∗n) is quasi-greedy. Let
us denote by G∗m and H∗m the greedy operator and greedy remainder operators associated
to the dual basic sequence (e∗n). Suppose x∗ ∈ X∗ and x ∈ X .

First note that if |A| = m, then

∑
j∈A

|x∗(ej )| ≤ ‖x∗‖ sup
εj=±1

∥∥∥∥∥
∑
j∈A

εj ej

∥∥∥∥∥
≤ 2ϕ(m)‖x∗‖.

Hence

sup
j∈N
|(H∗m x∗)(ej )| ≤ 2

ϕ(m + 1)

m + 1
‖x∗‖.(5.1)
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On the other hand, (3.5) implies that

sup
j∈N
|e∗j (Hm(x))| ≤ 4K 2�

ϕ(m + 1)
‖x‖.(5.2)

Suppose Gm(x) =
∑

j∈A e∗j (x)ej and G∗m(x
∗) =∑

j∈B x∗(ej )e∗j where |A| = |B| =
m. Then

|(H∗m x∗)(Gm(x))| =
∣∣∣∣∣
( ∑

j∈A\B
x∗(ej )e

∗
j

)
(x)

∣∣∣∣∣
≤

∥∥∥∥∥
∑

j∈A\B
x∗(ej )e

∗
j

∥∥∥∥∥ ‖x‖
≤ 4

ϕ(m + 1)ϕ∗(m)
m + 1

‖x‖‖x∗‖

(by (3.2) and (5.1))

≤ 4�‖x‖‖x∗‖.
Also,

|(G∗m x∗)(Hm(x))| =
∣∣∣∣∣x∗

( ∑
j∈B\A

e∗j (x)ej

)∣∣∣∣∣
≤ ‖x∗‖4K 2�‖x‖

ϕ(m + 1)
(2ϕ(m))

(by (5.2))

≤ 8K 2�‖x‖‖x∗‖.
Now

G∗m x∗(x) = x∗(Gm x)− (H ∗m x∗)(Gm x)+ G∗m(x
∗)(Hm x).

Hence

|G∗m x∗(x)| ≤ (K + 4�+ 8K 2�)‖x‖‖x∗‖
so that

‖G∗m x∗‖ ≤ (K + 4�+ 8K 2�)‖x∗‖.
This implies (e∗n) is a quasi-greedy basic sequence, and proves (1) implies (2).

Of course (2) implies (3), so it remains to prove (3) implies (1). By Theorem 3.4,
(3) implies that both (en) and (e∗n) are quasi-greedy and conservative. Let us assume that
K is a quasi-greedy constant for both (en) and (e∗n), and that � is a conservative constant
for both (en) and (e∗n).
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Suppose A is any finite subset of N. For x ∈ [ej ]j /∈A, let y = ∑
j∈A ej + x . First

suppose that |e∗j (x)| �= 1 for all j . Then

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ ≤
∥∥∥∥∥∥

∑
|e∗j (y)|≤1

e∗j (y)ej

∥∥∥∥∥∥+
∥∥∥∥∥∥

∑
|e∗j (y)|<1

e∗j (y)ej

∥∥∥∥∥∥
≤ 2K‖y‖.

By continuity, ‖∑j∈A ej‖ ≤ 2K‖y‖ for all x ∈ [ej ]j /∈A. Thus, by Nikol’skii’s Duality
Theorem (see, e.g., [7]), there exists x∗ ∈ [e∗j ]j∈A with ‖x∗‖ = 1 and∣∣∣∣∣x∗

(∑
j∈A

ej

)∣∣∣∣∣ ≥ 1

2K

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥ .(5.3)

Now suppose m ∈ N. Choose A0, B0 with |A0|, |B0| ≤ m and∥∥∥∥∥
∑
j∈A0

ej

∥∥∥∥∥ ≥ 1
2ϕ(m),

∥∥∥∥∥
∑
j∈B0

e∗j

∥∥∥∥∥ ≥ 1
2ϕ
∗(m).

Now let A be any subset of N with |A| = 2m and A > max(A0, B0).
Note that if D ⊂ A and |D| ≥ m, then since (en) and (e∗n) are conservative with

constant �, ∥∥∥∥∥
∑
j∈D

ej

∥∥∥∥∥ ≥ 1

2�
ϕ(m),

∥∥∥∥∥
∑
j∈D

e∗j

∥∥∥∥∥ ≥ 1

2�
ϕ∗(m).(5.4)

Let us choose u∗ ∈ [e∗j ]j∈A such that
∑

j∈A |u∗j (ej )|2 is minimized subject to ‖u∗‖ ≤ 1
and ∑

j∈A

u∗(ej ) ≥ ϕ(m)
4�K

.(5.5)

This is possible by (5.3) and (5.4).
Now let G∗m(u

∗) = ∑
j∈B u∗(ej )e∗j where B ⊂ A and |B| = m. Let D = A\B. We

observe that by (2.7) we have

min
j∈B
|u∗(ej )|

∥∥∥∥∥
∑
j∈B

e∗j

∥∥∥∥∥ ≤ 4K 2

and hence, by (5.4),

min
j∈B
|u∗(ej )| ≤ 8K 2�

ϕ∗(m)
.(5.6)

We then again use (5.3) to find v∗ ∈ [e∗j ]j∈D with ‖v∗‖ = 1 and

∑
j∈D

v∗(ej ) ≥ ϕ(m)
4�K

.
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It follows from the minimality assumption on u∗ that∑
j∈A

((1− t)u∗(ej )+ tv∗(ej ))
2 ≥

∑
j∈A

(u∗(ej ))
2

for 0 ≤ t ≤ 1 and so, using (2.8) and (5.6),∑
j∈A

u∗(ej )
2 ≤

∑
j∈A

u∗(ej )v
∗(ej )

≤ min
j∈B
|u∗(ej )|

∑
j∈D

|v∗(ej )|

≤ 8K 2�

ϕ∗(m)
max
εj=±1

∥∥∥∥∥
∑
j∈D

εj ej

∥∥∥∥∥
≤ 16K 2�ϕ(m)

ϕ∗(m)
.

Thus, from (5.5),

(ϕ(m))2 ≤ 24�2 K 2

(∑
j∈A

|u∗(ej )|
)2

≤ 24�2 K 2m
∑
j∈A

u∗(ej )
2

≤ 28�3 K 4mϕ(m)

ϕ∗(m)

which gives the estimate

ϕ(m)ϕ∗(m) ≤ 28�3 K 4m,

so that (en) is bidemocratic.

Corollary 5.5. Let X be a Banach space with nontrivial type. If (en) is an almost
greedy basis of X , then (e∗n) is an almost greedy basic sequence in X∗.

Proof. This follows directly from Theorem 5.4 and Proposition 4.4.

Remark 5.6. In [3] there is an example of an almost greedy basis (en) of 	1 such that
(e∗n) is not unconditional for constant coefficients, thus not quasi-greedy. The example
localizes to give a quasi-greedy basis of the reflexive space (

∑⊕	n
1)2 whose dual basis

is not quasi-greedy. On the other hand, it follows from Corollary 4.5 and Theorem 5.4
above that in a Hilbert space the dual basis of a quasi-greedy basis is always quasi-greedy
(in fact, both the basis and its dual are almost greedy).

Corollary 5.7. Suppose that (en) and (e∗n) are both partially greedy and that ϕ(n) � n.
Then (en) is equivalent to the unit vector basis of 	1.
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Proof. By Theorem 5.4, (en) is bidemocratic. Hence

ϕ∗(n) � n/ϕ(n) � 1.

But this implies that (e∗n) is equivalent to the unit vector basis of c0, which gives the
result.

Example 5.8. Let us conclude this section by showing that if ϕ : N → (0,∞) is an
increasing function satisfying ϕ(1) = 1 and ϕ(n)/n is decreasing, but failing (4.1), then
it is possible to construct a Banach space with a greedy basis (en) with a fundamental
function equivalent to ϕ(n) and such that the dual basic sequence (e∗n) is not greedy. This
will show that the preceding theorem is, in some sense, sharp. In Example 5.10 we will
show, under very mild additional conditions on ϕ, how to make a reflexive example.

Let us define the sequence space Xϕ to be the completion of c00 for the norm

‖ξ‖ϕ = sup
n

sup
|A|=n
n<A

ϕ(n)

n

∑
k∈A

|ξk |.

It is clear that the canonical basis is unconditional. It is also democratic since if |A| = n,

1
2ϕ(n) ≤

∥∥∥∥∥
∑
k∈A

ek

∥∥∥∥∥ ≤ ϕ(n).
Let us suppose the dual basic sequence (e∗n) is democratic with democratic constant �.
We note that if A > n, then ∥∥∥∥∥

∑
k∈A

e∗k

∥∥∥∥∥ ≤ n/ϕ(n).

It follows from the democratic assumption that∥∥∥∥∥
n∑

k=1

e∗k

∥∥∥∥∥ ≤ �n/ϕ(n).

Now consider

ξ =
n∑

k=1

1

ϕ(k)
ek .

Clearly ‖ξ‖ ≤ 1 and so ∥∥∥∥∥
n∑

k=1

e∗k

∥∥∥∥∥ ≥
n∑

k=1

1

ϕ(k)
.

We deduce that
n∑

k=1

1

ϕ(k)
≤ � n

ϕ(n)
.
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Now, any m, n with m ≥ 2, we have

n

ϕ(n)
log m ≤ n

ϕ(n)

mn∑
k=n

1

k

≤
mn∑

k=1

1

ϕ(k)

≤ �
mn

ϕ(mn)
.

Hence

ϕ(mn) ≤ �

log m
mϕ(n).

For large m this shows that (4.1) holds, contradicting our assumption.

Remark 5.9. The end of the proof of Example 5.8 actually establishes one direction
of the following equivalence (the other direction is easier): (ϕ(n)) satisfies the URP if
and only if (1/ϕ(n)) is regular, i.e., if and only if there exists C > 0 such that

1

ϕ(n)
≥ C

n

n∑
j=1

1

ϕ( j)
.

Regular weight sequences also arise in the theory of Lorentz spaces.

Example 5.10. Now let us suppose, in addition, that ϕ(n)/nδ is increasing for some
choice of δ > 0. We show how to make the preceding example reflexive.

Let ψ(n) = ϕ(n)1+δn−δ . Then ψ(n)/n is decreasing and ψ(n) is increasing. Define
Xψ as in Example 5.8 for the function ψ . Let θ = (1+ δ)−1.

Let T denote Tsirelson space (see [2]). For our purposes it is only necessary to know
that this space is reflexive,

1
2 n ≤

∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥
T

≤ n if |A| = n

and ∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥
T ∗

≤ 2 if |A| = n and n < A.

Now let Y = [T, Xψ ]θ be the space obtained by complex interpolation. Since T is
reflexive it follows from a result of Calderón [1] that Y is reflexive. Note that Y ∗ =
[T ∗, X∗ψ ]θ .

Now suppose A ⊂ N and |A| = n. Then∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥
Y

≤ n1−θ
∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥
θ

Xψ

≤ ϕ(n).
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On the other hand, if n < A we have

∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥
Y ∗

≤
∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥
1−θ

T ∗

∥∥∥∥∥
∑
j∈A

e∗j

∥∥∥∥∥
θ

Xψ∗

≤ 2

(
n

ψ(n)

)θ
= 2

n

ϕ(n)
.

Hence, for any A with |A| = 2n, we have∥∥∥∥∥
∑
j∈A

ej

∥∥∥∥∥
Y

≥ ϕ(n)
2
.

Thus (ej ) is democratic with fundamental function equivalent to ϕ. Now suppose (e∗j ) is
democratic with constant �. Then∥∥∥∥∥

n∑
j=1

e∗j

∥∥∥∥∥
Y

≤ 2�
n

ϕ(n)
.

Now Y ∗ = (T ∗)1−θ (X∗ψ)θ ⊂ Z := (	∞)1−θ (X∗ψ)θ and so we have

∥∥∥∥∥
n∑

j=1

e∗j

∥∥∥∥∥
Y ∗

≥
∥∥∥∥∥

n∑
j=1

e∗j

∥∥∥∥∥
Z

=
∥∥∥∥∥

n∑
j=1

e∗j

∥∥∥∥∥
1−θ

∞

∥∥∥∥∥
n∑

j=1

e∗j

∥∥∥∥∥
θ

X∗
ψ

=
∥∥∥∥∥

n∑
j=1

e∗j

∥∥∥∥∥
θ

X∗
ψ

.

We deduce that ∥∥∥∥∥
n∑

j=1

e∗j

∥∥∥∥∥
X∗
ψ

≤
(

2�
n

ϕ(n)

)1/θ

= (2�)1/θ n

ψ(n)
.

Hence, by the argument presented in Example 5.8, we have that

ψ(m) ≤ C1

(
m

n

)β
ψ(n), m > n,

for some β < 1 and C1. Now

ϕ(m) ≤ C1/(1+δ)
1

(
m

n

)(β+δ)/(1+δ)
ϕ(n), m > n.

This implies ϕ satisfies (4.1), contradicting our assumption.
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