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Summary. Let X be an infinite-dimensional Banach space. We show the existence of a non-trivial
X-valued measure with relatively compact range and not o-finite variation. This can be regarded
as an extension of the Dvoretzky-Rogers Theorem. We also show that the space of Pettis-integrable
functions is not complete under the usually cosiderable norm.

Let I be the unit interval and let # denote the o-algbera of all Borel subsets
of I; let A denote the usual Lebesgue measure on I. In this note we give a short proof
of a result due to Thomas [4], (p. 90). If X is an infinite-dimensional Banach space,
we show the existence of a non-trivial vector measure u:%— X such that |y| (E)=0
or oo for all E e 4, where |u| is the total variation of u

m

Ll (E)=sup{Z I (E)|): E; disjoint Lm) Ei=E}.

i=1 i=1

We also show that the space P of Pettis-integrable functions on I is not complete
under the norm :

[ fd/l“.

E

' Denote by ca (X, 4, A) the space of all vector measures u:%—X which are
absolutely continuous with respect to A (i.e. A (E)=0 implies ¢ (E)=0). Then
ca (X, %, 4) is a Banach space under the norm

.f1l=sup

Echp

[l =sup [l (E)Il.-
We shall identify P as a subspace of ca (X, %, A) by the identification fe fA.
Let P,cP be the space of simple functions, or measures of the form

!

pB)=>" A(4:NB) xi, y
i=1 /

where A,, ... A, are disjoint Borel subsets of I and x4, .., x, € X.

*) The second author would like to thank the Polish Academy of Sciences and the British
Council for their financial support enabling him to visit Wroclaw, Poznat and Warsaw.
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The proof of the following theorem has been considerably simplified in the
latter stages by a suggestion of D. J. H. Garling.

THEOREM 1. If X is infinite-dimeniosnal, the closure of P, in ca (X, 4, 2) contains
a measure p for which |u| is not o-finite. .
Proof. Let M, be the subspace of ca (X, 8, ) of all measures u for which |ul
is o-finite. Let V, =M, (neN) be the set of all x4 such that ||u||<2-" and there
exists Ee # with A(E)<27" and |u| I—E)<2™". Then (V,: neN) is a base of
a metrizable vector topology in M,, denoted by p. Furthermore we shall show
(M,, p) is complete. For if u,eV, then Z U, converges in ca (X, B, ) to some U
Choose E,e# such that 1 (E,,)<2‘" and |u,| (I— ,,)<'2“ and let F,= U E,.

n+1

Then A(F,)<2-" and |u,| (I~ F)<2 ~¥ for k>n. For each n there exists G,oF,
such that 1 (G,)<2-®-1 and Z lu;l I—G,)<oo. Thus
: i=1 ’ . E

n =]

M U=GI< Y 1l U=G)+ > 1t (1= Gp)<oo
=1 {=u+1

and so ue M,. Also

| U=E)< )l U=F)<2™"

f=n+1 . / i=n+1 .

so that z u;€V,, and Z,u,, =u in the topology p.

i=n+1

Now- suppose P, M,. Then the inclusion map Po—>M has ‘closed graph
if we equip M, with the p-topology (which is stropger than the norm topology).
Hence by the Closed Graph Theorem ¥, NP, is a nelghbourhood of 0 in P,, i.e.
there exists >0 such that [ul|<e¢ implies u € ¥,. Alternatively there exists C<oo
such that if |[u]<1, then for some Ec# with A(E)<%, |ul (I-E)<C.

By the Dvoretzky—Rogers Theorem, (cf. €8 [1,2] or [3]). we can find in X
elements Xy, ..y X, such that '

”tl x1+...+t,,x,,“<1
whenever max |#;/<1 and

1<ign

Peall+ oo+ leall = 3C . -
Let Jy, ..., J, be disjoint Borel subsets of [0, 1] with measure

agy=—
: el A e ] S

Define ue P, by
ABNJ)

=Y AN

i=1




Vector Measures of Infinite Variation 241

Then llzll<1, and for any B

1l (B)= Z W))nxn ?~(B)(lexill)>3Cl(B).

i=1

Hence if 2 (E)<1, |u| (I-E)>32 C>C which is a contradiction.
The following theorems are now immediate: - ] i

THEOREM 2. If X is an infinite-dimensional Banach space, then there is a measure
u: B—X with relatively compact range and |p| (E)=oc for Ee %, with A(E)>0.

Proof. Choose ve P, with |v| non o-finite; then there exists a set E, € # with
A (E,) maximal such that [v| is o-finite on E,. Then v restricted to 7—E, has the
property that A (F)>0 implies |v| (F)=cc; by the isomorphism of the measure
‘spaces (I, %, A) and (F—E,, 8, y), where y=A(I—E;)"' 2, then the theorem is
.proved.

THEOREM 3. If X is an infinite-dimensional Banach space then P is not complete.

Proof. M,oP>P, and so the result follows from Theorem 1.
I We would like to thank'Z. Lipecki, J. Diestel and D. J. H. Garling for helpful

fcom,ments on the preparation of this note.
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JI. Sumuka, H. JTx. KanetoH, Bexkrophue pasmepHocTH GeCKOHEMHBLIX BapHAIMii

Copnepxanue. Ilycte X 0603Ha4aeT NPOU3BOJBHOE GECKOHEYHOMEPHOE GaHAaXOBO HPCTPAHCTBO.
. Mb1 foKka3biBaeM CyINeCTBOBaHNME HETPHBHATBHON Mephl CO 3HaYeHWAMH B X, HMEIOIEH OTHOCH-
| TENbHO KOMIIAKTHOE MHOMECTBO 3HAYCHHIl M He MMEIOIIE!l o-KOHEYHOH BapHalluH. Kpome Toro,
iMm JOKa3bIBAaEM, YTO HPOCTPAHCTBO (YHKLMI, MHTErpHPYEMBIX B CMBicie IlerTuca, He IONHO

 OTHOCHTEJIBHO HOPMEL I £]|=sup ]I f fdl“
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