Vector Measures of Infinite Variation

by

Liliana JANICKA and Nigel J. KALTON *)

Presented by C. RYLL-NARDZEWSKI on July 27, 1976

Summary. Let X be an infinite-dimensional Banach space. We show the existence of a non-trivial X-valued measure with relatively compact range and not σ-finite variation. This can be regarded as an extension of the Dvoretzky–Rogers Theorem. We also show that the space of Pettis-integrable functions is not complete under the usually considerable norm.

Let I be the unit interval and let B denote the σ-algebra of all Borel subsets of I; let λ denote the usual Lebesgue measure on I. In this note we give a short proof of a result due to Thomas [4], (p. 90). If X is an infinite-dimensional Banach space, we show the existence of a non-trivial vector measure $\mu : B \to X$ such that $|\mu|(E) = 0$ or ∞ for all $E \in B$, where $|\mu|$ is the total variation of μ

$$|\mu|(E) = \sup \left\{ \sum_{i=1}^{m} \|\mu(E_i)\| : E_i \text{ disjoint} \bigcup_{i=1}^{m} E_i = E \right\}.$$

We also show that the space P of Pettis-integrable functions on I is not complete under the norm

$$\|f\| = \sup_{E \in B} \left\| \int_{E} f d\lambda \right\|.$$

Denote by $ca(X, B, \lambda)$ the space of all vector measures $\mu : B \to X$ which are absolutely continuous with respect to λ (i.e. $\lambda(E) = 0$ implies $\mu(E) = 0$). Then $ca(X, B, \lambda)$ is a Banach space under the norm

$$\|\mu\| = \sup_{E \in B} \|\mu(E)\|.$$

We shall identify P as a subspace of $ca(X, B, \lambda)$ by the identification $f \leftrightarrow f \lambda$. Let $P_0 \subset P$ be the space of simple functions, or measures of the form

$$\mu(B) = \sum_{i=1}^{n} \lambda(A_i \cap B) x_i,$$

where A_1, \ldots, A_n are disjoint Borel subsets of I and $x_1, \ldots, x_n \in X$.

*) The second author would like to thank the Polish Academy of Sciences and the British Council for their financial support enabling him to visit Wroclaw, Poznań and Warsaw.

[239]
The proof of the following theorem has been considerably simplified in the latter stages by a suggestion of D. J. H. Garling.

Theorem 1. If \(X \) is infinite-dimenional, the closure of \(P_0 \) in \(\text{ca} (X, \mathcal{B}, \lambda) \) contains a measure \(\mu \) for which \(|\mu| \) is not \(\sigma \)-finite.

Proof. Let \(M_\sigma \) be the subspace of \(\text{ca} (X, \mathcal{B}, \lambda) \) of all measures \(\mu \) for which \(|\mu| \) is \(\sigma \)-finite. Let \(V_n \subset M_\sigma \) \((n \in \mathbb{N})\) be the set of all \(\mu \) such that \(|\mu| \leq 2^{-n} \) and there exists \(E \in \mathcal{B} \) with \(\lambda (E) \leq 2^{-n} \) and \(|\mu| (I - E) \leq 2^{-n} \). Then \((V_n : n \in \mathbb{N}) \) is a base of a metrizable vector topology in \(M_\sigma \), denoted by \(\rho \). Furthermore we shall show \((M_\sigma, \rho)\) is complete. For if \(\mu_n \in V_n \) then \(\sum \mu_n \) converges in \(\text{ca} (X, \mathcal{B}, \lambda) \) to some \(\mu \).

Choose \(E_n \in \mathcal{B} \) such that \(\lambda (E_n) \leq 2^{-n} \) and \(|\mu_n| (I - E_n) \leq 2^{-n} \) and let \(F_n = \bigcup_{n+1}^{\infty} E_k \).

Then \(\lambda (F_n) \leq 2^{-n} \) and \(|\mu_k| (I - F_n) \leq 2^{-k} \) for \(k > n \). For each \(n \) there exists \(G_n \supseteq F_n \) such that \(\lambda (G_n) \leq 2^{-(n-1)} \) and \(\sum_{i=1}^{n} |\mu_i| (I - G_n) < \infty \). Thus

\[
|\mu| (I - G_n) \leq \sum_{i=1}^{n} |\mu_i| (I - G_n) + \sum_{i=n+1}^{\infty} |\mu_i| (I - G_n) < \infty
\]

and so \(\mu \in M_\sigma \). Also

\[
\left| \sum_{i=n+1}^{\infty} \mu_i (I - F_n) \right| \leq \sum_{i=n+1}^{\infty} |\mu_i| (I - F_n) \leq 2^{-n}
\]

so that \(\sum_{i=n+1}^{\infty} \mu_i \in V_n \) and \(\sum \mu_n = \mu \) in the topology \(\rho \).

Now suppose \(P_0 \subset M_\sigma \). Then the inclusion map \(P_0 \to M_\sigma \) has closed graph if we equip \(M_\sigma \) with the \(\rho \)-topology (which is stronger than the norm topology). Hence by the Closed Graph Theorem \(V_1 \cap P_0 \) is a neighbourhood of \(0 \) in \(P_0 \), i.e. there exists \(\varepsilon > 0 \) such that \(|\mu| \leq \varepsilon \) implies \(\mu \in V_1 \). Alternatively there exists \(C < \infty \) such that if \(|\mu| \leq 1 \), then for some \(E \in \mathcal{B} \) with \(\lambda (E) \leq \frac{1}{2} \), \(|\mu| (I - E) \leq C \).

By the Dvoretzky–Rogers Theorem, (cf. e.g. [1, 2] or [3]). we can find in \(X \) elements \(x_1, \ldots, x_n \) such that

\[
||x_1 + \ldots + x_n|| \leq 1
\]

whenever \(\max_{1 \leq i \leq n} |x_i| \leq 1 \) and

\[
||x_1|| + \ldots + ||x_n|| \geq 3C.
\]

Let \(J_1, \ldots, J_n \) be disjoint Borel subsets of \([0, 1]\) with measure

\[
\lambda (J_i) = \frac{||x_i||}{||x_1|| + \ldots + ||x_n||}, \quad 1 \leq i \leq n.
\]

Define \(\mu \in P_0 \) by

\[
\mu (B) = \sum_{i=1}^{n} \frac{\lambda (B \cap J_i)}{\lambda (J_i)} x_i.
\]
Then \(\|\mu\| \leq 1\), and for any \(B\)

\[
|\mu|(B) = \sum_{i=1}^{n} \frac{\lambda(B \cap J_i)}{\lambda(J_i)} \|x_i\| = \lambda(B) \left(\sum_{i=1}^{n} \|x_i\| \right) \geq 3C \lambda(B).
\]

Hence if \(\lambda(E) \leq \frac{1}{2}\), \(|\mu|(I - E) \geq \frac{3}{2} C > C\) which is a contradiction.

The following theorems are now immediate:

Theorem 2. If \(X\) is an infinite-dimensional Banach space, then there is a measure \(\mu : \mathcal{B} \rightarrow X\) with relatively compact range and \(|\mu|(E) = \infty\) for \(E \in \mathcal{B}\), with \(\lambda(E) > 0\).

Proof. Choose \(v \in \mathcal{P}_0\) with \(|v|\) non \(\sigma\)-finite; then there exists a set \(E_0 \in \mathcal{B}\) with \(\lambda(E_0)\) maximal such that \(|v|\) is \(\sigma\)-finite on \(E_0\). Then \(v\) restricted to \(I - E_0\) has the property that \(\lambda(F) > 0\) implies \(|v| (F) = \infty\); by the isomorphism of the measure spaces \((I, \mathcal{B}, \lambda)\) and \((I - E_0, \mathcal{B}, \gamma)\), where \(\gamma = \lambda(I - E_0)^{-1} \lambda\), then the theorem is proved.

Theorem 3. If \(X\) is an infinite-dimensional Banach space then \(P\) is not complete.

Proof. \(M_0 \supseteq \mathcal{P}_0\) and so the result follows from Theorem 1.

We would like to thank Z. Lipecki, J. Diestel and D. J. H. Garling for helpful comments on the preparation of this note.

References

Л. Янцка, Н. Дж. Кальтон, Векторные размерности бесконечных вариаций

Содержание. Пусть \(X\) обозначает произвольное бесконечномерное банахово пространство. Мы доказываем существование непрерывной меры со значениями в \(X\), имеющей относительно компактное множество значений и не имеющей \(\sigma\)-конечной вариации. Кроме того, мы доказываем, что пространство функций, интегрируемых в смысле Петтиса, не полна относительно нормы \(\|f\| = \sup_{E \in \mathcal{B}} \| \int_E f d\lambda \|\).